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Abstract

This paper presents a deterministic sequence with good and useful features for sampling-based motion planners. On the one
hand, the proposed sequence is able to generate samples over a hierarchical grid structure of the C-space in an incremental low-
dispersion manner. On the other hand it allows to locally control the degree of resolution required at each region of the C-space
by disabling the generation of more samples where they are not needed. Therefore, the proposed sequence combines the strength
of deterministic sequences (good uniformity coverage), with that of random sequences (adaptive behavior).

Index Terms

Deterministic sampling, Path planning.

I. INTRODUCTION

Sampling-based motion planners, like Probabilistic Roadmap Methods (PRMs) [8], or those based on the Rapidly-exploring
Random Trees (RRT) [9], are giving very good results in robot motion planning problems with many degrees of freedom.

Following these random sampling methods, several approaches have been proposed that bias the sampling towards the most
promising regions, thus improving the efficiency and allowing to cope with difficult path planning problems (including narrow
passages). These approaches consider, for instance, a sample distribution that increases the number of samples on the border
of the obstacles [3], around the medial axis of the free space [15], or around the initial and goal configurations [14]. Others
propose the use of an artificial potential field to bias the sampling towards narrow passages [1], or the use of a lazy-evaluation
approach that delays collision checking until it is absolutely needed [2]. Random sampling techniques have the advantage that
task-specific knowledge can be incorporated to heuristically tailor the sample distribution in order to concentrate samples in
critical regions.

In comparison to those approaches, deterministic sampling sequences have been proposed [4]. These deterministic sampling
sequences have the advantages of classical grid search approaches, i.e. a lattice structure (that allows to easily determine the
neighborhood relations) and a good uniform coverage of the C-space. For path planning purposes the uniform coverage is
usually evaluated with the metric-based measure of dispersion (loosely, the radius of the largest ball that does not contain any
sample). Moreover, deterministic sampling sequences can provide an incrementally improved quality (in terms of dispersion) as
the number of samples increases [11]. Deterministic sampling sequences applied to PRM-like planners are demonstrated in [10]
to achieve the best asymptotic convergence rate and experimental results showed that they outperformed random sampling in
nearly all motion planning problems.

As thoroughly argued in [5], the achievements of sampling-based motion planners are mainly due to their sampling-based
nature, not due to the randomization (usually) used to generate the samples. Therefore, efforts should better be directed towards
the study of deterministic and controllable ways of generating samples, rather than towards the proposal of heuristically guided
randomization variants. In this line, this paper proposes a deterministic sampling sequence based on a 2d-tree decomposition of
a d-dimensional C-space with an adequate code convention that labels and locates each cell of the tree. The proposed sequence
has the advantages of deterministic sequences and also allows to locally control the degree of resolution required at each region
of the C-space, by disabling the generation of more samples where they are not needed (and thus concentrating samples in
critical regions).

The paper is structured as follows. Section II presents the 2d-tree decomposition and the code convention used to label and
locate the cells. Section III introduces the generation of the deterministic sampling sequence and shows its main features and
potential use in path planning problems. Finally, Section IV concludes the work.

II. C-SPACE DECOMPOSITION

The following 2d-tree decomposition of a d-dimensional C-space is considered [12]. An initial cell, b0, covering the entire
C-space is the tree root (b0 is considered to have sides with unitary size). The levels in the tree are called partition levels and
are enumerated such that the tree root is the partition level 0. Partition levels will be denoted by super-indices: a cell of a
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Fig. 1. Cell codes for different levels in the hierarchy in a 2D C-space: a) level 0, b) level 1, c) level 2; and d) An example of the codes of a subset of cells
of a quadtree that correspond to Cfree.
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Fig. 2. Cell codes for different levels in the hierarchy in a 3D C-space: a) level 0, b) level 1, c) level 2; and d) An example of the codes of a subset of cells
of an octree that correspond to Cfree.

given partition level m will be called an m-cell, and denoted as bm. The m-cells have sides of size sm = 1/2m and form a
regular grid called Gm.

A code convention that univocally labels and locates each cell of the 2d-tree decomposition of C-space is introduced. Using
this code convention, any subset of cells, e.g. those belonging to the subset Cfree of collision-free configurations, can be
managed as a list of codes, in a similar way as the linear quadtrees proposed in [6] for d = 2.

The cell codes are non-negative integers that univocally locate the cells in C-space. The codes for a given partition level m
range from Cm

ini to Cm
end, with:

Cm
ini =

2dm − 1

2d − 1
(1)

Cm
end = 2dCini (2)

Since Cm
ini = C

(m−1)
end + 1, the proposed code convention uses all non-negative integers. Figures 1 and 2 show the codes used

for the cells of different partition levels for 2D and 3D C-spaces, respectively.

