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1 Introduction

Günther’s paper [21] gives a geometric Hamiltonian formalism for field theories. The crucial de-
vice is the introduction of a vector-valued generalization of a symplectic form, called a polysym-
plectic form. One of the advantages of this formalism is that one only needs the tangent and
cotangent bundle of a manifold to develop it. In [37] Günther’s formalism has been revised and
clarified. It has been shown that the polysymplectic structures used by Günther to develop his
formalism could be replaced by the k-symplectic structures defined by Awane [3, 5]. So this
formalism is also called k-symplectic formalism.

The k-symplectic formalism is the generalization to field theories of the standard symplectic
formalism in Mechanics, which is the geometric framework for describing autonomous dynamical
systems. In this sense, the k-symplectic formalism is used to give a geometric description of
certain kinds of field theories: in a local description, those theories whose Lagrangian does
not depend on the base coordinates, denoted by (t1, . . . , tk) (in many of these, the space-time
coordinates); that is, the k-symplectic formalism is only valid for Lagrangians L(qi, viA) and
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Hamiltonians H(qi, pAi ) that depend on the field coordinates qi and on the partial derivatives of
the field viA, or the corresponding moment pAi . A natural extension of this formalism is the so-
called k-cosymplectic formalism, which is the generalization to field theories of the cosymplectic
formalism geometrically describing non-autonomous mechanical systems (this description can be
found in [32, 33]). This formalism is devoted to describing field theories involving the coordinates
(t1, . . . , tk) on the Lagrangian L(tA, qi, viA) and on the Hamiltonian H(tA, qi, pAi ).

Let us remark here that the polysymplectic formalism developed by Sardanashvily [13], based
on a vector-valued form defined on some associated fiber bundle, is a different description of
classical field theories of first order than the polysymplectic (or k-symplectic) formalism proposed
by Günther (see also [22] for more details). We must also remark that the soldering form on the
linear frames bundle is a polysymplectic form, and its study and applications to field theory,
constitute the n-symplectic geometry developed by L. K. Norris in [39, 40, 41, 42, 43].

An alternative way to derive the field equations is to use the so-called multisymplectic for-
malism, developed by Tulczyjew’s school in Warsaw (see [23, 24, 25, 48]), and independently
by Garćıa and Pérez-Rendón [11, 12] and Goldschmidt and Sternberg [14]. This approach was
revised by Martin [35, 36] and Gotay et al [15, 16, 17, 18] and more recently by Cantrijn et al
[7, 8].

The aim of this paper is to study symmetries and conservation laws on first-order clas-
sical field theories, both for the Lagrangian and Hamiltonian formalisms, using Günther’s k-
symplectic description, and considering only the regular case. The study of symmetries of k-
symplectic Hamiltonian systems, is, of course, a topic of great interest. The general problem of
a group of symmetries acting on a k-symplectic manifold and the subsequent theory of reduction
has recently been analyzed in [37]. Here, we recover the idea of conservation law or conserved
quantity, and state Noether’s theorem for Hamiltonian and Lagrangian systems in k-symplectic
field theories. Thus, a large part of our discussion is a generalization of the results obtained
for non-autonomous mechanical systems (see, in particular, [27], and references quoted therein).
We further remark that the problem of symmetries in field theory has also been analyzed using
other geometric frameworks, such as the multisymplectic models (see, for instance, [10, 18, 28].

The organization of the paper is as follows: Sections 2 and 3 are devoted to the study
of symmetries and conservation laws in Hamiltonian k-symplectic field theory and Lagrangian
k-symplectic field theory, respectively. In particular, in Sections 2.1 and 2.2 we develop the
Hamiltonian formalism. So, in Section 2.1 the field theoretic phase space of moments is in-
troduced as the Whitney sum (T 1

k )∗Q of k-copies of the cotangent bundle T ∗Q of a manifold
Q. This space is the canonical example of polysymplectic manifold introduced by Günther
and k-symplectic manifolds introduced by Awane [3, 4, 5]. In Section 2.2, the Hamiltonian
k-symplectic formalism is described. In Section 2.3 we obtain the main results of this Section:
after introducing different kinds of symmetries and their relation, we can associate to some of
them (the so-called Cartan symmetries) a conservation law (Noether’s Theorem).

Concerning the Lagrangian formalism (Section 3), the field theoretic state space of velocities
is introduced in Section 3.1 as the Whitney sum T 1

kQ of k-copies of the tangent bundle TQ of a
manifold Q. This manifold has a canonical k-tangent structure defined by k tensors fields of type
(1, 1). The k-tangent manifolds were introduced in de León et al. [29, 30], and they generalize the
tangent manifolds. A geometric interpretation of the second order partial differential equations
is also given. Here we show that these equations can be characterized using the canonical k-
tangent structure of T 1

kQ, which generalizes the case of Classical Mechanics. The Lagrangian
formalism is developed in Section 3.2, where the canonical k-tangent structure of T 1

kQ is used
for its construction instead of the Legendre transformation as in Günther [21]. In Section 3.3 we
discuss symmetries and conservation laws in the Lagrangian case, obtaining results analogous
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to those in Section 2.3, including the corresponding Noether’s theorem. Finally, in Sections 3.4
and 3.5 we introduce the notion of gauge equivalent Lagrangians, showing that they give the
same solutions to the Euler-Lagrange equations. This leads to the introduction of the so-called
Lagrangian gauge symmetries, and to stating a version of the Noether theorem for a particular
class of them.

All manifolds are real, paracompact, connected and C∞. All maps are C∞. Sum over crossed
repeated indices is understood.

2 Hamiltonian k-symplectic case

2.1 Geometric elements

2.1.1 The cotangent bundle of k1-covelocities of a manifold. Canonical structures

Let Q be a differentiable manifold of dimension n and τ∗Q : T ∗Q→ Q its cotangent bundle . We

denote by (T 1
k )∗Q = T ∗Q⊕ k. . . ⊕T ∗Q the Whitney sum of k copies of T ∗Q, with projection map

τ∗ : (T 1
k )∗Q→ Q, τ∗(α1q , . . . , αkq

) = q.

The manifold (T 1
k )∗Q can be canonically identified with the vector bundle J1(Q,Rk)0 of k1-

covelocities of the manifold Q, the manifold of 1-jets of maps σ : Q→ R
k with target at 0 ∈ R

k

and projection map τ∗ : J1(Q,Rk)0 → Q, τ∗(j1q,0σ) = q; that is,

J1(Q,Rk)0 ≡ T ∗Q⊕ k. . . ⊕T ∗Q

j1q,0σ ≡ (dσ1(q), . . . , dσk(q))

where σA = πA ◦ σ : Q −→ R is the A-th component of σ, and πA : R
k → R are the canonical

projections, 1 ≤ A ≤ k. For this reason, (T 1
k )∗Q is also called the bundle of k1 covelocities of

the manifold Q.

If (qi) are local coordinates on U ⊆ Q, then the induced local coordinates (qi, pi), 1 ≤ i ≤ n,
on T ∗U = (τ∗Q)−1(U), are given by

qi(αq) = qi(q), pi(αq) = αq

(
∂

∂qi

∣∣∣
q

)

and the induced local coordinates (qi, pAi ), 1 ≤ i ≤ n, 1 ≤ A ≤ k, on (T 1
k )∗U = (τ∗)−1(U) are

qi(α1q , . . . , αkq
) = qi(q), pAi (α1q , . . . , αkq

) = αAq

(
∂

∂qi

∣∣∣
q

)
.

If τ∗Q : T ∗Q→ Q is the canonical projection, the Liouville 1-form θ ∈ Ω1(T ∗Q) is given by

θ(αq)(X̃αq ) = αq((τ
∗
Q)∗(αq)(X̃αq )), αq ∈ T ∗Q, X̃αq ∈ Tαq(T

∗Q),

then ω = −dθ is the canonical symplectic structure in T ∗Q, and therefore we define

ωA = (τ∗A)∗ω, 1 ≤ A ≤ k ,

where τ∗A : (T 1
k )∗Q→ T ∗Q is the canonical projection on the Ath-copy T ∗Q of (T 1

k )∗Q. Of course,
ωA = −dθA, where θA = (τ∗A)∗θ. Thus, the canonical k-symplectic structure on (T 1

k )∗Q is given
by the family (ωA, V ; 1 ≤ A ≤ k), in (T 1

k )∗Q, where V = ker(τ∗)∗ (see [3, 5, 37]).



N. Román-Roy et al , Symmetries and conservation laws in k-symplectic field theory 5

As the canonical symplectic structure on T ∗Q is locally given by ω = −d(pi dq
i) = dqi∧dpi,

then the canonical forms ωA in (T 1
k )∗Q are locally given by

ωA = −dθA = −d(pAi dqi) = dqi ∧ dpAi . (1)

It is interesting to recall that the canonical polysymplectic structure in (T 1
k )∗Q introduced

by Günther [21] is the closed non-degenerate R
k-valued 2-form ω̄ = ωA⊗ rA, where {r1, . . . , rk}

denotes the canonical basis of R
k.

2.1.2 Complete lift of diffeomorphisms and vector fields from Q to (T 1
k )∗Q

Now, let ϕ : Q → Q be a diffeomorphism, then the cotangent map T ∗ϕ : T ∗Q → T ∗Q is given
by T ∗ϕ(αq) = αq ◦ϕ∗(ϕ

−1(q)). We define the canonical prolongation of ϕ to (T 1
k )∗Q as the map

(T 1
k )∗ϕ : (T 1

k )∗Q→ (T 1
k )∗Q given by

(T 1
k )∗ϕ(α1q, . . . , αkq) = (T ∗ϕ(α1q), . . . , T

∗ϕ(αkq)) , for (α1q, . . . , αkq) ∈ (T 1
k )∗Q, q ∈ Q .

