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New Theoretical Analysis of the LRRM Calibration
Technique for Vector Network Analyzers

Francesc Purroy and Lluís Pradell

Abstract—In this paper, a new theoretical analysis of the four-
standards line-reflect-reflect-match (LRRM) vector network-ana-
lyzer (VNA) calibration technique is presented. As a result, it is
shown that the reference-impedance (to which the LRRM calibra-
tion is referred) cannot generally be defined whenever nonideal
standards are used. Based on this consideration, a new algorithm
to determine the on-wafer match standard is proposed that im-
proves the LRRM calibration accuracy. Experimental verification
of the new theory and algorithm using on-wafer calibrations up to
40 GHz is given.

Index Terms—Calibration algorithms, calibration standards,
calibration techniques, network-analyzer, on-wafer calibration,
reference impedance, self-calibration.

I. INTRODUCTION

I T is well known that the systematic errors associated to a
vector network-analyzer (VNA) can be modeled by error

port adapters. The widely-used eight-term error model (Fig. 1)
was first proposed in [1] and intended for two-way measure-
ments. To compute its error terms, a calibration procedure is re-
quired. A number of calibration techniques have been proposed
in the literature. A technique that requires measurements from
only three standards was first proposed in [2] (thru-short-delay,
or TSD, technique). A more general approach (thru-reflect-line,
or TRL, technique), in which the short standard is replaced by a
highly reflective, but unknown, standard (reflect), was proposed
in [3], and fully developed in [4]. Self-calibration techniques,
which take full advantage of the redundancy in the calibration
process, were developed in [5] and generalized in [6], [7] (Txx,
Lxx). A particular case is line-reflect-match (LRM). Improve-
ments in the computation algorithm of these techniques can be
found in [8]. A variation of LRM (LRM-known Reflect) is de-
scribed in [9].

The LRM technique requires two match (matched load)
standards, one at each VNA port. As originally proposed in
[6], [7], both match standards should be equal and perfectly
known. Since those requirements are not fulfilled in practice,
the LRM calibration accuracy is reduced. The four-standards
LRRM (line-reflect-reflect-match) calibration technique was
proposed (but not mathematically developed) in [10], as an
improvement with respect to LRM. The main advantage of
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Fig. 1. Error model for a vector network analyzer: (a) eight-term error model
and (b) error matrices.

Fig. 2. Circuit model for on-wafer “match” standards.

LRRM versus LRM is that only one match standard (partially
unknown) is required to accurately compute the two unknown
reflect standards and , avoiding problems due to
asymmetries between both match standards. The on-wafer
match is modeled by a perfectly known resistor in series with
an unknown inductance (see Fig. 2). The key point in the
LRRM technique is an accurate determination of inductance
from the computed reflection coefficient, , of a measured
reflect standard. In [10] a simple expression to compute
from is proposed [expr. (3) of [10]]. In this expression,
it is implicitly assumed that a reference-impedance (to which
the calibration is referred) does exist and equals the match
impedance. However, this assumption is not justified, and its
impact on the determination of is not considered.

In this paper, a full theory for LRRM is developed. To the
authors’ knowledge, a rigorous analysis of LRRM has not been
published yet. Based on this theory [14], it is shown that the
’reference-impedance’ (to which the LRRM calibration is re-
ferred) cannot generally be defined whenever nonideal stan-
dards are used. This consideration leads to a general expression
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for that, in contrast with (3) of [10], does not assume a refer-
ence-impedance. The expression is used to accurately determine

, demonstrating accuracy improvements in the calibration.

II. THEORY OFLRRM SELF-CALIBRATION TECHNIQUE

In this section, the three-standards self-calibration theory
[6] is generalized to the four-standards case, in particular for
the LRRM technique. It is assumed throughout this paper
that the VNA systematic errors can be modeled by the bidi-
rectional eight-term error model given in Fig. 1. The error
terms are unknown and have to be determined through the
calibration procedure. Four error terms
model the systematic errors corresponding to port 1 of the
VNA (error-box ), while , , , and model
the systematic errors corresponding to port 2 of the VNA
(error-box ). It is assumed that isolation terms (terms that
account for direct transmission between port 1 and port
2) are very small in practice and can be neglected (i.e.,

).
Error-boxes are described by their transmission matrices (

-matrices) , , respectively, defined as

(1)

where , are normalized versions of , , respec-
tively.