A. Cell Codes

The obtention of the code of a cell from its location in C-space and vice-versa is done as follows. Let:

• V m
bk

= (vm
1 , . . . , vm

d ) be the indices of an m-cell, bm
k , on the regular grid Gm. The values of vm

j ∀j ∈ 1 . . . d range from
0 to (2m − 1), e.g. cell code 9 in Figure 1c has indices (2, 0) on grid G2.

• (amj . . . a1j)2 be the binary representation1 of vm
j , i.e.:

vm
j = (amj . . . a1j)2 =

m
∑

i=1

aij 2(i−1) ∀j ∈ 1 . . . d (3)

• The conversion table T (bm
k ) of an m-cell of a d-dimensional C-space be the binary m× d matrix whose columns are the

binary representation of vm
j ∀j ∈ 1 . . . d:

1When necessary, subindices will be used to show the base in which a number is represented, e.g. binary numbers will be represented with subindex 2.
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Code vm
d . . . vm

j . . . vm
1

rm amd . . . amj . . . am1

. . . . . . . . . . . . . . . . . .
ri aid . . . aij . . . ai1

. . . . . . . . . . . . . . . . . .
r1 a1d . . . a1j . . . a11

Then, given the indices V m
bk

of an m-cell bm
k , the corresponding code Cm

bk
is computed using the following expression:

Cm
bk

= Cm
ini +

m
∑

i=1

ri2
d(i−1) (4)

where Cm
ini is the code of the initial cell expressed in equation (1), and ri ∀i ∈ 1 . . . m are the rows of T (bm

k ), i.e.
ri = (aid . . . ai1)2.

Note that from equation (4), it can be seen that the values ri ∀i ∈ 1 . . . m are the digits of the representation in base 2d of
(Cm

bk
− Cm

ini). Taking into account this fact, given the code Cm
bk

of a cell bm
k , the corresponding indices V m

bk
on the grid Gm

can be retrieved from the columns of the conversion table built with the binary representation of the digits of (Cm
bk

−Cm
ini)2d

as rows.
As an example consider the 2-cell with code 11 in Figure 1c. Its indices are (v2

1 , v2
2) = (2, 1) = (102, 012). Then, the

conversion table is:

code 11 v2

2 v2

1

r2 0 1
r1 1 0

Using the values r2 = 012 = 1 and r1 = 102 = 2, the code can be retrieved as:

C2
bk

= C2
ini +

2
∑

i=1

ri2
2(i−1) = 5 + 2 × 1 + 1 × 4 = 11 (5)

On the other way round, C2
bk

− C2
ini = 11 − 5 = 6 = 124, and therefore its digits are r2 = 1 = 012 and r1 = 2 = 102.

These values correspond to the rows of the conversion table and therefore allow to retrieve the indices of the cell from the
corresponding columns.

B. Offspring codes
The descendants of a cell bm

k are obtained by adding rows to the conversion table T (bm
k ) and letting the bits of the new

rows have any value. For instance, the conversion tables of the descendant cells of Cm
bk

= 11 are:

code 45 v3

2 v3

1

r3 0 1
r2 1 0
r1 0 0

code 46 v3

2 v3

1

r3 0 1
r2 1 0
r1 0 1

code 47 v3

2 v3

1

r3 0 1
r2 1 0
r1 1 0

code 48 v3

2 v3

1

r3 0 1
r2 1 0
r1 1 1

Codes of neighboring cells can also easily be computed with the aid of the conversion table.

C. Hierarchical level

The level m of a given cell with code K is found as:

m = (int)

{

1

d
log2[(2

d − 1)K + 1]

}

(6)

For instance, the hierarchical level of a cell with code 14 in Figure 1c is:

m = (int)

{

1

2
log2[(2

2 − 1)14 + 1]

}

= (int)2.7171 = 2 (7)

III. DETERMINISTIC SEQUENCE GENERATION

This section introduces the generation of the sampling sequence that is based on the 2d-tree code convention. The sequence
relies on a predefined ordering of the 2d descendant cells of any given parent cell.
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A. Low-dispersion ordering of descendant cells

The position of a cell with respect to its parent cell can be defined by a binary word, w, with d bits, one for each axis. If
bj is the bit corresponding to the coordinate xj 1 ≤ j ≤ d, then:

w =

d
∑

j=1

bj2
j−1 (8)

Finding a low-dispersion ordering of the 2d descendant cells of a parent cell is then equivalent to the finding of the sequence,
Ld, of 2d binary words such that each element of the sequence maximizes the distance2 to the previous elements of the sequence.

The set, Wd, of all the 2d binary words with d bits can be classified in subsets taking into account the number of ones of

each word. There are d subsets, W n
d , of

(

d
n

)

elements each one, being n the number of ones of the words of the subset. Let

first consider an ordering of Wd based on this classification. Let Rn
d (i) and Rd(i) be the proposed ordering of W n

d and Wd,
respectively.

