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Abstract

The sampling-based approach is currently the most successful and yet more promising approach to path planning

problems. Sampling-based methods are demonstrated to be probabilistic complete, being their performance reliant

on the generation of samples. To obtain a good set of samples, this paper proposes a new sampling paradigm

based on a deterministic sampling sequence guided by an harmonic potential function computed on a hierarchical cell

decomposition of C-space. In the proposed method, known as Kautham sampler, samples are not isolated configurations

but parts of a whole. As samples are generated they are dynamically grouped into cells that capture the C-space

structure. This allows the use of harmonic functions to share information and guide further sampling towards more

promising regions of C-space. Finally, using the samples obtained, a roadmap is easily built taking advantage of the

known neighborhood relationships.

Index Terms

Path planning, sampling-based methods, deterministic sampling, harmonic functions.

I. INTRODUCTION

The sampling-based approach to path planning consists in the generation of collision-free samples of configuration

space (C-space) and in their interconnection with free paths, forming either roadmaps (PRM [1]) or trees (RRT [2]).

PRM planners are conceived as multi-query planners, while RRT planners are developed to rapidly solve a single-

query problem. Some middle ground methods are also proposed, like the predictive roadmap [3] based on a statistical

model of the C-space which is incrementally refined using the information provided by each single query.

The sampling-based approach is giving very good results in robot path-planning problems with many degrees

of freedom. Its success is mainly due to its sampling-based nature, i.e. this approach does not require the explicit
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characterization of the obstacles of C-space and its efficiency relies on the sample set. Therefore, the generation of

samples is one of the crucial factors in the performance of sampling-based planers. Taking into account this fact,

this paper proposes a sampling-based path planner that uses a new sampling paradigm.

The paper is structured as follows. Section II analyzes some performance considerations about sampling-based

planners and outlines the new sampling paradigm. Section III makes an overview of the approach, that is based on:

a) the generation of samples with a deterministic sampling sequence (Section IV); b) the grouping of samples into

cells of a hierarchical cell decomposition of C-space (Section V); and c) the computation of harmonic potential

functions to guide the sampling process (Section VI). Section VII summarizes and illustrates the proposal and

Section VIII discusses the contributions.

II. PROBLEM ANALYSIS

A. Performance considerations

The performance of sampling-based methods depends on the number of samples required, being the computational

cost related to their generation and interconnection.

a) Sample generation: Sampling-based methods based on probabilistic sampling are demonstrated to be prob-

abilistic complete, e.g. for the basic PRM method the number of samples necessary to achieve a probability of

failure below a given threshold has been determined [4]. For difficult path-planning problems, like those involving

narrow passages, this number might be quite large and, therefore, importance sampling methods have been introduced

(e.g. [5]–[8]). Those strategies increase the density of sampling in some areas of C-space, thus facilitating the finding

of a solution using a reasonable amount of samples. Nevertheless, the computational cost of selecting samples in

the critical regions of C-space is usually high. Also, the collision-check test is one of the costly operations of the

sample generation process. To cope with that, lazy-evaluation approaches have been introduced (for single-query

problems) to delay collision-checks until it is absolutely necessary [9].

b) Sample interconnection: The cost of the construction of roadmaps or trees is due to both the computation

of neighborhood relationships between samples, and the need to use a local planner to connect neighbor samples

with a free path. The cost of computing neighborhood relationships can be reduced using deterministic sampling

methods [10] that, besides providing good incremental and uniform coverage of C-space, they have a lattice structure

that is useful for neighborhood computations. The cost of using the local planner can be avoided as much as possible,

for single-query problems, if lazy-evaluation approaches are used. A comparative study of local planning techniques

and of sampling methods can be found in [11] for PRM planners.

c) Sampling profit: Sampling-based methods usually discard collision configurations and consider samples as

collision-free isolated configurations, being the information about the C-space only captured by the interconnections

of the samples through the roadmap or tree. The information contributed by the collision configurations is not fully

profited. Some exception is the model-based approach [12] that uses a first sample set of both free and collision

configurations to build a statistical model of the C-space that is then used to bias the sampling for the roadmap
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construction, or those based on probabilistic cell decompositions that combine probabilistic sampling with cell

decomposition techniques [13], [14].

