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OPTIMUM PIEZOELECTRIC BENDING BEAM STRUCTURES 
FOR ENERGY HARVESTING USING SHOE INSERTS 

Loreto Mateu and Francesc Moll. Department of Electronic Engineering, Polytechnical University of 
Catalonia. C/ Jordi Girona s/n, Barcelona, 08034.  

 
Abstract— The small amount of power demanded by many present-day electronic devices, opens the possibility 
to convert part of the energy present in the environment into electrical energy, using several methods. One of 
such methods is to use piezoelectric film bending beams inside the shoe, and use part of the mechanical energy 
employed during normal walking activity. This work analyzes several bending beam structures suitable for the 
goal application (shoe inserts and walking-type excitation) and obtains the resulting strain for each type in 
function of their geometrical parameters and material properties. As a result, the optimum configuration can 
be selected. 
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I. INTRODUCTION 
HE trends in technology allow the decrease in both size and power consumption of complex digital 

systems. This decrease in size and power gives rise to the concept of wearable devices in which 
digital systems are integrated in everyday personal belongings, like clothes, watch, glasses, etc... Batteries 
are the power source used for wearable devices. However, the disadvantage of batteries is the need to 
either replace or recharge them periodically. An alternative to batteries is harvesting energy from the 
environment (energy harvesting).  

PVDF films have been employed (Kendall, 1998; Kymissis, 1998; Starner 2004; Shenck 1999; 
Shenck 2001) in order to harvest electrical power from human walking activity. Roundy (2004) presented 
a piezoelectric cantilever beam in order to harvest the maximum electrical power available from a 
vibrational source. However, different structures were not thoroughly compared.  

This article is an exhaustive and meticulous study of different piezoelectric beam structures. In every 
case it has been analysed their advantages and disadvantages. The final application is an assembly of a 
piezoelectric bending beam in the insole of a shoe in order to convert mechanical human walking activity 
into electric power. 

The differences between the analysed piezoelectric beams can be grouped by shape, employed 
materials and its position, the kind of supports and restrictions because of the space available for the 
application. It is obtained for each analysed structure case the average strain of the beam in order to 
calculate the average power generated by human walking activity.  

The structure of the work is as follows: Section II shows piezoelectric constitutive equations for 
PVDF and analyses the fact that in piezoelectric films, the excitation mode 31 is more efficient than mode 
33. However, the force exerted by walking is in the 3 (z axis) direction. One way to circumvent this 
problem is to use bending beam structures to cause a stress in direction 1 when a force in direction 3 is 
applied. Section III and Section IV analyse different bending beam structures in order to select the most 
appropriate one to the application. Two kinds of beams are analysed: piezoelectric multimorphs and 
heterogeneous bimorphs (Smits, 1991). Piezoelectric bimorphs are made up of two piezoelectric films, 
one in each side of the neutral axis. These piezoelectric beams can be connected in parallel in order to add 
currents, or in series to add voltages. On the other hand, heterogeneous bimorphs consist of piezoelectric 
elements and a non-piezoelectric element that only provides the elastic function. Inside this group two 
kinds are considered. The first kind consists of a structure of a non-piezoelectric element sandwiched 
between piezoelectric films, and we call this structure symmetric heterogeneous bimorph. The second 
kind is made up of one or more piezoelectric films on top a non-piezoelectric material (Eggborn, 2003), 
and it is named as asymmetric heterogeneous bimorph. In these sections it is also examined the possibility 
to limit the deflection of the beam to a given value in accordance with the restrictions of space and 
comfort of the application. Section V shows the electrical power converted from mechanical activity for 
the different structures analysed previously. Section VI presents a comparison of the analysed beams to 
select the optimum configuration. Finally, Section VII draws some conclusions from the previous analysis 

II. CONSTITUTIVE EQUATIONS FOR PVDF 
PVDF, polyvinylidene fluoride, is a piezoelectric polymer with mm2 crystal symmetry. Due to this 

fact the piezoelectric constitutive equations shown in Equation (1) (Wanders) are simplified to Equation 
(2) (Ikeda, 1990) . 
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 Equation (1)                     

where repeated subscripts in the products imply a summation over the different components. 
T, applied mechanical stress [N/m2]. 
E, applied electric field. 
d, piezo strain tensor [(C/m2)/(N/m2)].  
ε, permittivity tensor. 
D, electric displacement [C/m2]. 
S, mechanical strain. 