If Z is a vector field on Q, with local 1-parametric group of transformations hs : Q → Q then
the local 1-parametric group of transformations (T 1

k )∗(hs) : (T 1
k )∗Q→ (T 1

k )∗Q generates a vector

field ZC∗ on (T 1
k )∗Q, which is called the canonical lift of Z to (T 1

k )∗Q. If Z = Zi
∂

∂qi
, the local

expression of ZC∗ is

ZC∗ = Zi
∂

∂qi
− pAj

∂Zj

∂qk
∂

∂pAk
.

The canonical liftings or prolongations of diffeomorphisms and vector fields on the base
manifold Q to (T 1

k )∗Q have the following properties:

Lemma 1 1. Let ϕ : Q → Q be a diffeomorphism and let Φ = (T 1
k )∗ϕ be the canonical

prolongation of ϕ to (T 1
k )∗Q. Then:

(i) Φ∗θA = θA , (ii)Φ∗ωA = ωA .

2. Let Z ∈ X(Q), and let ZC∗ be the canonical prolongation of Z to (T 1
k )∗Q. Then

(i) L(ZC∗)θA = 0 , (ii) L(ZC∗)ωA = 0 . (2)

(Proof )

1. Part (i) is a consequence of the commutation rule τ∗A ◦ (T 1
k )∗ϕ = T ∗ϕ ◦ τ∗A. In fact,

[
(T 1
k )∗ϕ

]∗
θA =

[
(T 1
k )∗ϕ

]∗
((τ∗A)∗θ) = [(τA)∗ ◦ (T 1

k )∗ϕ]∗θ = (T ∗ϕ ◦ τ∗A)∗θ

= (τ∗A)∗((T ∗ϕ)∗θ) = (τ∗A)∗θ = θA ,

where we have used that (T ∗ϕ)∗θ = θ (see [1], pag. 180).

Part (ii) is a direct consequence of (i).

2. Since the infinitesimal generator of the complete lift ZC∗ of Z is the canonical prolongation
of the infinitesimal generator of Z, from the first item we conclude that (2) holds.
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2.1.3 k-vector fields

Let M be a differentiable manifold. Denote by T 1
kM the Whitney sum TM⊕ k. . . ⊕TM of k

copies of TM , with projection τ : T 1
kM →M , τ(v1q, . . . , vkq) = q.

Definition 1 A k-vector field on M is a section X : M −→ T 1
kM of the projection τ .

Since T 1
kM is the Whitney sum TM⊕ k. . . ⊕TM of k copies of TM , we deduce that a k-vector

field X defines a family of k vector fields X1, . . . ,Xk ∈ X(M) by projecting X onto every factor;
that is, XA = τA ◦X, where τA : T 1

kQ→ TQ is the canonical projection on the Ath-copy TQ of
T 1
kQ.

Definition 2 An integral section of the k-vector field X = (X1, . . . ,Xk), passing through a
point q ∈M , is a map ψ : U0 ⊂ R

k →M , defined on some neighborhood U0 of 0 ∈ R
k, such that

ψ(0) = q, ψ∗(t)

(
∂

∂tA

∣∣∣
t

)
= XA(ψ(t)) , for every t ∈ U0, 1 ≤ A ≤ k

or, what is equivalent, ψ satisfies that X ◦ ψ = ψ(1), where ψ(1) is the first prolongation of ψ to
T 1
kM defined by

ψ(1) : U0 ⊂ R
k −→ T 1

kM

t −→ ψ(1)(t) = j10ψt ≡

(
ψ∗(t)

(
∂

∂t1

∣∣∣
t

)
, . . . , ψ∗(t)

(
∂

∂tk

∣∣∣
t

))
.

A k-vector field X = (X1, . . . ,Xk) on M is integrable if there is an integral section passing
through every point of M .

In local coordinates, we have

ψ(1)(t1, . . . , tk) =

(
ψi(t1, . . . , tk),

∂ψi

∂tA
(t1, . . . , tk)

)
, 1 ≤ A ≤ k , 1 ≤ i ≤ n . (3)

2.2 Hamiltonian formalism: k-symplectic Hamiltonian systems

Let H : (T 1
k )∗Q → R be a Hamiltonian function. The family ((T 1

k )∗Q,ωA,H) is called a k-
symplectic Hamiltonian system. The Hamilton-de Donder-Weyl equations for this system are
the following set of partial differential equations

∂H

∂qi

∣∣∣
ψ(t)

= −

k∑

A=1

∂ψAi

∂tA

∣∣∣
t

,
∂H

∂pAi

∣∣∣
ψ(t)

=
∂ψi

∂tA

∣∣∣
t
, 1 ≤ i ≤ n, 1 ≤ A ≤ k , (4)

where ψ : R
k → (T 1

k )∗Q, ψ(t) = (ψi(t), ψAi (t)), is a solution.

We denote by X
k
H((T 1

k )∗Q) the set of k-vector fields X = (X1, . . . ,Xk) on (T 1
k )∗Q, which are

solutions to the equations
k∑

A=1

i(XA)ωA = dH . (5)

Then, if X ∈ X
k
H((T 1

k )∗Q) is integrable, and ψ : R
k → (T 1

k )∗Q is an integral section of X, then,
from (1), we obtain that ψ(t) = (ψi(t), ψAi (t)) is a solution to the system (4).
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2.3 Symmetries and conservation laws

Let ((T 1
k )∗Q,ωA,H) be a k-symplectic Hamiltonian system, and its associated Hamilton-de

Donder-Weyl equations (4).

First, following [44], we introduce the next definition :

Definition 3 A conservation law (or a conserved quantity) for the Hamilton-de Donder-Weyl
equations (4) is a map F = (F1, . . . ,Fk) : (T 1

k )∗Q→ R
k such that the divergence of

F ◦ ψ = (F1 ◦ ψ, . . . ,Fk ◦ ψ) : U0 ⊂ R
k → R

k

is zero for every solution ψ to the Hamilton-de Donder-Weyl equations (4); that is

k∑

A=1

∂(FA ◦ ψ)

∂tA
= 0 .

Proposition 1 If F = (F1, . . . ,Fk) : (T 1
k )∗Q → R

k is a conservation law then for every inte-
grable k-vector field X = (X1, . . . ,Xk) in X

k
H((T 1

k )∗Q), we have that

k∑

A=1

L(XA)FA = 0 .

(Proof ) If X = (X1, . . . ,Xk) ∈ X
k
H((T 1

k )∗Q) is integrable and ψ : R
k → (T 1

k )∗Q is an integral
section of X, then the following relation holds for every t ∈ R

k and A = 1, . . . , k,

XA(ψ(t)) = ψ∗(t)

(
∂

∂tA

∣∣∣
t

)

and therefore

k∑

A=1

L(XA)FA =

k∑

A=1

ψ∗(t)

(
∂

∂tA

∣∣∣
t

)
(FA) =

k∑

A=1

∂(FA ◦ ψ)

∂tA

∣∣∣
t
= 0

since ψ is a solution to the Hamilton-de Donder-Weyl equations (4).

Remark: The case k = 1 corresponds to Classical Mechanics. In this case we know
that F is a constant of the motion if and only if L(XH)F = 0, where XH is the
Hamiltonian vector field defined by i(XH)ω = dH.

Definition 4 1. A symmetry of the k-symplectic Hamiltonian system ((T 1
k )∗Q,ωA,H) is a

diffeomorphism Φ: (T 1
k )∗Q → (T 1

k )∗Q such that, for every solution ψ to the Hamilton-de
Donder-Weyl equations (4), we have that Φ ◦ ψ is also a solution to these equations.

In the particular case that Φ = (T 1
k )∗ϕ for some ϕ : Q→ Q (i.e.; Φ is the canonical lifting

of some diffeomorphism in Q), the symmetry Φ is said to be natural.

2. An infinitesimal symmetry of the k-symplectic Hamiltonian system ((T 1
k )∗Q,ωA,H) is a

vector field Y ∈ X((T 1
k )∗Q) whose local flows are local symmetries.

In the particular case where Y = ZC∗ for some Z ∈ X(Q), (i.e.; Y is the canonical lifting
of some vector field in Q), the infinitesimal symmetry Y is said to be natural.
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As a consequence of the definition, all the results that we state for symmetries also hold for
infinitesimal symmetries.

A first straightforward consequence of definitions 3 and 4 is:

Proposition 2 If Φ: (T 1
k )∗Q → (T 1

k )∗Q is a symmetry of a k-symplectic Hamiltonian system
and F = (F1, . . . ,Fk) : (T 1

k )∗Q→ R
k is a conservation law, then so is Φ∗F = (Φ∗F1, . . . ,Φ∗Fk).

There is a class of symmetries which play a relevant role as generators of conserved quantities:

Proposition 3 Let Φ: (T 1
k )∗Q→ (T 1

k )∗Q be a diffeomorphism. If

Φ∗ωA = ωA , 1 ≤ A ≤ k and Φ∗H = H (up to a constant).

then Φ is a symmetry of the k-symplectic Hamiltonian system ((T 1
k )∗Q,ωA,H).

(Proof ) We must prove that, if ψ : U0 ⊂ R
k → (T 1

k )∗Q is a solution to the Hamilton-de Donder-
Weyl equations (4), then Φ ◦ ψ is also a solution, that is,

(a)
∂H

∂qi

∣∣∣
(Φ◦ψ)(t)

= −

k∑

A=1

∂(Φ ◦ ψ)Ai
∂tA

∣∣∣
t

, (b)
∂H

∂pAi

∣∣∣
(Φ◦ψ)(t)

=
∂(Φ ◦ ψ)i

∂tA

∣∣∣
t
.

In local coordinates, we write the diffeomorphism Φ: (T 1
k )∗Q→ (T 1

k )∗Q as follows

Φ(qj, pBj ) = (Φi(qj , pBj ),ΦA
i (qj , pBj )) .