A. Equation-Systems for the Error Matrices and

First, the calibration standards used in the LRRM technique
are defined and their corresponding transmission-matrices
( -matrices) are given.

1) LINE —Transmission line with a known length, propaga-
tion constant and characteristic impedance

(2)

2) REFLECT1—Dual one-port device made up by two
identical, isolated loads with a reflection coefficient .
Its magnitude is high but unknown and its phase must be
known within radians

(3)

where is the transmission -parameter of the
standard reflect1.

3) REFLECT2—Dual one-port device made up by two
identical, isolated loads with a reflection coefficient .
Its magnitude is high but unknown and its phase must be
known within radians

(4)

where is the transmission -parameter of the
standard reflect2.

To obtain independent measurements, a nonideal open-
circuit is used as reflect1 and a nonideal short-circuit as
reflect2 .

4) MATCH—One-port device with an unknown reflection
coefficient . Its magnitude should be very small. As
reflect1, 2 and match are nontransmission devices, it is
possible to define four virtual standards combining the
match (port 1 or 2) with reflect1 (port 2 or 1) or reflect2
(port 2 or 1). If, for example, the match standard is con-
nected to port 1, the following two standards are defined.

MATCH-REFLECT1:

(5)

where is the transmission -parameter of
the standard match-reflect1.
MATCH-REFLECT2:

(6)

where is the transmission -parameter of
the standard match-reflect2.

For each standard , a measurement transmission-matrix
is defined as (see (A3) in Appendix A)

(7)

Combining measurement matrix from standard 1 (line),
with measurement matrix from another standard

, the following linear-equation systems for matrices
and are obtained from (7)

(8)

or, in a more compact form

(9)

where and , are defined as

(10)

(11)

In (8)–(11), matrices are obtained
from the measured -parameters of standards [see (A5) in
Appendix A], matrices , partially un-
known, are given by (2)–(6), and and are the unknown
error-matrices. Equation (9) express a similarity transformation
between matrices and , with the two following
mathematical properties.

1) Trace conservation:

(12)
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2) Determinant conservation:

(13)

Substituting (2)–(6) into (11) and the result into (12), we ob-
tain

(14)

Equations (14) allow normalizing and to the same
normalization factor to avoid the singularities of nontransmis-
sion standards in (3)–(7). In
fact, using the normalized matrices and
defined in Appendix A (A8), equation-systems (9) are written
as

(15)

where

(16)

(17)

(18)

(19)

(20)

(21)

Note that, since in (16) do not require the measurement of
, they are not singular; therefore, (17)–(21) are not sin-

gular. Equation system (15) can be rearranged to form a system
of 4 linear-equations for the 3 elements of

(22)

A similar system of 4 linear-equations for the 3 elements of
could also be written substituting , , for ,
, in (22). Since 4 standards can be com-

bined with standard 1 (thru), equation-system (22) provides 16
linear equations for and [using , , in (22)], 16
linear equations for . It can be shown (numerically) that the
system composed by 16 equations has a maximum rank of 3.
Therefore, only 3 terms of matrix can be determined, from
which error-terms , , are computed. The same
holds for and , , . The other two error-terms
required are computed from the measured ma-
trix (standard ’Thru’) and the results obtained for, ,

and , .
There are 560 possible systems of 3 equations in (22), from

which 16 have rank 2. The rest (544) have rank 3. The criterion
proposed to select a three-equation system for the determina-
tion of error-terms, is the system condition-number (CN). Using
experimental calibration data, the CN for every system of rank
3 in (22) has been computed. The experimental set-up is com-
posed by a Hewlett-Packard 8510B VNA and a Cascade-Mi-
crotech SUMMIT 9000 wafer-probe station, with its calibration
substrate type LRM-ISS. Measurement frequency-range was 1
to 40 GHz. Two possibilities for connecting the match standard
have been considered, match connected to calibration Port 2,
and match connected to calibration Port 1. The following two
best conditioned systems have been found.