Subscripts correspond to the direction of the axes as shown in Figure 1. 
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Figure 1. Axes and directions for piezoelectric constitutive equations of piezoelectric materials. 

PVDF films are only metallized in the plane perpendicular to 3 direction, so that D1=D2=0. Equation 
(3) reflects this assumption when no external electrical field is applied. 

3332321313 TdTdTdD ++=  Equation (3) 

There are three possible modes to use PVDF films: 31 mode, 32 mode and 33 mode. 32 mode is 
discarded since d32 is ten times less than d31 or d33 (Brown, 20002). In mode 31, the stress is applied in 1 
direction, and in mode 33, the stress is applied in 3 direction. The obtained voltage or charge resulting 
from an applied force in a certain direction, F1 or F3, is shown in Table 1. 

In a thin PVDF film, the ratio L/H is on the order of 1000, while d31=23x10-12 m/V and d33=-33x10-12 
m/V (Measurement Specialties). Therefore, it is seen from Table 1 that 31 mode has a more efficient 
electro-mechanical coupling factor than 33 mode.  
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A piezoelectric film placed inside a shoe as shown in Figure 5 would receive a stress applied in 3 
direction. Therefore, a mechanical coupling is necessary to transform the stress applied in 3 direction to a 
stress in 1 direction. This problem is solved using bending beams. 

 
 Mode 31 Mode 33 

Vo 
W
F

g 1
31  H

WL
F

g 3
33  

q 
H
LF

d 1
31  333Fd  

Table 1. Voltage, Vo, and charge, q, obtained in the plane perpendicular to direction 3 applying a 
mechanical stress in direction 1, mode 31, and in direction 3, mode 33. 

III. CANTILEVERS WITH LIMITED MAXIMUM DEFLECTION 
There are different kinds of bending beams depending on their supports, their shape, the position of 

the applied point load or distributed load, etc (Young, 2002; Senturia, 2001; Beer, 1993; Yee, 2003). 
Moreover, beams can have one or multiple layers of different types of materials. For usual values of the 
forces applied, maximum deflection calculated is greater than the height available between beam and the 
insole of the shoe. Therefore, the assembly conditions limit the maximum attainable deflection.  

Section A analyses the relation between average strain and maximum deflection for homogeneous 
cantilevers with an applied point load in x = L whereas section B analyses the case for heterogeneous 
cantilevers. 

A. Triangular Vs. Rectangular Homogeneous Cantilever 
The beam that offers the maximum average strain for a given applied force, F, is the cantilever. The 

average strain for an homogeneous beam, Figure 2, with any type of support employed is given by 
Equation (4) and it is defined as net strain along axis 1 (length), x, and axis 3 (thickness), z.  

( )dzdx
x
z

L
1

2t
cS

2t

0

L

0c
average

c

∫ ∫ ρ
=  Equation (4) 

where ρ(x) is the radius of curvature of the bending beam, and c is a constant that determines if the two 
piezoelectric films are wired in parallel, c = 2, or in series, c = 1. 

The value of c depends on the way the two piezo films shown in Figure 2 are connected. If they are 
connected in parallel, the charge generated is due to the strain of both films, and they must be added, 

2c = . For a series connection, the charge generated is only due to one of the film strain, c = 1. 
 

 
Figure 2. Cross section of homogeneous bimorph beam. tc/2 corresponds to a piezoelectric film thickness. 
Yc is the Young’s modulus for the piezoelectric material. W0 is the width of the beam. The neutral axis is 
placed between the two piezoelectric films. 

Figure 3 and Figure 4 show how the connection has to be done in order to establish the value of 
parameter c depending on poling axis orientation between piezoelectric films that are being tensed and 
compressed. 

If the cantilever is triangular (Kendall 1998), its width varies as expressed in Equation (5),  

( ) 




 −=

L
x1WxW 0   Equation (5) 

where W0 is the base of the triangle and L is the length of  the beam and the height of the triangle.  
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Figure 3. Connection between the top and bottom piezoelectric films in order to add currents or voltages 
when the poling axis are identically oriented.  

 
Figure 4. Connection between the top and bottom piezoelectric films in order to add currents or voltages 
when the poling axis are opposed.  