The condition Φ∗ωA = ωA implies

0 =
∂Φi

∂qj

∣∣∣
w

∂ΦA
i

∂qk

∣∣∣
w
,

0 =
∂Φi

∂pBj

∣∣∣
w

∂ΦA
i

∂pCk

∣∣∣
w
, (6)

δkj δ
A
C =

∂Φi

∂qj

∣∣∣
w

∂ΦA
i

∂pCk

∣∣∣
w
−
∂Φi

∂pCk

∣∣∣
w

∂ΦA
i

∂qj

∣∣∣
w
.

Furthermore, since Φ is a diffeomorphism, Φ ◦ Φ−1 = Id(T 1
k
)∗Q. Applying the chain rule we

obtain:

δik =
∂(Φ ◦ Φ−1)i

∂qk

∣∣∣
w

=
∂Φi

∂qj

∣∣∣
Φ−1(w)

∂(Φ−1)j

∂qk

∣∣∣
w

+
∂Φi

∂pAj

∣∣∣
Φ−1(w)

∂(Φ−1)Aj
∂qk

∣∣∣
w
, (7)

0 =
∂(Φ ◦ Φ−1)i

∂pBk

∣∣∣
w

=
∂Φi

∂qj

∣∣∣
Φ−1(w)

∂(Φ−1)j

∂pBk

∣∣∣
w

+
∂Φi

∂pAj

∣∣∣
Φ−1(w)

∂(Φ−1)Aj

∂pBk

∣∣∣
w
,

0 =
∂(Φ ◦ Φ−1)Ai

∂qj

∣∣∣
w

=
∂ΦA

i

∂qk

∣∣∣
Φ−1(w)

∂(Φ−1)k

∂qj

∣∣∣
w

+
∂ΦA

i

∂pBk

∣∣∣
Φ−1(w)

∂(Φ−1)Bk
∂qj

∣∣∣
w
, (8)

δij δ
A
C =

∂(Φ ◦ Φ−1)Ai
∂pCj

∣∣∣
w

=
∂ΦA

i

∂qk

∣∣∣
Φ−1(w)

∂(Φ−1)k

∂pCj

∣∣∣
w

+
∂ΦA

i

∂pBk

∣∣∣
Φ−1(w)

∂(Φ−1)Bk
∂pCj

∣∣∣
w
. (9)
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From the equations (6-9) we obtain

∂Φs

∂qj

∣∣∣
Φ−1(w)

= δAB
∂(Φ−1)Aj
∂pBs

∣∣∣
w

, δAD
∂Φs

∂pCk

∣∣∣
Φ−1(w)

= − δAC
∂(Φ−1)k

∂pDs

∣∣∣
w

(10)

∂ΦA
s

∂qj

∣∣∣
Φ−1(w)

= −
∂(Φ−1)Aj
∂qs

∣∣∣
w

,
∂ΦA

s

∂pCk

∣∣∣
Φ−1(w)

= δAC
∂(Φ−1)k

∂qs

∣∣∣
w
. (11)

From the condition Φ∗H = H written as follows

H(qj , pBj ) = (H ◦ Φ)(qj , pBj ) = H(Φi(qj, pBj ),ΦA
i (qj , pBj )) ,

we obtain, for every w ∈ (T 1
k )∗Q.

∂H

∂qj

∣∣∣
w

=
∂H

∂qi

∣∣∣
Φ(w)

∂Φi

∂qj

∣∣∣
w

+
∂H

∂pAi

∣∣∣
Φ(w)

∂ΦA
i

∂qj

∣∣∣
w

(12)

∂H

∂pAj

∣∣∣
w

=
∂H

∂qi

∣∣∣
Φ(w)

∂Φi

∂pAj

∣∣∣
w

+
∂H

∂pBi

∣∣∣
Φ(w)

∂ΦB
i

∂pAj

∣∣∣
w
,

Applying the chain rule, by a straightforward computation one proves (a) as consequence of (4),
(6), (7), (8), (11) and (12), and taking into account (4), (10), (11) and (12), one proves (b).

The case k = 1 corresponds to Classical Mechanics. In this case the above result can be
found in [34].

Taking into account this proposition, we introduce the following definitions:

Definition 5 1. A Cartan (or Noether) symmetry of a k-symplectic Hamiltonian system
((T 1

k )∗Q,ωA,H) is a diffeomorphism Φ: (T 1
k )∗Q→ (T 1

k )∗Q such that,

(a) Φ∗ωA = ωA, for A = 1, . . . , k.

(b) Φ∗H = H (up to a constant).

If Φ = (T 1
k )∗ϕ for some ϕ : Q→ Q, then the Cartan symmetry Φ is said to be natural.

2. An infinitesimal Cartan (or Noether) symmetry is a vector field Y ∈ X((T 1
k )∗Q) satisfying

that:

(a) L(Y )ωA = 0, for A = 1, . . . , k.

(b) L(Y )H = 0.

If Y = ZC∗ for some Z ∈ X(Q), then the infinitesimal Cartan symmetry Y is said to be
natural.

Furthermore, we have that:

Proposition 4 If Φ: (T 1
k )∗Q → (T 1

k )∗Q is a Cartan symmetry of a k-symplectic Hamiltonian
system ((T 1

k )∗Q,ωA,H), and X = (X1, . . . ,Xk) ∈ X
k
H((T 1

k )∗Q), then Φ∗X = (Φ∗X1, . . . ,Φ∗Xk) ∈
X
k
H((T 1

k )∗Q).
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(Proof ) Let Φ: (T 1
k )∗Q → (T 1

k )∗Q be a Cartan symmetry. For every X = (X1, . . . ,Xk) ∈
X
k
H((T 1

k )∗Q) we calculate

Φ∗[

k∑

A=1

i(Φ∗XA)ωA − dH] =

k∑

A=1

i(XA)(Φ∗ωA) − d(Φ∗H) =

k∑

A=1

i(XA)ωA − dH = 0

hence, as Φ is a diffeomorphism, this is equivalent to demanding that

k∑

A=1

i(Φ∗XA)ωA−dH = 0,

and therefore Φ∗X = (Φ∗X1, . . . ,Φ∗Xk) ∈ X
k
H((T 1

k )∗Q).

In order to state a geometrical version of Noether’s theorem for k-symplectic systems, we
restrict our study to the infinitesimal Cartan symmetries.

First, it is immediate to prove that, if Y1, Y2 ∈ X((T 1
k )∗Q) are infinitesimal Cartan symme-

tries, then so is [Y1, Y2].

In addition, a highly relevant result is the following:

Proposition 5 Let Y ∈ X((T 1
k )∗Q) be an infinitesimal Cartan symmetry of a k-symplectic

Hamiltonian system ((T 1
k )∗Q,ωA,H). Then, for A = 1, . . . , k, and for every p ∈ (T 1

k )∗Q, there
is an open neighbourhood Up ∋ p, such that:

1. There exist fA ∈ C∞(Up), which are unique up to constant functions, such that

i(Y )ωA = dfA, (on Up) . (13)

2. There exist ζA ∈ C∞(Up), verifying that L(Y )θA = dζA, on Up; and then

fA = i(Y )θA − ζA, (up to a constant function, on Up) . (14)

(Proof )

1. It is a consequence of the Poincaré Lemma and the condition

0 = L(Y )ωA = i(Y )dωA + d i(Y )ωA = d i(Y )ωA .

2. We have that
d L(Y )θA = L(Y )dθA = −L(Y )ωA = 0

and hence L(Y )θA are closed forms. Therefore, by the Poincaré Lemma, there exist ζA ∈
C∞(Up), verifying that L(Y )θA = dζA, on Up. Furthermore, as (13) holds on Up, we obtain
that

dζA = L(Y )θA = d i(Y )θA + i(Y )dθA = d i(Y )θA − i(Y )ωA = d{i(Y )θA − fA}

and thus (14) holds.

Remark: As a particular case, those Cartan symmetries Φ: (T 1
k )∗Q→ (T 1

k )∗Q (resp.
infinitesimal Cartan symmetries Y ∈ X((T 1

k )∗Q)) verifying that Φ∗θA = θA (resp.

L(Y )θA = 0), for A = 1, . . . , k, are usually called exact. It is obvious that natural
Cartan symmetries are exact.

Observe that, for exact infinitesimal Cartan symmetries we have that fA = − i(Y )θA.
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Finally, the classical Noether’s theorem of Hamiltonian mechanics can be generalized to
k-symplectic field theories as follows:

Theorem 1 (Noether’s theorem): If Y ∈ X((T 1
k )∗Q) is an infinitesimal Cartan symmetry of

a k-symplectic Hamiltonian system ((T 1
k )∗Q,ωA,H). Then, for every p ∈ (T 1

k )∗Q, there is an
open neighborhood Up ∋ p such that the functions fA = i(Y )θA − ζA, 1 ≤ A ≤ k, define a
conservation law f = (f1, . . . , fk).

(Proof ) Let Y ∈ X((T 1
k )∗Q) with local expression Y = Y i ∂

∂qi
+ Y A

i

∂

∂pAi
, then from (13) we

have

Y iδAB =
∂fA

∂pBi
, −Y A

i =
∂fA

∂qi
; (on Up)

Let ψ : R
k → (T 1

k )∗Q be a solution to (4), then using the last equalities we obtain

k∑

A=1

∂(fA ◦ ψ)

∂tA

∣∣∣
t

=

(
∂fA

∂qi

∣∣∣
ψ(t)

∂ψi

∂tA

∣∣∣
t
+
∂fA

∂pBi

∣∣∣
ψ(t)

∂ψBi
∂tA

∣∣∣
t

)
=

(
−Y A

i

∂ψi

∂tA

∣∣∣
t
+ Y i

k∑

A=1

∂ψAi
∂tA

∣∣∣
t

)

= −

(
Y A
i

∂H

∂pAi
+ Y i∂H

∂qi

)
= −L(Y )H = 0 .

