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Dynamic Y-branched structures in quadratic nonlinear media
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Abstract

A selfsplitting of the beams entering a waveguide made of a quadratic nonlinear material is observed numerically.
Relative p phase differences between harmonics as positively contributing to linear diffraction are shown to trigger the
effect. Formation of solitons out of this energy so that a Y-branched structure is nonlinearly induced, is shown to be
dependent on input and material parameters. Simple setups should provide the means for experimental observation of the
predicted phenomena. q 2000 Elsevier Science B.V. All rights reserved.
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As self-guided entities, spatial solitons provide a
w xunique means for the control of light by light 1

which is central to all-optical technologies bound to
expand network capacity and to revolutionize other
fields of applications. Therefore, the interest arisen
and the efforts dedicated to investigate their potential
and properties. Light controlled soliton beam steer-
ing and splitting, spiralling, fusing and colliding has
been predicted and in some cases observed, in a

w xvariety of setups and geometries 2 , thus paving the
way to soliton-based all-optical operation. Here we
report numerical evidence of a new soliton-switching
behavior, namely selfsplitting of input beams into
several solitons in slab waveguides built up into
quadratic nonlinear media.

) Fax: q34-93-4017232; e-mail: santos@tsc.upc.es

Since recalling old studies that predicted their
w xexistence 3 , preliminar works demonstrated their

w xscientific relevance 4,5 , and the first experimental
w xresults were obtained 6,7 , quadratic solitons have

been a continuous source of new and interesting
w xphenomena 8 . Considerable efforts have been de-

voted to shed some light into the fascinating nature
of these nonlinear entities, but still they seem to keep
a potential to be explored. In particular, as evidenced
by the numerical simulations here presented, under
certain circumstances, beam break-up may occur in
the quadratic nonlinear crystal giving place to non-
linearly induced Y-branched structures similar to

w xthose due to Kerr-like nonlinearities 9,10 . In the
quadratic case, larger nonlinear material responses
allow to use longer pulse lengths thus avoiding
undesirable effects related to two-photon absorption
or group velocity dispersion, and reducing the com-
plexity of the experimental setup required.
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The phenomenon of beam splitting in quadratic
nonlinear media has already been discussed by Tor-
res and Torner in the context of the NLSE approach
Ž .i.e. large wavevector mismatches and in the pres-
ence of a certain Poynting vector walkoff, which
hence acts as a perturbation to the NLSE causing the
breakup of high power beams into lower order soli-

w xtons 11 . The case that we study here has a different
nature and it is observed numerically in other regimes
of wavevector mismatch values, including negative
ones, and with zero walkoff. The basis is to provide
the system with input conditions that do not fit those
of a nonlinear eigenmode so that initially a great
imbalance is imposed between nonlinear phases rear-
rangement and linear diffraction. Such an imbalance
determines the fields evolution towards an oscillating
state with alternating diffraction and focusing peri-
ods. The quadratic system does not support these
oscillating states and, as it is shown below, under
some conditions the initial beam can give rise to two
spatial solitons with opposite transverse velocities.

w xLeo and Assanto 12 have already studied this
beam break up in type II configurations. Here differ-
ent aspects of the selfsplitting mechanism are inves-
tigated with the aid of numerical methods. Since we
aim at understanding the basics of the effect,
monochromatic beam propagation in type I planar
waveguide structures is considered. The reduced nor-
malized equations that govern such a process are as
follows,

E a r E 2a1 1
)i y qa a exp yibj s0 ,Ž .1 22Ej 2 E s

E a a E 2a E a2 2 2 2i y y id qa exp ibj s0 , 1Ž . Ž .12Ej 2 E sE s

where a and a are the normalized amplitudes of1 2

the fundamental and second-harmonic waves, rs
y1, and asyk rk . Here k are the linear1 2 1,2

wavenumbers at both frequencies. In all cases a,
y0.5, so we set asy0.5. The parameter b is
given by bsk h 2

Dk where Dks2k yk , is the1 1 2

wavevector mismatch, and h is a characteristic beam
width. The parameter d accounts for the Poynting
vector beam walk-off that occurs in birefringent
media when light propagation is not along the crystal

optical axes, and is given by dsk hr, r being the1

walk-off angle. Bearing in mind non-critical and
typical quasi-phase-matching settings in which
Poynting vector walk-off is absent, we set ds0 in

Ž .our numerical experiments. Finally, in Eqs. 1 the
transverse coordinate is given in units of h, and the
scaled propagation coordinate is jszrk h 2.1