Table 2 shows the average strain, Sx, deflection in function of x position, y(x), and maximum 
deflection, ymax, of  the cantilever beam. Maximum deflection of the cantilever beam occurs when x = L. 
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Sx 2
cmax

2
c0c L2

cty

tWY
cFL3 =  2

cmax
2
c0c L

ty
8
c3

tWY2
cFL3 =  

( )xy  3
c0c

2

tWY
FLx6  





 −

L3
x1x

tWY
FL6 2

3
c0c

 

maxy  3
c0c

3

tWY
FL6  3

c0c

3

tWY
FL4  

Table 2. Average strain, Sx, deflection, y(x), and maximum deflection, ymax, for triangular cantilever and 
rectangular cantilever are shown in this table where tc is the thickness, W0 the width for rectangular beam 
and the base of the width for triangular beam, F is the point load applied over the position x = L and  Yc is 
the PVDF Young’s modulus. 

In the case of a triangular cantilever, the radius of curvature of the cantilever is constant along its 
length, which implies that the strain along x direction is also constant.  
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Figure 5. Cantilever assembly in the insole of the shoe with a limited deflection, D. 

As can be seen in these expressions, cantilever with a triangular shape width suffers more strain than 
a cantilever with a rectangular shape width for identical load. The rectangular cantilever average strain is 
75 % of the triangular cantilever average strain, expressed as a function of maximum deflection. 
Therefore, triangular cantilever would be preferred for a shoe insert, as was pointed out in Shenck (1999). 
A mechanical device must be placed inside the shoe in order to apply all the stress generated by human 
walking activity on the position x = L.  

The height between the piezoelectric beam and the insole of the shoe is limited to D as can be shown 
in Figure 5. Therefore, maximum deflection, ymax, that appears in the equations of Table 2 must be 
substituted by D. 

B. Triangular Heterogeneous Cantilever 
The maximum strain in a beam takes place at its surface, at z = tc/2 and z = -tc/2. One way to increase 

the average strain for the piezoelectric film, and therefore, the harvested power, is to increase the beam 
thickness. This can be done keeping the same amount of piezoelectric material using heterogeneous 
bimorphs composed of non-piezoelectric films and piezoelectric films as can be seen in Figure 6 and 
Figure 7. 

The neutral axis for a composite beam is calculated with the general expression of Equation (6). 
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where n is the number of layers of different materials, zi is the height for layer i, Yi is the Young’s 
modulus for layer i, Yr is the Young’s modulus for layer r and Ai is the area of cross section for layer i. 

 

 
Figure 6. Cross section of symmetric heterogeneous bimorph beam. tc/2 corresponds to piezoelectric film 
thickness whereas ts corresponds to non-piezoelectric film thickness. Yc is the Young’s modulus for the 
piezoelectric material, and Ys is the Young’s modulus for the non-piezoelectric material. W0 is the width 
of the beam. 

 
Figure 7. Cross section of asymmetric heterogeneous bimorph beam. tc corresponds to a piezoelectric film 
thickness whereas ts corresponds to a non-piezoelectric film thickness. Yc is the Young’s modulus for the 
piezoelectric material and Ys is the Young’s modulus for the non-piezoelectric material. W0 is the width of 
the beam. 
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Figure 6 (Eggborn, 2003) shows a symmetric heterogeneous bimorph whereas Figure 7 shows an 
asymmetric heterogeneous bimorph. In both structures the respective dimensions of piezoelectric films 
and non-piezoelectric film are the same. 

 
 Homogeneous 

Bimorph  
Symmetric Heterogeneous Bimorph  Asymmetric Heterogeneous Bimorph 

Sx 2
cmax

L2

ty
c  





 + s

c
2

max t
2
t

L

cy
 

( )
( )sscc

2
scssmax

YtYtL

tttYy

+

+
 

maxy  
3
c0

3

tYW
FL6  ( )( )3

ss
2
scs

2
c

3
cc0

3

tYtt3tt3tYW
FL6

+++
 ( )

( )( )2
ssc

2
cscsc

4
s

2
s

4
c

2
c0

sscc
3

t2tt3t2ttYY2tYtYW
YtYtFL6

++++
+

 

zs 2
t c  

2
tt sc +

 
c

c

s
s

c
sc

c

s
2
s

t
Y
Y

t

2
t

tt
Y
Y

2
t

+







++
 

Table 3. Equations of average strain, Sx, maximum deflection, ymax, and neutral axis position, zs. The 
analysed cantilevers have triangular width. 

 

 
Figure 8. Average strain for asymmetric and symmetric heterogeneous bimorph triangular cantilever with 
L = 171 mm, D = 7 mm, tc = 100 µm, and ts = 1 mm . 