In the case k = 1, the above theorem (Noether’s Theorem in the Hamiltonian formalism)
can be found in [34].

Furthermore, we have that:

Theorem 2 (Noether): If Y ∈ X((T 1
k )∗Q) is an infinitesimal Cartan symmetry of a k-symplectic

Hamiltonian system ((T 1
k )∗Q,ωA,H). Then, for every X = (X1, . . . ,Xk) ∈ X

k
H((T 1

k )∗Q), we
have

k∑

A=1

L(XA)fA = 0 (on Up) .

(Proof ) If Y ∈ X((T 1
k )∗Q) is a Cartan-Noether symmetry, then, on Up, taking (13) into account

we obtain

k∑

A=1

L(XA)fA =

k∑

A=1

(d i(XA)fA + i(XA)dfA) =

k∑

A=1

i(XA) i(Y )ωA

= − i(Y )

k∑

A=1

i(XA)ωA = − i(Y )dH = −L(Y )H = 0 .

Noether’s theorem associates conservation laws to Cartan symmetries. However, these kinds
of symmetries do not exhaust the set of symmetries. As is known, in mechanics there are sym-
metries which are not of Cartan type, and which also generate conserved quantities (see [31],
[45], [46], for some examples). These are the so-called hidden symmetries. Different attempts
have been made to extend Noether’s theorem in order to include these symmetries and the corre-
sponding conserved quantities for mechanical systems (see for instance [47]) and multisymplectic
field theories (see [10]).
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3 Lagrangian k-symplectic case

3.1 Geometric elements

3.1.1 The tangent bundle of k1-velocities of a manifold. Canonical structures

Let τQ : TQ → Q be the tangent bundle of a Q. Let us denote by T 1
kQ the Whitney sum

TQ⊕ k. . . ⊕TQ of k copies of TQ, with projection τ : T 1
kQ→ Q, τ(v1q, . . . , vkq) = q.

T 1
kQ can be identified with the manifold J1

0 (Rk, Q) of the k1-velocities of Q; that is, 1-
jets of maps σ : R

k → Q, with source at 0 ∈ R
k and with projection map τ : T 1

kQ → Q,
τ(j10,qσ) = σ(0) = q; that is,

J1
0 (Rk, Q) ≡ TQ⊕ k. . . ⊕TQ
j10,qσ ≡ (v1q, . . . , vkq)

where q = σ(0), and vAq = σ∗(0)

(
∂

∂tA

∣∣∣
0

)
. The manifold T 1

kQ is called the tangent bundle of

k1-velocities of Q [38].

If (qi) are local coordinates on U ⊆ Q then the induced local coordinates (qi, vi), 1 ≤ i ≤ n,
in TU = τ−1

Q (U) are given by qi(vq) = qi(q), vi(vq) = vq(q
i), and the induced local coordinates

(qi, viA), 1 ≤ i ≤ n, 1 ≤ A ≤ k, in T 1
kU = τ−1(U) are given by

qi(v1q, . . . , vkq) = qi(q), viA(v1q, . . . , vkq) = vAq(q
i) .

For a vector Zq ∈ TqQ, and for A = 1, . . . , k, we define its vertical A-lift, (Zq)
VA , at the

point (v1q, . . . , vkq) ∈ T
1
kQ, as the vector tangent to the fiber τ−1(q) ⊂ T 1

kQ, which is given by

(Zq)
VA(v1q, . . . , vA) =

d

ds
(v1q, . . . , vA−1q, vAq + sZq, vA+1q, . . . , vkq)|s=0 .

In local coordinates, if Xq = ai
∂

∂qi

∣∣∣
q
, then

(Zq)
VA(v1q, . . . , vkq) = ai

∂

∂viA

∣∣∣
(v1q ,...,vkq)

. (15)

The canonical k-tangent structure on T 1
kQ is the set (S1, . . . , Sk) of tensor fields of type

(1, 1) defined by

SA(wq)(Zwq) = (τ∗(wq)(Zwq))
VA(wq) , for wq ∈ T

1
kQ, Zwq ∈ Twq(T

1
kQ); A = 1, . . . , k .

In local coordinates, from (15) we have

SA =
∂

∂viA
⊗ dqi . (16)

The tensors SA can be regarded as the (0, . . . , 0,
A

1, 0, . . . , 0)-lift of the identity tensor on Q

to T 1
kQ defined in [38]. In the case k = 1, S1 is the well-known canonical tangent structure of

the tangent bundle, (see [9, 19, 20, 26]).
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Finally, we introduce the Liouville vector field ∆ ∈ X(T 1
kQ), which is the infinitesimal

generator of the following flow

ψ : R × T 1
kQ −→ T 1

kQ , ψ(s, v1q , . . . , vkq
) = (esv1q , . . . , e

svkq
) ,

and in local coordinates it has the form

∆ =

k∑

A=1

viA
∂

∂viA
.

∆ is a sum of vector fields ∆1 + . . . + ∆k, where each ∆A is the infinitesimal generator of
the following flow

ψA : R × T 1
kQ −→ T 1

kQ , ψA(s, v1q , . . . , vkq
) = (v1q , . . . , vA−1q

, esvAq , vA+1q , . . . , vkq
) (17)

and, in local coordinates, each ∆A has the form

∆A = viA
∂

∂viA
, for A = 1, . . . , k fixed . (18)

3.1.2 Complete lift of diffeomorphisms and vector fields from Q to T 1
kQ

Let ϕ : Q→ Q be a differentiable map, then the canonical prolongation of ϕ to T 1
kQ is the induced

map T 1
kϕ : T 1

kQ→ T 1
kQ defined by T 1

kϕ(j10σ) = j10(ϕ ◦ σ); that is, for v1q, . . . , vkq ∈ TqQ, q ∈ Q.

T 1
kϕ(v1q, . . . , vkq) = (ϕ∗(q)v1q, . . . , ϕ∗(q)vkq) .

If Z is a vector field on Q, with local 1-parametric group of transformations hs : Q → Q,
then the local 1-parametric group of transformations T 1

k (hs) : T
1
kQ → T 1

kQ generates a vector

field ZC on T 1
kQ, which is called the complete lift of Z to T 1

kQ. If where Z = Zi
∂

∂qi
, its local

expression is

ZC = Zi
∂

∂qi
+ v

j
A

∂Zk

∂qj
∂

∂vkA
.

Then, we have the following property:

Lemma 2 Let Φ = T 1
kϕ : T 1

kQ → T 1
kQ be the canonical prolongation of a diffeomorphism

ϕ : Q→ Q. Then

(a) Φ∗ ◦ S
A = SA ◦ Φ∗ , (b) Φ∗∆A = ∆A , for A = 1, . . . , k .

(Proof ) (a) It is a direct consequence of local expression of SA and the local expression of T 1
kϕ,

T 1
kϕ(qi, viA) = (ϕj(qi), viA

∂ϕj

∂qi
) .

(b) It is a consequence of T 1
kϕ ◦ ψAt = ψAt ◦ T 1

kϕ, where ψAt are the local 1-parameter groups
of diffeomorphisms (17) generated by ∆A.

This means that canonical liftings of diffeomorphisms and vector fields preserve the canonical
structures of T 1

kQ.
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3.1.3 Second-order partial differential equations in T 1
kQ

The aim of this subsection is to characterize the integrable k-vector fields on T 1
kQ such that

their integral sections are first prolongations φ(1) of maps φ : R
k → Q.

Remember that a k-vector field in T 1
kQ is a section Γ : T 1

kQ −→ T 1
k (T 1

kQ) of the canonical
projection τT 1

k
Q : T 1

k (T 1
kQ) → T 1

kQ. Then:

Definition 6 A second order partial differential equation (sopde) is a k-vector field Γ =
(Γ1, . . . ,Γk) in T 1

kQ which is a section of the projection T 1
k τ : T 1

k (T 1
kQ) → T 1

kQ; that is,

T 1
k τ ◦ Γ = IdT 1

k
Q ,

or, what is equivalent,

τ∗(wq)(ΓA(wq)) = vAq , for wq = (v1q , . . . , vkq
) ∈ T 1

kQ, A = 1, . . . , k .

In the case k = 1, this is the definition of a second order differential equation (sode).

From a direct computation in local coordinates we obtain that the local expression of a
sopde Γ = (Γ1, . . . ,Γk) is

ΓA(qi, viA) = viA
∂

∂qi
+ (ΓA)iB

∂

∂viB
, 1 ≤ A ≤ k , (ΓA)iB ∈ C∞(T 1

kQ) . (19)

If ψ : R
k → T 1

kQ is an integral section of Γ = (Γ1, . . . ,Γk), locally given by ψ(t) = (ψi(t), ψiB(t)),
then from Definition 2 and (19) we deduce

∂ψi

∂tA

∣∣∣
t
= ψiA(t) ,

∂ψiB
∂tA

∣∣∣
t
= (ΓA)iB(ψ(t)) . (20)

From (3) and (20) we obtain the following proposition.

Proposition 6 Let Γ = (Γ1, . . . ,Γk) be an integrable sopde. If ψ is an integral section of Γ

then ψ = φ(1), where φ(1) is the first prolongation of the map φ = τ ◦ ψ : R
k ψ
→ T 1

kQ
τ
→ Q, and

φ is a solution to the system of second order partial differential equations

∂2φi

∂tA∂tB
(t) = (ΓA)iB

(
φi(t),

∂φi

∂tC
(t)

)
1 ≤ i ≤ n ; 1 ≤ A,B ≤ k. (21)

Conversely, if φ : R
k → Q is any map satisfying (21), then φ(1) is an integral section of Γ =

(Γ1, . . . ,Γk).

