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1. INTRODUCTION

Optical solitons in quadratic nonlinear media® are a sub-
ject of intense investigation. The interest in the issue is
driven by the rich dynamic features that are continually
uncovered and by their potential applications to the ma-
nipulation of light signals in different situations.?™!3
Those applications include single-pass geometries and op-
tical cavities containing quadratic nonlinear crystals, in
settings for spatial, temporal, and spatiotemporal trap-
ping of light beams and pulses. Here we study the spa-
tial case. Solitons (or, more properly, solitary waves) ex-
ist in a wide variety of material and input light conditions
in both bulk crystals and planar waveguides, and they
were observed experimentally by Torruellas et al.'* and
by Schiek and co-workers.™®

By their very nature, solitons in quadratic nonlinear
media are made from the mutual trapping of several
waves. Here we consider the formation of spatial soli-
tons under conditions for second-harmonic generation;
therefore the solitons exist because of the mutual trap-
ping of the fundamental and the second-harmonic beams.
In general, except under experimentally suitable condi-
tions, in the low-power regime the beams propagate along
different directions because of the Poynting vector walk-
off that is present in anisotropic media. This fact has im-
portant experimental implications when it comes to the
choice of suitable materials, input-light wavelength, and
general conditions suitable to the formation of solitons.

However, when a soliton is formed the interacting
waves are mutually trapped, and in the presence of Poyn-
ting vector walk-off the beams drag each other and propa-
gate stuck, or locked together. Such beam locking opens
the possibility to specific applications of the solitons!®~1°
and also poses new challenges to the understanding of
soliton formation. This is so because the walking soli-
tons that exist in the presence of walk-off exhibit new fea-
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tures in comparison with the nonwalking solitons. In-
vestigation of these new features is important for their
potential applications but also from a fundamental view-
point because the approach and outcome have implica-
tions for the existence of walking solitons in other analo-
gous but different physical settings.

Our goal in this paper is to report the results of our
comprehensive investigations of the properties of the ex-
isting families of spatial walking solitons. Families of
walking solitons exist in (1 + 1) geometries and (2
+ 1) geometries.?22 Here we restrict ourselves to the
one-dimensional case, but most general features hold also
in the bulk case. We study in detail the amplitude and
wave-front shapes of the solitons, analyze the stability on
propagation of the members of the families of stationary
solutions, and discuss the salient points of their excitation
with different input beams.

The remainder of this paper is organized as follows. In
Section 2 we present the governing evolution equations
and discuss briefly the meaning of the various parameters
involved. In Section 3 we obtain the equations that give
the families of walking solitons in the frame of reference
moving with the soliton peak, and we discuss the general
properties of the solitons that can be obtained from the
conserved quantities of the wave evolution. Sections 4
and 5 are devoted to the detailed properties of the fami-
lies of solitons, including their cutoff conditions, similar-
ity rules, and shape features, with special attention to
their dependence on the soliton energy and velocity. In
Section 6 we study the stability on propagation of the soli-
tons, and in Section 7 we discuss their excitation. Fi-
nally, in Section 8 we summarize our main conclusions.

2. GOVERNING EQUATIONS

We consider cw light beams traveling in a medium with a
large quadratic nonlinearity under conditions of second-
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harmonic generation. Here we focus on spatial solitons
in (1 + 1) geometries, i.e., solitons in planar waveguides
and in type I phase-matching settings, but the approach
reported also holds for (2 + 1) walking solitons in bulk
crystals and also for type II phase matching. Naturally,
the families of walking solitons are richer in the case of
type II geometries because of the additional degree of
freedom that this phase-matching setting offers, but type
I geometries are simpler and capture the specific features
of the walking solitons. Hence we focus here on them.
In the slowly varying envelope approximation the beam
evolution is described by the reduced normalized equa-
tions (see, e.g., Ref. 6)
. daq r &Zal . .
i TE 2 5% + a{*a, exp(—iB¢) = 0,
_dag o (92a2 _ day ) ]
i pr: 3 a2 16 P + a;” exp(iBé) = 0, (1)
where a¢; and a, are the normalized amplitudes of the
fundamental and the second-harmonic waves, respec-

tively, »r = —1 for spatial solitons, and a = —k/k,.
Here k5 are the linear wave numbers at both frequen-
cies. Inall cases « = —0.5,sowe set « = —0.5. The pa-

rameter B is given by B = kin2Ak, where Ak = 2k,
— ky is the wave-vector mismatch and 7 is a character-
istic beam width. In Egs. (1) the transverse coordinates
are given in units of 7, and the scaled propagation coor-
dinate is & = z/k;n2. Therefore, for a beam width of
some 7 ~ 15 um, which yields a diffraction length [;;
= ki7?/2 ~ 1 mm, ¢in the range 0—20 corresponds to a
few centimeters.

The parameter 6 is central to our analysis because it
accounts for the Poynting vector walk-off that occurs in
birefringent media when propagation is not along the
crystal optical axes. Nonlinear quadratic optical materi-
als are noncentrosymmetric, anisotropic crystals; there-
fore walk-off is always present in the experiments when
birefringence-tuning phase-matching techniques are
used. Most crystals with large y® nonlinear coefficients
are also highly birefringent, as is the case for many or-
ganics, and for that case large values of & will result for
angle-tuned configurations. Under such conditions, Eqs.
(1) may not be valid. Walk-off is absent in noncritical
and quasi-phase-matching geometries?® because in those
cases propagation does occur along the crystalline optical
axes.

Equations (1) also hold for pulsed light. Then diffrac-
tion is replaced by dispersion, Poynting vector walk-off is
replaced by temporal walk-off owing to group-velocity
mismatch, and r and a are given by the group-velocity
dispersions at the fundamental and at the second-
harmonic frequencies, respectively.