Symmetric heterogeneous bimorph is independent of Young’s modulus whereas asymmetric 
heterogeneous bimorph is dependent of Yc and Ys, as shown in Figure 8. For a ratio Ys/Yc smaller than 2, 
symmetric heterogeneous bimorph strain with c = 1 is greater than asymmetric heterogeneous bimorph 
strain. However, for a ratio Ys/Yc greater than 2, asymmetric heterogeneous bimorph strain leads 
symmetric heterogeneous bimorph strain with c=1. For any value of the ratio Ys/Yc, symmetric 
heterogeneous bimorph with films connected in parallel (c=2) is greater than the other configurations.  

The resulting strain is also dependent on the thickness of the non-piezoelectric material, ts, as shown 
in Figure 9. For the material values considered in the calculation, asymmetric heterogeneous bimorph is 
slightly greater than symmetric heterogeneous bimorph with c = 1. Symmetric heterogeneous bimorph 
with c = 2 is greater than the other simulated bimorphs and linearly dependent of ts, as was the case with 
symmetric heterogeneous bimorph with c = 1. 

The neutral axis for the symmetric heterogeneous bimorphs is located in the middle of the thickness 
whereas the location of the neutral axis for the asymmetric heterogeneous bimorphs depends on the 
thickness of the piezoelectric and the non-piezoelectric films and their respective Young’s modulus. 

If tc is defined as the thickness of a piezoelectric film that is made with only one piezoelectric film, 
from z = 0 to z= tc/2 the film is compressed and from z = 0 to z = -tc/2 the film is tensed and so, the 
average strain is zero and no power is harvested from walking activity. To obtain a net charge for a 
piezoelectric beam is necessary a bimorph structure in order to add charge or voltage for the film 
compressed and the film tensed. In this case the neutral axis is between both films. Hence asymmetric 
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heterogeneous bimorph beams are the only structure that allows the use of a single piezoelectric film. 
Therefore, its connection is the simplest possible, and this offers a certain advantage with respect to 
symmetric bimorph structures, in spite of its smaller strain. 

 
Figure 9. Average strain for asymmetric and symmetric heterogeneous bimorph triangular cantilever with 
L = 171 mm, D = 7 mm, tc = 100 µm, Yc = 3·109 N/m2 and Ys = 12·109 N/m2. 

In summary, as can be seen in Table 3, the most efficient cantilever structure in terms of average 
strain is the symmetric heterogeneous bimorph triangular cantilever, which is better than an homogeneous 
triangular beam because of term ts.   

In addition, the magnitude of forces associated with walking activity cause a maximum deflection 
that would be larger than the thickness of the shoe sole. Therefore, in practice, maximum deflection is 
limited by construction to a certain value D, corresponding to the cavity depth. 

IV. SIMPLY SUPPORTED BEAM 

A. Point Load 
Table 4 shows the average strain, Sx, deflection in function of x position, y(x), and maximum 

deflection, ymax, of  the simply supported beam with a point load F located at x = L/2 in order to obtain the 
maximum deflection possible with these supports.  
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Table 4. Average strain, Sx, deflection, y(x), and maximum deflection, ymax, for simply supported beam 
are shown in this table where tc is the thickness, W0 the width for rectangular beam F is the point load 
applied over the position x = L and Y is the PVDF Young’s modulus. 

Table 5 shows the average strain, Sx, maximum deflection, ymax, and the location of the neutral axis, 
zs, for homogeneous bimorph, symmetric heterogeneous bimorph and asymmetric heterogeneous bimorph 
simply supported beam with a point load F located at x = L/2. 
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Table 5. Equations of average strain, Sx, maximum deflection, ymax, and neutral axis position, zs. The 
analysed simply supported beam has rectangular width. 

B. Distributed load 
 

 
Figure 10. Simply supported beam with a limited maximum deflection. The beam with length L is 
deflected by a mass with a length Lm and causes a deflection enough to cause a contact between the beam 
beneath the mass and the insole of the shoe.  

A simply supported beam with a maximum deflection for a given force greater than the height of the 
structure can be interpreted as equivalent to a double cantilever as it is explained in this section. The 
simply supported beam is deflected by a mass with a length Lm. It can be considered that the part of the 
beam that doesn’t touch the insole is the one that is not under the mass. Therefore, the mass acts as fixed 
support and the pinned support is equivalent to a force that acts over the cantilever in order to deflect it. 
This is the equivalence between simply supported beam and cantilevers in this case.  

