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Abstract

Given an industrial robot equipped with a dexterous hand and an object to be grasped with four grasping points determined
on its faces, this paper deals with the problem of finding the joint configurations that allow to grasp that object. The proposed
solution is based on an iterative optimization method that consecutively moves the joint that best contributes to reduce the distance
of the fingertips to the desired locations. The method is particularized for a Stäubli RX90 robot and the dexterous hand MA-I
with four fingers developed at the IOC’s Robotics Lab.

I. INTRODUCTION

Dexterous hands are incorporated to robots in order to make them more flexible and widen the type of tasks they can
perform. This fact involves many specific planning and control problems. The first problem to be tackled is the grasp synthesis
that determines the best stable and proper grasp for a given object [1], i.e. where should the fingers be placed on the object
and in which direction should the forces be exerted in order to grasp the object.

Once the grasping points on the object are known, the inverse kinematics of the hand-arm ensemble must be solved in order
to determine the joint positions for the actual configuration of the object. This is a complex problem due to the great number
of involved degrees of freedom and the tree structure of the kinematic chain.

In this paper a general method to solve the inverse kinematic problem for a hand-arm ensemble is introduced. The proposal
is based on an optimization method that can cope with general robots and hands, although it is particularized for a Stäubli
RX90 robot and the dexterous hand MA-I with four fingers developed at the IOC’s Robotics Lab [2].

After this introduction, the paper is structured as follows. Section II describes the problem by presenting the kinematic
model, the problem statement and the proposed solution based on an iterative optimization method. Section III presents the
objective functions to be minimized, and Section IV describes the proposed inverse kinematics algorithm. The proposed method
is validated with the experiments reported in Section V. Finally, Section VI presents the conclusions of the work.

II. PROBLEM DESCRIPTION

A. Kinematic model

A robot arm equipped with a mechanical hand form a kinematic tree structure. Let A and F be the number of degrees of
freedom of the arm and of each finger, respectively, and N be N = A + F . Let K be the number of fingers of the hand. The
kinematic tree structure is considered as K kinematic chains that share the first A links. Then the links are labelled as jk with
j = 1, . . . , N and k = 1, . . . ,K. When the meaning is clear, the subindex will be omitted for the arm links, since jm = jn

∀m,n ∈ {1, . . . ,K} and ∀j ∈ {1, . . . , A}.
Using this nomenclature, let us define the following reference frames (Figure 1):

• FW : world reference frame.
• F0: reference frame attached to the base of the robot.
• Fjk

: reference frame attached to link jk. The frames attached to the fingertips are called FNk
, with k = 1, . . . ,K.

• FN∗

k
: desired position of FNk

.

The reference frames F0, FN∗

k
and FNk

are described, with respect to frame FW , by homogeneous transformations T 0
W , T

N∗

k

W

and TNk

W , respectively. Each reference frame Fjk
is described with respect to the previous link reference frame, F(j−1)k

, by
means of a homogeneous transformation, T jk

(j−1)k
. Using the Denavit-Hartenberg parameters αjk

, θjk
, ajk

and djk
, T jk

(j−1)k
is

given by [3]:

T
jk

(j−1)k
=







cos θjk
− cos αjk

sin θjk
sin αjk

sin θjk
ajk

cos θjk

sin θjk
cos αjk

cos θjk
− sin αjk

cos θjk
ajk

sin θjk

0 sin θjk
cos αjk

djk

0 0 0 1
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Fig. 1. Definition of reference frames.
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Fig. 2. CAD models of the dexterous hand MA-I and the Stäubli RX90 robot and the physical hand-arm ensemble.

B. Particular hand-arm ensemble

Figure 2 show the CAD models of the hand MA-I and the robot Stäubli RX90 as well as the real hand-arm ensemble.
The dexterous hand MA-I developed at the IOC’s Robotics Lab has four fingers with four degrees of freedom each one.

Three additional virtual joints are considered at the fingertips in order to take into consideration that (Figure 3):

• Any point of the fingertip can be used to contact with the selected grasping point on the object. Assuming a spherical
fingertip, the contact fingertip point can be determined by two virtual joints, θ11k

and θ12k
, and a virtual link of length

the radius of the sphere. The range of these virtual joints determines the valid area of the fingertip sphere.
• Only the direction normal to the object surface at the grasping contact point is defined as a requirement for the grasping

and, therefore, the orientation of the finger around this normal is free. This is modelled by another virtual joint, θ13k
,

with a range of 2π.