From (21) we deduce that if Γ is an integrable sopde then (ΓA)iB = (ΓB)iA for all A,B =
1, . . . , k.

The following characterization of sopdes can be given using the canonical k-tangent structure
of T 1

kQ (see (16), (18) and (19)):

Proposition 7 A k-vector field Γ = (Γ1, . . . ,Γk) on T 1
kQ is a sopde if, and only if, SA(ΓA) =

∆A, for all A : 1 . . . , k .
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3.2 Lagrangian formalism: k-symplectic Lagrangian systems

In Classical Mechanics, the symplectic structure of Hamiltonian theory and the tangent structure
of Lagrangian theory play complementary roles (see Refs. [13,15,16]). In this subsection, we
recall the Lagrangian formalism developed by Günther [21] using the polysymplectic structures.
Here we can see how the polysymplectic structures and the k-tangent structures also play a
complementary role in field theory.

Let L : T 1
kQ→ R be a Lagrangian. The generalized Euler-Lagrange equations for L are:

k∑

A=1

∂

∂tA

∣∣∣
t

(
∂L

∂viA

∣∣∣
ψ(t)

)
=
∂L

∂qi

∣∣∣
ψ(t)

, viA(ψ(t)) =
∂ψi

∂tA
(22)

whose solutions are maps ψ : R
k → T 1

kQ. Let us observe that ψ(t) = φ(1)(t), for some φ = τ ◦ψ.

We introduce a family of 1-forms θAL on T 1
kQ, 1 ≤ A ≤ k, using the k-tangent structure, as

follows
θAL = dL ◦ SA 1 ≤ A ≤ k , (23)

and hence we define ωAL = −dθAL .

In local natural coordinates we have

θAL =
∂L

∂viA
dqi (24)

ωAL = dqi ∧ d

(
∂L

∂viA

)
=

∂2L

∂qj∂viA
dqi ∧ dqj +

∂2L

∂v
j
B∂v

i
A

dqi ∧ dvjB . (25)

We also introduce the Energy lagrangian function EL = ∆(L) − L ∈ C∞(T 1
kQ), whose local

expression is

EL = viA
∂L

∂viA
− L . (26)

Then, the family (T 1
kQ,ω

A
L , EL) is called a k-symplectic Lagrangian system.

Definition 7 The Lagrangian L : T 1
kQ −→ R is said to be regular if the matrix

(
∂2L

∂vi
A
∂v

j
B

)
is

not singular at every point of T 1
kQ.

Remark: Let us observe that the condition L regular is equivalent to (ω1
L, . . . , ω

k
L)

being a polysympletic form and (ω1
L, . . . , ω

k
L;V ), where V = Kerτ∗, is a k-symplectic

structure (see [37]).

This k-symplectic (polysymplectic) structure, associated to L, was also introduced by Günther
[21] using the Legendre transformation.

The Legendre map FL : T 1
kQ→ (T 1

k )∗Q was introduced by Günther, [21] and was rewritten
in [37] as follows: if (v1q , . . . , vkq

) ∈ (T 1
k )qQ,

[FL(v1q , . . . , vkq
)]A(uq) =

d

ds

∣∣∣
s=0

L(v1q , . . . , vAq + suq, . . . , vkq
) ,
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for each A = 1, . . . , k and uq ∈ TqQ. Locally FL is given by

FL(qi, viA) = (qi,
∂L

∂viA
) . (27)

In fact, form (24) and (27),we easily obtain the following Lemma.

Lemma 3 For every 1 ≤ A ≤ k , ωAL = (FL)∗ωA, where (ω1, . . . , ωk) are the 2-forms of the
canonical polysymplectic structure.

Then, from (27) we obtain the following Proposition.

Proposition 8 Let L be a Lagrangian. The following conditions are equivalent: (1) L is
regular. (2) FL is a local diffeomorphism. (3) (ω1

L, . . . , ω
k
L) is a polysimplectic structure on

T 1
kQ.

As in the Hamiltonian case, consider a k-symplectic Lagrangian system (T 1
kQ,ω

A
L , EL), and

denote by X
k
L(T 1

kQ) the set of k-vector fields Γ = (Γ1, . . . ,Γk) in T 1
kQ, which are solutions to

the equation
k∑

A=1

i(ΓA)ωAL = dEL . (28)

If each ΓA is locally given by

ΓA = (ΓA)i
∂

∂qi
+ (ΓA)iB

∂

∂viB
,

then Γ = (Γ1, . . . ,Γk) is a solution to (28) if, and only if, (ΓA)i and (ΓA)iB satisfy the system of
equations

(
∂2L

∂qi∂v
j
A

−
∂2L

∂qj∂viA

)
(ΓA)j −

∂2L

∂viA∂v
j
B

(ΓA)jB = v
j
A

∂2L

∂qi∂v
j
A

−
∂L

∂qi
,

∂2L

∂v
j
B∂v

i
A

(ΓA)i =
∂2L

∂v
j
B∂v

i
A

viA .

If the Lagrangian is regular, the above equations are equivalent to the equations

∂2L

∂qj∂viA
v
j
A +

∂2L

∂viA∂v
j
B

(ΓA)jB =
∂L

∂qi
(29)

(ΓA)i = viA , 1 ≤ i ≤ n, 1 ≤ A ≤ k . (30)

Thus, if L is a regular Lagrangian, we deduce:

• If Γ = (Γ1, . . . ,Γk) is a solution to (28) then it is a sopde, (see (30)).

• Equation (29) leads to define local solutions to (28) in a neighborhood of each point of
T 1
kQ and, using a partition of unity, global solutions to (28).

• Since Γ = (Γ1, . . . ,Γk) ∈ X
k
L(T 1

kQ) is a sopde, from Proposition 6 we know that, if it
is integrable, then its integral sections are first prolongations φ(1) : R

k → T 1
kQ of maps

φ : R
k → Q, and from (29) we deduce that φ is a solution to the Euler-Lagrange equations

(22).
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• In the case k = 1, the equation (28) is ıΓωL = dEL, which is the dynamical equation of
the Lagrangian formalism in Mechanics.

Throughout this paper, we only consider regular Lagrangians.

3.3 Symmetries and conservation laws

Of course, regarding these topics, of course, all the definitions stated in Section 2.3 for the Hamil-
tonian case are applied to the Lagrangian case, just considering (T 1

kQ,ω
A
L , EL) as a Hamiltonian

system with Hamiltonian function EL. In particular, we can define:

Definition 8 A map F = (F1, . . . ,Fk) : T 1
kQ → R

k is a conservation law (or a conserved
quantity) for the Euler-Lagrange equations (22) if the divergence of F ◦ φ = (F1 ◦ φ(1), . . . ,Fk ◦
φ(1)) : R

k → R
k is zero, for every φ : R

k → Q solution to the Euler-Lagrange equations (22);
that is

k∑

A=1

∂(FA ◦ φ(1))

∂tA
= 0 .

Therefore, if F = (F1, . . . ,Fk) : T 1
kQ → R

k is a conservation law then, for every integrable
k-vector field Γ = (Γ1, . . . ,Γk) in X

k
L(T 1

kQ), we have that

k∑

A=1

L(ΓA)FA = 0 .

Definition 9 1. A symmetry of the k-symplectic Lagrangian system (T 1
kQ,ω

A
L , EL) is a

diffeomorphism Φ: T 1
kQ → T 1

kQ such that, for every solution φ to the Euler-Lagrange
equations (22), we have that Φ ◦ φ(1) = ρ(1), where ρ : R

k → Q is also a solution to these
equations.

In the particular case that Φ = T 1
kϕ for some ϕ : Q→ Q (i.e.; Φ is the canonical lifting of

some diffeomorphism in Q), the symmetry Φ is said to be natural.

2. An infinitesimal symmetry of the k-symplectic Lagrangian system (T 1
kQ,ω

A
L , EL) is a vector

field Y ∈ X(T 1
kQ) whose local flows are local symmetries.

In the particular case that Y = ZC for some Z ∈ X(Q), (i.e.; Y is the canonical lifting of
some vector field in Q), the infinitesimal symmetry Y is said to be natural.

As in the Hamiltonian case, we have that:

Proposition 9 Let Φ: T 1
kQ→ T 1

kQ be a diffeomorphism. If Φ satisfies

Φ∗ωAL = ωAL , 1 ≤ A ≤ k and Φ∗EL = EL (up to a constant).

then Φ is a symmetry of the k-symplectic Lagrangian system (T 1
kQ,ω

A
L , EL).

(Proof ) We must prove that, if φ : U0 ⊂ R
k → Q is a solution to the Euler-Lagrange equations

(22), then Φ ◦φ(1) is also a solution. However, it is well-known that this is equivalent to proving
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that FL ◦Φ ◦φ(1) : U0 ⊂ R
k → (T 1

k )∗Q is a solution to the Hamilton-de Donder-Weyl equations,
(4); that is

(a)
∂H

∂pAi

∣∣∣
(FL◦Φ◦φ(1))(t)

=
∂(FL ◦ Φ ◦ φ(1))i

∂tA

∣∣∣
t

(b)
∂H

∂qi

∣∣∣
(FL◦Φ◦φ(1))(t)

= −

k∑

A=1

∂(FL ◦ Φ ◦ φ(1))iA
∂tA

∣∣∣
t
,

with Hamiltonian H = EL ◦ FL−1.

Let us suppose that Φ : T 1
kQ → T 1

kQ, locally given by Φ(qj, vjB) = (Φi(qj, vjB),Φi
A(qj , vjB))

satisfies the conditions Φ∗ωAL = ωAL and EL = Φ∗EL.

