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Abstract

Previous works have already demonstrated that deterministic sampling can be competitive with respect to prob-

abilistic sampling in sampling-based path planners. Nevertheless, the definition of a general sampling sequence for

any d-dimensional Configuration Space satisfying the requirements needed for path planning is not a trivial issue.

This paper makes a proposal of a simple and yet efficient deterministic sampling sequence based on the recursive use,

over a multi-grid cell decomposition, of the ordering of the 2d descendant cells of any parent cell. This ordering is

generated by the digital construction method using a d×d matrix Td. A general expression of this matrix (i.e. for any

d) is introduced and its performance analyzed in terms of the mutual distance. The paper ends with a performance

evaluation of the use of the proposed deterministic sampling sequence in different well known path planners.

I. INTRODUCTION

Configuration Space has been the planning paradigm that has nurtured the field of robotic path planning since its

beginnings. The explicit characterization of the obstacles of the C-space is not possible when the number of degrees

of freedom of the robot is high and, therefore, sampling-based methods are usually proposed. These methods only

require the collision evaluation of a discrete set of sample configurations and the interconnection of the free ones

in either roadmaps or trees. Therefore, the generation of samples is one of the crucial factors in the performance

of sampling-based planners.

Random sampling using a uniform distribution is usually considered, like in the basic Probabilistic Roadmap

Method (PRM [3]) or the basic Rapidly-exploring Random Trees approach (RRT [5]); although deterministic

sampling sequences have also been proposed [1]. Deterministic sampling sequences have the advantages of classical

grid search approaches, i.e. a lattice structure (that allows to easily determine the neighborhood relations) and a

good uniform coverage of the C-space. Deterministic sampling sequences applied to PRM-like planners have given

good results compared to the basic PRM planner [6].
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For difficult path-planning problems, importance sampling methods are required to bias the sampling towards

some given areas of the C-space, and reduce the amount of samples needed to find a solution (e.g. [7], [2]). These

strategies usually rely on a uniform generation of samples that are then filtered by different criteria to select samples

in critical regions; therefore, deterministic sampling can also be used for that purpose.

This paper has as objective the proposal of a general deterministic sampling sequence and its performance

evaluation. Section II and III introduce the deterministic sampling sequence. Section IV makes a performance

analysis and Section V presents its use on different path planners. Finally, Section VI concludes the work.

II. DETERMINISTIC SAMPLING SEQUENCE

The deterministic sampling sequence used is based on a multi-grid cell decomposition, introduced in Section II-A,

and on the low-dispersion ordering of the descendant cells of any given parent cell, introduced in Section II-B.

The expression of the sequence is given in Section II-C and Section II-D discusses the mapping of samples to

configurations of C-space.

A. Multi-grid cell decomposition

A multi-grid decomposition of a d-dimensional space of parameters is considered. An initial cell with sides of

unitary size covering the entire space composes the first grid. The levels in the multi-grid are called partition levels

and are enumerated such that the first one is level 0 and the maximum resolution1 corresponds to partition level M

(partition levels are denoted by super-indices). A cell of a given partition level M is called a sample or an M -cell;

and is coded as follows. Let:

• The index matrix V M be the binary d × M matrix whose rows are the binary representation of the indices

vM
j ∀j ∈ 1 . . . d of an M -cell on the regular grid of partition level M :

V M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vM
1

...

vM
j

...

vM
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aM1 . . . ai1 . . . a11

...
...

...

aMj . . . aij . . . a1j

...
...

...

aMd . . . aid . . . a1d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

being aMj and a1j the most and the least significant bit, respectively, of the binary representation of vM
j .

• WM be a d × M matrix of weights:

WM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w11 . . . w1j . . . w1M

...
...

...

wi1 . . . wij . . . wiM

...
...