From a qualitative viewpoint, the mechanism
leading to the splitting may be understood as fol-
lows. First consider that for bright bell-shaped initial
field profiles, in a wide variety of input and material
conditions, during the first steps of the evolution,
diffraction is compensated through the action of
nonlinear parametric interaction so that energy re-
mains mainly concentrated in the center of the pro-

wfiles and a bright bell-shaped soliton is formed 13–
x15 . Some situations can be found however, in which

initially the effect of the nonlinear interaction adds
up to that of diffraction so that an energy flow is set
up going from the center towards the wings of the
profile. Under suitable conditions, the local energy
gain experienced at each side of the profiles may
allow to reach an equilibrium such that energy is
focused towards off-center transverse points, provid-
ing steadiness to the initial center-sides transverse
energy flow and determining the splitting of the
input beam.

w xAs noted by Leo et al. 12 , the phase profiles
play a key role in the splitting mechanism. To make

Ž .it evident, Eqs. 1 may be understood in terms of
local amplitudes and phases evolution. By writing

Ž .a sU exp c , one obtainsi i i

E U 2Ž .1 2 2sr c U q2U U sin Dc ,Ž .Ž .1 1 1 2s sEj

E U 2Ž .2 2 2s ac qd U y2U U sin Dc ,Ž .Ž .Ž .2 2 1 2s sEj

2Ž .

with Dc the relative phase difference verifying Dc

s 2c y c q bj and subindices denoting the1 2
Ž .derivatives. Physically, the last terms in Eqs. 2

account for interharmonics energy exchange while
first ones keep track of the amount of local energy
that is redistributed in the transverse direction within



( )M.C. SantosrOptics Communications 180 2000 167–177 169

the same harmonic. For the stationary bell-shaped
solutions known to date, in the absence of Poynting
vector walk-off both terms in each expression must
vanish with Dcs0 and with plane wavefronts, while
in the presence of it, they cancel each other featuring

w xnon-trivial transverse phase modulations 16 .
For the evolution of the local phases one has

Ur r1 2s s
c sy q c qU cos Dc ,Ž .Ž .1 1 2j s2 U 21

Ua a2 2s s
c sy q c qdcŽ .2 2 2j s s2 U 22

U 2
1

q cos Dc . 3Ž . Ž .
U2

For the zero walk-off configurations that we consider
here, essentially, the contribution of the nonlinear
interaction is gathered in the lasts terms in these
expressions while first and second terms account

Fig. 1. Amplitude fundamental field profiles evolution when imposing a p input difference between harmonics. In both cases inputs are as
Ž . Ž . Ž .in 4 with As4, Bs1, f sp . a : bs4, b : bs2.0
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Ž .Fig. 2. Position of peaks found at the output face of a 20 normalized units length waveguide left and fraction of energy alloted to each one
Ž .as a function of the initial phase difference imposed between the two harmonics for bsy0.5, inputs are as in 4 with As5, Bs0.5.

Each symbol identifies a point of maximum field intensity so that equal symbols make reference to the same peak.

respectively for linear diffraction and transverse dis-
placements of the beam. Relevant to gain some
insight into the splitting mechanism is the fact, ex-
posed through the local energies and phases forms of

Ž . Ž .the governing equations i.e. 2 and 3 , that an
essentially differentiated behavior is expected de-
pending on the sign of the parametric interaction

Ž .term. Following 3 , when the sign of the interaction
is positive, a local increase of the phase constants in
more energetic transverse points determines a phase

Ž .gradient which as denoted by the first terms in 2 ,
drags energy towards these points enhancing the
focusing of the initial bright beam. Conversely when
this sign is negative, more energetic points experi-
ence a decrease of their phase constants that causes
there a defocusing.

The numerical simulations using input beams with
the generic form

a js0,s sA Sech s ,Ž . Ž .1

a js0,s sB Sech s exp jf , 4Ž . Ž . Ž . Ž .2 o

indeed confirm that there is a link between the
splitting of the input beam and near-p relative phase
difference values. Fig. 1 shows an example of such a

Ž .behavior, obtained with f sp . In case a theo

energy initially dragged towards the wings is too low
for reaching there an equilibrium, and thus focusing
back towards the center prevents beam break-up so
that a single soliton output is obtained. A lower b

Ž .value in case b makes it easier to lock the phases

up in the profile wings so that Dcs0 and two
solitons are found at the output waveguide face.