In order to prove (a) and (b) we will use four groups of identities. From the condition
Φ∗ωAL = ωAL we obtain the first group of identities: for everY w ∈ T 1

kQ,

∂2L

∂qj∂viA

∣∣∣
w

=

(
∂2L

∂qk∂vlA

∣∣∣
Φ(w)

∂Φk

∂qj

∣∣∣
w

+
∂2L

∂vkC∂v
l
A

∣∣∣
Φ(w)

∂Φk
C

∂qj

∣∣∣
w

)
∂Φl

∂qi

∣∣∣
w
,

∂2L

∂v
j
B∂v

i
A

∣∣∣
w

=

(
∂2L

∂qk∂vlA

∣∣∣
Φ(w)

∂Φk

∂v
j
B

∣∣∣
w

+
∂2L

∂vkC∂v
l
A

∣∣∣
Φ(w)

∂Φk
C

∂v
j
B

∣∣∣
w

)
∂Φl

∂qi

∣∣∣
w

−

(
∂2L

∂qk∂vlA

∣∣∣
Φ(w)

∂Φk

∂qi

∣∣∣
w

+
∂2L

∂vkC∂v
l
A

∣∣∣
Φ(w)

∂Φk
C

∂qi

∣∣∣
w

)
∂Φl

∂v
j
B

∣∣∣
w
, (31)

0 =

(
∂2L

∂qk∂vlA

∣∣∣
Φ(w)

∂Φk

∂v
j
B

∣∣∣
w

+
∂2L

∂vkC∂v
l
A

∣∣∣
Φ(w)

∂Φk
C

∂v
j
B

∣∣∣
w

)
∂Φl

∂vmD

∣∣∣
w
.

Applying the chain rule to Φ ◦ Φ−1 = IdT 1
k
Q, we have the second group.

δik =
∂Φi

∂qj

∣∣∣
Φ−1(w)

∂(Φ−1)j

∂qk

∣∣∣
w

+
∂Φi

∂v
j
A

∣∣∣
Φ−1(w)

∂(Φ−1)jA
∂qk

∣∣∣
w
, (32)

0 =
∂Φi

∂qj

∣∣∣
Φ−1(w)

∂(Φ−1)j

∂vkB

∣∣∣
w

+
∂Φi

∂v
j
A

∣∣∣
Φ−1(w)

∂(Φ−1)jA
∂vkB

∣∣∣
w
, (33)

0 =
∂Φi

A

∂qk

∣∣∣
Φ−1(w)

∂(Φ−1)k

∂qj

∣∣∣
w

+
∂Φi

A

∂vkB

∣∣∣
Φ−1(w)

∂(Φ−1)kB
∂qj

∣∣∣
w
. (34)

The third group of identities is a consequence of the following fact: if φ : U0 ⊂ R
k → Q is a

solution to Euler-Lagrange’s equations, we know that FL◦φ(1) : U0 ⊂ R
k → (T 1

k )∗Q is a solution
to Hamilton-de Donder-Weyl’s equations (4). Then from the local expression of FL, (27) we
deduce the following equations.

∂H

∂pAi

∣∣∣
(FL◦φ(1))(t)

=
∂(FL ◦ φ(1))i

∂tA

∣∣∣
t
=
∂φi

∂tA

∣∣∣
t
,

∂H

∂qi

∣∣∣
(FL◦φ(1))(t)

= −

k∑

A=1

∂(FL ◦ φ(1))iA
∂tA

∣∣∣
t

= −
∂2L

∂qj∂viA

∣∣∣
φ(1)(t)

∂φj

∂tA

∣∣∣
t
−

∂2L

∂v
j
B∂v

i
A

∣∣∣
φ(1)(t)

∂2φj

∂tA∂tB

∣∣∣
t
. (35)
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Since EL = Φ∗EL is equivalent to FL∗H = (FL ◦ Φ)∗H, by applying the chain rule again
and by using the local expression of FL (27), we obtain the last family of identities

∂H

∂qi

∣∣∣
FL(w)

+
∂H

∂pBj

∣∣∣
FL(w)

∂2L

∂qi∂v
j
B

∣∣∣
w

=
∂H

∂qj

∣∣∣
(FL◦Φ)(w)

∂Φj

∂qi

∣∣∣
w

+
∂H

∂pBj

∣∣∣
(FL◦Φ)(w)

(
∂2L

∂qk∂v
j
B

∣∣
Φ(w)

∂Φk

∂qi

∣∣∣
w

+
∂2L

∂vkA∂v
j
B

∣∣∣
Φ(w)

∂Φk
A

∂qi

∣∣∣
w

)
(36)

∂H

∂pBj

∣∣∣
FL(w)

∂2L

∂viA∂v
j
B

∣∣∣
w

=
∂H

∂qj

∣∣∣
(FL◦Φ)(w)

∂Φj

∂viA

∣∣∣
w

+
∂H

∂pBj

∣∣∣
(FL◦Φ)(w)

(
∂2L

∂qk∂v
j
B

∣∣
Φ(w)

∂Φk

∂viA

∣∣∣
w

+
∂2L

∂vkC∂v
j
B

∣∣∣
Φ(w)

∂Φk
C

∂viA

∣∣∣
w

)
. (37)

These identities (36) and (37) are fundamental to proof of this proposition. Let us observe that

in these identities we find the partial derivatives
∂H

∂qi

∣∣∣
(FL◦Φ◦φ(1))(t)

and
∂H

∂pAi

∣∣∣
(FL◦Φ◦φ(1))(t)

, which

we are searching for, and their relation with the other partial derivatives
∂H

∂qi

∣∣∣
(FL◦φ(1))(t)

and

∂H

∂pAi

∣∣∣
(FL◦φ(1))(t)

, wich we know from (35).

By a straightforward computation, from equations (31- 33), (35-37) one proves that

0 =
∂2L

∂vsD∂v
l
A

∣∣∣
(Φ◦φ(1))(t)

(
∂H

∂pAl

∣∣∣
(FL◦Φ◦φ(1))(t)

−
∂Φl

∂qj

∣∣∣
φ(1)(t)

∂φj

∂tA

∣∣∣
t
−
∂Φl

∂v
j
B

∣∣∣
φ(1)(t)

∂2φj

∂tA∂tB

∣∣∣
t

)

and since L is regular, from the above identity we deduce that

∂H

∂pAl

∣∣∣
(FL◦Φ◦φ(1))(t)

=
∂Φl

∂qj

∣∣∣
φ(1)(t)

∂φj

∂tA

∣∣∣
t
+
∂Φl

∂v
j
B

∣∣∣
φ(1)(t)

∂2φj

∂tA∂tB

∣∣∣
t
. (38)

Furthermore we have

∂(FL ◦ Φ ◦ φ(1))l

∂tA

∣∣∣
t
=
∂Φl

∂qj

∣∣∣
φ(1)(t)

∂φj

∂tA

∣∣∣
t
+
∂Φl

∂v
j
B

∣∣∣
φ(1)(t)

∂2φj

∂tA∂tB

∣∣∣
t

(39)

and thus from (38) and (39) we obtain the first group, (a), of the Hamilton-de Donder-Weyl
equations.

Finally, from (31), (32), (34-37) and (39), by a straightforward computation, one obtains

k∑

A=1

∂(FL ◦ Φ ◦ φ(1))mA
∂tA

∣∣∣
t
= −

∂H

∂qm

∣∣∣
(FL◦Φ◦φ(1))(t)

+
∂2L

∂qm∂viA

∣∣∣
(Φ◦φ(1))(t)

(
∂(FL ◦ Φ ◦ φ(1))i

∂tA

∣∣∣
t
−
∂H

∂pAi

∣∣∣
(FL◦Φ◦φ(1))(t)

)
(40)

and since we have already proved (a), from (40) and (a) one obtains (b).

Taking into account this proposition, we introduce the following definitions.

Definition 10 1. A Cartan (or Noether) symmetry of the k-symplectic Lagrangian system
(T 1
kQ,ω

A
L , EL) is a diffeomorphism Φ: T 1

kQ→ T 1
kQ such that,
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(a) Φ∗ωAL = ωAL , for A = 1, . . . , k.

(b) Φ∗EL = EL (up to a constant).

If Φ = T 1
kϕ for some ϕ : Q→ Q, then the Cartan symmetry Φ is said to be natural.

2. An infinitesimal Cartan (or Noether) symmetry of the k-symplectic Lagrangian system
(T 1
kQ,ω

A
L , EL) is a vector field Y ∈ X(T 1

kQ) satisfying that:

(a) L(Y )ωAL = 0, for A = 1, . . . , k.

(b) L(Y )EL = 0.

If Y = ZC for some Z ∈ X(Q), then the infinitesimal Cartan symmetry Y is said to be
natural.

Proposition 10 Let Y ∈ X(T 1
kQ) be an infinitesimal Cartan symmetry of a k-symplectic La-

grangian system (T 1
kQ,ω

A
L , EL). Then, for A = 1, . . . , k, and for every p ∈ (T 1

k )Q, there is an
open neighborhood Up ∋ p, such that:

1. There exist fA ∈ C∞(Up), which are unique up to constant functions, such that

i(Y )ωAL = dfA, (on Up) . (41)

2. There exist ζA ∈ C∞(Up), verifying that L(Y )θAL = dζA, on Up; and then

fA = i(Y )θAL − ζA, (up to a constant function, on Up) . (42)

(Proof ) This is the same proof as in Proposition 5.

Now we can state the version of Noether’s Theorem for infinitesimal Cartan Lagrangian
symmetries.

Theorem 3 (Noether’s theorem): Let Y ∈ X(T 1
kQ) be an infinitesimal Cartan symmetry of a

k-symplectic Lagrangian system (T 1
kQ,ω

A
L , EL), then for every p ∈ T 1

kQ, there is an open neigh-
borhood Up ∋ p, such that the functions fA = i(Y )θAL − ζA , 1 ≤ A ≤ k, define a conservation
law f = (f1, . . . , fk).