B. Objective

Taking into account the previous considerations, this paper has as a main objective the proposal of a new sampling

paradigm that provides a set of key samples that allow to construct a local roadmap able to solve a given single-query

problem. It is desired that the sampling process:

• generate samples that produce an incremental and uniform coverage of the C-space

• have a lazy phylosophy in order not to collision-check all the samples generated

• generate a structured set of samples that allow an easy computation of neighborhood relationships

• group the samples generated in order to capture the structure of the C-space

C. A new sampling paradigm

A sampling method, called Kautham sampling or k-sampling for short, is proposed to achieve the objectives

stated. The k-sampler follows a new sampling paradigm where the samples are not isolated configurations but parts

of a whole. The sampling process dynamically groups samples into cells that capture the C-space structure. This

allows the use of harmonic functions to share information and guide further sampling towards more promising

regions of C-space.

The k-sampler is structured into three constituent parts with the following features:

a) Deterministic sampling sequence: The use of a deterministic sampling sequence allows an uniform and

incremental coverage of C-space, i.e. it has a spatial an temporal continuity feature. Moreover the set of samples

results with a lattice structure that facilitates the computation of neighbors.

b) Hierarchical cell decomposition: The use of a hierarchical cell decomposition of C-space allows the grouping

of samples into non-uniform cells, capturing the structure of the C-space. Cells are not classified as free or collision

cells (i.e. white and black cells) as usually done in cell decomposition methods, not even in a fuzzy manner as

done in [14]. Instead, cells are all considered equal and characterized by a transparency parameter computed as a

function of the number of free and collision samples they contain, i.e. the cell decomposition has a non-duality

or unity feature. The transparency parameter is used as a control parameter for both controlling the necessity of

performing collision-checks (i.e. as a lazy-evaluation control), and controlling the partitioning procedure of the cell

decomposition.

c) Harmonic functions: The use of two harmonic functions (H1 and H2), computed at each iteration of the

sampling process, allows to globally capture the current knowledge of C-space. H1 is used to find a solution

channel from the initial cell to the goal cell on the current cell decomposition of C-space. H2 is used to propagate

the information of the channel in order to bias the sampling towards the regions around it. The harmonic functions

are not only computed over the free cells (fixing the obstacle cells at a high value), as it is usually done, since as

commented above this cell classification is not considered here. Instead, the harmonic functions are computed over
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the whole set of cells (using the transparency as a weighting parameter), i.e. the harmonic function computation

has an interconnection feature between the whole set of cells of the C-space.

The k-sampling process identifies the regions where the solution of a single-query problem may probably lie.

The free samples pertaining to those regions are called k-samples and are the main output of the k-sampler. The

k-samples constitute the key samples needed to construct a local roadmap able to solve a given single-query problem.

III. APPROACH OVERVIEW

The k-sampling is the iterative process that generates the set of k-samples whose interconnection must permit

to find a solution path between an initial and a goal configurations of C-space. Let cini and cgoal be, respectively,

those configurations. Then, at each iteration the k-sampler:

1) Obtains a set of samples from the deterministic sampling sequence (Section IV).

2) For each sample si (Section V):

a) Classifies it into the corresponding cell, Ci, of the C-space partition (Section V-A).

b) Computes the transparency of Ci (Section V-B).

c) Performs or not a collision check a the configuration associated to si depending on the transparency of

Ci and on its H2 value (Section V-C).

d) Partions or not cell Ci depending on the transparency of Ci and on its H2 value (Section V-D).

3) Computes the harmonic functions (Section VI):

a) Computes an harmonic function, H1, with goal cell the cell containing cgoal.

b) Searches a channel of cells connecting the cell containing cini with the cell containing cgoal, following

the negated gradient of H1.

c) Resamples and partitions channel cells whenever necessary.

d) Computes an harmonic function, H2, using as goal cells the cells of the solution channel computed with

H1.

4) Returns the free samples of the channel cells.

The returned samples are the k-samples. They are connected as a roadmap, as well as cini and cgoal. Finally, a

solution path between them is searched in the roadmap.

IV. DETERMINISTIC SAMPLING SEQUENCE

The deterministic sampling sequence proposed is based on: a) a hierarchical decomposition of a unit cube

of parameters (Section IV-A); b) a low-dispersion ordering of the descendant cells of any given cell of the

hierarchical decomposition (Section IV-B); c) a recursive application of that ordering to sample the parameter space

(Section IV-C); and d) the mapping from samples of parameter space to configurations of C-space (Section IV-D).
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A. Hierarchical cell decomposition

A 2d-tree decomposition of a d-dimensional unit cube of parameters is considered in a similar way as done

in [14]. The initial cell with sides with unitary size is the tree root. The levels in the tree are called partition levels.