3. WALKING SOLITONS

We study stationary solutions of Egs. (1) describing mu-
tually trapped beams walking off the ¢ = 0 axis. Those
solutions have the form

a,(§ s) = Uynlexplid,(§ 7],

where U and ¢ are real functions, 7 = s — v¢ is the

v=12, (2
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transverse coordinate moving with the soliton peak, and
¢, (& s) = k,&+ f,(n). Herev is the soliton velocity, «,
are the nonlinear wave-number shifts produced by the
wave interaction, and f,(#) stand for the transverse wave
fronts of the solitons. To avoid all energy exchange be-
tween the waves one needs «y = 2x; + B. Also, the
wave fronts have to verify that fo(7n) = 2 (%) every-
where, or alternatively U ,(#7) and f,(7) ought to be sym-
metric and antisymmetric functions, respectively, of the
transverse coordinate 7. It turns out that only the
traveling-wave soliton solutions that occur in the absence
of walk-off fulfill the former condition, whereas with this
exception all the walking solitons fulfill the latter. This
has interesting consequences, which are discussed below.

Substitution of Eq. (2) into Egs. (1) yields the system of
coupled nonlinear ordinary differential equations fulfilled
by the functions U, (%) and f,(7). One has

YoU, — (k1 — vfy + Y2 f[12)U; + U Uy cos(fy — 2 1)
=0, (3
Yo fUy + (Fy — v)U; + U Uy sin(fy — 2F1) = 0, (4)
YsaUy + [2k1 + B — (v + &fy — Y2af,2 U,
— Uy® cos(fy — 2f1) = 0, (5)
YsafsUy + (afy + v + Uy + U2 sin(fy — 2f1)
=0, (6

where the overdots indicate the derivative with respect to
7. Recall that «, 8, and & are given by linear wave pa-
rameters, whereas the nonlinear wave-number shift «;
and the velocity v parameterize the families of walking
solitons.

The system of Eqgs. (3)—(6) has a trivial traveling-wave
solution with the form of Eq. (2) with the phase front
f.(n) = o,n. However, substitution into the equations
gives w; = v, wg = — (6 + v)/a, and v = —6/(2a + 1).
Because in all experimental situations one has «
= —0.5, this expression gives a value of v orders of mag-
nitude larger than the actual soliton velocity. Therefore
the corresponding solutions do not have physical rel-
evance unless @« = —0.5 and there is no walk-off so that
6= 0. In general, the physically relevant families of
walking solitons do not have the above simple wave-front
tilts, but rather they have nontrivial, curved wave fronts.
Their analytical form is not known at present, so the
families of walking solitons ought to be calculated nu-
merically.

Important information about the families of walking
solitons can be obtained from the conserved quantities of
the wave evolution, as follows.2* Governing equations (1)
constitute an infinite-dimensional Hamiltonian dynami-
cal system, with the conserved Hamiltonian

T2

s |
S AL
+L§ AQT_A2

2 2

— BlA,?

o

A,

Js

L A,
ds

+
r 2

+ (A*2A, + A 2A,%) |ds, (7
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where we have defined A; = a; and A, = a4 exp(—iB9).
We shall also make use of two additional conserved quan-
tities: the total intensity or energy flow given by the
Manley—Rowe relation

I=1,+1,= f [|A1|2 + |A2|2]ds (8)
and the total transverse beam momentum
Jod s gy =~ [lofay 2 4 AT
“hith T U s A g
o lagy B2, ‘9A2*) d 9)
2 9s 2 s 8-

One finds that the stationary walking solitons with the
form given by Eq. (2) occur at the extrema of the Hamil-
tonian for a given energy flow and a given transverse mo-
mentum; i.e., they occur at

5F(H + Kll - vJ)Sta = O, (10)

where 5y stands for the Fréchet or variational derivative.
This is an important result that has important implica-
tions for soliton stability, as we discuss in Section 6. For
now, using either the Derrick—Hobart theorem or directly
manipulating the governing equations, we use this result
to find that actually the stationary walking soliton solu-
tions are realized at the value of the Hamiltonian

1

5 8dy. 11)
When 6 = 0 the last two terms on the right-hand side of
Eq. (11) vanish for zero-velocity solutions. However, in
the presence of walk-off only the third term vanishes for
zero-velocity solitons, whereas the last term contributes
to the Hamiltonian. This is an indication that the trans-
verse momentum of the walking solitons is not simply
proportional to their velocity, unlike for walking solitons
of Galilean invariant evolution equations. Substitution
of Eq. (2) into Eq. (9) yields

H = 3 1 11 4J
——gkl +gl32+§l) —

J =1z f (2U,%f, + Uy2fy)ds. (12)

In general f1,2 are not simply proportional to the soliton
velocity; therefore neither is J. We can elucidate the ac-
tual relation between the velocity and the momentum for
the stationary walking solitons by examining the evolu-
tion of the energy centroid of the bound state constituted
by the fundamental and the second-harmonic beams
propagating stuck together. We find that!®

J=1Iv+ 8l, + (2a + 1)J,. (13)

In contrast to the above results, the Galilean-boosted
traveling-wave solutions that occur when 6§ = 0 with «
= —0.5 have a flat wave front and a wave-front tilt given
by the soliton velocity. In such conditions we find the
Galilean particlelike results

J =1Iv, (14)
H=H, ,+ Y2 Iv? (15)

where H,_, is the Hamiltonian of the zero-velocity soli-
tons and the term Iv2/2 represents the kinetic part of the
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Hamiltonian of the solitons walking with velocity v.
However, Egs. (11) and (13) show that such is not the case
for the solitons that we are investigating because of their
wave-front curvatures.

Eventually, we notice that Eq. (10) provides the start-
ing point of a variational method to find approximate ana-
Iytical expressions of the families of walking solitons.
The procedure requires setting judicious trial functions
for the soliton amplitude and wave front, calculating the
corresponding I, J, and H, and then optimizing the pa-
rameters of the trial function to minimize H. However,
our goal here is to examine the exact properties of the
families of solitons; therefore we consider the exact nu-
merical solution of the governing equations.