(Proof ) Let Y ∈ X((T 1
k )∗Q) be an infinitesimal Cartan symmetry, with local expression

Y = Y i
∂

∂qi
+ Y i

A

∂

∂viA
.

Then from (41), as Y is an infinitesimal Cartan symmetry we have that

(
∂2L

∂qk∂viA
−

∂2L

∂qi∂vkA

)
Y i − Y i

B

∂2L

∂viB∂v
k
A

=
∂fA

∂qk
(43)

∂2L

∂vkB∂v
i
A

Y i =
∂fA

∂vkB
. (44)

Therefore, since Y is an infinitesimal symmetry, from L(Y )EL = 0 we obtain

Y i ∂L

∂qi
= vkB

(
Y i ∂2L

∂qi∂vkB
+ Y i

A

∂2L

∂viA∂v
k
B

)
. (45)
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Let φ : R
k → Q be a solution to the Euler-Lagrange equations, then from (22), (43), (44) and

(45) we obtain

k∑

A=1

∂(fA ◦ φ(1))

∂tA

∣∣∣
t

=
k∑

A=1

(
∂fA

∂qk

∣∣∣
φ(1)(t)

∂φk

∂tA

∣∣∣
t
+
∂fA

∂vkB

∣∣∣
φ(1)(t)

∂2φk

∂tA∂tB

∣∣∣
t

)

=

k∑

A=1

Y i(φ(1)(t))

(
∂2L

∂qk∂viA

∣∣∣
φ(1)(t)

∂φk

∂tA

∣∣∣
t
+

∂2L

∂vkB∂v
i
A

∣∣∣
φ(1)(t)

∂2φk

∂tA∂tB

∣∣∣
t

)

−

k∑

A=1

(
Y i(φ(1)(t))

∂2L

∂qi∂vkA

∣∣∣
φ(1)(t)

+ Y i
B(φ(1)(t))

∂2L

∂viB∂v
k
A

∣∣∣
φ(1)(t)

)
∂φk

∂tA

∣∣∣
t

= Y i(φ(1)(t))
∂L

∂qi

∣∣∣
φ(1)(t)

− Y i(φ(1)(t))
∂L

∂qi

∣∣∣
φ(1)(t)

= 0 , (on Up) .

Corollary 1 If ZC ∈ X(T 1
kQ) is an infinitesimal natural Cartan symmetry of a k-symplectic

Lagrangian system (T 1
kQ,ω

A
L , EL) then the functions fA = ZVA(L) − ζA, 1 ≤ A ≤ k, define a

conservation law on Up.

(Proof ) In this case, we have

i(ZC)θAL = θAL (ZC) = dL ◦ SA(ZC) = dL(ZVA) = ZVA(L) ,

and thus the functions fA of Proposition 10 can be written

fA = ZVA(L) − ζA , 1 ≤ A ≤ k .

The case k = 1 corresponds to Classical Mechanics, and the above results can be found in
[9].

Remark: The above Noether’s theorem can be rewritten introducing the follow-
ing generalization of the so-called Tulczyjew operator [49] for our case: Let g =
(g1, . . . , gk) : Q→ R

k be a function, we define dT g : T 1
kQ→ R by

dT g(v1q, . . . , vkq) =

k∑

A=1

vAq(g
A) = viA

∂gA

∂qi
.

Then it is not difficult to prove that the condition ZC(L) = dTg is equivalent to the
conditions L(ZC)θAL = dτ∗gA and ZC(EL) = 0. Therefore, by comparing with item
2 in Proposition 10 we observe that the functions fA can be written as

fA = ZVA(L) − τ∗gA , A = 1, . . . , k .

Therefore, we have the following proposition,

Proposition 11 If Z ∈ X(Q) and ZC(L) = dT g, where g = (g1, . . . , gk) : Q → R
k, then the

functions fA = ZVA(L) − τ∗gA, 1 ≤ A ≤ k, define a conservation law.
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(Proof ) This result is a consequence of Theorem 3. In fact, ZC(L) = dT g is equivalent to

L(ZC)θAL = dτ∗gA, and ZC(EL) = 0, which implies

L(ZC)ωAL = 0 and L(ZC)EL = 0 ,

that is, ZC is an infinitesimal natural Cartan symmetry. Then by Theorem 3, f = (f1, . . . , fk)
is a conservation law.

In the case k = 1, this statement can be found in [6] and [34].

Finally, we also have that:

Theorem 4 (Noether): If Y ∈ X(T 1
kQ) is an infinitesimal Cartan symmetry of a k-symplectic

Lagrangian system (T 1
kQ,ω

A
L , EL) then, for every Γ = (Γ1, . . . ,Γk) ∈ X

k
L(T 1

kQ), we have

L(ΓA)fA = 0 (on Up) .

(Proof ) This is the same as for Theorem 2.

3.4 Equivalent Lagrangians

Given a k-symplectic Lagrangian system (T 1
kQ,ω

A
L , EL), we know that canonical lifting of diffeo-

morphisms and vector fields preserve the canonical structures of T 1
kQ. Nevertheless, the k-

symplectic structure given by the forms ωAL is not canonical, since it depends on the choice
of the Lagrangian function L, and then it is not invariant by these canonical liftings. Thus,
given a diffeomorphism Φ: T 1

kQ → T 1
kQ or a vector field Y ∈ X(T 1

kQ), a sufficient condition to
assure the conditions (a) and (b) in definition 10 would be to demand that Φ or Y leave the
canonical endomorphisms SA and the Liouville vector field ∆ invariant (for instance, Φ and Y

being the canonical lifting of a diffeomorphism and a vector field in Q), and that the Lagrangian
function L be also invariant. In this way, ωAL , EL and hence the Euler-Lagrange equations are
invariant by Φ or Y . However, to demand the invariance of L is a strong condition, since there
are Lagrangian functions that, being different, give rise to the same k-symplectic structure ωAL ,
A = 1, . . . , k, and the same Euler-Lagrange equations. Thus, following the same terminology as
in mechanics (see [1]), we can define:

Definition 11 Two Lagrangian functions L1, L2 ∈ C∞(T 1
kQ) are gauge equivalent if

1. ωAL1
= ωAL2

, for A = 1, . . . , k.

2. X
k
L1

(T 1
kQ) = X

k
L2

(T 1
kQ).

Gauge equivalent Lagrangians can be also characterized as follows:

Proposition 12 Two Lagrangians L1, L2 ∈ C∞(T 1
kQ) are gauge equivalent if, and only if,

1. ωAL1
= ωAL2

, for A = 1, . . . , k.

2. EL1 = EL2 , (up to a constant).
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(Proof ) We will prove that, if ωAL1
= ωAL2

, for A = 1, . . . , k, then X
k
L2

(T 1
kQ) = X

k
L1

(T 1
kQ) is

equivalent to EL1 = EL2 (up to a constant).

If X = (X1, . . . ,Xk) ∈ X
k
L2

(T 1
kQ) = X

k
L1

(T 1
kQ), then

0 =

k∑

A=1

i(XA)ωAL1
− dEL1 =

k∑

A=1

i(XA)ωAL2
− dEL2

but as ωAL1
= ωAL2

, this implies that dEL1 = dEL2, and hence EL1 = EL2 , up to a constant.

Conversely, if ωAL1
= ωAL2

, andEL1 = EL2 (up to a constant), then for every X = (X1, . . . ,Xk) ∈

X
k
L1

(T 1
kQ), we have

0 =
k∑

A=1

i(XA)ωAL1
− dEL1 =

k∑

A=1

i(XA)ωAL2
− dEL2

so X ∈ X
k
L2

(T 1
kQ), and in the same way we prove that if X ∈ X

k
L2

(T 1
kQ), then X ∈ X

k
L1

(T 1
kQ).

For gauge-equivalent Lagrangians, definition 11 guarantees the invariance of the set of k-
vector fields which are solution to the geometric Euler-Lagrange equations (28). Nevertheless,
this condition is also sufficient to assure the invariance of the set solutions to the Euler-Lagrange
equations (22). In fact:

Proposition 13 If the Lagrangian functions L1, L2 ∈ C∞(T 1
kQ) are gauge equivalent then, the

Euler-Lagrange equations (22) associated to L1 and L2 have the same solutions.

(Proof ) If L1, L2 ∈ C∞(T 1
kQ) are gauge equivalent, then by the Proposition 12 we have: ωAL1

=

ωAL2
, for A = 1, . . . , k and EL1 = EL2 , (up to a constant). As ωAL1

= ωAL2
, for A = 1, . . . , k, from

(25) we deduce that

∂2L1

∂qj∂viA
=

∂2L2

∂qj∂viA
and

∂2L1

∂v
j
B∂v

i
A

=
∂2L2

∂v
j
B∂v

i
A

. (46)

Therefore, we obtain

∂

∂tA

(
∂L1

∂viA

∣∣∣
φ(1)(t)

)
∂2L1

∂qj∂viA

∣∣∣
φ(1)(t)

∂φj

∂tA

∣∣∣
t
+

∂2L1

∂v
j
B∂v

i
A

∣∣∣
φ(1)(t)

∂2φj

∂tA∂tB

∣∣∣
t

=
∂2L2

∂qj∂viA

∣∣∣
φ(1)(t)

∂φj

∂tA

∣∣∣
t
+

∂2L2

∂v
j
B∂v

i
A

∣∣∣
φ(1)(t)

∂2φj

∂tA∂tB

∣∣∣
t
=

∂

∂tA

(
∂L2

∂viA

∣∣∣
φ(1)(t)

)
. (47)

Furthermore, EL1 = EL2 (up to a constant), then
∂EL1

∂qj
=
∂EL2

∂qj
, and from (26) we deduce

viA
∂2L1

∂qj∂viA
−
∂L1

∂qj
= viA

∂2L2

∂qj∂viA
−
∂L2

∂qj
. (48)

From (46) and (48) we obtain
∂L1

∂qj
=
∂L2

∂qj
, (49)

and then, from (47) and (49) we obtain

k∑

A=1

∂

∂tA

(
∂L1

∂viA

∣∣∣
φ(1)(t)

)
−
∂L1

∂qj

∣∣∣
φ(1)(t)

=
k∑

A=1

∂

∂tA

(
∂L2

∂viA

∣∣∣
φ(1)(t)

)
−
∂L2

∂qj

∣∣∣
φ(1)(t)

,
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which implies that φ : R
k → Q is a solution to the Euler-Lagrange equations associated to L1 if,

and only if, it is a solution to the Euler-Lagrange equations associated with L2.