A cell of a given partition level m is called an m-cell. Partition levels are enumerated such that the tree root is

the partition level 0 and the maximum resolution1 corresponds to partition level M , also called sampling level. A

maximum allowable partition level P is defined, with P ≤ M , which determines the depth of the 2d-tree. The

M -cells are also called samples, and up to 2(M−P )d are found in each P -cell. Cell coding is done as follows.

Consider first the coding of M -cells. Let:

• The index matrix V M be the binary d × M matrix whose rows are the binary representation of the indices

vM
j ∀j ∈ 1 . . . d of an M -cell on the regular grid of partition level M :

V M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vM
1

...

vM
j

...

vM
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aM1 . . . ai1 . . . a11

...
...

...

aMj . . . aij . . . a1j

...
...

...

aMd . . . aid . . . a1d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

being aMj and a1j the most and the least significant bits, respectively, of the binary representation of vM
j .

• The weight matrix WM be a d × M matrix

WM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w11 . . . w1j . . . w1M

...
...

...

wi1 . . . wij . . . wiM

...
...

...

wd1 . . . wdj . . . wdM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

with wij = 2(M−j)d+i−1 for i ∈ 1 . . . d j ∈ 1 . . . M .

Then, the sample code CM and its index matrix V M are related as follows:

CM = V M · WM (3)

V M = CM&WM (4)

where the operation A · B represents the scalar product of matrices A and B, and the operation a&B between a

scalar a and a matrix B computes the bit-AND operation between a and all the components bij of B.

1The maximum resolution needed is a fixed value determined by the clearance of the path planning problem to be solved.
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Fig. 1. a) Coding of M -cells; b) Coding of a hierarchical cell decomposition.

As an example, the conversion operations of cell code 22 with indices (6,1) on the grid of partition level M = 3
(Figure 1a) are:

C3=

(
1 1 0

0 0 1

)
·
(

16 4 1

32 8 2

)
= 22 (5)

V 3=22&

(
16 4 1

32 8 2

)
=

=010110&

(
010000 000100 000001

100000 001000 000010

)
=

(
1 1 0

0 0 1

)
(6)

The cell code of any m-cell, with m < M , is made coincident with the code of the first M -cell it contains (i.e. the

descendant M -cell with lowest cell code), as illustrated in Figure 1b. This cell coding facilitates the classification

of any given sample to the corresponding cell in the hierarchical decomposition (Section V-A).

B. Ordering of descendant cells

Dispersion is a metrics-based measure of the uniformity of a sample set [10]. If X = [0, 1]d ⊂ �d is the space

where samples are to be generated, ρ is any metrics on X and P is a set of samples taken from X , then the

dispersion is defined as:

δ(P, ρ) = sup
q∈X

min
p∈P

ρ(q, p) (7)

For a given P , a good dispersion is obtained if the mutual distance of the samples is maximized [15], being the

mutual distance defined as:

ρm(P ) = min
x,y∈P

ρ(x, y) (8)

Therefore, for a sequence of samples it is desired that, as samples are generated, the decrease of the mutual distance

be as slow as possible.
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This section proposes an ordering, Ld, of the 2d descendant cells of any parent cell in a d-dimensional space

that has a good performance in terms of the decrease ratio of the mutual distance. The ordering Ld is obtained

using a digital construction method [15]: the ordering is found by multiplying a d × d binary matrix, Td, by the

binary representation of the indices of the sequence:

Ld(i) = Td i = Td

⎛
⎜⎜⎜⎝

n1

...

nd

⎞
⎟⎟⎟⎠ (9)

The performance of Ld (in terms of mutual distance) depends on the choice of Td. A comparative study of different

expressions of Td is found in [16], being the best alternative based on a prime decomposition. This approach first

defines Td for each prime dimension:

T2 =

⎛
⎝1 0

1 1

⎞
⎠ T3 =

⎛
⎜⎜⎜⎝

1 1 0

0 1 0

1 0 1

⎞
⎟⎟⎟⎠ (10)

Td = Truncd(T(d+1)) ∀d prime s.t. d ≥ 5 (11)

Then, for any non-prime d, a recursive construction is done based on the prime decomposition of d, e.g.:

T6 =

⎛
⎝T3 0

T3 T3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

1 1 0 1 1 0

0 1 0 0 1 0

1 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

T9 =

⎛
⎜⎜⎜⎝

T3 T3 0

0 T3 0

T3 0 T3

⎞
⎟⎟⎟⎠ (13)

C. The sampling sequence

The sampling sequence, sd(k), is a sequence of sample codes that specifies the ordering in which the d-dimensional

parameter space (also called sampling space) is explored. The sequence sd(k) is based on the recursive use of Ld.