...

wd1 . . . wdj . . . wdM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

1The maximum resolution needed is a fixed value determined by the clearance of the path planning problem to be solved.
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Fig. 1. Coding for M = 3 of: a) M -cells b) 1-cells.

with:

wij = 2(M−j)d+i−1 for i ∈ 1 . . . d, j ∈ 1 . . . M (3)

Then, the sample code CM and its index matrix V M are related as follows:

CM = V M · WM (4)

V M = CM&WM (5)

where the operation A · B represents the scalar product of matrices A and B, and the operation a&B between

a scalar a and a matrix B computes the bit-AND operation between a and all the components bij of B. As an

example the conversion operations of cell code 22 with indices (6,1) on the grid of partition level M = 3 (Fig. 1a)

are:

C3 = V 3 · W 3 =

(
1 1 0

0 0 1

)
·
(

16 4 1

32 8 2

)
= 22 (6)

V 3 = C3&W 3 = 22&

(
16 4 1

32 8 2

)
=

= 010110&

(
010000 000100 000001

100000 001000 000010

)
=

(
1 1 0

0 0 1

)
(7)

For any m-cell, with m < M , the cell code coincides with that of the first M -cell it contains (i.e. the descendant

M -cell with lower cell code), as illustrated in Fig. 1b.

B. Ordering of descendant cells

The position of a cell with respect to its parent cell can be defined by a binary word, i, with d bits, each one

determining the index (0 or 1) over the corresponding axis, i.e. i =
∑d

j=1 nj2j−1 (Fig. 2).
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TABLE I

ORDERING Ld FOR d = 2 AND d = 3.

i L2(i) = T2 i

0

(
1 0

1 1

)(
0

0

)
=

(
0

0

)
= 0

1

(
1 0

1 1

)(
1

0

)
=

(
1

1

)
= 3

2

(
1 0

1 1

)(
0

1

)
=

(
0

1

)
= 2

3

(
1 0

1 1

)(
1

1

)
=

(
1

0

)
= 1

i L3(i)

0 0

1 5

2 3

3 6

4 4

5 1

6 7

7 2

Finding a low-dispersion ordering of the 2d descendant cells of a parent cell is then equivalent to find a sequence,

Ld, of 2d binary words such that each element of the sequence maximizes the mutual distance, i.e. the minimum

distance to the previous elements of the sequence. This criterion is further discussed in Section IV-A.

Ld can be obtained using a digital construction method [8] that finds the sequence multiplying a d × d binary

matrix, Td, by the binary representation of the indices of the sequence:

Ld(i) = Td i = Td

⎛
⎜⎜⎜⎝

n1

...

nd

⎞
⎟⎟⎟⎠ (8)

An example of Td for d = 2 and d = 3 is:

T2 =

⎛
⎝ 1 0

1 1

⎞
⎠ T3 =

⎛
⎜⎜⎜⎝

1 1 0

0 1 0

1 0 1

⎞
⎟⎟⎟⎠ (9)

and the corresponding orderings obtained are shown in Table I. A proposal for Td is introduced in Section III.

C. The sampling sequence

The sampling sequence, sd(k), is a sequence of sample codes that specifies the ordering in which the d-dimensional

space is to be explored. The sequence sd(k) is based on the recursive use of Ld.

Let k ≥ 0 be the index of the sequence and Td be the matrix that determines the cell ordering of the descendant

cells as introduced in the previous section. Then:

sd(k) = (TdV
M
k ) · W ′M (10)
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Fig. 2. Position i of a cell with respect to its parent cell for two and three dimensional spaces.

TABLE II

FIRST 20 SAMPLES OF SEQUENCE s2 .

k 0 1 2 3 4 5 6 7 8 9

s2[k] 0 48 32 16 12 60 44 28 8 56

k 10 11 12 13 14 15 16 17 18 19

s2[k] 40 24 4 52 36 20 3 51 35 19

where V M
k is the index matrix corresponding to k, the product TdV

M
k is the standard binary matrix multiplication

between matrices Td and V M
k , and W ′M is a d × M matrix of weights, with:

w′
ij = 2(j−1)d+i−1 for i ∈ 1 . . . d j ∈ 1 . . . M (11)

(Note that matrix W ′M coincides with WM if the order of its columns is exchanged).