4. CUTOFF AND SIMILARITY RULES

Stationary, walking soliton solutions of Eqs. (3)—(6) exist
for nonlinear wave-number shifts «; and transverse ve-
locities v such that the soliton is not in resonance with
linear dispersive waves. Otherwise, the coupling be-
tween the waves would lead to energy leakage emitted
from the soliton.?’ The resonance condition can be calcu-
lated by matching the behavior at » — =+ o of the longi-
tudinal components of the nonlinear wave numbers of the
two waves forming the soliton, i.e., g, n = «, — vf,,( 7),
with the corresponding wave numbers of linear waves
Q. 1in- The latter are given by the linearized version of
Egs. (3)-(6), but such is not necessarily so for g, .

To elucidate the behavior of g, ,; at the soliton tails, we
proceed as follows. For the fundamental beam, setting
U, ~ exp( — I'i») and linearizing Eqgs. (3) and (4) give
I'f =2k, — v? and

fi(n — =) = v. (16)

In general, the tails of the second-harmonic beam are
more complicated because the nonlinear terms in Eqgs. (5)
and (6) may decay at » — = o« with the same rate as the
linear terms. When such is not the case, one has U,
~ exp( — I'yy), with I'y < 2I';. Then, Egs. (5) and (6)
yield

2 - 22 (v + 5)2 17
e A P 1D
. 1
faln — ») = ——(6+ v). (18)

However, for the condition I'y < 2T"; to be fulfilled by Eq.
(17) it is necessary that

2a + 1)(2 %)+ v + +—(v+5)2>0
2 (2a+ D(2xk —v7) + 07+ B B .
(19)
In the case a« = —0.5 that we always consider in the nu-
merics here, inequality (19) leads to
8(2v + &) > B. (20)

Then resonance of the second-harmonic beam with linear
waves occurs below:

k2 = 2[ (6 + v)? — BI. (21)
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In general, including the case in which I'y = 2T"; and

those in which the second-harmonic tails are not single

exponentials, cutoff of the fundamental wave occurs at
K(llc) = 1Ysp2, (22)

ut

Therefore, for given values of the various involved param-
eters, stationary walking solitons exist for nonlinear
wave-number shifts above these cutoff values. Outside
the region in parameter space where condition (19) is
verified, the tails of the wave front of the second-harmonic
beam of the walking solitons are more complicated. In
particular, in general f5 can exhibit oscillating tails that
are due to the last term of Eqgs. (5) and (6).

We can extract useful information about the families of
walking solitons by examining the scaling properties of
Eqgs. (3)—(6). We readily find that such equations are in-
variant under the transformations

K1 — MK1, v — \/;U, B_)MB7 60— \/;55
UlH,LLU]_, U24)luU2>
s — s/\u, I— u, (23)

with u # 0 being an arbitrary parameter. Thus we can
transform the soliton solutions into each other by follow-
ing such rules.

This self-similarity has important consequences. For
example, it shows that for given values of the soliton ve-
locity v and the walk-off parameter & the properties of the
walking solitons at either side of phase matching are no
longer similar to each other at all values of the wave-
vector mismatch B, as they are for the nonwalking soli-
tons that exist when 6 = 0. Also, when § = 0, all the
solitons are self-similar at exact phase-matching, but this
is no longer so for the families of walking solitons. Physi-
cally, such differences are a consequence of the fact that
the wave-front curvatures induced by the Poynting vector
walk-off modify the effective wave-vector mismatch expe-
rienced by the different portions of the fundamental and
the second-harmonic beams.

Similarly, in the absence of Poynting vector walk-off, as
far as the soliton families are concerned, an increase in
the wave-vector mismatch B can be partially compensated
for at the expense of a corresponding increase of the total
wave intensity I, as the solitons in both cases differ only

(b)

Wave Number

<

60

0
0 Energy Flow 60 ° Energy Flow

Fig. 1. Nonlinear wave-number shift versus energy flow for the
families of walking solitons with different soliton velocities. (a)
Solitons at positive wave-vector mismatch (8 = 3), (b) solitons
at negative wave-vector mismatch (8 = —3). In all cases §
= 1. Dashed curves, unstable solutions; dotted curves, non-
walking solitons that exist in the absence of Poynting vector
walk-off (6 = 0).
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Fig. 2. Amplitude and local wave-front tilt, defined as the trans-
verse derivative of the wave front, of solitons walking with dif-
ferent velocities at negative wave-vector mismatch, as a function
of the transverse coordinate. Velocities: (a) v = —1, (b) v
= —05@v=0,(dv=05 Inallcases = —-3and §=1
and the nonlinear wave number shift is x; = 3.

in amplitude and width. The scaling rules [transforma-
tions (23)] show that, for a given walk-off parameter &,
such self-similarity no longer holds for the families of
walking solitons. We shall have the occasion to use simi-
larity rules (23) for the above purpose and for others in
Section 5.

5. FAMILIES OF SOLITONS

We obtained the families of stationary walking solitons by
solving Egs. (3)—(6) numerically, using a relaxation
method with a band-diagonal matrix algorithm to deal
with the two-point boundary value problem for the four
unknown functions U,(%), f,(n). Families of walking



1480 J. Opt. Soc. Am. B/Vol. 15, No. 5/May 1998

8 0.5
26)
[:h]
2 = /\ \<
= : .
<l N, ] b S U
0 L -1 ,
-8 Transverse Coordinate 8 -8 Transverse Coordinate 8
(a)
7 2.5
20
Y ® T
e g
= = :
= 20 = ‘”\ 1
E ¥ i ‘.‘
< L
0 i

> 0
-8 Transverse Coordinate 8 -8 Transverse Coordinate 8

(b)
Fig. 3. Same as in Figs. 2(b) and 2(d) but for the walking soli-

tons existing at positive wave-vector mismatch (8 = 3). Veloci-
ties: (a)v = —0.5, (b) v = 0.5. In both cases 6 = 1.
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Fig. 4. Same as in Figs. 2(b) and 2(d) but for two walking soli-
tons carrying the same energy flow. Conditions: B = -3, 1
= 30. Velocities: (a) v = —0.5, (b) v = 0.5. In both cases &
= 1.

solitons were found to exist with different values of the
linear wave and material parameters «, B8, and & at
ranges of the wave intensities and soliton velocities.

