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Abstract

We have developed a method to calculate the distribution of fundamental and spurious fields in a metallic cylindrical
cavity with superconducting endplates in which signals at two different frequencies are injected. The nonlinearity in the
superconductor produces the typical intermodulation effects if the frequencies of the injected signals are sufficiently
close to each other and near a resonant mode. Our method uses harmonic balance to match the fields in the cavity with
the currents on the endplates. The method can be used for a variety of nonlinear models of the superconducting
endplate, and could be the base for a nondestructive procedure to extract the nonlinear parameters of an HTS sample
from RF measurements. Our analysis is restricted to the TEy;; mode, but the method can be applied to any propa-
gating mode in the cylindrical cavity. Closed-form equations for the case of square-law nonlinearities in the super-
conductor are derived and used to check the validity of the harmonic balance calculation.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Most of the work on RF nonlinearities of su-
perconductors has been done on planar resonators
and filters. Cavity resonators are also used in filters
and in devices for characterization of material
properties. In both applications, the nonlinear
performance of cavity resonators is of interest. This
paper presents a general method to calculate the
distribution of spurious fields in a metallic cylin-
drical cavity with superconducting endplates in the
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TE,;; mode. However, with minor modifications,
the method is generally applicable to any propa-
gating mode in the cylindrical cavity, to cavities
with other cross-sections, or to cavities with a
single superconducting endplate.

2. Nonlinearities in the superconducting endplates

When the signal levels are small, the electric
field on superconducting endplates depends on the
surface current density and the surface impedance:
E, = ZJ,. However, if the currents are large en-
ough, the electric field has a nonlinear dependence
with the surface current. Using the nomenclature
in [1] we can write the following time-domain
equation:
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where ey is the additional electric field caused by
surface current j; and by the nonlinearities in the
superconductor. Eq. (1) is consistent with the
definition of nonlinear surface impedance given in

[2]:

1
anL(js) = ARy(wo, js);  bno(js) = w—OAXs(won)

(2)
and thus by accounts for the departure of the
surface reactance from its small-signal values and,
as discussed in [1], can be related to a current-
dependent penetration depth A(j) = A(0, T)(1 +
(), with f(0) =0. This results in bnp(j) =
120, )£ ().

3. Field analysis with square-law nonlinearities

We assume a cylindrical cavity of radius R and
height /2 which is fed with two sinusoidal signals at
frequencies (w; and w,) which are very close to the
resonant frequency of the TEy;; mode. If both
signals are in resonance, the fields in the cavity are:

H. = Hodo(kyp) sin(Bz), (3a)
t, =L 11,,0,6,0) cos ), (3b)
Ey = 5 Ho i (kyp) sin(B2) (30)

with w; = w; or w,, k, =3.8317/R, f = n/h. The
current density in the superconducting endplates
can be calculated from the tangential magnetic
field a z = 0 and z = £, so that J; = H,. From this,
and using any (js) = Araj2 and by (js) = Axyj? one
can calculate the amplitude of the third order in-
termodulation spurious following the procedure
outlined in [3], resulting in a peak field amplitude
(i.e., equivalent to H,, in Egs. (3a)—~(3c)):

— ﬁ4 2 *
H2w1*u)2 = 2.3696 k/%w()ﬁkzﬂzﬂfh QLI_lel_]wz
X [AVZ +](,{)0A)C2] (4)

In the case of a two-port resonator it is straight-
forward to calculate the power of the intermodu-
lation spurious dissipated at the output port of the
resonator from Eq. (4) [3].