As an example, considering M = 3 and the expression of T2 proposed in (9), the sample for k = 6 is:

s2(6) =

⎡
⎣
⎛
⎝ 1 0

1 1

⎞
⎠
⎛
⎝ 0 1 0

0 0 1

⎞
⎠
⎤
⎦ ·
⎛
⎝ 1 4 16

2 8 32

⎞
⎠

=

⎛
⎝ 0 1 0

0 1 1

⎞
⎠ ·

⎛
⎝ 1 4 16

2 8 32

⎞
⎠ = 44 (12)

The first 20 samples generated by s2(k) are shown in Table II. Following the sequence over Fig. 1a gives a good

understanding of how it incrementally and uniformly covers the space.

If only the samples of a given cell are necessary, they can be obtained with the following (re)sampling sequence.

Let mK be the partition level of that cell and K be its code. Then:

rK
d (j) = K + (TdV

(M−mK)
j ) · W ′(M−mK) with j ≥ 0 (13)
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TABLE III

FIRST 10 SAMPLES OF r48
2 .

k 0 1 2 3 4 5 6 7 8 9

r48
2 [k] 48 60 56 52 51 63 59 55 50 62

As an example, the sixth sample generated by r2(k) over the 1-cell 48 (Fig. 1b) is:

r48
2 (6) = 48 +

⎡
⎣
⎛
⎝ 1 0

1 1

⎞
⎠
⎛
⎝ 1 0

0 1

⎞
⎠
⎤
⎦ ·
⎛
⎝ 1 4

2 8

⎞
⎠

= 48 +

⎛
⎝ 1 0

1 1

⎞
⎠ ·

⎛
⎝ 1 4

2 8

⎞
⎠ = 48 + 11 = 59 (14)

The first 10 samples generated by r48
2 (k) are shown in Table III. Following the sequence over Fig. 1a shows the

same incremental and uniform coverage feature.

D. Mapping to C-space

The deterministic sampling sequence proposed obtains samples of a d-dimensional unit cube of parameters, that

must be appropriately mapped to configurations of a particular C-space.

For the path planning of robot manipulators of d d.o.f., the C-space is �d. Taking into account the maximum

displacement of each joint, the configuration coordinates can be scaled to the unit cube [0, 1]d ⊂ �d. Then, the

indices (vM
1 , . . . , vM

d ) on the grid of partition level M of the samples obtained by sd(k) are mapped to coordinates

of the C-space as follows:

xj = vM
j sM +

sM

2
∀j ∈ 1 . . . d (15)

being sM = 1
2M the size of the sides of the M -cells.

For the path planning of 3D rigid-bodies that can both translate and rotate the mapping must be carefully handled,

due to the difficulty to uniformly distribute samples over the rotation group, as discussed in [4].

III. PROPOSAL FOR Td

In the digital construction method introduced in [8] the matrix Td is proposed to be built by columns in an

incremental way, but no general expression or procedure is given except for the first column that must be composed

of ones in order to place the second sample as far as possible from the first one.

A first attempt to obtain a general expression was done in [9], where the proposed Td (called TA
d ) gives an ever

non-increasing mutual distance for the elements of Ld, although the maximization of the mutual distance is not

guaranteed. In this paper a new proposal for Td (called TC
d ) is introduced and its performance is evaluated and

compared to that of [9].
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Fig. 3. Top: Mutual distances (Manhattan (left) and Euclidean (right)) in the sampling of �3 with M = 3; Bottom: Cumulative area in the

sampling of �3 (Manhattan (left) and Euclidean (right)).

A. Matrix TA
d

This matrix is proposed in [9] and is constructed as follows. Each column j ∈ 1 . . . d is composed of (j − 1)

zeros followed by a 1 (that corresponds to the diagonal). The rest of the column is filled by alternating (j − 1)

zeros with (j − 1) ones until the column is completed. The resulting Td is a lower diagonal matrix with non-zero

diagonal elements, and therefore is full rank. As a consequence, Td is able to generate all the 2d elements of the

sequence.