For given values of a, B, and § the families of walking
solitons depend on two independent parameters, namely,
k1 and v, and a convenient way to represent them is with
an energy-flow nonlinear wave-number diagram, i.e.,
x1(I), with different values of v. Figure 1 shows such
diagram at two different values of B, corresponding to
both signs of the wave-vector mismatch, at a representa-
tive value of the walk-off parameter. We have also in-
cluded the curves corresponding to the nonwalking soli-
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tons that exist in the absence of walk-off. Walking
solitons also exist at exact phase matching, and the cor-
responding figure is given in Ref. 20.

The shape and related properties of the walking soli-
tons depend strongly on the various parameters involved
and in particular on their velocity. In Figs. 2 and 3 we
have plotted the amplitude and the local wave-front tilt,
defined as f,,( n), for several representative cases at &
= 1. Figure 2 corresponds to a negative wave-vector
mismatch and Fig. 3 to a positive wave-vector mismatch.
In both cases the nonlinear wave-number shift «; is kept
constant, and the plots correspond to different soliton ve-
locities. The differences in shape between solitons walk-
ing with different velocities are clearly visible. To inter-
pret the results of these plots it is important to recall that
for given values of § and B, and a fixed value of «;, soli-
tons walking with different velocities also carry a differ-
ent total energy flow I. This fact can be observed directly
from Fig. 1. The quantity that can be directly controlled
experimentally is not the soliton parameter «; but the en-
ergy flow I. Figure 4 shows the shapes of the walking
solitons in the conditions of Figs. 2(b) and 2(d) but now for
two walking solitons carrying the same energy flow.

The different behavior of the wave-front tilts in the
soliton tails depending on whether condition (20) is veri-
fied is also visible in Figs. 2-4. When 6§ =1 and B

—_

Power Fraction

Wave Number 4

Fig. 5. Fraction of power carried by the second-harmonic beam
(i.e., I /I) as a function of the nonlinear wave-number shift «; at
several wave-vector mismatches and soliton velocities. Solid
curves, walking solitons with v = 0; dashed curves, solitons
walking with the velocity v = —0.5. The short portions of the
curves near I,/I = 1 plotted as dotted curves stand for the cor-
responding unstable solutions. In all cases § = 1.

(a) (b)

1 1
£ p—
g 50
[ /
T

| -

z B=3 p=3
=

0 . 0

-1 Velocity ol Velocity ’

Fig. 6. Fraction of power carried by the second-harmonic beam
as a function of the soliton velocity at several wave-vector mis-
matches. Conditions: in (a) the nonlinear wave-number shift
is fixed to «; = 3; in (b) the total energy flow is fixed to I = 40.
The short portion of the curve corresponding to 8 = —3 near
I,/I = 1 plotted as a dotted curve stands for unstable solutions.
In all cases 6 = 1.
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= -3, expression (20) leads to v > —2. All cases shown
in Fig. 2 verify this condition; hence f, decays monotoni-
cally and tends to 2(5 + v). In opposition, at 8 = 3 con-
dition (20) demands v > 1; thus the walking solitons
shown in Fig. 3 fall outside this range. The resulting
complicated, oscillatory behavior of the local wave-front
tilt of the second-harmonic beam can be clearly observed
in Fig. 3.

The amplitudes and wave-front tilts of the two waves
that form the walking solitons are related by a first inte-
gral of Egs. (4) and (6). That is,

[F1(n) — vIU(n) — [afa(n) + v + 81U3(7) = 0.
(24)

The two terms of Eq. (24) do not vanish separately, as
they do for traveling-wave solutions, but rather they can-
cel each other. This result has interesting consequences.
For example, writing general fields as a,, = U, exp(i¢,),
and calculating the local energy flux at each frequency, in
the frame of reference moving with transverse velocity v,
one readily finds

R

g€ anl\ dn

— 2UU, sin(¢y — 2¢; — BE),  (25)
U3 9| iy )
Tg—%[(aﬁ-ﬁ-v + 6 Uz}

+ 2U3U, sin(¢y — 2¢; — BE).  (26)

In the case of stationary solitons one has U, = U,(7), so
that the local energy fluxes vanish. Thus so do the right-
hand sides of both Egs. (25) and (26). The first terms on
the right-hand sides of these expressions can be viewed as
the local energy flux that is due to the transverse move-
ment of the beams, whereas the second terms stand for
nonlinear energy transfer between the fundamental and
the second-harmonic waves. The point is that the two
contributions to the local energy flux do not vanish sepa-
rately, as they do for traveling-wave solutions with a flat
wave front. Rather, they cancel each other. This can be
interpreted to mean that, in contrast to nonwalking soli-
tons or to traveling-wave solutions, in the case of general
walking solitons the energy is continuously transferred
between the interacting waves that form the soliton and
at the same time is redistributed inside the beams be-
cause of the wave-front curvature so that the net energy
flux vanishes.

When 6 = 0 and @ = —0.5 both terms in Eq. (24) van-
ish separately, and then a first integral of Egs. (3) and (5)
gives the relation between the peak amplitudes of the two
waves that form the solitons.?® That is,

2K1+B

2 _
Ui0) = 5,000 = a1

U%(0). 27

The features of the shapes and wave fronts of the soli-
tons have crucial implications for their actual experimen-
tal excitation. In particular, Fig. 1 shows that even in
the presence of walk-off there are zero-velocity soliton so-
lutions. However, the excitation of such solitons requires
an input beam that exactly matches the stationary solu-
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tion, including its precise wave-front curvature. Any-
way, solitons walking with quite a small velocity can be
always excited with appropriate tilted inputs. This is so
provided that the Poynting vector walk-off is reasonably
small, and it is of course at the expense of losing a frac-
tion of the input light in the form of radiation.