 

 
Figure 11. Cantilever of length L’ with a point load, F, at x = L’. The left end of the cantilever is free-
ended whereas the right end of the cantilever is fixed. 

Figure 11 represents a cantilever with a point load at x = L’. Table 6 gives the expression of average 
strain in function of its maximum deflection, that appears in Equation (7), for homogeneous bimorph, 
symmetric heterogeneous bimorph and asymmetric heterogeneous bimorph cantilevers. 

YI3
FLy

3'
max =     Equation (7) 

The addition of two cantilevers gives as result the simply supported beam shown in Figure 10.  
Table 7 gives the expression of average strain in function of the fixed height, D, for homogeneous 

bimorph, symmetric heterogeneous bimorph and asymmetric heterogeneous bimorph simply supported 
beam. Equations of Table 7 have been derived from equations of Table 6 taking into account that the 
simply supported beam analysed is made up of two cantilevers each one with a length (L-Lm)/2. 
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 Homogeneous Bimorph  Symmetric Heterogeneous 
Bimorph 

Asymmetric Heterogeneous 
Bimorph 

Sx 2'
cmax
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tcy3  





+ s

c
2'

max t
2
t

L4

cy3  





+ s

c
2'

max t
2
t

L4

cy3  

Table 6. Equations of average strain, Sx, for a cantilever with a point load, F, placed at x = L. The beam 
has rectangular width. 

 Homogeneous Bimorph Symmetric Heterogeneous 
Bimorph 

Asymmetric Heterogeneous 
Bimorph 
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Table 7. Equations of average strain, Sx, for the simply supported beam of Figure 10. 

The simply supported beam with distributed load average strain equations is valid for the conditions 
mentioned in this section. Figure 12 shows average strain for the different types of support here analysed, 
as a function of the mass length of the distributed load, Lm. It can be seen that the case of distributed load 
always presents a larger average strain than the other cases.  

 
Figure 12. Average strain for homogeneous bimorph cantilever, simply supported beam with point load 
and distributed load. The parameters values are L = 171 mm, D = 7 mm, tc = 100 µm, and c = 2. 

V. ELECTRICAL POWER HARVESTED 
The average power harvested  from human walking activity (Kendall 1998; Starner 2004; Paradiso 

2004), shown in Equation (8), has its maximum value when Equation (9) is verified. Equation (10) 
expresses the value of the maximum average power in function Ceq.  

( )
( )22

eq
2

2
x31

2
p

RC12
RASe
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V
P

ω+
ω

==  Equation (8) 

eqC1R ω=    Equation (9) 

eq

22
x

2
31

max C4
ASe

P
ω

=   Equation (10) 

where A is the area of piezoelectric material, Ceq is the equivalent capacitance of the piezoelectric films, 
which depends on the film dimensions as well as their connection, Sx is the average strain, ω is the 
angular frequency of the sinusoidal wave that is considered as mechanical excitation, and |Vp| corresponds 
to the modulus of the peak voltage for the sinusoidal wave. 

All the analysis done assume that walking activity responds to a sinusoidal wave. While this 
assumption is only approximate, it can be useful to compare the different structures. A more realistic 
power calculation will be developed in the near future. 
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The area A can be calculated as the area of one piezoelectric film.  

LWA 0=    Equation (11) 

Ceq is the equivalent capacitance for the connection made with the piezoelectric films employed. The 
piezoelectric films can be wired in series or in parallel. The equivalent capacitance for bimorphs and 
symmetric heterogeneous bimorphs is the same and it can be shown in Table 8 joined up with equivalent 
capacitance for asymmetric heterogeneous bimorphs. 

 
 Homogeneous and Symmetric 

Heterogeneous Bimorph 
Asymmetric Heterogeneous 
Bimorph 

Ceq 
c

2

t
Ac ε  

ct
Aε  

Table 8. Equivalent capacitor for bimorphs, symmetric heterogeneous bimorphs and asymmetric 
heterogeneous bimorphs. 