As an example, for d = 9 the matrix is:

TA
9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0

1 1 1 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0

1 1 0 1 0 0 0 1 0

1 0 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)



8

B. Matrix TC
d

This matrix is based on a prime decomposition. For each prime dimension, i.e. d = 2, 3, 5, 7, . . ., Td is first

defined:

TC
2 =

⎛
⎝ 1 0

1 1

⎞
⎠ (17)

TC
3 =

⎛
⎜⎜⎜⎝

1 1 0

0 1 0

1 0 1

⎞
⎟⎟⎟⎠ (18)

TC
d = Truncd(TC

(d+1)) ∀d prime s.t. d ≥ 5 (19)

where the function Truncd(M) returns the submatrix of M composed of the first d columns and the first d rows.

Then, for any d, a recursive construction is done based on the prime decomposition of d, e.g.:

TC
6 =

⎛
⎝ TC

3 0

TC
3 TC

3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

1 1 0 1 1 0

0 1 0 0 1 0

1 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

TC
9 =

⎛
⎜⎜⎜⎝

TC
3 TC

3 0

0 TC
3 0

TC
3 0 TC

3

⎞
⎟⎟⎟⎠ (21)

It can be seen that this approach results with a first column not composed exclusively of ones. This makes that

the second sample is not as far as possible from the first one, i.e. the second sample does not maximize the mutual

distance. Nevertheless, as shown in the next section, in the long run it results in a better performance, i.e. in a

slower decreasing of the mutual distance.

IV. COMPARATIVE STUDY

A. Performance index

Different uniformity measures have been proposed in the literature [6]. Perhaps the most useful in path planning

is dispersion, a metrics-based criterion. Let X = [0, 1]d ⊂ �d be the space where to generate samples. Let P be

the set of samples taken from X . Then, dispersion for P is defined as:

δ(P, ρ) = sup
q∈X

min
p∈P

ρ(q, p) (22)

being ρ any metrics on X . Intuitively, it corresponds to the largest empty ball inscribed in X and with the center

in X . A criterion that emphasizes dispersion requires that points be as far away from each other as possible, e.g.
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Fig. 4. Top: Mutual Euclidean distances in the sampling of �6 (left) and �9 (right) with M = 1; Bottom: Corresponding cumulative areas.

the mutual distance of the samples must be maximized [8]. Mutual distance on P is defined as:

ρm(P ) = min
x,y∈P

ρ(x, y) (23)

The mutual distance can be considered with different metrics:

• Manhattan distance between the cells codes in the parameters space.

• Euclidean metrics between the samples in the C-space, in the case of �d.

In this paper the cumulative area of the mutual distance is used as the basic performance index, since it shows

how far the samples are being placed from each other as a progression in the sample number. This allows the

visualization of the gain obtained by one method compared to another.

B. Sampling in �3

The first experiment is the comparison between the use of TC
d and TA

d in the sampling of �3. Using M = 3,

Fig. 3 (top) shows the Manhattan mutual distance (left) and the mutual distance measured with Euclidean metrics

(right) computed for all the 512 samples of the sequence. The continuous blue line corresponds to TC
3 and the red

point line to TA
3 . It can be seen in both figures that the continuous line decreases more slowly showing that the

approach that uses TC
3 gets a better uniform coverage of the space as samples are placed. This is better shown in

Fig. 3 (bottom) where the cumulative area of the mutual distance is represented.



10

TABLE IV

COMPARISON USING THE PRM OF THE MOTION STRATEGY LIBRARY.

Halton Hammersley Random s6(k)

PRM Vertices 141 144 139 ± 10 126

PRM Edges 278 284 270 ± 23 250

Num components 2 2 2.4 ± 1.4 1

Col. Detection 13,637 14,027 12, 864 ± 1, 577 6,314

Construct Time 1.41s 1.65s 1.52 ± 0.35s 0.64s

C. Sampling in �6 and �9

The last experiments are the comparisons between the use of TC
d and TA

d in the sampling of �6 and �9. Using

M = 1, Fig. 4 (top) shows the Euclidean mutual distances for all the 64 and 512 samples of the corresponding

sequences. Fig. 4 (bottom) shows the cumulative areas. It can be seen that in both cases, like in �3, TC
d also

provides the best uniform coverage of C-space.