The DH parameters of the hand and the arm, including the three virtual joints of the fingertips, are shown in the Appendix.

C. Problem statement and proposed solution

The problem to be solved is “which are the proper positions of the arm and hand joints in order to perform a given grasp?”,
i.e. find the set of joint values that locate the fingertip reference frames FNk

at given desired locations FN∗

k
with k = 1, . . . ,K.

The proposed solution to this inverse kinematics problem is based on an iterative optimization method. The objective function
to be optimized (minimized) is the distance from the current to the desired fingertip locations. The problem is decoupled by
analyzing the effect of the individual motion of each joint in this objective function, i.e. the problem is partitioned into several
one-degree of freedom optimization subproblems. At each step of the iterative process, the joint value that individually minimize
this objective function is computed and used to update the kinematic structure.
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Fig. 3. Fingertip with the virtual revolute joints θ11k
, θ12k

and θ13k
defined around the z-axis of F10k

, F11k
, F12k

, respectively.

The proposed solution is inspired by the Distributed Optimization Method introduced by Regnier et al. [4] to solve the
inverse kinematics of all serial manipulators, and also used to solve the problem of the kinematic synthesis of manipulators [5].
A similar approach, but using a different distance metrics, was presented in [6] to solve the inverse kinematics problem for
redundant manipulators. The solution proposed in this paper uses a different distance metrics and extends the approach to
kinematic-tree structures.

III. OBJECTIVE FUNCTIONS

A. Distance metrics

The representation of the distance between two reference frames involves the parameterized mix of translational and rotational
components. No bi-invariant metrics exist in SE(3), the Euclidean group of rigid-body motions, although left- or right-invariant
distance metrics can be proposed [7] (i.e. distances invariant with respect to the choice of the inertial frame or to the choice of
the rigid body frame, respectively). The use of these metrics can be computationally expensive and therefore simpler metrics
are usually proposed in iterative procedures (e.g. [4], [6]). These simpler metrics may not have such invariant features nor a
well-defined mix of translational and rotational components. These factors may influence the behavior of metric-based complex
algorithms in an unclear and, therefore, undesirable way. As a consequence, the left-invariant metric proposed in [7] is used
in this paper.

Let X1 and X2 be two homogeneous transformations defining two reference frames. Then the distance between them is
determined by:

dist(X1, X2) =

√

φ2 +
1

L2
∆2 (2)

where φ is the angle, around a given axis, that X1 must rotate in order to obtain the same orientation as X2, ∆ is the euclidian
distance between the origins, and L is a parameter that weights the translational and rotational components.

The translational distance ∆ and the rotational distance φ are computed in the following subsections considering the kinematic
chain formed by the robot and one finger assuming FW =F0. In this case FN∗

k
and FNk

are described, respectively, by T
N∗

k

0

and TNk

0 . Therefore:
dist(X1, X2) = dist(T Nk

0 , T
N∗

k

0 ) (3)

Since this is a left invariant distance, this equation can be reformulated as (Figure 4):

dist(X1, X2) = dist(T jk

(j−1)k
· TNk

jk
,
(

T
(j−1)k

0

)−1

· T
N∗

k

0 ) (4)

This equation is written considering θjk
as the unique variable (i.e. considering fixed all other joint values). This allows

to find the value of θjk
that minimizes the distance. Let the translational and rotational components be called ∆jk

and φjk
,

respectively. Their expressions are the followings:



1) Translational distance: Let the homogeneous transformations T Nk

jk
and

[

(

T jk−1
0

)−1

· T
N∗

k

0

]

be expressed as:

TNk

jk
=









t00 t01 t02 t03
t10 t11 t12 t13
t20 t21 t22 t23
0 0 0 1









(5)

[

(

T
(j−1)k

0

)−1

· T
N∗

k

0

]

=









h00 h01 h02 h03

h10 h11 h12 h13

h20 h21 h22 h23

0 0 0 1









(6)

Then, being T jk

(j−1)k
defined by equation (1), the square of the translational distance ∆jk

is:

∆2
jk

=Pjk
cos(θjk

) + Qjk
sin(θjk

) + Rjk

Pjk
=2(−t03h03 − cosαjk

t13h13 + sin αjk
t23h13 − ajk

h03)