Match standard connected to Port 1:

(23)

Match standard connected to Port 2:

(24)
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B. Expressions for (Reflect1) and (Reflect2)

In this subsection, we focus on the determination of the un-
known parameters (reflect1) and (reflect2), in (3)–(6),
which are needed prior to solving systems (23) or (24). Using
matrices and of standards reflect1 and reflect2 [(3), (4),
respectively], two new combined normalized matrices,

and , are defined. They can
also be expressed in terms of , and , as

(25)

(26)

Since these new matrices also fulfill trace and determinant
conservation, (12) and (13) can be applied to (25) and (26) to
obtain the following expression

(27)

where

Substituting (18) and (19) into (27) and then using (12) again,
the following equation for and is obtained

(28)

where

Repeating the above procedure for and
, the following expressions are obtained

for and , respectively

(29)

where

(30)

where

Substituting (29) [or (30)] into (28), a sixth degree equation
for (for ) is derived. It can be shown that it has the fol-
lowing two double roots

(31)

The other two roots are computed solving the following second-
degree equation

(32)

where

Equation (32) is used to compute . It can also be used to
compute by exchanging with , and with .
To select the right root of (32) the phase of (or ) must
be known within rad. Note that, prior to solving (32),

should be known. An iterative method to compute is
presented in the next subsection.

C. Determination of (Match)

According to [10], an on-wafer match standard can be mod-
eled using the simple circuit of Fig. 2. Since the equivalent in-
ductance is unknown, an initial estimation is used for ,
namely, . This is equivalent to assuming
and , where is the normalizing impedance (usually

). Other values could be used for, provided they are well
known. When using on-wafer standards, some match elements
are trimmed to a known accuracy (typically better than ).
Using , (32) is solved for an initial estimation of
(or ), , , respectively. The next step is to compute the
actual value of by using (or ). In [10], an expression
is given that relates the computed (measured) reflect admittance

to its actual value whenever the match standard is
improperly defined (expression (1) of [10])

(33)

where and are
the actual and defined values for the match admittance, respec-
tively. Equation (33) can be interpreted as a change in the cali-
bration reference-impedance, from(defined value) to

. In fact, substituting (33) into the expression for the
computed reflection coefficient of standard reflect

(34)
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where is the normalizing admittance, one
obtains

(35)

Expression (35) can be interpreted as a change in the reference
impedance to which an imperfect calibration is referred;
imperfect means that some assumptions about the standards
do not hold, in particular the actual and defined values for the
match admittance are different. Therefore, (measured by
the imperfect calibration) is referred to the equivalent reference
impedance . The concept of reference impedance has been
used in the literature to compare different calibrations [12],
[13]. Obviously, a normalization impedance , to which
the actual (or assumed) reflection coefficients are referred,
does exist. As we show later in this subsection, a reference
impedance may not be defined for some imperfect calibrations.
An expression equivalent to (35) is [11]

(36)

where and
. In other words, (33) assumes

that a reference impedance does exist and it is equal to the
match impedance, . To compute , in [10] it is assumed
that the real part of in (33) is zero (this assumption is
reasonable for on-wafer open standards). In this case, the
following expression [(3) of [10]] is obtained from (33)

(37)

where and are real and imaginary parts of , respec-
tively.

However, in an actual (nonideal) LRRM calibration the con-
cept of calibration reference impedance may not be defined.
Therefore, (33) and (37) cannot generally be applied. In fact,
assume the following nonideal standards:

1) Nonideal line with (nonzero) physical length and
a characteristic impedance which is different from the
normalizing impedance . A reflection coefficient is
defined for , , different
from zero. However, the LRRM algorithm assumes a per-
fectly matched line .