Let k ≥ 0 be the index of the sequence and Td be the matrix that determines the cell ordering of the descendant

cells as introduced in the previous section. Then:

sd(k) = (TdV
M
k ) · W ′M (14)

where V M
k is the index matrix corresponding to k, the product TdV

M
k is the standard binary matrix multiplication

between matrices Td and V M
k , and W ′M is a d × M matrix of weights, with:

w′
ij = 2(j−1)d+i−1 for i ∈ 1 . . . d j ∈ 1 . . . M (15)
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k 0 1 2 3 4 5 6 7 8 9

s2[k] 0 48 32 16 12 60 44 28 8 56

k 10 11 12 13 14 15 16 17 18 19

s2[k] 40 24 4 52 36 20 3 51 35 19

k 0 1 2 3 4 5 6 7 8 9

r48
2 [k] 48 60 56 52 51 63 59 55 50 62

TABLE I

FIRST 20 SAMPLES OF SEQUENCE s2 AND FIRST 10 SAMPLES OF r48
2 .

(Note that matrix W ′M coincides with WM if the order of its columns is reversed).

As an example, with M = 3 and the expression of T2 proposed in Eq. (10), the sample corresponding to k = 6

is:

s2(6) =

⎡
⎣
⎛
⎝1 0

1 1

⎞
⎠
⎛
⎝0 1 0

0 0 1

⎞
⎠
⎤
⎦ ·
⎛
⎝1 4 16

2 8 32

⎞
⎠

=

⎛
⎝0 1 0

0 1 1

⎞
⎠ ·

⎛
⎝1 4 16

2 8 32

⎞
⎠ = 44 (16)

If only the samples of a given cell are necessary, they can be obtained with the following (re)sampling sequence.

Let mK be the partition level of that cell and K be its code. Then:

rK
d (j)=K + (TdV

(M−mK)
j ) · W ′(M−mK) with j ≥ 0 (17)

As an example, the sample generated by r2(k) over the 1-cell 48 (i.e. the top right corner of Figure1b) for k = 6

is:

r48
2 (6) = 48 +

⎡
⎣
⎛
⎝1 0

1 1

⎞
⎠
⎛
⎝1 0

0 1

⎞
⎠
⎤
⎦ ·
⎛
⎝1 4

2 8

⎞
⎠

= 48 +

⎛
⎝1 0

1 1

⎞
⎠ ·

⎛
⎝1 4

2 8

⎞
⎠=48 + 11=59 (18)

As a final example, the first 20 samples generated by s2(k) and the first 10 generated by r48
2 (k) are shown

in Table I. Following these sequences over Figure 1a gives a good understanding of how they incrementally and

uniformly cover the sampling space.

D. Mapping to configurations of C-space

This Section describes how the M -cells of parameter space generated by the sampling sequence are mapped to

configurations of C-space.

For robot manipulators of d d.o.f. the C-space is the unit cube [0, 1]d ⊂ �d (if the proper scaling is performed)

and the parameter space is d-dimensional. Consider first the correspondence that associates to a given m-cell Cm
K
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of parameter space, with indices (vm
1 , . . . , vm

d ), all the configurations of a set, called m-mapping set Sm
K , whose

coordinates are:

xj ∈ [vm
j sm, (vm

j + 1)sm) ∀j ∈ 1 . . . d (19)

being sm the size of the sides of the m-cell.

Then, to each M -cell generated by the sampling sequence a single configuration of C-space is associated as

follows. First the P -cell to which the sampled M -cell pertains is easily determined using the cell coding detailed

in Section IV-A. Let (wP
1 , . . . , wP

d ) be its indices. Then, the configuration associated to the M -cell is randomly

chosen within the corresponding P -mapping set:

xj = rand{[wP
j sP , (wP

j + 1)sP )} ∀j ∈ 1 . . . d (20)

For 3D rigid-bodies that can both translate and rotate (free flying robots) the C-space is SE(3) but the parameter

space used in the present approach is 3-dimensional, i.e. it is only used to generate positions since orientations will

be randomly chosen within all their ranges. Let positions be scaled to the unit cube [0, 1]3 ⊂ �3, and orientations

be represented by a rotation direction (rx, ry, rz) and a rotation angle θ.