To investigate the potential of such an splitting
for all-optical switching we carried out a series of
numerical experiments considering different values
of the various parameters involved and computed the
number and position of peaks and a measure of the
fraction of the total input energy that is allotted to
each one after a normalized propagation distance of
js20 equivalent to 40 diffraction lengths, defined
as L sk h 2r2. With eyes to experimental observa-d 1

Ž . Ž .Fig. 3. Input thick lines –output thin lines transverse field
profiles characteristic in the 20 normalized units long waveguide

Ž .for inputs as in 4 with b sy0.5, As5, Bs0.5, f sp .0

Continous lines represent fundamental field profiles while dotted
lines correspond to the second harmonic.
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Fig. 4. Same as in Fig. 2 with fixed input phase difference f sp , showing the input amplitudes dependence of the splitting. Top: Bs0.5,0

bottom: As5.5.

tion of the phenomena, the simulations consider a
Ti:indiffused slab waveguide in PPLN fabricated as

w xdescribed in 17 with inputs from an Nd:Yag laser
source, featuring working wavelengths of l;1 mm,

focused to h;15 mm beam widths. Corresponding
diffraction lengths are on the 1.3 mm. range resulting
in required waveguide lengths of about 5 cm. well
within the reach of today’s existing technology. In

Fig. 5. Same as in Fig. 4 with f sp showing the wavevector mismatch dependence of the splitting.0
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such an experimental setup, input power levels up to
20 normalized units as used in the numerical experi-
ments, require peak fields on the order of 100
KVrmm, meaning peak intensities in the waveguide
of some few GWrcm2. The use of a KDP crystal
before a variable-pressure nitrogen cell for input

w xrelative phase control as in 7 is envisioned for the
experiments which require a second harmonic input.

In a first set of numerical experiments we consid-
ered the input phase difference, f , to be the param-o

eter of control of the dynamic Y-branched structure.
Having in mind configurations of practical interest,
the input intensity of the second harmonic was set to
be on the range of the 1% with respect to that of the
fundamental. Fig. 2 shows some of the results. A
broad splitting margin around p input phase differ-
ences is obtained with reasonable energy efficiencies
in terms of input energy. A look at the input–output

field profiles characteristic in Fig. 3 reveals neat
soliton formation at each side of the center.

Another case of interest is that in which the
splitting is controlled through the energy contained
in one of the input beams. The characteristics dis-
played in Fig. 4 as featuring two distinct regimes for
splitting and single-output behavior with moderate
energy efficiencies, show the potential of the split-
ting effect here studied for switching applications
with power control.

The mutual influence between amplitudes and
Ž . Ž .phases made evident by expressions 2 , 3 help to

understand some of the features displayed by the
beam splitting, i.e. the fact that numerically it is
observed for a certain range of input energies and
amplitude relations. It can be argued that an enough
powered input beam or with a certain amplitudes
relation may allow the necessary phases rearrange-

Ž .Fig. 6. Position of peaks found at the output face of the crystal waveguide left and fraction of energy alloted to each one as a function of
Ž .input fundamental amplitude for two different values of the wavevector mismatch. Top: bsy1, bottom: bsy2. Inputs as in 4 with

f s0 and Bs0. Equal symbols identify the same field maximum.0
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ment required to compensate the initial imbalance so
that only one soliton is formed. In contrast, a low
powered beam either is not capable of endowing the
system with enough diffraction-focusing mismatch to
drive it out from the one soliton state or else, it is not
capable of forming two solitons, and the energy
disperses into radiation. Of course the energy levels
and amplitude relations required for any state strongly
vary depending on the wavevector mismatch. This
wavevector mismatch dependence is critical in this
case as shown in Fig. 5. Therefore a mechanism for

controlling the wavevector mismatch value should be
provided if the phenomenon is to be of any applica-
bility to switching. Conversely, other applications
may take advantage of this critical dependence as an
experimental indicative of the wavevector mismatch
value effective in the sample. For correct interpreta-
tion of the results in Fig. 5 we note that zero output
energy values indicate no neat soliton formation at
the end face of the waveguide.

When looking for other cases of beam splitting,
extensive numerical experiments made evident that

Ž .Fig. 7. Fields evolution for an input as in 4 with As5.5, Bs0, f s0 and bsy1. Top: fundamental field, bottom: second harmonic.0
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Ž .Fig. 8. Input field profiles thick lines and output field profiles
Ž .after j s20 normalized propagation distances thin lines for an

Ž .input as in 4 with f s0, As5.5, Bs0, b sy1. Continous0

lines represent the fundamental field while dotted ones correspond
to the second harmonic.

for beam break-up to take place not only could the
relative p phase difference, which as nonlinearly
enhancing the dispersion of energy from the center
was the origin of the beam splitting, be imposed
initially, but it also could be reached through the
dynamics with bright input in-phase harmonics with
amplitudes in complete mismatch from those allow-
ing formation of bright solitons traveling in the
straight direction. A qualitative explanation of this

Ž . Ž .characteristic stems from expressions 2 , 3 taking
into consideration that in that case, local interhar-
monics energy exchanges tend to rearrange the am-
plitudes such that they drive the system towards the

Ž .stationary no energy exchange condition with Dc

sp , instead of Dcs0, and with more energetic
points having faster interharmonics energy exchange
rates, and therefore reaching faster to this point.