Similarly, Fig. 1(b) shows that at negative wave-vector
mismatch walking solitons can exist at energy flows lower
than the minimum threshold energy required for the ex-
istence of nonwalking solitons in the absence of walk-off.
This situation is also due to the wave-front curvatures of
the walking solitons. The actual excitation of the low-
energy solitons with nonspatially chirped beams produces
a significant amount of radiation. We return to these
points in Section 7.

To stress the important role played by the velocity in
the family of walking solitons, we show in Figs. 5 and 6
how the total energy of the walking solitons is shared be-
tween the fundamental and the second-harmonic waves
as a function of the nonlinear wave number shift and the
soliton velocity. Notice that in Fig. 6(a) the parameter «;
is fixed, whereas Fig. 6(b) corresponds to a fixed total en-
ergy flow. Figure 7 shows the widths (full width at half-
maximum) of the two beams that form the soliton as a
function of the soliton velocity. In Fig. 7(a) the param-
eter «; is fixed, whereas Fig. 7(b) shows the widths of the
beams that form the different walking soliton for a fixed
energy flow I. The dotted curves in Figs. 5—7 stand for
the unstable solutions that exist in the cases that we ex-
amine. Because unstable solutions occur near cutoff for
the existence of a soliton, they have correspondingly large
beam widths. Notice also that as one approaches the cut-
off almost all the energy flow of the soliton is carried ei-
ther by the fundamental beam or by the second harmonic.

To end this section, Fig. 8 shows the dependence of the
threshold energy for the existence of solitons walking
with the specific velocities v = —6/2 and v = —6/4 as a
function of the walk-off parameter 6 for various values of
the wave vector mismatch 8. Consistent with the scaling
rules [transformations (23)], at exact phase matching the
threshold energy for the existence of solitons with the ve-
locity v = —&/4 increases as & to the power of 3. Outside
phase matching, such dependence has to be calculated
numerically. At 8 = 0 there is no cutoff for the existence
of solitons walking with the velocity v = — /2, consistent
with the curves of Fig. 1. Similarly, at 8 = 3 there is no
threshold energy for the existence of solitons in the range
of walk-off parameters and soliton velocities displayed in
the plot of Fig. 8.

6. STABILITY

The stability of the families of walking solitons can be elu-
cidated in various ways. A generic stability criterion for
two-parameter families of solitons was reported by
Buryak et al.,'' using a linear stability analysis, that
therefore formally holds for the families of walking soli-
tons. Etrich and co-workers?? specifically addressed the
stability criterion of walking solitons by using a similar
approach and examined its application to the case of tem-
poral solitons. They found the condition of marginal lin-
ear stability
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Fig. 7. Widths (FWHM) of the fundamental and the second-
harmonic beams of representative walking solitons that exist at
several wave-vector mismatches as a function of the soliton ve-

locity. In (a) the nonlinear wave-number shift is fixed to «;
= 3; in (b) the total energy flow is fixed to I = 40. In all cases
5= 1.
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T oo (28)

Here we outline a geometrical interpretation of the stabil-
ity criterion, and show in detail its implications for the
families of spatial walking solitons. The geometrical in-
terpretation of the stability criterion gives direct insight
into the global stability of the solitons and also stresses
the universality of the criterion for similar systems.

Recall that we refer to the stability of the solitons when
they are propagated in the system with the same number
of transverse dimensions where they have been found.
In other words, modulational instabilities against higher-
dimensional perturbations are not considered. Other-
wise, solitons in quadratic nonlinear media are known to
be modulationally unstable in both (1 + 1) and (2 + 1)
geometries if the corresponding perturbations are allowed
to grow.27’29

Our starting point is variational expression (10). Be-
cause the families of stationary walking solitons realize
the extrema of H for given I and J, one concludes that
solutions that realize the global minimum of H are stable.
Solutions that realize a local minimum can be stable
against small enough perturbations that keep the per-
turbed solution inside the local well of H. These solu-
tions can be called metastable. Solutions that realize a
local maximum of H are always unstable. Therefore, to
elucidate the stability of the families of walking solitons,
one might examine the surface H = H(I,J) and identify
its lower and upper sheets. Solutions belonging to the
lower sheet will be stable under propagation. Solutions
belonging to upper sheets will be metastable or unstable,
a condition that can be elucidated, e.g., by numerical ex-
periments. In that case the curve of marginal stability,
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which separates stable from possibly unstable solutions,
is the curve that separates the lower and upper sheets of
the H = H(I,J) surfaces.

In the case of smooth H = H(I,J) surfaces determina-
tion of the marginal curve is elementary when we notice
that over the curve the vector normal to the surface is
contained on the horizontal plane. The vector normal to
the two-parametric surface r = I(xq,0)x + J(kq,0)y
+ H(kq,v)z is given by the expression

J(H,I)
(9(K1,U) Y

al,d)

_AJH) |
- Arg,0)

(9(K1,U) *

n (29)
where the symbol 4(F,G)/d(a,b) stands for a Jacobian
matrix. The vector n is contained on the horizontal
plane when the last term on the right-hand side of Eq.
(29) vanishes, yielding Eq. (28). There is no need to as-
sume that the surface H = H(I,J) is smooth everywhere.
It may exhibit sharp foldings at the marginal curve where
lower and upper sheets join each other, as happens for
nonwalking solitons.?® In that case condition (28) can be
viewed as indicating a change of sign of the vertical com-
ponent of n, thus signalling the change of sheet. The
surface H = H(Il,JJ) may still exhibit sheet crossings
where a change of sheet is not necessarily accompanied by
a change of sign of the vertical component of n. Those
cases ought to be treated separately, and global stability
of the corresponding portions of the upper sheets ought to
be carefully checked.