Then, to each M -cell generated by the sampling sequence the position of the associated configuration is set in

a similar way as before, i.e.:

xj = rand{[wP
j sP , (wP

j + 1)sP )} ∀j ∈ 1 . . . 3 (21)

The orientation of the configuration is set as follows:

xj = rand{[0, 1)} ∀j ∈ 4 . . . 6 (22)

and using cylindrical coordinates:

α = 2πx4 (23)

rz = 1 − 2x5 (24)

ry = sin α
√

1 − r2
z (25)

rx = cos α
√

1 − r2
z (26)

θ = 2arccos(x6) (27)

V. SAMPLING SPACE PARTITION

When a given sample si is generated by the deterministic sampling sequence, it is first classified into one of

the cells of the cell partition. Let Cj be such cell. Then, both the necessity of performing a collision-check at

the configuration ci associated to si, and the necessity of partitioning cell Cj depend on the transparency and on

the value of the harmonic function H2. Section V-A discusses sample classification issues, Section V-B formally

defines the transparency parameter and Section V-C and V-D introduce, respectively, the collision-check condition

and the partition condition.
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A. Sample classification

Let Lc be an ordered list of cell codes, such that Lc[j] < Lc[j + 1]. Then, a given sample with code si is

classified into a cell with code Lc[j] if:

Lc[j] ≤ si < Lc[j + 1] (28)

This condition can be evaluated using a simple and quick 1-dimensional range searching algorithm over the list of

cell codes.

B. Transparency

Let colori associated to a given sample si be the parameter that stores the information related to the free or

obstacle nature of its corresponding configuration ci. If a collision-check is performed at ci then:

colori =

⎧⎨
⎩+2 if ci is a free configuration

−2 if ci is an obstacle configuration
(29)

If no collision-check is performed at ci the parameter colori is set as follows depending on the free or collision

nature of the cell where si is classified:

colori =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if si belongs to a cell with more

free than obstacle samples

−1 otherwise

(30)

Let Kj be the number of samples pertaining to a given cell Cj . Then, its transparency Tj is defined as:

Tj =
∑i=Kj

i=1 colori

2Kj
(31)

The transparency satisfies −1 ≤ Tj ≤ 1. It is close to zero if there are roughly the same number of free and

obstacle samples, and close to one of the extremes if they are mainly either free or obstacle samples. Note that

samples not collision-checked make the absolute value of the transparency to decrease since there is a 2 factor in

the denominator of Eq. (31) and they have |colori| = 1.

C. Collision-check condition

Following a lazy evaluation philosophy, not all the generated samples have their associated configurations

collision-checked, i.e. when the cell where a sample is classified contains basically samples of the same color

(i.e. either free or obstacle samples), then there is no point in performing an extra collision-check. The collision-

check condition is set with the following guidelines:

• The transparency parameter captures the homogeneity of a cell, i.e. when the transparency is within a given

interval I around zero the cell is not homogeneous and the collision-check test must be performed.

• The limits of I do not have to be uniform over the whole space, i.e. in regions far away from the potential

solution it is not desired to perform many collision-checks and therefore I is set small since the smaller its

size the lesser collision-checks are performed.
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1.0
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0.0−0.25−0.5−0.75−1.0

0.5

0.0

Fig. 2. Weight βH2 as a function of H2 for β = 0.5.

• The limits of I do not have to be symmetric, e.g. if the negative part of I is set smaller then the procedure is

more demanding for the obstacle cells in terms of homogeneity.

Then, the proposed collision-check condition is the following:

βH2Δ
−
collision < Tj < βH2Δ

+
collision (32)

being Δ−
collision and Δ+

collision fixed thresholds with values ranging between -1 and 0 and between 0 and 1,

respectively; and βH2 a weight ranging between 0 and 1 and dependant on the harmonic function2 H2 (Figure 2):

βH2 = (β − 1)H2 + β 0 ≤ β ≤ 1 (33)

Cells located far away from promising regions (i.e. where the solution channel seems not to be) have an H2 value

near zero and consequently βH2 is low. Therefore, I is smaller and condition (32) has more difficulties to be

satisfied resulting in less collision checks.

If condition (32) is satisfied and the cell already contained samples not collision-checked, then the collision-check

is iteratively performed to the configurations of the previous not-checked samples until the condition does not hold

any more, or until the last one is checked.

D. Partition condition

After performing the collision-check test, a partition condition is verified at the m-cell that contains the generated

sample (if it is not of the maximum partition level, i.e. m < M ). The cell may need to be partitioned if it is not

homogeneous enough. This is evaluated following the same guidelines as for the collision-check condition, plus

the following one:

2The harmonic function values range between -1 and 0 as detailed in Section VI-A
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• The limits of I may vary as a function of weather the cell contains or not evaluated samples of different color,

i.e. when the cell do have samples of different color then I is set bigger and the cell becomes more susceptible

to be partitioned.