Qjk
=2(−t03h13 − cosαjk

t13h03 − sin αjk
t23h03 − ajk

h13)

Rjk
=2 cos αjk

(t23djk
− t23h23) + 2 sin αjk

(t13djk
− t13h23) +

h2
03 + t213 + t223 + t203 + a2

jk
+ h2

13 +

d2
jk

− 2djk
h23 + h2

23 + 2t03ajk
(7)

2) Rotational distance: If Φ1 and Φ2 are the rotation matrices associated to

[

(

T
(j−1)k

0

)−1

· T
N∗

k

0

]

and
[

T jk

(j−1)k
· TNk

jk

]

,

respectively, then [7]:

φ2
jk

= arccos2(
tr(Φ−1

1 Φ2) − 1

2
) (8)

where tr(·) means the trace of a matrix.
This expression can be approximated by the following one:

φ2
jk

=
π2

2
(1 −

tr(Φ−1
1 Φ2) − 1

2
) (9)

If Φ−1
1 is expressed as:

Φ−1
1 =





a00 a01 a02

a10 a11 a12

a20 a21 a22



 (10)

Then, the square of the rotational distance φjk
is:

φ2
jk

=
π2

4
(3 − Ajk

cos(θjk
) − Bjk

sin(θjk
) − Cjk

)

Ajk
= a00t00 + a10t01 + a20t02 +

cos αjk
(a01t10 + a11t11 + a21t12) −

− sin αjk
(a01t20 + a11t21 + a21t22)

Bjk
= a01t00 + a11t01 + a21t02 −

cos αjk
(a00t10 + a10t11 + a20t12) +

+ sin αjk
(a00t20 + a10t21 + a20t22)

Cjk
= cos αjk

(a02t20 + a12t21 + a22t22) +

sin αjk
(a02t10 + a12t11 + a22t12) (11)

B. Objective functions for finger joints

The inverse kinematics problem can be reformulated as a set of one degree of freedom optimization subproblems, with the
following objective functions to be minimized:

Fjk
= dist(T jk

(j−1)k
· TNk

jk
,
(

T
(j−1)k

0

)−1

· T
N∗

k

0 ) (12)
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Fig. 4. Distance from the current to the desired reference frame of the fingertip k, measured with respect to reference frame of link jk (using T 0
W

=I).

i.e. the distance from the current to the desired location of the fingertip reference frame is rewritten as a function of each
joint θjk

with j = (A + 1), . . . , (A + F ), k = 1, . . . ,K. Taking into account equations (2),(7) and (11), the resulting objective
function is:

Fjk
=

π2

4
(3 − Ajk

cos θjk
− Bjk

sin θjk
− Cjk

) +

1

L2
(Pjk

cos θjk
+ Qjk

sin θjk
+ Rjk

) (13)

This expression can be rewritten as:

Fjk
= αjk

cos θjk
+ βjk

sin θjk
+ γjk

αjk
=

1

L2
Pjk

−
π2

4
Ajk

βjk
=

1

L2
Qjk

−
π2

4
Bjk

γjk
=

π2

4
(3 − Cjk

) +
1

L2
Rjk

(14)

C. Objective functions for arm joints

The motion of the arm joints affect the position and orientation of the reference frames of all the fingers. Therefore, a
different objective function for these joints must be defined in order to take into account this fact.

Let F k
j be the objective function that gives the distance from the current to the desired position of the fingertip k, measured

in the reference frame of the arm link j, with j = 1, . . . , A.
The function F k

j is expressed by equation (14), since a unique kinematic serial chain is considered. Then, in order to
consider all the kinematic chains, the objective function Fj of the arm joint θj is computed as the sum of the functions F k

j ,
with k ∈ 1 . . . K:

Fj =

K
∑

k=1

F k
j =

K
∑

k=1

αjk
cos θjk

+ βjk
sin θjk

+ γjk
(15)

Using the DH notation, the z axis of the reference frame Fj is set coincident with the axis of the joint θj+1. This poses
a problem for the last link of the arm, since with this convention K reference frames are defined at link A and therefore
K measures of joint θA are obtained, although they differ only by a constant offset value [8]. In the proposed approach, the
correspondence between these values is arbitrarily set with respect to finger 1:

θAk
= θA1

+ δAk
k = 1 . . . K (16)

with δA1
= 0 and δAk

dependant on the geometry. For the hand MA-I these offset values are δA2
= δA3

= 0 and δA4
= 33.7◦.