Criterion (28) is more involved than the so-called
Vakhitov—Kolokolov criterion,?! given by

ol

Fro 0, (30)
that holds for nonwalking solitons.3%3? Geometrically, we
derive this criterion by noticing that the nonwalking soli-
tons that exist in the absence of walk-off realize the mini-
mum of H for a given I, namely, 6p[H + «1I]g, = O.
Therefore in this case the surface H = H(I,J) is reduced
to the curve H = H(I), and the condition of marginal sta-
bility is given by the point that separates the lower from
the upper branches of the parametrically defined curve
{I = I(ky), H= H(xy)}. Examination of the corre-
sponding curves, calculated in Ref. 30 and shown here in

50

Threshold

0
0 Walk-off 2

Fig. 8. Threshold (minimum) energy flow for the existence of
solitons walking with a given velocity as a function of the walk-
off parameter & for various values of the wave-vector mismatch.
Solid curves, threshold energy for solitons walking with a veloc-
ity v = —6/4; dashed curve, threshold energy for solitons walk-
ing with a velocity v = —6/2. The plot contains only one curve
for B = 0 and none for B8 = 3, because in the missing cases there
is no threshold energy for the existence of solitons in the range of
walk-off parameters and soliton velocities displayed.
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Fig. 9. Energy Hamiltonian curves and energy wave-number
curves to determine geometrically the stability of the nonwalking
solitons that exist in the absence of Poynting vector walk-off (&
= 0). Solid curves, stable solitons; dashed curves, unstable so-
lutions. (From Ref. 30).
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Fig. 10. Hamiltonian versus energy flow for some of the families
of walking solitons. Notice that the curves correspond to fixed
soliton velocities; therefore the momentum is not constant along
the curves. For the sake of clarity, only the curves for a few ve-
locities are shown. Solid curves, stable walking solitons; dashed
curves, unstable solutions; dotted curves, nonwalking solitons
that exist in the absence of Poynting vector walk-off (§ = 0). A
zoom of the curve corresponding to 8 = —3, v = —1 near the
point of marginal stability is shown in Fig. 12(b) below.

Fig. 9, shows that lower and upper branches join each
other at a sharp cusp and leads immediately to condition
(30). The rigorous mathematical proof is given by Whit-
ney’s theorem about two-dimensional maps applied to
this case.?

To identify the stable and the unstable walking soli-
tons, one has to examine the geometrical features of the
H = H(I,J) surfaces, in particular evaluating the Jaco-
bian Eq. (28), for the families of solutions. However, no-
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tice that only the families that exhibit multivalued sur-
faces ought to be studied in detail. Otherwise the
existing solutions are always found to correspond to the
lower sheet of the H = H(I,J) surfaces, and all members
of the family are found to be stable. The whole surfaces
H = H(I,J) are not easily visualized because of their
asymmetry relative to the I and J axes. Figures 10 and
11 show the typical features of the projections in the I-H
and in the I—J planes of the curves of the surfaces corre-
sponding to some of the families of walking solitons that
appear in Fig. 1. As predicted by Eq. (13), Fig. 11 shows
that the zero-velocity solitons carry a nonvanishing mo-
mentum: They need the corresponding wave-front cur-
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Fig. 11. Momentum versus energy flow for the families of walk-
ing solitons. Notice that the Hamiltonian is not constant along
the curves. Solid curves, stable walking solitons; dashed curves,
unstable solutions.
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Fig. 12. Zooms of two representative curves of Figs. 1(b) and
Fig. 10(b) that show the small differences that exist between the
numerical values for the condition of marginal stability given by
the exact criterion [Eq. (28)] and by the Vakhitov—Kolokolov
(V-K) criterion [Eq. (30)]. The curves correspond to 8 = —3,
v=-1
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Fig. 13. Summary of the stability analysis for the family of soli-
tons that exist at B = —3, § = 1, with velocities in the range
[—2,2]. Values of the nonlinear wave-number shift «; are
shown at the cutoff for the soliton existence (dashed line) and at
the condition of marginal stability (solid curve). The dotted
curve that almost coincides with the solid curve corresponds to
the condition of marginal stability given by criterion (30).
Above the solid curve, all solutions are stable. The existing un-
stable solutions occur in the narrow band that appears between
the cutoff and the marginal stability lines.

vature to cancel the linear walk-off otherwise experienced
by the second-harmonic beam.

As indicated by Fig. 11, we found that there are regions
where the surface H = H(I,J) has one single sheet and
regions where it has two sheets. This does not exclude
the possibility that additional upper branches exist in
narrow regions near the cutoff condition for the soliton ex-
istence, similar to those appearing in the case of nonwalk-
ing solitons in type II geometries.!! However, walking
solitons near their cutoff are correspondingly wide, yield-
ing diffraction lengths in excess of 1 m. Therefore a sys-
tematic scan of the H = H(I,JJ) surfaces near the cutoff
edge for the soliton existence falls outside the scope of this
paper.

The outcome of the stability criterion for the families of
walking solitons was already included in Fig. 1. It turns
out that, for all the families of walking solitons consid-
ered, the numerical difference between the conditions of
marginal stability given by Egs. (28) and (30) is extremely
small. A representative case is displayed in Fig. 12.
The plots are zooms of the region of the corresponding
curves near the condition of marginal stability and show
that the numerical values given by Egs. (28) and (30) al-
most coincide. Accordingly, the corresponding difference
has no experimental relevance in the cases studied here.
This fact is also supported by the result of previous com-
prehensive series of numerical simulations for selected
members of the families of walking solitons,?° which
showed that criterion (30) approximately holds for the
families of spatial walking solitons that we are address-
ing. Notice that this conclusion does not necessarily hold
for mathematically possible, large values of the walk-off
parameter § and soliton velocity v. However, one has to
keep in mind that y‘?’ crystals are birefringent, so at such
large values of § or v the reduced, scalar, and paraxial
governing equations (1) might not hold. The situation
may be different in the case of temporal solitons,?? be-
cause of the existing large group-velocity mismatches be-
tween the fundamental and the second-harmonic pulses
and because of the additional degree of freedom offered by
the values of the group-velocity dispersion of the waves at
both frequencies.
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To monitor the evolution of the stable and the unstable
solutions we performed the corresponding series of nu-
merical experiments by propagating a variety of station-
ary solutions. The numerics always confirmed the above
expectations. The unstable solutions either spread or re-
shaped and excited stable oscillating walking solitons
that converge to the lower sheet of the H = H(I, J) sur-
face.