With those guidelines, the proposed partition condition is the following:

βH2Δ
−
partition < Tj < βH2Δ

+
partition (34)

being the weight βH2 defined in Eq. (33) and Δ−
partition and Δ+

partition two thresholds ranging between -1 and

0 and between 0 and 1, respectively, each one taking two possible values: a lower (absolute) value when the cell

does not contain evaluated samples of different color, and a higher (absolute) value otherwise.

If condition (34) does not hold, then the cell is not partitioned. Otherwise, the cell is partitioned into its 2d

descendant cells, and the transparency recomputed for each descendant cell.

VI. HARMONIC FUNCTIONS

An harmonic function φ on a domain Ω ⊂ �n is a function that satisfies Laplace’s equation:

∇2φ =
n∑

i=1

∂2φ

∂x2
i

= 0 (35)

Harmonic functions are useful for motion planers based on potential-field methods since they do not have local

minima [17]. The solution of the Laplace’s equation is usually found numerically using finite difference methods,

i.e. by sampling φ and its derivatives on a regular grid and using relaxation methods that iteratively update the

value of a cell by the mean of its neighbor cells.

Solutions over non-regular grids are also possible [14]. In this case, the value of the harmonic function at each

cell (called the HF-value) is computed as a weighted mean of the HF-values of its neighbors, being the weights

dependant on the size of the border between cells.

The computation of the harmonic function is introduced in Section VI-A, and Section VI-B discusses its use to

search the solution channel and further explore the C-space.

A. Harmonic function values

An harmonic function is computed over a hierarchical cell decomposition using a relaxation method that iteratively

computes the harmonic function value of each cell. Let:

• Nj be the number of neighbors of an m-cell Cm
j in the hierarchical cell partition.

• UH and UL be, respectively, the high and low value of the harmonic function. They are fixed to UH = 0 and

UL = −1.

• hi be the harmonic function value of cell Cn
i .

• ωi,j be the size of the border between cell Cn
i and cell Cm

j measured in M -cells:

ωi,j = 2(d−1)(M−max(m,n)) (36)



13

Tj

tj

0.8

0.6

0.4

0.2

0.5-0.5 0

0

1

1

-1

Fig. 3. Parameter tj as a function of Tj . This parameter weights the influence of the neighborhood in the computation of the harmonic function

values of a cell.

• Uj be the neighbor average computed as:

Uj =
∑Nj

i=1(Ti + 1)ωi,jhi∑Nj

i=1(Ti + 1)ωi,j

(37)

i.e. obstacles neighbors (with transparency near -1) have a nearly null weight; they ignored as usually done

when considering Newmann initial conditions.

• tj be a weight between 0 and 1 dependant on the transparency:

tj =
[
tanh GTj

tanhG
+ 1
]

/2 (38)

This weight is illustrated in Figure 3 for G = 3.

The harmonic function value of the goal cell is fixed at the low value UL. The harmonic function value of any

other m-cell Cm
j is computed as:

hj = Ujtj + (1 − tj)UH (39)

i.e. the more transparent a cell is the more it is influenced by its neighbors and the less it is fixed at a high potential

value. The non-linear expression of tj differentiates the behavior of the harmonic function between cells of different

level of transparency, highlighting the extreme values.
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B. Channel searching and refinement

The search of a channel is done following the negated gradient of the harmonic function H1. Staring at the initial

cell, the next cell is iteratively chosen among the neighbors such that it has the lowest H1 value, until the goal cell

with H1 value fixed at UL is reached.

The obtained channel is composed of cells with different transparency values. A further exploration of those cells

is done as follows:

a) A minimum value of transparency is required for each channel cell as expressed in the following test:

Tj ≥ Δacceptance (40)

When a channel cell does not satisfy this condition then (if the cell already had all its samples collision-

checked) a new sample of the cell is generated using Eq. (17); otherwise the collision-check test is applied at

the first non-evaluated sample. Afterwards, condition (40) is checked again and if it is not yet satisfied then

the cell is partitioned.

b) The transparency of the channel, Tchannel, is defined as the lowest value of transparency of the cells it contains.

When the channel found has its transparency above a given threshold, i.e.:

Tchannel ≥ Δchannel (41)

then either a good channel has been found or some thin obstacles have been unnoticed. To avoid this latter

problem, when Eq. (41) is satisfied, a further sampling is applied like that done in step (a). Afterwards, the

partition test is evaluated and if necessary the cell is partitioned.