2) Symmetrical unknown reflect .
3) Nonideal symmetrical match , but assumed

ideal in the LRRM algorithm .
As shown in Appendix B, the computed reflect reflection co-

efficient with this actual LRRM calibration is given by (B.4)
[see equation (38) at the bottom of the page].

If , then (38) reduces to

(39)

Expression (38) shows that the actual reflection coefficient
and the estimated values are not related by a change

in the calibration reference impedance. Therefore, a reference
impedance, to which the reflection coefficients computed by
this imperfect calibration are referred, cannot be defined. In the
particular case of zero-length line , (39) holds, and the
calibration reference impedance does exist and equals the actual
match impedance .

The equivalent inductance in the match model can be com-
puted using (38) assuming that the line standard is perfectly
matched . In this case, (38) reduces to

(40)

where

(41)

Substituting (41) into (40) (using the negative sign) and
enforcing (reflect assumed fully reactive [10]), a
second-order equation for is obtained

(42)

where

Equation (42) gives two solutions for the equivalent induc-
tance . Equation (41) is used to select the solution giving the
smallest .

III. SIMULATIONS

To show the advantages of this new method, it is useful to
simulate the LRRM calibration, and to compare results to those
of the method in [10]. Two cases are considered, ideal line, and
nonideal line.

a) Ideal Line
Line: Perfectly matched, 1 ps delay.
Reflect1: Symmetrical open-circuit, fF.
Reflect2: Symmetrical short-circuit, pH.
Match: and pH.
Using the proposed calibration algorithm, is com-

puted and compared to the assumed value pH ,
as shown in Fig. 3(a). Whereas the new method is giving

(38)
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Fig. 3. Equivalent inductance(L ) of a simulated “match” standard using the
new method proposed in this paper (-) and the method proposed in [10] (–):
(a) “line” perfectly matched and(b) “line” mismatched at low frequency (actual
case).

the right value, the method in [10] is giving ranging
from pH to pH as a function of frequency. It can
also be shown that the error increases when the assumed

increases.
b) Nonideal Line

Line: Coplanar-waveguide transmission line, with a
delay of 1 ps. Its characteristic impedance, assumed

in the upper frequency range, was modeled using
the expression for a lossy line with the following
parameters

nH m pF m

where is the dielectric (alumina) loss-tangent
and is the conductor (gold) conductivity. The scale
factor for was found by fitting (as a function of
frequency) the loss-constant of the coplanar-waveguide
line, that was obtained from a TRL calibration per-
formed on-wafer.
Reflect1: Symmetrical open-circuit, fF.
Reflect2: Symmetrical short-circuit, pH.
Match: and pH.

The result of this second simulation is shown in Fig. 3(b). At
low frequencies, where the line standard is not well-matched,
both methods get bad results, because the algorithm is assuming
that the line is perfectly matched. At higher frequencies the re-
sults are similar to case (a).

IV. EXPERIMENTAL RESULTS

The calibration algorithm proposed in this paper has been ex-
perimentally tested using the experimental set-up described in
the preceding section. Details of the calibration standards and
wafer-probes are

CALIBRATION SUBSTRATE: LRM-ISS (Cascade-Mi-
crotech).

Line: 1 ps delay line assumed perfectly matched.
Reflect1: Open circuit (probe tips in air) assumed sym-
metrical.

Fig. 4. Equivalent inductance(L ) of a measured “match” standard computed
using the new method (-) and the method in [10] (–).

Fig. 5. MeasuredjS j of a 40 ps-delay open-ended coplanar-waveguide line
using LRRM (-) and LRM (–).

Reflect2: Short circuit assumed symmetrical.
Match: Coplanar load, .

WAFER-PROBES: WPH-305-150 (Cascade-Microtech).
Fig. 4 shows the equivalent inductancecomputed using the

method proposed in [10] as well as using the new method pro-
posed in this paper. Above 10 GHz, is more frequency-in-
dependent when using the new method. In the low-frequency
margin, both methods compute incorrect values, because the
line standard is not well matched. These results are in agree-
ment with predictions of simulations described in Section III
(see Fig. 3).