In order to take into account this fact, equation (15) has to be modified for joint θA as follows:

FA =

K
∑

k=1

αAk
cos(θA1

+ δAk
) + βAk

sin(θA1
+ δAk

) + γAk
(17)



D. Minimization of the objective function

The objective functions presented in the previous sections measure the distance from the current to the desired location of
the fingertips, as a function of each single joint value. Then, these objective functions can be minimized to obtain the optimum
joint values, i.e. the values of the joints that move the fingertips close to their desired location.

The joint value that minimizes Fjk
is obtained from

∂Fjk

∂θjk

= 0 using:

• equation (15) for links j = 1, . . . , (A − 1)
• equation (17) for link j = A
• equation (14) for links jk with k = 1, . . . ,K and j = (A + 1), . . . , (A + F ).

The value θjk
obtained is:

θjk
=











































arctan
∑K

k=1
αjk

∑

K
k=1

βjk

when j = 1, . . . , (A − 1)

arctan
∑K

k=1
{αAk

cos δAk
+βAk

sin δAk
}

∑

K
k=1

{−αAk
sin δAk

+βAk
cos δAk

}
when j = A

arctan
αjk

βjk

when j = (A + 1), . . . , (A + F )

k = 1, . . . ,K

(18)

The value of θjk
is checked to be a minimum by verifying that the sign of the second derivative is positive. If this is not

the case, the minimum occurs at (θjk
+ π).

When θjk
is outside the range [θmax

jk
, θmin

jk
] of possible joint values, it is set to the limit value:

if θjk
< θmin

jk
then θjk

= θmin
jk

(19)

if θjk
> θmax

jk
then θjk

= θmax
jk

(20)

IV. OPTIMIZATION METHOD

The inverse kinematics of the hand-arm ensemble is solved with an optimization method based on a procedure that iteratively
computes the objective functions and moves the joint that best approaches the hand to the desired configuration.

The success of the proposed method depends on the initial joint values, due to the nature of iterative optimization algorithms.
When the improvement of the iterative procedure is not good enough (measured as a relative decrement of the objective
function), a retrial is performed restarting the procedure from a new initial configuration. A deterministic sampling sequence
is used to uniformly generate initial configurations over the configuration space.

A. Hand-arm inverse kinematics algorithm

The algorithm to compute the hand-arm inverse kinematics, shown below, uses the following functions:

OptimizeArm: This function uses equation (18) for j = 1, . . . , A to find the value of the arm joint that minimizes the
mean distance from FNk

to FN∗

k
with k = 1, . . . ,K. The function returns this optimum joint value.

OptimizeFinger: For a given finger k, this function uses equation (18) for j = (A + 1), . . . , (A + F ) to find the value
of the finger joint that minimizes the distance from FNk

to FN∗

k
. The function returns:

– this optimum joint value.
– the value of the objective function, Fk

MoveJoint: This function moves a specified joint, jk, to the given value, θjk
.

StartConfiguration: This function generates the initial values of the arm joints using a deterministic sampling sequence.
The initial finger joints values are set to the middle value of the corresponding ranges. The function returns a vector Θ

ini

with those values.



Hand-Arm Inverse Kinematics(FN∗

1
, . . . ,FN∗

K
)

Imax = Maximum number of iterations
i = 0
DO

retry = 0
Θ

ini =StartConfiguration( )
DO

θj=OptimizeArm (FN∗

1
, . . . ,FN∗

K
,Θini)

MoveJoint(θj)
FOR k = 1 TO K DO

(θjk
,Fk)=OptimizeFinger (FN∗

k
)

MoveJoint(θjk
)

END FOR
F = 1

K

∑K
i=1 Fi

IF i mod 10 THEN
IF (Fant − F)/F < δ THEN retry = 1
Fant = F

END IF
IF F < ε RETURN (θ1, · · · , θNK

)
i = i + 1

WHILE i < Imax AND retry = 0
WHILE i < Imax

RETURN solution not found

END

B. Initial configurations

The initial configurations of the arm joints are determined by sampling the corresponding configuration space. This problem is
the same as the one encountered in sampling-based motion planners. Usually these planners randomly sample the configuration
space (often with an heuristic bias towards the regions where it is most difficult to find a path). However, other sampling-based
motion planners rely on deterministic sampling sequences. Deterministic sampling provide a good uniform and incremental
coverage of the space, and can outperform random sampling in nearly all motion planning problems [9]. The determination of
the initial configurations of the proposed optimization method has been done using both random and deterministic sampling [10].
The best results where obtained using deterministic sampling.