Finally, once the channel is found, its cells are used as goal cells to compute the harmonic function H2, whose

values module the weight βH2 (Eq. (33)) that influences the way in how the C-space is explored (sampled and

partitioned).

VII. THE KAUTHAM PLANNER

The proposed approach is summarized as an algorithm in Section VII-A, and some implementation issues and

the values of the parameters used are presented in Sections VII-B and VII-C, respectively. Finally, the performance

of the proposed approach is evaluated with a test bed with different 2-dof C-spaces (Section VII-D) and 6-dof

C-spaces (Section VII-E).

A. Planning algorithm

The planning from an intitial configuration cini to a goal configuration cgoal is performed as shown in Fig.4.

B. Implementation issues

The k-sampler is structured around two lists:
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Kautham(cini, cgoal)

Find the M -cells (sini, sgoal) corresponding to (cini, cgoal)

Channel Loop (N times):

Sample Loop (K times):

Get sample from sequence - Eq. (14)

Find cell that contains it - Eq. (28)

Compute the transparency - Eq. (31)

Check collision if condition (32) is satisfied

Partition cell if condition (34) is satisfied

End Sample Loop

Relaxation Loop for H1 (nH1 times):

For each cell compute H1 - Eq. (39)

End Relaxation Loop

Search Channel from sini to sgoal following (−∇H1)

Resample and partition channel cells not satisfying (40)

If (41) is satisfied then:

Resample each channel cell

Partition cell if condition (34) is satisfied

Relaxation Loop for H2 (nH2 times):

For each cell compute H2 - Eq. (39)

End Relaxation Loop

End Channel Loop

Construct a roadmap with the free samples of the channel

Add cini and cgoal to the roadmap

Search the roadmap for a solution between cini and cgoal

END

Fig. 4. The Kautham algorithm.
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parameter value used in

β 0.5 Eq. (33)

G 10 Eq. (38)

Δ−
collsion −0.6 Eq. (32)

Δ+
collsion 0.6 Eq. (32)

Δ−
partition −0.6 / −0.9 Eq. (34)

Δ+
partition 0.6 / 0.9 Eq. (34)

Δchannel 0.6 Eq. (41)

Δacceptance 0.6 Eq. (40)

K 10 Algorithm

nH1 10 Algorithm

nH2 1 Algorithm

TABLE II

PARAMETERS USED FOR THE EXPERIMENTS.

• A list of the samples generated by the deterministic sampling sequence. Each sample contains the following

information: code number, color and the coordinates of the configuration in C-space.

• A list of cells. Each cell contains the following information: code number, level, transparency, harmonic function

values H1 and H2, number of samples, number of collision-checked samples, list of neighbor cells and type

of cell (initial/goal/channel/normal).

Memory efficiency is obtained by maintaining these lists with the minimum required information. Computing

efficiency is obtained by the compact representation of the hierarchical cell decomposition used and the delay of

collision-checks as much as possible.

The user interface has been programmed in C++ using the cross-platform tools Qt (as application framework)

and Coin3D (as graphics toolkit). Collision detection is performed using the PQP library [18].

C. Parameters

Table II shows the parameters used. They are valid for a wide range of C-spaces, like those 2-dof C-spaces

shown in Figure 5 which involve narrow passages, regions crowded with small C-obstacles and spaces with thin

C-obstacles (the C-space of Figure 5a is taken from [19]).

D. 2-dof examples

Figure 6 shows the graphical output of the Kautham sampler for the example of Figure 5a using a maximum

partition level of M = 6. A total number of 812 samples have been generated by the deterministic sampling sequence

and 462 have been collision-checked. The total number of cells is 286, being the solution channel composed of 40

cells and having a transparency of Tchannel = 0.62. The 97 samples contained in those cells are the k-samples.



17

a b

c d

Fig. 5. 2D C-spaces with different features used as a test bed: a) narrow passage, hole and dead ends (taken from [19]); b) bend corridor; c)

crowded region with small C-obstacles; d) thin C-obstacles.

Different trials of a basic PRM using the random sampling approach with the same number of collision-checked

samples gave no satisfactory results.

E. 6-dof examples

Three 6-dof examples illustrate the proposed approach; they have been obtained from [11], although with minor

differences.

Figure 7 shows a known 6-dof example where the C-space has two large open regions with a narrow bend

corridor between them. The path is found using the same parameters and 10,000 samples, being 6,944 of them

collision-checked. The total number of cells is 2,290, being the solution channel composed of 28 cells with

634 free samples and having a final transparency of Tchannel = −0.78. The solution was found using M = 5

and P = 4. A supplementary AVI file which contains the execution of the solution path will be available at

http://ieeexplore.ieee.org.