Figure 13 summarizes the stability analysis for all the
families of solitons that exist at 8§ = —3 with 6 = 1,
walking with velocities in the range [ —2, 2]. Analogous
results are obtained at other values of the wave-vector
mismatch. The plot has to be interpreted as follows:
Soliton solutions exist for nonlinear wave-number shifts
above the cutoff line, which here is given by expression
(21). All the solutions that exist above the solid curve
are stable. The narrow band that appears between the
stability and the cutoff lines corresponds to the unstable
solutions. The condition of marginal stability given by
criterion (30) is shown by a dotted curve, even though one
has to examine the plot carefully to observe it because it
almost coincides with the exact stability threshold.

The main conclusion to be drawn is that most of the
members of the families of spatial walking solitons are
stable on propagation.

The existence and stability conditions of stationary
walking solitons are summarized in Fig. 14. The curves
correspond to wave-vector mismatches 8 = +3 and to the
walk-off § = 1, but analogous results are obtained at
other values of these parameters. The figure emphasizes
that above the energy threshold for soliton formation
there is always a stable solution. When interpreting Fig.
14 from an experimental viewpoint it is worth recalling
that low-energy solitons have a correspondingly large
width; thus for a given beam width there is always an en-
ergy threshold for soliton formation. Also, the threshold
energy shown in the plots corresponds to the families of
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Fig. 14. Threshold energy flow for stationary solitons to exist as
a function of the soliton velocity, at two values of the wave-vector
mismatch. Above the existence curve there is always a stable
walking soliton solution.
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Fig. 15. Typical excitation of a slow and a fast walking soliton.
Amplitudes of the fundamental and the second harmonic beams
at £ = 10 of two selected walking solitons that have been nu-
merically excited with tilted input beams and with different in-
put conditions. Tilts: (a) u = 0, (b) x = —1.5. In both cases
A=3,B=38=-3and = 1.

exact stationary solutions whose features do not coincide
with the input light that is used in practice to excite the
solitons.

7. EXCITATION

The excitation of walking solitons with different input
beams is governed to a large extent by Eq. (13). For our
present purposes it is better to write Eq. (13) as
J I, Jy

UZT—ﬁT—(Za‘Fl)T. (31)
This expression has to be used with caution because it
holds for the families of stationary walking solitons but
not for the input light conditions. The difference is that,
unless the input conditions exactly match the shape of the
walking soliton solutions, the beam dynamics and reshap-
ing toward the formation of a walking soliton always pro-
duce some radiation that takes energy and momentum
away. Therefore in such a case the momentum J of the
soliton that eventually appears is not equal to the input
value. Also, I, and J, are not even conserved quantities
of the beam evolution, so their values do change dynami-
cally during propagation. In particular, the dynamic
evolution of I, depends significantly on the material pa-
rameters, including the value of 8, and on excitation
conditions.’® However, when the radiation produced is
small, as happens with many typical input conditions, Eq.
(31) provides a direct estimation of the velocity of the
walking soliton that eventually gets excited.

The last term on the right-hand-side of Eq. (31) is very
small. The first term of such an equation accounts for
the effect of any tilts or for more-complicated transverse
phase modulations of the input beams.?* Finally, the
second term stands for the mutual dragging of the funda-
mental and the second-harmonic beams. In particular,
that term shows that zero-momentum inputs, i.e., with-
out any wave-front tilt, excite walking solitons with a ve-
locity v ~ —68I,/I. To estimate the soliton velocity one
can use the value of the ratio I,/I corresponding to the
family of stationary walking solitons. This ratio happens
to depend strongly on the linear wave-vector mismatch
and also on the total energy flow.26 By and large, at posi-
tive B the solitons have small I, /I; thus they walk slowly.
At phase matching and at negative B the solitons have
larger I, /I; therefore they walk faster. With high energy
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flows the absolute value of the effective wave-vector mis-
match is smaller than the linear value given by 3,2 re-
gardless of its sign; thus the ratio I,/ and the soliton ve-
locity v behave accordingly. For example, at positive B
higher-energy solitons walk faster than lower-energy soli-
tons.

The formation of walking solitons under a variety of ex-
citation conditions was shown in Refs. 8 and 16 for sev-
eral typical cases; hence there is no need to discuss those
most common situations here. Rather, we show the ex-
citation of walking solitons in a few selected cases that we
have chosen to stress that all the families of walking soli-
tons for different § and v are physically relevant. Natu-
rally, we provide the examples that we consider judicious
values of 6 and v for which the paraxial and scalar ap-
proximations required to derive Egs. (1) hold.

To excite a walking soliton with a large velocity one can
use tilted input beams, with the form a(¢ = 0,s)
= AU(s)exp(ius) and ay = BV(s)exp(i2us), where U
and V are the transverse profiles of the input beams, A
and B are their amplitudes, and u is the wave-front tilt.
To show a representative case we selected 8 = —3 and
8 = 1, and for this case we set U(s) = V(s) = sech?(s).
Figures 15 and 16 show the excited walking solitons for
different input conditions. Figure 15(a) corresponds to
an input with x = 0, and Fig. 15(b) to an input with w
= —1.5. The salient point of the plots is that in Fig.
15(a) the second-harmonic beam is higher than the fun-
damental, as happens for the solitons that exist in the ab-
sence of Poynting vector walk-off at this value of 3,26 but
in the case of a soliton walking with a velocity v ~ —1.9
that appears in Fig. 15(b) the fundamental beam carries
the largest energy. This result is consistent with the
properties of the families of walking solitons as a function
of the velocity as illustrated in Figs. 2, 5, and 6. Physi-
cally, this is so because the wave-front curvatures of the
walking solitons modify the effective wave-vector mis-
match across the beams from the nominal value given by
B.