V. EXAMPLES

In this Section the proposed deterministic sequence is applied to different path planners. Although an exhaustive

study has not been done, the results show a better performance when the proposed deterministic sequence is used.

A. Comparison with other deterministic sequences

The Motion Strategy Library is an Open Source code for the testing of motion planning algorithms, available

at http://msl.cs.uiuc.edu/msl/. The library includes planners based on Rapidly-exploring Random Trees (RRTs) and on

Probabilistic Roadmaps (PRMs). It has the utility of selecting random sampling or deterministic sampling based on

the Halton or Hammersley sequences. It has already been used in [6] to evaluate deterministic sampling vs. random

sampling using the basic PRM.

The library has been extended to include the deterministic sampling proposed in the present paper. The results

using 300 samples of a basic PRM to solve a simple path planning problem for a 6 d.o.f. manipulator are shown

in Table IV and Fig. 5. It can be seen that using the same number of samples, the proposed sequence outperforms

other sampling methods, allowing the PRM to be constructed more quickly using less edges and vertices, and being

all of them connected on a single component.

B. Use in local sampling

The Motion Planning Kit (MPK) is a C++ library and toolkit for developing single and multi-robot motion

planners, available at http://ai.stanford.edu /∼mitul/mpk/home.html. It includes a Single-Query Bi-Directional Probabilistic

Roadmap Planner (SBL [10]). This planner expands two trees rooted at the queried configurations, using for the
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Fig. 5. a) Initial configuration; b) final configuration; c) path using the Halton sequence; d) path using the Hammersley sequence; e) path

using a random sequence; f) path using the proposed sequence s6(k) with T C
6 .

TABLE V

COMPARISON USING THE SBL PLANNER.

Random s9(k)

Num. Vertices 219.63 ± 70.70 118.71 ± 28.24

Construct Time 0.38 ± 0.10s 0.25 ± 0.04s

node expansion a local sampling procedure over a hypercube centered at the node to be expanded and covering the

30% of the total C-space.

The SBL planner has been extended to incorporate (in the local sampling expansion procedure) the deterministic

sampling sequence proposed, instead of using pure random sampling. Table V compares the results obtained for
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Fig. 6. Sample solution paths of a 9 d.o.f. path planning problem found using random sampling (left) and deterministic sampling (right).

the motion planning of a 6 d.o.f. Puma robot mounted over a 3 d.o.f. mobile platform in a particular environment2.

Fig. 6a shows a typical path obtained with the original random SBL and Fig. 6b shows a path followed when

using the deterministic sequence s9(k) with TC
9 . The deterministic sequence enhances the planner’s performance,

building the path with less milestones and in a shorter time than with the original expansion procedure using random

sampling.

C. Use in C-space modeling

The Kautham planner is a path planner, being developed by the authors, that uses deterministic sampling to

generate a hierarchical cell decomposition model of C-space where harmonic functions are computed and used

to find a solution. Fig. 7a shows a 2D-example that illustrates the quadtree generated from the sampling and

classification of configurations using the proposed deterministic sequence. Fig. 7b shows the same number of

samples obtained by random sampling. It is obvious that this latter set could not generate a proper quadtree of the

C-space.

VI. CONCLUSIONS

The performance of sampling-based path planners relies on the set of samples used. For uniform sampling,

deterministic sampling sequences are a good alternative since they outperform probabilistic methods in terms of

the dispersion obtained.

This paper proposes a simple and yet efficient deterministic sampling sequence computed on a multi-grid

decomposition of a parameter space and the corresponding mapping to the C-space. The expression given is general

for any d-dimensional Configuration Space.

The deterministic sampling sequence introduced has been validated by the good results obtained when applied

to different path planners.

2Since the SBL planner randomly selects some directions to project the sampled configurations, the results using deterministic sampling also

vary between executions. The results shown in Table V are the 95% confidence intervals obtained from 50 executions.
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Fig. 7. a) Quadtree obtained from 250 samples of the proposed deterministic sampling sequence; b) Distribution of the same number of

samples obtained randomly that shows that the quadtree could not have been properly build using this set of samples.
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