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General Equations for the Induced Phase Shift in
Resonant Electrooptic Modulators

C. Collado, O. Menéndez, M. C. Santos, J. Mateu, and J. M. O’Callaghan

Abstract—We derive general equations to calculate the elec-
trooptically induced optical phase shift in resonantly enhanced
modulators. The equations are useful in designing modulator
electrodes with optimal length and optimal mismatch between
electrical and optical velocities. We demonstrate the existence of
an optimal velocity mismatch depending on the resonant mode
used.

Index Terms—Electrooptical modulator, resonant modulator,
resonant electrode, optimal walkoff.

1. INTRODUCTION

BROAD scope of analog applications for electrooptical

modulators has emerged with the advent of radio-over-
fiber systems [1]. The modulators used in these narrow-band
applications may benefit from the electric field enhancement
that results from using resonant electrodes [2]. This enhance-
ment reduces the power of the modulating source required to
drive the device at the expense of a reduced operation band-
width around the resonance frequency. A variety of planar
resonant modulators has been proposed and experimentally
demonstrated, showing significant improvements in modula-
tion efficiency [2]-[4]. These devices were designed using either
numerical methods or analytical equations specific for a given
modulator configuration. However, a general study relating
modulation depth with the parameters of a resonant electrode
and the power of the modulating source is still missing. Without
that study, important issues like the optimal ratio of optical and
electrical velocities are difficult to resolve, especially when it
comes to approaching a novel modulator design.

In this letter, we derive a general equation for the optical
phase shift induced by the electrical signal in a resonant mod-
ulator. This equation is applicable to all types of resonant
modulators and provides a basis for comparing among various
topologies, predicting the performance of novel designs, es-
tablishing the relationships among all the parameters involved
in the modulation process, and identifying the optimum design
rules.
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The letter also shows the validation of the general equation
by applying it to a particular modulator [4] that can be analyzed
using a specific numerical technique.

II. EFFICIENCY OF MODULATION IN RESONANT MODULATORS
A. Formulation

In a transmission line electrooptical modulator, a guided op-
tical beam runs parallel to electrical electrodes supporting a
voltage v(z,t). For photons incident at time ¢ = ¢ at the posi-
tion 2 = —L/2, the induced phase shift A®(¢() over an inter-
action length L is given by [2]

TN3T /”2

Adlto) == /.,

v(z,to + Noz/c)dz
ey

where )\ is the free-space optical wavelength, ¢ the vacuum
light velocity, Vg and r are the optical refractive index and elec-
trooptic coefficient, and I" and G are the optical—electrical mode
field overlap integral factor and interelectrode gap respectively.

In a resonant configuration of the electrodes, when the res-
onator is fed at resonance with a single-tone source of frequency
wy, the voltage v(z,t) can be written as

v(z,t) = Vi, cos(Newrz/c + @) cos(wyt) 2)

where N, denotes the effective index for the propagation mode
supported by the electrodes [5], V/,, is the peak voltage, and @,
determines the position of the voltage maximum, which depends
on the end terminations of the transmission line electrodes and
the order of the resonant mode. The standing-wave pattern in (2)
assumes that losses in the electrodes do not significantly affect
the voltage distribution along the line.

Microwave theory has developed solutions to relate the am-
plitude of the fields in a resonator with the power of the source
driving it. These solutions can be applied in our case to relate the
voltage V,,, in (2) to the source voltage V. The key assumption
is that the source is coupled to the resonator through a lossless
network. This network may provide impedance matching to the
source, so that all its available power is transferred to the res-
onator. In this condition, the peak voltage V,,, can be related to
Vs (see the Appendix)

Vin = (V5/2)Gy/ Ne/n 3)
where n = L/)\. quantifies the resonant mode order (n =
1/4,n = 1/2,n = 1...) being A\, = (27¢)/(w,Ne), the
guided electrical wavelength [5]. The dimensionless parameter
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G, depends exclusively on electrical magnitudes (see the Ap-
pendix) and is defined as G\, = \/Zy/(aZsAe,0), where A  is
the vacuum wavelength, Z; is the characteristic impedance of
the transmission line, and « is its attenuation constant given in
Np/m.Even though (3) assumes critical coupling—impedance
matching at resonance—the equation can be easily extended to
find V,,, for other coupling conditions (see the Appendix). The
Appendix also shows how (3) can be extended for frequencies
that are close to resonance, but not necessarily equal to the res-
onant frequency.

The difficulty in setting the basic device parameters without
combining (1)—(3) in a single equation is exemplified in the elec-
tion of the electrode length L for a given frequency of operation
(wr). According to (1), a long interaction length L might lead
to high phase shift A®(tq). However, a long electrode requires
a low N, or making the electrode several quarter wavelengths
long (high n). Both options reduce V;,, according to (3) and tend
to decrease Ad(tp).

In order to find the optimal configuration, it is necessary to
solve (1) for the different possible standing-wave patterns. We
can do this in a unified way by substituting (2) and (3) into (1)

AD(tg) = A(V,/2)Gy(nT,,)~1/?

L/2
. / cos(zNowy/(c¥,) + D)
—L/2
x cos(wrto + Now,z/c) dz 4)

where A is defined as A = —7TN07/2’I"F//\0G and the velocity
mismatch factor ¥,, = Ny /N, quantifies the walkoff between
electrical and optical waves. Evaluating the integral in (4) along
the limits +2/2 = +nw¢/N.w,, one can calculate the max-
imum phase change |A®|, as shown in (5) at the bottom of the
page.

This formula is the main contribution of this work since it
directly connects |A®| with the velocity mismatch factor ¥,,,
for several resonating modes characterized through the values
of ®. and n.