Figure ?? shows a 6-dof example with a cluttered environment. The path is found using the same parameters

and 3,992 samples, being 2,539 of them collision-checked. The total number of cells is 1,688, being the solution
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Channel
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not checked

obstacle
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free
sample

a) b)

c) d)

Fig. 6. a) Harmonic functions H1 with the solution channel shown in green; b) Harmonic functions H2 (the gray tone of the cells is proportional

to their transparency); c) The samples generated, those collision checked are either green (free) or red (obstacles); d) The resulting k-samples.

channel composed of 27 cells with 365 free samples and having a final transparency of Tchannel = 0.15. The

solution was found using M = 5 and P = 5.

Figure 9 shows a 6-dof example with complex objects. The path is found using 4,007 samples, being 1,123 of

them collision-checked. The total number of cells is 229, being the solution channel composed of 14 cells with

170 free samples and having a final transparency of Tchannel = −0.22. The solution was found using M = 5 and

P = 4.

VIII. DISCUSSION

The success of sampling-based path planners relies on their ability to use a good set of samples whose intercon-

nection captures the C-space connectivity relevant to the query to be solved.

In this paper a new sampling paradigm, called Kautham sampling or simply k-sampling, has been proposed to

obtain such a set of samples. k-sampling uses both free and obstacle samples and organizes them as a hierarchical

cell decomposition of C-space. This model of the C-space is then used to support the computation of harmonic

functions that allow to direct further exploration.

The main features of the proposal are the following:

a) A deterministic sampling sequence is used to allow the exploration of C-space in an uniform and incremental

way, while facilitating the organization of samples into cells and the computation of neighborhood relationships.

This is the reason why, in comparison to the approaches based on the probabilistic generation of samples, the
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c d

Fig. 7. A 6-dof bend-corridor example: a) Initial and goal configurations; b) Free and obstacle samples; c) k-samples and obstacle samples;

d) Solution path.

proposed method results in a better management and profit of the information of the samples. As a drawback,

like other methods based on deterministic sampling, the performance can seriously decrease for certain type

of artificial C-spaces with thin axis-aligned C-obstacles [20].

b) A lazy-evaluation approach is followed to reduce collision-checks, since not all the samples are collision-

checked but only those that lie in more uncertain regions. Uncertainty is measured by a parameter of the cells,

called transparency, that considers the number of free and obstacle samples that the cells contain.

Unlike other lazy-evaluation methods, the proposed approach has a broader nature since it is not attached to

the query phase but relies on the progressive knowledge of C-space that is incrementally obtained as new

samples are generated.

c) Sampling is biased towards more promising regions, i.e. the degree of certainty required for not collision-

checking is not fixed for all the cells but is dependant on the region of interest. During the iterative sampling

process this region is recomputed as the channel of cells (connecting the cell containing the initial configuration

with the cell containing the goal configuration) obtained by following the negated gradient of an harmonic

function computed over the hierarchical cell decomposition.

Although it may be argued that the computation of the harmonic functions has a high computational cost, it
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a b

c d

Fig. 8. A 6-dof example with a cluttered environment: a) Initial and goal configurations; b) Free and obstacle samples; c) k-samples and

obstacle samples; d) Solution path.

is certain that to solve difficult path planning problems, like those with narrow passages, importance sampling

is necessary and, as previous approaches show, the computational cost is always high. The proposed approach

uses the harmonic functions as a way to bias the sampling, but once computed, further usage of the harmonic

function can be envisioned like its use to generate a guiding force field for haptic-based teleoperation tasks [21].

d) If enough samples have been generated, the iterative sampling process ends with a channel with enough

free samples connecting the initial and the goal configurations. Those free samples are easily connected as a

roadmap since the neighborhood is implicitly known and the probability to find free paths between them is

very high because they belong to cells with a high transparency.

Unlike probabilistic roadmap methods, neighborhood computations are not expensive. The proposed method

is conceived as a single query method, thus obtaining a partial roadmap that solves the given query, although

like model-based methods, successive single queries may result in a complete roadmap.

Future developments of the Kautham planner in order to improve its performance are directed towards considering

kd-trees decompositions instead of 2d-trees, and the possibility to use distance checks.
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a b

c d

Fig. 9. A 6-dof example with complex objects: a) Initial and goal configurations; b) Free and obstacle samples; c) k-samples and obstacle

samples; d) Solution path.
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