4. Equivalent circuit: general analysis with harmonic
balance

A numerical calculation of the spurious signals
generated by the cavity is also possible using har-
monic balance [4]. This calculation is not restricted
to square-law nonlinearities in the superconduct-
ing endplates, and uses the equivalent circuit of the
cavity resonator shown in Fig. 1. In this equivalent
circuit, the coupling to the cavity is modelled with
transformers. As is usually done in the analysis
of microwave cavities and waveguides, we have
modelled the cylindrical waveguide as a transmis-
sion line [5]. The characteristic impedance and
complex propagation constant of the line are set to
be equal to those of the TEj;;; mode in the
waveguide. With these conditions, the currents and
voltages in the line are proportional to the trans-
verse magnetic and electric field in the waveguide.
As done in [5], we have set the proportionality
constants to make the complex power flow in the

A

Fig. 1. Equivalent circuit of a two-port cavity resonator. Input
and output couplings are modelled with impedance trans-
formers. The superconducting endplates are drawn with a linear
impedance (Z;) in series with a nonlinear two port to account
for the nonlinear effects in the superconductor.
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waveguide equal to that of the transmission line,
so that the equivalent circuit can also be used to
calculate the power delivered to the output port,
and the power available from the source.

With this equivalent circuit, the linear part of
the problem is reduced to solving a system of
equations in the frequency domain relating the
voltage and current in the source to the voltage
(transverse electric field) and current (transverse
magnetic field) in the upper and lower endplates:

" Zn Zyn Ziz| |1
Wl=1%2a1 Zn Zn||L|, (5)
Vs Zy Zyn x| |

where V], V5, I}, I, represent the equivalent voltages
and currents at the upper and lower endplates and
Vs, Is the signal produced by the source. Note that
if the source produces sinusoidal signals at several
frequencies within the resonant band of the TE,
mode, Eq. (5) has to be replicated for each of the
frequencies involved.

In a linear problem, the transverse electric and
magnetic fields on the endplates are related
through the surface impedance and two additional
equations can be added to the system in Eq. (5):
Wi/l =Zs and V»/I, = Z;. These five equations
allow the determination of all the variables as a
function of the source current /;. This is not pos-
sible in the nonlinear case, because the boundary
conditions at the endplates are nonlinear and the
contribution of the fields generated by the non-
linearities (Eq. (1)) has to be taken into account.
To do so, we use an iterative procedure (harmonic
balance [4]) very similar to the one described in [6],
which starts with the linear solution in frequency
domain, transforms the currents in the endplates
to time domain, and finds the electric fields caused
by the nonlinearity (Eq. (1)). These fields are then
transformed back to frequency domain and only
the spectral components that fall within the reso-
nant band of the TEy;; mode are used for further
processing. The equivalent voltages and currents
of these spectral components have to match the
linear problem described by Eq. (5) at all fre-
quencies of interest (i.e. those of the source cur-
rents, and those of the intermodulation products).
The iterative procedure is very similar to the one
described in [6] and consists in iterating the equiv-
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Fig. 2. Output vs. input power for the fundamental and third
order intermodulation signals. Square-law nonlinearities are
assumed and each trace corresponds to a different (Ary, Ax,)
pair. Harmonic balance results agree with analytical simula-
tions to within <1%.

alent currents on the endplates (/;, ) at all the
frequencies of interest until the equivalent volt-
ages and currents arising from the linear problem
(Eq. (5)) match those imposed by the nonlineari-
ties in the endplates (Eq. (2)).

5. Results

Fig. 2 shows an example of the output vs. input
power assuming square-law nonlinearities in the
superconducting endplates, for various values of
Ar,y, Ax,. The agreement between the closed-form
equations and the harmonic balance results is
typically a fraction of a percent. Other outputs of
the software include: frequency dependence of the
spurious signals, spatial distributions of the spu-
rious, and dependence of the spurious power out-
put with the coupling coefficients. The software
has also been run with nonlinearities other than
square-law, like the ones suggested in [2,7].

6. Conclusions
The RF nonlinear performance of metal cavities

with one or two superconducting endplates can
be analyzed using harmonic balance. The case of a



682 J. Mateu et al. | Physica C 372-376 (2002) 679-682

TEg, cylindrical cavity with two superconducting
endplates having square-law nonlinearities has
been studied, and the analytical results match the
results of the numerical simulations. The algo-
rithm developed could be easily adapted to other
modes in the cylindrical cavity, to cavities with
other cross-sections, or to cavities with a single
superconducting endplate.
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