Fig. 5 shows the reflection coefficient magnitude of a
40 ps-delay open-ended coplanar-waveguide line (not used
for calibration), measured using LRM as well as LRRM. It
can be seen that results are very similar. Therefore, the new
LRRM theory and calibration algorithm are validated. The
small differences observed are due to asymmetry in the match
standards using LRM. Differences are more noticeable at
high frequencies due to increasing asymmetry. Since LRRM
requires only the measurement of a match in one of the two
ports, significant accuracy improvements of LRRM calibration
using the new algorithm, compared to LRM, are expected at
higher frequencies (beyond 40 GHz).

V. CONCLUSION

In this paper a new theory of the LRRM calibration tech-
nique, that generalizes the three-standard self-calibration theory
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for VNA to four standards, has been presented. Using the crite-
rion of equation-system condition-number, the optimum equa-
tion-system has been selected from experimental on-wafer data,
to compute the coefficients of the eight-terms VNA error model.

A theoretical study on the reference impedance associated
to an imperfect (actual) LRRM calibration has been developed,
showing that the reference impedance is not defined whenever
the line length is not zero. Therefore, a new method to com-
pute the equivalent inductance of the match standard model
is proposed. Simulations show that the new method accurately
computes the assumed, in contrast with a former method pro-
posed in the literature.

Experimental on-wafer results demonstrate the feasibility
of the new theoretical LRRM formulation. The measurement
of a 40 ps delay open-ended line shows the advantages of the
LRRM algorithm versus LRM whenever asymmetries in the
match occur, in particular at high frequencies.

APPENDIX I
DEFINITION OF SELF-CALIBRATION MEASUREMENTMATRICES

Referring to Fig. 1, we have for the measured standard

• In forward measurements:

(A1)

• In reverse measurements:

(A2)

where are defined in (1).
Combining (A1) and (A2), the measurement transmission

matrix is defined [6]

(A3)
Developing (A3), the -parameters corresponding to , are
expressed as

(A4)

with

(A5)

Normalized measurement matrices can also be defined from
(A5) as . In a similar way, normalized ma-
trices of standards are defined as . Using
the -parameter definition (A.4), the ANA internal switch is
included in the measurement matrix and the eight-term error
model holds for both directions. The number of required mea-
surements to compute from (A4) is six, four standard ratios

, , , , and two additional measurements (, ), defined
as:

(A6)

In case of dual one-port devices (reflect1, reflect2, match-
reflect1, match-reflect2), , and (A4)
reduces to

(A7)

and their normalized measurement matrices are

(A8)

APPENDIX II
EXPRESSION FOR THECOMPUTED REFLECTION COEFFICIENT

OF REFLECT STANDARD

In this appendix, the relationship between the computed re-
flection coefficient of standard reflect and its actual value

is derived. The calibration algorithm assumes that standards
match and line are perfectly matched, but they actually have a
reflection coefficient different from zero ( and )
referred to a given normalization impedance. Therefore, the
actual line standard transmission matrix is

(B1)

Matrices to [(18)–(21)] do not change. The normal-
ized measurement matrices that VNA would measure can be
computed using (15)

(B.2)

where matrices are computed using (17)
with given by (B.1). Since the line and the match

standards are assumed perfectly matched, the unknown reflec-
tion coefficient of standard reflect is computed using (32)
with

(B3)

where the definitions of , are given in expressions (28)
and (29). Substituting (28) and (29) into (B3), the following ex-
pression is obtained [see (B4) at the top of the following page].
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REFERENCES

[1] R. A. Hackborn, “An automatic network analyzer system,”Microwave
J., pp. 45–52, May 1968.