Fig. 1 shows the magnitude of the phase shift (|JA® x|) nor-
malized to AV;Gy A 0/27 Ny, as a function of the velocity mis-
match factor ¥,, for three resonators. This figure, or a similar
one including other topologies, is useful either for choosing the
most adequate resonant topology for a given velocity mismatch,
or for finding the optimum velocity mismatch to maximize the
modulation efficiency given an electrical standing-wave pattern.

Table I summarizes other relevant results. It shows, for a set
of representative resonator configurations, the values of [A® |
obtained with a typical walkoff ¥,, = 0.8 in LiNbO3 modu-
lators [4], together with the optimum mismatch ¥, that maxi-
mizes the induced phase shift and the corresponding maximum.

From these data, we conclude that |[A® | tends to increase
for higher resonant modes since the increase of the interaction

|ADy|
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Fig. 1. Normalized |[A® y| as a function of the velocity mismatch for three
resonators, L = A./4 short-open ended (asterisks), L = A./2 open ended
(circles), and L = A. open ended (continuous line).

TABLE 1
MAXIMUM PHASE SHIFT IN DIFFERENT TYPES OF MODULATORS

Length  Ended D, |ADy| if ¥,=0.8 Y, |ADy| if P,
/4 React. 0 1.19 1.6 1.39
Ae/4 Short- /4 0.85 1.8 1.06

open
Ae/2 Short 0 1.09 1 1.11
Ae/2 Open -1/2 0.87 1.6 1.48
Ae Short -T2 1.46 1 1.57
Ae Open 0 1.17 1.2 1.76

length compensates the decrease of the maximum voltage in
the line. Furthermore, open-ended topologies for A./2 and \.
resonators result more efficient than short-ended ones at the
optimum walkoff but not for a typical walkoff in LiNbO 3
modulators. That is, the most efficient topology depends on
the feasible walkoff for a given technology.

B. Formulation Check

We have checked (5) with the numerical technique described
in [4] which is based on transmission line theory and is validated
through experimental measurements. For all modulators tested
(those of Table I), there is accurate coincidence when losses of
the transmission line are low. Otherwise, if the losses are very
high, the accuracy of (5) decreases since the voltage distribu-
tion deviates from the assumed standing wave pattern in (2). To
illustrate this effect and give an estimate of the error, we partic-
ularize (5) for a open-ended ). /2 resonator (¢ = —7/2 and
n=1/2)

Ae 0 ‘112/2 v,
A : .
VSGU(w)\/iZﬂ_NO 7z 1 cos | — (6)

[AD(w)] =

In this equation, the parameter G, of (5) has been replaced by
G,(w) = Gyy/F(w), being F(w) a term which accounts for

)\6,0 l Vv ‘Iln
2rNo V n (U2 — 1)

IA®| = |AV,G,

sin(nw¥,,) cos(nm) cos(P,)

. \/[\I’n — cot(nmW,,) tan(nm)]? + [1 — ¥, cot(nr¥,,) tan(nw)]” tan2(®.) (5)
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Fig. 2. Comparison between |A® y(w)| from (6) (dashed—dotted line) with
that obtained using [4] (continuous line). The inset shows the relative error
between both methods as a function of cr.

the frequency response of the resonator (see the Appendix). The
addition of this term extends (5)—we denote | A® (w)| instead of
| A®|—and gives the response of the induced phase shift around
the resonance frequency.

Fig. 2 compares the normalized A® y (w) of (6) with that ob-
tained using the simulation method described in [4]. This ex-
ample assumes a 20-GHz resonator with realistic parameters
taken from [4]: Z, = 50 2,7y = 35 Q, ¥, = 0.8, and
« = 18 Np-m™1L.

The agreement between both traces is quite good and the es-
timated maximum value using the numerical technique of [4] is
only 3% greater than that from (6). The inset shows the relative
error between both methods as a function of «, showing that
the proposed formulation is a very good approximation for the
usual values of losses in a conventional transmission line.

III. CONCLUSION

We have derived equations for the analysis of resonantly
enhanced electrooptical modulators. These equations are useful
in setting the length of the resonant electrode and the ratio
between electrical and optical velocities. We show that it is
not always necessary to match these velocities to maximize
the efficiency of the modulator. This conclusion is especially
important for GaAs modulators where the velocity of the
electrical signal is usually greater than that of the optical
signal. For example, [6] gives N, = 3.2 and N, = 2.6 for a
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conventional coplanar strip, which implies a walkoff parameter
U,, = 1.23 closer to the optimal walkoff of most topologies
of Table I than the velocity matching condition ¥, = 1.
Therefore, designing the electrodes to match velocities could
be unnecessary, even counterproductive.

Finally, the equations derived in this letter are not restricted
to transmission line modulators, since (2) is applicable to the
electric field of any resonator that results from the longitudinal
propagation of a guided wave.

APPENDIX

Using microwave analysis [5], the maximum voltage at the
resonant electrode V,,, can be related to the voltage source V;

Vin = (Vs/2)Go/ Ne[n/4k/(k +1)2V/F(w) (D)

where F(w) = (1 + A%*(w)Q%)~! accounts for the frequency
dependence close to resonance (A(w) = 1 — w?/w?), being
Q1. the loaded quality factor,  the coupling coefficient that re-
lates the dissipated power inside the resonator with the avail-
able power of the source [5], and Gy a constant given by G, =
VZo](aZAe o).

Assuming critical coupling at resonance, that is k = 1 and
A(w) = 0 [5], the previous expression can be reduced to

Vin = (V5/2)Gy/Ne/n. (8)
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