Table 9 shows the relation between the connection of homogeneous and symmetric heterogeneous 
bimorph piezoelectric films and the charge and voltage generated.  
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Asymmetric Heterogeneous 
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Table 9. Equivalent charge, voltage and peak voltage modulus for bimorphs, symmetric heterogeneous 
bimorphs and asymmetric heterogeneous bimorphs. 

 maxP  

Homogeneous Bimorph 
ε

ω
3

0
3
c

2
max

2
31

2
c

L16
WtydY

 

Symmetric Heterogeneous 
Bimorph 

( )
ε

ω+
3

0
2

scc
2
max

2
31

2
c

L4
Wt2ttydY  

Asymmetric Heterogeneous 
Bimorph 

( )
( )2

sscc
3

0
2

sc
2
s

2
sc

2
max

2
31

2
c

YtYtL4
WtttYtydY

+ε
ω+  

Table 10. Maximum average power for triangular cantilever with point load applied at x = L. 
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Table 11. Maximum average power for simply supported beam with point load applied at x = L/2. 
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From equations given in Table 10, Table 11, and Table 12, it can be derived the appropriate 
dimensions of the structure and its elastic and piezoelectric properties. It is recommended a small length 
and a large width and thickness. The most suitable PVDF film would be the one with large Young’s 
modulus, Yc, and piezo strain constant, d31, but with little permittivity, ε. Moreover, the maximum average 
power depends linearly with the walking frequency and with the limited height D. 
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Table 12. Maximum average power for simply supported beam with distributed load. 

VI. COMPARISON OF STRUCTURES 
It was presented in the previous sections a detailed analysis of several structures suitable for shoe 

inserts. In summary, the structures considered can be classified according to two properties. One of them 
is vertical structure (homogeneous bimorph, and symmetric or asymmetric heterogeneous bimorph). The 
second property is the kind of support: cantilever with a triangular horizontal shape for maximum 
efficiency, and simple support at both ends, either with a point load, or a distributed load. 
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Table 13. Average strain and power general equations that express the relation between homogeneous 
bimorph, symmetric heterogeneous bimorph and asymmetric heterogeneous bimorph. 

From the expressions obtained and shown in Tables 2 to 12, it can be observed that the relation 
between obtained strain and power for the three vertical structures considered is always the same, 
independently of the kind of support used. Let us then denote by S1 and P1 the strain and power of the 
homogeneous bimorph structure. Table 13 shows the strain and power for the other structures. Their 
relation can be observed graphically in Figure 13 and Figure 14, in function of non-dimensional 
magnitudes ts/tc and Ys/Yc. From this figure, it can be concluded that the most efficient vertical structure 
is the asymmetric heterogeneous bimorph with a large value of Ys/Yc. 

 Triangular cantilever Simply supported beam 
with point load 

Simply supported beam 
with distributed load 

Sx 2S  2S3  ( ) 22
m

S
LL1

6

−
 

maxP  2P  2P9  ( ) 24
m

P
LL1

36

−
 

Table 14. Average strain general equations that express the relation between triangular cantilever, simply 
supported beam with point load and simply supported beam with distributed load. 
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Figure 13. Average strain general relation for homogeneous bimorph, symmetric heterogeneous bimorph 
and asymmetric heterogeneous bimorph. 

 
Figure 14. Average power general relation for homogeneous bimorph, symmetric heterogeneous bimorph 
and asymmetric heterogeneous bimorph. 

With regard to the kind of support, Table 14 summarizes the expressions for strain and power for the 
homogeneous bimorph in function of those corresponding to a triangular cantilever. It is seen from this 
table that the most efficient support is in general the simply supported beam with distributed load. 

Therefore, the optimum selection for the studied piezoelectric inserts is the asymmetric 
heterogeneous bimorph with a simply supported beam with distributed load. The bigger the ratio Ys/Yc, 
the better the average generated power will be. 

VII. CONCLUSIONS 
It was analytically shown in this work how to construct an optimum beam-type shoe insert in terms 

of its vertical structure and the kind of support to use. It was taken into account in this analysis that under 
normal walking type excitation, the force exerted on the insert is strong enough, given the usual 
piezoelectric film elastic properties, to cause a deflection limited by the shoe cavity dimensions where the 
insert is to be placed. Therefore, the cavity dimension itself is also a factor to consider. From the linear 
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analysis performed, it is concluded that the deeper this cavity is, the better. Other factors as walking 
comfort or facility of construction should also be evaluated. 

The conclusions presented are useful to guide the construction of a prototype, which must validate 
experimentally this analysis. Also as future work, a more detailed evaluation of the harvested energy in 
function of the usual gait excitation is necessary. 
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