[2] N. R. Franzen and R. A. Speciale, “A new procedure for system cali-
bration and error removal in automatedS-parameter measurements,” in
Proc. 5th Eur. Microwave Conf., Hamburg, Germany, Sept. 1–4, 1975,
pp. 69–73.

[3] G. F. Engen and C. A. Hoer, “Thru-reflect-line: An improved technique
for calibrating the dual six port automatic network analyzer,”IEEE
Trans. Microwave Theory Tech., vol. 27, no. 12, pp. 987–993, Dec.
1979.

[4] R. A. Soares, P. Gouzien, P. Legaud, and G. Follot, “A unified mathe-
matical approach to two-port calibration techniques and some applica-
tions,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 1669–1674,
Nov. 1989.

[5] H.-J. Eul and B. Shieck, “Thru-match-reflect: One result of a rigorous
theory for deembedding and network analyzer calibration,” in18th Eur.
Microwave Conf., Stockholm, Sweden, 1988, pp. 909–914.

[6] , “A generalized theory and new calibration procedures for network
analyzer self-calibration,”IEEE Trans. Microwave Theory Tech., vol.
39, pp. 724–731, Apr. 1991.

[7] , “Reducing the number of calibration standards for network ana-
lyzer calibration,”IEEE Trans. Instrum. Meas., vol. 40, pp. 732–735,
Aug. 1991.

[8] , “Robust algorithms for TXX VNA self-calibration procedures,”
IEEE Trans. Instrum. Meas., vol. 43, pp. 18–23, Feb. 1994.

[9] L. Pradell, F. Purroy, and M. Cáceres, “Development of self-calibration
techniques for on- wafer and fixtured measurements: a novel approach,”
in 22nd Eur. Microwave Conf. Proc., Sept. 1992, pp. 919–924.

[10] A. Davidson, K. Jones, and E. Strid, “LRM and LRRM calibrations with
automatic determination of load inductance,” in36th ARTFG Conf. Dig.,
Nov. 1990, pp. 57–63.

[11] T. T. Ha, Solid-state Microwave Amplifier Design, New York: Wiley,
1981, ch. 2, pp. 33–34.

[12] D. F. Williams and R. B. Marks, “Comparison of on-wafer calibrations,”
in 38th ARTFG Conf. Dig., Dec. 1991, pp. 68–81.

[13] L. Pradell and F. Purroy, “Comparison of on-wafer calibrations using the
concept of reference impedance,” in23rd Eur. Microwave Conf. Proc.,
Sept. 1993, pp. 857–859.

[14] F. Purroy, “Tècniques de caracterització de transistors de microones amb
aplicació al seu modelatge lineal,” Ph.D. (in Catalan and in Spanish),
Univ. Politècnica de Catalunya, Barcelona, Spain, June 1996.

Francesc Purroy was born in Barcelona, Catalunya, Spain, in 1965. He re-
ceived the telecommunication engineer degree in 1989 and the doctor degree
in 1996, both from the Universitat Politècnica de Catalunya (UPC), Barcelona,
Spain.

His main areas of research have been on-wafer MESFET transistors charac-
terization and network analyzer calibration techniques. His research interest in-
cludes transistor modeling and Power Amplifier linearization. In 1997, he joined
Ericsson Radio Access AB in Kista, Stockholm, Sweden. He is now working
there as Senior Specialist in MCPA (Multi Carrier Power Amplifier) design.

Lluís Pradell was born in Barcelona, Catalunya, Spain, in 1956. He received
the telecommunication engineering degree from Universitat Politècnica de
Catalunya (UPC), Barcelona, in 1981. In 1985, he joined the faculty at UPC,
where he received the doctorate degree in 1989.

From 1981 to 1985, he worked at Mier Allende, S.A., Barcelona, as an RF &
Microwave System Design Engineer. Since 1985, he has been teaching courses
on microwave circuits and antennas, and performing research on microwave and
millimeter-wave devices and systems (such as 40 GHz MVDS transceivers),
on-wafer network analyzer calibration techniques, noise parameter determina-
tion, and modeling of MESFETs and HEMTs.