Some curves shown in Fig. 1 correspond to solitons that
walk against the Poynting vector walk-off. Figure 16(a)
shows one such soliton that that we have excited with A
= 4 and B = 4 and forced to walk against the Poynting
vector walk-off by setting u = 1. Finally, Fig. 16(b)
shows the case of a low-energy soliton walking with a ve-
locity v ~ —1.7 that is formed at 8 = —3 with A = 1, B

6 (a) ) (b)
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'0'5 \203
é
Z ®

. o e
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Fig. 16. Excitation of two rare walking solitons. (a) Soliton
that walks against the Poynting vector walk-off. (b) Walking
soliton that carries an energy much smaller than the minimum
required for formation of a nonwalking soliton. Conditions: (a)
A=4B=4 u=1;(b)A=1 B =1, u = —1. Conditions
and features are as in Fig. 15.
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=1, and u = —1. It is worth recalling that, at g
= -3, nonwalking solitons in the absence of Poynting
vector walk-off do not exist at such low energies, but
walking solitons do.

To end this section and the paper, we note that an
analogous analysis can be used to investigate the proper-
ties of walking solitons of type II phase-matching geom-
etries. The corresponding evolution equations are given
in Appendix A. Because type II geometries involve three
different waves, namely, two fundamental beams with
different polarizations and one second-harmonic beam,
the walking solitons constitute a three-parameter family.
Physically, such parameters are related to the total en-
ergy flow, to the energy difference between two of the in-
volved beams (e.g., the two fundamental beams), and to
the soliton velocity. The extra degree of freedom relative
to type I geometries, namely, the energy difference be-
tween two of the beams, has important implications.!!
For example, it can be used to control the velocity of the
walking solitons. In particular, the analogous Eq. (31)
for type II geometries can be written as

J I, I Js J
v=7—§2T—537—(a2+1)7—(2a3+1)7.
(32)

Changing the polarization of the light that is input at the
fundamental frequency modifies the ratios I,/ and I;/1,;
hence it changes the velocity of the walking soliton that is
excited. Particular cases of this possibility were ob-
served experimentally by Torruellas et al.!® and studied
numerically by Leo and co-workers.'®

8. CONCLUDING REMARKS

To summarize, we have investigated in detail the proper-
ties of the families of spatial walking solitons that exist in
quadratic nonlinear media under conditions for type I
second-harmonic generation in the presence of Poynting
vector walk-off. The families of walking solitons consti-
tute a two-parameter family, and they exist for wide
ranges of physically relevant soliton energies and soliton
velocities. The walking solitons have curved wave fronts,
with nontrivial wave-front curvatures. We studied the
shape and various experimentally relevant features of the
solitons, their stability on propagation and their excita-
tion, for different values of the linear wave-vector mis-
match between the fundamental and the second-
harmonic waves. We showed that most of the solitons
are stable under propagation and that above the thresh-
old energy flow for the existence of solitons there is al-
ways a stable walking soliton. The approach presented
can be applied to other analogous but different physical
settings in which similar multiple-wave walking solitons
exist.

Note added in revision: Since our paper was submit-
ted for publication several important papers about the
topic that we address have been published. In particu-
lar, useful approximate analytical expressions of the
families of walking solitons in type I geometries have
been obtained,? exact families of walking solitons in type
II geometries and their stability have been elucidated,®®
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and potential applications of the walking solitons have
been proposed and studied by Capobianco et al.?” and by
Leo and co-workers.3®

APPENDIX A: TYPE II PHASE-MATCHING
GEOMETRIES

In this paper we focused on type I phase-matching geom-
etries, as they are simpler and capture the basic features
of walking solitons. However type II phase-matching ge-
ometries are richer and are important from the experi-
mental viewpoint. The normalized evolution equations
for the slowly varying field envelopes in type II phase
matching geometries for second-harmonic generation can
be written as

(9(11 aq (?2(11

I — —

+ asay” exp(—iB¢) = 0,

9 2 0s?
(7&2 (2%} (92(12 (7@2
I —— = — —5 — 18y — + asza;* exp(—i =0,
Py 9 72 2 o 3a1” exp(—iB¢)
[9(13 ag 192(13 (9(13
I —— ———5 — 103 — + ajay exp(i =0,
pr: 9 752 5 s 1@z exp(iB€)

(A1)

where a1, ay, and a3 are the normalized envelopes of the
ordinary polarized fundamental beam, the extraordinary
polarized fundamental beam, and the second-harmonic
beam, respectively. In the case of spatial solitons a;
= -1, ag = —1, and a3 = —0.5. We obtain the equa-
tions for type I geometries from Eqs. (Al) by setting a,
—a,=a,, aj=ay, =71, az=a, 8 =0, 8 = 5, and
a3 = ag,. Equations (Al) have several conserved quan-
tities, including the corresponding Hamiltonian. To ob-
tain Eq. (32) we used the energy flow given by the
Manley—Rowe relation

I=1,+1I,+1I3= f (Va|a]® + Y2|ag|? + |as|?)ds

(A2)
and the transverse beam momentum
J J J J 1 . Jda 1 Jda 1*
=dy+dy+ J3 = — — -
1 2 37 44 Loos a1 Js
&aQ ﬁag*
+ lay* — —
@2 s @2 as
" « (7(13 (7&3* d (A3)
as 95 as Js S.

The families of solitons in Type II geometries in the ab-
sence of Poynting vector walk-off were investigated in
Refs. 11 and 39. Those are two-parameter families,
whereas walking solitons constitute a three-parameter
family. Physically such parameters are related to the to-
tal energy flow, the unbalancing energy, and the soliton
velocity. The extra degree of freedom relative to type I
geometries, namely, the unbalancing energy, has impor-
tant implications.
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