V. EXPERIMENTS

The inverse kinematics algorithm has been incorporated to the Qilex robotics simulator developed at the IOC’s Robotic Lab
(http://qilex.berlios.de/, Figure 5), and has been statistically tested. The validation consisted of:

• Generating a set of grasping configurations by randomly setting the values of all the joints of the hand-arm ensemble and
then computing the direct kinematics.

• Applying the inverse kinematics algorithm to the test set.

The test set is composed of 1,000 grasping configurations. The algorithm has been able to find the solution of the inverse
kinematics in the 100% of the cases, using Imax = 25, 000, ε = 0.00001 and δ = 0.01. The value that weighs the translational
distance is fixed at L = 80. The mean number of iterations was 3,997 and the mean number of retrials was 18. The histograms
of the corresponding results for the 1,000 test configurations are shown in Figures 6 and 7.

VI. CONCLUSIONS

The use of dexterous hands in industrial robots pose several difficult problems, one of them being the determination of
the arm and finger joints in order to grasp a given object (once the grasping points on its surface and the direction of the
forces to be exerted are known). A general iterative optimization method has been proposed to solve the inverse kinematics
problem of hand-arm ensembles. The method consecutively finds the joint motions that best contributes to reach the goal. The
objective functions to be minimized are the distances from the fingertips to the grasping points. Distance metrics has been
carefully handled in order to properly consider orientations. The solution has been particularized for a Stäubli RX90 robot and
the dexterous hand MA-I with four fingers developed at the IOC’s Robotics Lab. The approach has been validated through
exhaustive experiments on a simulator.
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Fig. 5. Cell simulator with the RX90 robot and the MA-I hand.
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Fig. 6. Histogram of number of iterations.

APPENDIX

The Denavit-Hartenberg parameters of the fingers of MA-I and the robot Stäubli RX90 are detailed in the the following
tables (angles expressed in degrees and distances in millimeters). Note that the parameters of the last joint of the robot, θ6,
are expressed in each finger table with different values due to the feature of the DH notation commented in Section III-C.

RX90 Stäubli robot (joints jk j = 1, . . . , 5; ∀k)

jk 1 2 3 4 5
αjk

-90 0 90 -90 90
ajk

0 450 0 0 0
djk

0 0 0 450 0
θmin

jk
-160 -227.5 -52.5 -270 -105

θmax
jk

160 47.5 232.5 270 120
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Fig. 7. Histogram of number of retrials.

Finger 1 (joints jk , j = 6, . . . , 13; k = 1)

jk 6 7 8 9 10 11 12 13
αjk

90 90 0 0 0 -90 -90 0
ajk

67 0 76 56 40 0 0 0
djk

276 11 0 0 0 0 0 15
θmin

jk
-180 80 0 0 0 0 -180 -270

θmax
jk

360 100 90 90 90 90 0 90

Finger 2 (joints jk , j = 6, . . . , 13; k = 2)

jk 6 7 8 9 10 11 12 13
αjk

90 90 0 0 0 -90 -90 0
ajk

0 0 0 56 40 0 0 0
djk

276 11 0 0 0 0 0 15
θmin

jk
-180 80 0 0 0 0 -180 -270

θmax
jk

360 100 90 90 90 90 0 90

Finger 3 (joints jk , j = 6, . . . , 13; k = 3)

jk 6 7 8 9 10 11 12 13
αjk

90 90 0 0 0 -90 -90 0
ajk

-67 0 76 56 40 0 0 0
djk

276 11 0 0 0 0 0 15
θmin

jk
-180 80 0 0 0 0 -180 -270

θmax
jk

360 100 90 90 90 90 0 90

Finger 4 (joints jk , j = 6, . . . , 13; k = 4)

jk 6 7 8 9 10 11 12 13
αjk

0 90 0 0 0 -90 -90 0
ajk

72 0 76 66 45 0 0 0
djk

145 0 0 0 0 0 0 15
θmin

jk
-213.7 -66.3 0 0 0 0 -180 -270

θmax
jk

326.3 -46.3 90 90 90 90 0 90
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