The ordering Rn
d (i) can be described by the following recursive expression:

Rn
d (i) =















2d−1 + Rn−1
d−1 (i) if 0 ≤ i <

(

d − 1
n − 1

)

Rn
d−1(i −

(

d − 1
n − 1

)

) else
(9)

with the following particular cases:

Rn
d (i) =

{

2d − 1 if n = d
0 if n = 0

(10)

Then, the ordering Rd(i) is:

Rd(i) = Rn
d (i − a) for a ≤ i < a +

(

d
n

)

(11)

with:

a =

d
∑

j=n+1

(

d
j

)

(12)

As an example consider the following tables corresponding to R2(i), R3(i) and R4(i):

i R2(i)
0 112 = 3 R2

2(i)
1 102 = 2
2 012 = 1 R1

2(i)
3 002 = 0 R0

2(i)

i R3(i)
0 1112 = 0 R3

3(i)
1 1102 = 7
2 1012 = 5 R2

3(i)
3 0112 = 3
4 1002 = 4
5 0102 = 2 R1

3(i)
6 0012 = 1
7 0002 = 0 R0

3(i)

i R4(i)
0 11112 = 15 R4

4(i)
1 11102 = 14
2 11012 = 13 R3

4(i)
3 10112 = 11
4 01112 = 7
5 11002 = 12
6 10102 = 10
7 10012 = 9 R2

4(i)
8 01102 = 6
9 01012 = 5
10 00112 = 3
11 10002 = 8
12 01002 = 4 R1

4(i)
13 00102 = 2
14 00012 = 1
15 00002 = 0 R0

4(i)

Finally, the sequence Ld is found by successively selecting elements of Rd in such a way that the even elements of the
sequence are the opposite of the previous odd ones (i.e. by changing ones by zeros and vice-versa), and the subsets W n

d are
properly alternated.

Ld(i) = Rd(jd(i)) (13)

with

jd(i) = (2d
− 1)

1 − (−1)i

2

+ (−1)i

{

(int) i
2
(−1)(int) i

2

2
+ (2d−1

−
1

2
)

(

1 − (−1)(int) i

2

2

)}

2The distance between two binary numbers is measured as the number of bits that differ, and is equivalent to the Manhattan distance between the cells
they represent.
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Fig. 3. Evolution of the mean distance of each new added cell of a sequence, for the binary sequences and the Ld sequence, when d = 5.

For instance, j2(i) = {0, 3, 1, 2}, j3(i) = {0, 7, 3, 4, 1, 6, 2, 5}, and j4(i) = {0, 15, 7, 8, 1, 14, 6, 9, 2, 13, 5, 10, 3, 12, 4, 11}.
The ordering jd(i) chosen is a simple yet efficient one. Alternative ways of jd(i) should be considered.

As an example consider the following tables corresponding to L2(i), L3(i) and L4(i):

i L2(i)
0 112 = 3
1 002 = 0
2 102 = 2
3 012 = 1

i L3(i)
0 1112 = 0
1 0002 = 7
2 0112 = 3
3 1002 = 4
4 1102 = 6
5 0012 = 1
6 1012 = 5
7 0102 = 2

i L4(i)
0 11112 = 15
1 00002 = 0
2 10012 = 9
3 01102 = 6
4 11102 = 14
5 00012 = 1
6 10102 = 10
7 01012 = 5
8 11012 = 13
9 00102 = 2
10 11002 = 12
11 00112 = 3
12 10112 = 11
13 01002 = 4
14 01112 = 7
15 10002 = 8

The mean Manhattan distance of one cell to all other brother cells (including the zero distance to itself) is:

dist =
1

2d

d
∑

j=0

(

d
j

)

× j =
d

2
(14)

Then, when a cell is added to the sequence, it is expected that its mean distance to all the previous cells of the sequence
converges to d

2 . A better sample dispersion is obtained if the variance around the mean value is as small as possible and if the
convergence is as fast as possible. Figure 3 compares the evolution of this mean distance for Ld with respect to the binary
sequence, B(i) = i, when d = 5.

B. The sampling sequence

The sampling sequence, sd(k), is a sequence of cell codes that specifies the ordering in which the d-dimensional C-space is
to be explored. The sequence sd(k) is based on Ld and results in an incremental low-dispersion covering of the entire C-space.