Ž .According to 3 , Dcsp determines a tendency to
nonlinearly cause a decrease of the local phase val-
ues thus setting a transverse phase gradient up that

Ž . Ž . Ž .Fig. 9. Wavevector mismatch dependence of the splitting. Inputs as in 4 with Bs0 and f s0. a As5.5 b As10.0
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Ž . Ž .Fig. 10. Position of peaks found at the output face of the crystal waveguide left and right fraction of energy alloted to each one as a
Ž . Ž .function of input fundamental amplitude top, Bs5.5 and as a function of input second harmonic amplitude bottom, As0.1 . In both

Ž .cases bs3 and inputs as in 4 with f s0.0

tends to drag energy out of from more energetic
transverse points towards less energetic ones, i.e., for
the bright input profiles used in this work, from

center towards off-center points. Then, either the
energy exchange at the center is fast enough to
recover the proper amplitude relation to get Dcs0

Fig. 11. Wavevector mismatch dependence of the splitting effect. Left: position of peaks found at the output face of the 40 diffractions
Ž .lengths long waveguide and right: fraction of input energy alloted to it. Inputs as in 4 with f s0, As0.1, Bs5.5.0
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and thus the increase in the local phase values
required to have a significant amount of the energy

Žback so that a single bright soliton is formed Fig.
.1a ; or else it may be off-center transverse points,

progressively speeding their interharmonic energy
exchange up owing to the injection of energy coming
from the initial off-center energy dragging, to reach
faster to the Dcs0 point causing the splitting of the

Ž .input beam, Fig. 1b .
According to the above, if only the fundamental is

used as input, negative phase mismatches need to be
used if any beam splitting is to be observed. The
results in Fig. 6 are an example. A moderately large
input amplitudes margin is obtained which leads to
beam splitting with good energy efficiencies thus
revealing the potential of the process for power
dependent switching operation with a single beam
input. As seen, increasing the phase mismatch causes
a significant broadening of the splitting interval which

shifts towards higher amplitude values while giving
rise to larger angles of beam propagation with re-
spect to the crystal axis. Fig. 7 gives a detail of the
beam evolution which evidences the strong reshap-
ing taking place in the first steps of propagation
while Fig. 8 illustrates the input–output field profiles
characteristic.

To further explore this phase mismatch depen-
dence of the splitting and elucidate how sensitive it
is to small changes in its value, we plotted the results
against phase mismatch variation. The results in Fig.
9 reveal a quite strong sensibility with changes on
the 0.1 order determining the evolution from single

Žto multi-peaked outputs. Broader margins on the 0.7
.order can be obtained with larger input amplitudes

Ž .as seen in case b .
In a third set of experiments the down-conversion

case was considered. With positive phase mis-
matches we checked out that formation of Y-branched

Fig. 12. Same as in Fig. 10 bottom, and Fig. 11 but considering a gaussian noise of 0.001 normalized power as input fundamental seed.
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structures may be controlled through the power con-
tained either in the second harmonic beam or in a
low power fundamental. Examples are shown in Fig.
10. Not only the splitting effect has proved robust
against phase mismatch variations in this case, as
evidenced by the results in Fig. 11, but it also
displays a quite nice characteristic for all-optical
switching operation with two differenciated and quite
broad regimes of operation featuring respectively
single and double beam outputs.

In order to mimic realistic experimental condi-
tions and verify the usefulness of the effect in practi-
cal setups, very low power gaussian noisy inputs at
the fundamental frequency were used to seed the
conversion process. The outcome shown in Fig. 12
confirms preservation of the basic characteristics ob-
tained with deterministic inputs.

In conclusion, we have observed numerically the
formation of soliton induced Y-branched structures
in slab waveguides made of quadratic nonlinear me-
dia and verified its dependences against input and
material conditions while identifying possibilities for
use in all-optical switching devices design. We have
confirmed that efficient control of beam break-up
may be performed either through the input phase
difference between harmonics or by the power con-
tained in either beam. From the three different
schemes considered for beam splitting control,
namely input phase differences, up-conversion and
down-conversion, only the latter has proven to be
robust against phase mismatch variations. Experi-
mental observation of the effects here described
should be possible in quite simple setups by careful
adjustment of the experimental conditions, thus
opening the door to new ideas for the design of
all-optical switching devices.
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