As a generalization of an analogous result in mechanics (see [1], p 216), we have the following
results:

Proposition 14 A Lagrangian L : T 1
kQ → R satisfies ωAL = 0, for every A = 1, . . . , k, if, and

only if, there exist α1, . . . , αk ∈ Ω1(Q), closed 1-forms on Q and a function f ∈ C∞(Q), such
that L = α̂+ τ∗f (up to a constant), where α̂ ∈ C∞(T 1

kQ) is the function defined by

α̂ : T 1
kQ −→ R

wq = (v1q , . . . , vkq
) 7→

k∑

A=1

αAq (vAq)
.

(Proof ) Suppose that ωAL = −dθAL = 0 , 1 ≤ A ≤ k, then θAL = dL◦SA are closed and semi-basic
1-forms on T 1

kQ, then dL ◦ SA are basic forms and there exist αA ∈ Ω1(Q) such that

dL ◦ SA = τ∗αA , 1 ≤ A ≤ k . (50)

Moreover, since 0 = dθAL = d(τ∗αA) = τ∗(dαA), then dαA = 0; that is, each αA is a closed
1-form on Q. Furthermore, by a computation in local coordinates we obtain dα̂ ◦ SA = τ∗αA,
and from (50) we have dα̂◦SA = τ∗α = dL◦SA. Then d(L− α̂)◦SA = 0. Therefore, the 1-form
d(L− α̂) is closed and semi-basic. As a consequence, d(L− α̂) is a basic 1-form; that is, there
exist f ∈ C∞(Q) such that d(L− α̂) = τ∗df = d(τ∗f). Then L = α̂+ τ∗f (up to a constant).

Conversely, let us suppose that L = α̂+ τ∗f (up to a constant). For every A = 1, . . . , k we
have

θAL = dL ◦ SA = d(α̂ + τ∗f) ◦ SA = dα̂ ◦ SA = τ∗αA ,

since dτ∗f vanishes on the vertical vector fields. As αA is closed, dαA = 0 and we obtain

ωAL = −dθAL = −d(τ∗αA) = −τ∗(dαA) = 0 .

Proposition 15 The Lagrangian functions L1, L2 ∈ C∞(T 1
kQ) are gauge equivalent if, and only

if, L1 = L2 + α̂ (up to a constant).

(Proof ) Let us suppose that L1, L2 ∈ C∞(T 1
kQ) are gauge equivalent. As ωAL1

= ωAL2
, then

ωAL1−L2
= 0, 1 ≤ A ≤ k. Thus, by Proposition 14, there exist α1, . . . , αk ∈ Z1(Q) and f ∈ C∞(Q)

such that L1 − L2 = α̂+ τ∗f (up to a constant).

From Proposition 12 we know that EL1 = EL2 , (up to a constant), or equivalently, EL1 −
EL2 = 0 (up to a constant). Therefore,

0 = EL1 −EL2 = ∆(L1) − L1 − ∆(L2) + L2 = ∆(L1 − L2) − (L1 − L2)

= ∆(α̂+ τ∗f) − (L1 − L2) = α̂− (L1 − L2) (up to a constant).

Conversely, let us suppose L1 = L2 + α̂ (up to a constant). First, a simple computation gives

ωAL2
− ωAL1

= d(θAL1
− θAL2

) = d(d(L1 − L2) ◦ S
A) = d(dα̂ ◦ SA) = d(τ∗αA)

= τ∗(dαA) = 0 .
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Thus ωAL1
= ωAL2

. Furthermore,

EL1 = ∆(L1) − L1 = ∆(L2 + α̂) − (L2 + α̂) = EL2 + α̂− α̂ = EL2 (up to a constant),

since ∆(α̂) = α̂. As ωAL1
= ωAL2

and EL1 = EL2 (up to a constant), which means that L1 and L2

are gauge equivalents (see Proposition 12).

3.5 Lagrangian gauge symmetries

Bearing in mind the discussion made in the last section, we can define:

Definition 12 Let (T 1
kQ,ω

A
L , EL) be a k-symplectic Lagrangian system.

1. A Lagrangian gauge symmetry is a diffeomorphism Φ: T 1
kQ→ T 1

kQ such that L and Φ∗L

are gauge-equivalent Lagrangians; that is, Φ∗L = L+ α̂ (up to a constant), α̂ ∈ C∞(T 1
kQ)

being the function defined in Proposition 14.

In the particular case where Φ∗L = L (up to a constant), then Φ is said to be a Lagrangian
strict symmetry.

A Lagrangian gauge symmetry is said to be natural if there exists a diffeomorphism ϕ : Q→
Q such that Φ = (T 1

k )ϕ.

2. An infinitesimal Lagrangian gauge symmetry is a vector field Y ∈ X(TQ) whose local flows
are Lagrangian gauge symmetries.

In the particular case where L(Y )L = 0, then Y is said to be an infinitesimal Lagrangian
strict symmetry.

An infinitesimal Lagrangian gauge symmetry is said to be natural if there exists a vector
field Z ∈ X(Q) such that Y = ZC ,

Remark: A Lagrangian gauge symmetry Φ: T 1
kQ → T 1

kQ of a k-symplectic La-
grangian system is not necessarily a Cartan symmetry, since in general Φ∗ωAL 6= ωAΦ∗L,
for A = 1, . . . , k, and Φ∗EL 6= EΦ∗L, as can be easily proved with a simple calculation
in coordinates.

In general we have:

Lemma 4 Let ϕ : Q→ Q be a diffeomorphism and let Φ = T 1
k (ϕ) the canonical prolongation of

ϕ. Then:
(i) Φ∗θAL = θAΦ∗L, (ii) Φ∗ωAL = ωAΦ∗L, (iii) Φ∗EL = EΦ∗L .

(Proof ) This is a direct consequence of Lemma 2 and the definition of θAL . In fact, for Φ = T 1
k (ϕ)

we obtain

Φ∗θAL = Φ∗(dL ◦ SA) = d(Φ∗L) ◦ SA) = θAΦ∗L .

Φ∗ωAL = Φ∗(−dθAL ) = −dΦ∗θAL = ωAΦ∗L .

Φ∗EL = Φ∗(

k∑

A=1

∆A(L) − L) =

k∑

A=1

∆A(Φ∗L) − Φ∗L = EΦ∗L .

And then we have the following relation between natural Cartan symmetries and natural
gauge symmetries:
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Proposition 16 Let (T 1
kQ,ω

A
L , EL) be a k-symplectic Lagrangian system. Then, Φ: T 1

kQ →
T 1
kQ is a natural Cartan symmetry if, and only if, it is a natural Lagrangian gauge symmetry.

(Proof ) If Φ = T 1
k (ϕ) for some diffeomorphism ϕ : Q→ Q, by lemma (4) we have that

Φ∗ωAL = ωAΦ∗L , Φ∗EL = EΦ∗L

therefore
Φ∗ωAL = ωAL
Φ∗EL = EL

}
⇐⇒

{
(ωΦ∗L)A = ωAL
EΦ∗L = EL

that is, Φ is a natural Cartan Lagrangian symmetry if, and only if, L and Φ∗L are gauge
equivalent Lagrangians and thus Φ is a natural Lagrangian gauge symmetry.

This result also holds for infinitesimal Lagrangian symmetries, taking the corresponding local
flows.

Finally, we can state a particular version of Noether’s theorem for natural Lagrangian strict
symmetries:

Theorem 5 (Lagrangian Noether): If Y ∈ X((T 1
k )Q) is an infinitesimal natural Lagrangian

strict symmetry of a k-symplectic Lagrangian system (T 1
kQ,ω

A
L , EL), with Y = ZC , for some

Z ∈ X(T 1
kQ), then the functions fA = ZVA(L), for 1 ≤ A ≤ k, define a conservation law

f = (f1, . . . , fk).

(Proof ) This is a straightforward consequence of the above proposition and corollary 1 since in
this case,

dζA = L(Y )θAL = L(ZC)θAL = 0 , 1 ≤ A ≤ k .

In the case k = 1, the above result can be found in [2, 34].

4 Conclusions and outlook

We analyze several kinds of symmetries that can be defined for Hamiltonian and Lagrangian
first-order classical field theories, in their k-symplectic formulation.

First, we define the concept of symmetry (and infinitesimal symmetry). Second, according
to Olver, we define conservation laws and investigate the problem of associating conservation
laws with symmetries. In this way we have considered Cartan symmetries (which preserve
the k-symplectic structures and physics; i.e., the Hamiltonian or the energy function) and, in
particular, those called “natural”, which are canonical liftings of diffeomorphisms or vector fields.
We prove that Cartan symmetries are symmetries and that there is a natural way of associating
them with conservation laws by means of Noether’s theorem. We state and prove this theorem
in different situations for the Hamiltonian and Lagrangian cases.

Finally, we study and characterize gauge equivalent Lagrangians, leading to the introduction
of Lagrangian gauge symmetries (which transform a Lagrangian into another equivalent one),
proving that natural Lagrangian gauge symmetries are the same as natural Cartan symmetries,
and stating the corresponding Noether’s theorem.

Further research will be devoted to extending all these concepts and results to the k-
cosymplectic formalism of first-order classical field theories.
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