Let k ≥ 0 be the index of the sequence, m be the hierarchical level associated to k as expressed in equation (6), ri be the
digits of (k − Cm

ini)2d , and Ld(·) be the cell ordering of the descendant cells as expressed in equation (13). Then:

sd(k) = Cm
ini +

m
∑

i=1

Ld(ri)2
d(m−i−1) (15)

Note that Ld(ri) are the digits, in the reverse order, of the representation in base 2d of (sd(k) − Cm
ini). As an example the

last column of the following table shows the values of s2(k) for the first 20 cell samples generated on a 2D C-space. Columns
are computed from left to right and represent the steps to compute equation (15). Columns 3, 4 and 5 are written in base 4.
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k m (rm . . . r1) = L2(ri) digit decimal +Cm
ini

(k − Cm
ini)22 reversal

0 0 0 0 0 0 0
1 1 0 3 3 3 4
2 1 1 0 0 0 1
3 1 2 2 2 2 3
4 1 3 1 1 1 2
5 2 00 33 33 15 20
6 2 01 30 03 3 8
7 2 02 32 23 11 16
8 2 03 31 13 7 12
9 2 10 03 30 12 17
10 2 11 00 00 0 5
11 2 12 02 20 8 13
12 2 13 01 10 4 9
13 2 20 23 32 14 19
14 2 21 20 02 2 7
15 2 22 22 22 10 15
16 2 23 21 12 6 11
17 2 30 13 31 13 18
18 2 31 10 01 1 6
19 2 32 12 21 9 14
20 2 33 11 11 5 10

The coordinates of the configurations corresponding to the center of the sampled cells can easily be obtained from the
indices of the cells on the corresponding grids. Let Xm

bk
= (xm

1 , . . . , xm
d ) be the coordinates of the center of an m-cell, bm

k ,
with indices (vm

1 , . . . , vm
d ). Then:

xm
j = vm

j sm +
sm

2
∀j ∈ 1 . . . d (16)

For instance, the cells with codes 2 and 12 have, respectively, the indices (1, 0) on grid G1 and (3, 1) on grid G2. Since s1 = 0.5
and s2 = 0.25, then the resulting coordinates are (0.75, 0.25) and (0.875, 0.375).

C. Backward sequence

The backward sequence s−1
d (Cm

bk
) determines for a given code Cm

bk
, which is its order in the sampling sequence. It relies

on L−1
d , which gives (using the tabulated sequence Ld) the index i that corresponds to a given value Ld(i). Then:

s−1
d (Cm

bk
) = Cm

ini +

m
∑

i=1

L−1
d (ri)2

d(m−i−1) (17)

where in this case ri are the digits of (Cm
bk

− Cm
ini)2d .

D. Adaptive behavior

When a given sampled configuration is generated for path planning purposes (e.g. the center of a cell with code Cm
bk

), that
configuration is evaluated using a collision checker. Then, some environment knowledge (for instance distance information
or the number of neighbor configurations belonging to Cfree) can be used to determine that no further samples are required
within that cell. In this case, the backward sequence is used to compute the indices of the sampling sequence that correspond
to the descendant cells of Cm

bk
. These indices are set as disabled indices. Then, when sd(k) resumes, no samples are generated

for these disabled indices.
For instance, if in a 2D C-space the generation of samples is to be disabled on the region covered by cell 4, the codes of

its descendant cells are first computed, using the procedure detailed in subsection II-B:

Descendant Cells = {17, 18, 19, 20, 69, 70, 71, 72, . . . } (18)

Then, those values are applied to the backward sequence to generate the following sequence indices:

Disabled Indices = {5, 13, 9, 17, . . . } (19)

When sd(k) resumes, the samples corresponding to those disabled indices are skipped. Figure 4 shows the sampled configu-
rations of a 2D C-space generated using s2(k) with 0 ≤ k ≤ 18 and k 6= 5 6= 9 6= 13 6= 17.

Later on, perhaps due to a change in the environment, there may be the need to locally generate samples on a previously
disabled cell Cm

bk
. Those samples can be generated by applying the sampling sequence of equation (15), considering level m

as the initial level 0 and using the following initial cell codes:

C0
ini = Cm

bk
(20)

Cm+1
ini = (2dCm

ini) + 1 (21)
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the generation sequence (samples of partition level m ≥ 2 at the top right region have been disabled).

IV. CONCLUSIONS

Sampling-based path planners have proven to be the best current alternative to solve difficult path planning problems with
many degrees of freedom. A crucial factor in the performance of those planners is how samples are generated. Sampling
sequences should satisfy the following requirements. An uniform coverage that can be incrementally improved as the number
of samples increases, a lattice structure that reduces the cost of computing neighborhood relationships, and a locally controllable
degree of resolution that allows to generate more samples at the critical regions.

The proposed deterministic sampling sequence satisfy all these three requirements and is, therefore, a good tool to be
incorporated to any sampling-based motion planner. Its use in a probabilistic harmonic-function based path planner [7] is
giving promising results [13]. Future work include an extensive empirical testing of the proposed sampling sequence on several
PRM-like planners, and a comprehensive comparison with other sampling strategies.
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