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Abstract— This paper describes the port interconnection of using energy as the storage function. The clear separation
two subsystems: a power electronics subsystem (a back-to-tlac petween (a) constitutive relations, given by the energy, or
ACIAC converter (B2B), coupled to a phase of the power grid), s mjltonian, function, (b) the structure matrix, desaripi

and an electromechanical subsystem (a doubly-fed induction h fl inside th ¢ d th ;
machine (DFIM). The B2B is a variable structure system (VSS), NOW €nergy ows inside the system, an (c) the power ports,

due to the presence of control-actuated switches; howeverdm SOMe of which may be terminated by dissipative elements,
a modelling and simulation, as well as a control-design, point of allows the design of controllers with a clear physical inter
view, it is sensible to consider modulated transformers (MTF in pretation in what is known as Interconnection and Damping
the bond graph language) instead of the pairs of complementary Assignment Passivity-Based Control (IDA-PBC) [10].

switches. The port-Hamiltonian models of both subsystems Bond hs 111 b hical i
are presented and, using a power-preserving interconnection, ond graphs [11] can be seen as a graphical representa-

the Hamiltonian description of the whole system is obtained; tion of the PCHS. A bond graph is a graphical, network-
detailed bond graphs of all subsystems and the complete system based description of a physical system and describes the
are also provided. Using passivity-based controllers computed energy interconnection between its generating, storindy an
in the Hamiltonian formalism for both subsystems, the whole  gisginating elements. The bond graph description permits
model is simulated; simulations are run to test the correctness : . .
and efficiency of the Hamiltonian network modelling approach 1€ inteégration of submodels easily and, by means of a
used in this work. simple computer algorithm, the simulation-ready equation
of a complex model can be obtained.

|. INTRODUCTION In this paper, bond graph and PCHS models of a complex

The central paradigm of network modelling of complexsystem, see Figure 1, obtained from the interconnection of
systems is to have individual open subsystems with we#l doubly-fed induction machine (DFIM) and a back-to-back
defined port interfaces, hiding an internal model of vagabl(B2B) power converter, are presented. Simulations in dose
complexity, and a set of rules describing how the subsystert@op, with a control designed by means of Hamiltonian
interact through the port variables. passive techniques, are also performed.

One implementation of this general idea is what is known Doubly-fed induction machines have been proposed in the
as port Hamiltonian systems or port-controlled Hamiltonia literature, among other applications, for high perfornenc
systems (PCHS) [1][2] (see also [3] and references thereirptorage systems [12], wind-turbine generators [13] or ialybr
In this approach, energy plays a fundamental role, pogngines [14]. The attractiveness of the DFIM stems primaril
variables are conjugated variables such that their produsem its ability to handle large speed variations around the
has dimension of power, and the interconnection of subsysynchronous speed (see [15] for an extended literaturegurv
tems is implemented by means of what is called a Diragnd discussion).
structure, which enforces the preservation of power, and The back-to-back converter, connected to an auxiliary
can be seen as a generalization of Tellegen’s theorem ®ihgle-phase grid, provides the desired PWM rotor voltages
circuit theory [4]. PCHS theory allows the coupling ofto the DFIM. The B2B has the nice feature that power can
systems from different domains using energy as the linkingow in any direction. In particular, in our application the
concept, and provides the mathematical foundation for bongotor energy of the DFIM can flow back to the converter for
graph modelling [5][6]. Although originally developed for some operating conditions [12].
lumped parameter systems, PCHS theory has been extendedhe paper is organized as follows. Section Il presents the
to distributed parameter systems as well [7]. port Hamiltonian and bond graph models of the several sub-

Besides describing systems in a modular, scalable asyistems and their interconnection, and the Dirac strusture
non domain-specific way, PCHS theory allows a naturdnvolved in the interconnection and some associated twansf
implementation of passivity-based control methods [8][9]mations are identified. Using these, both a port Hamiltonian

and a bond graph models of the full system are constructed.

“This work has been done in the context of the European spedso Section |1l displays simulations of the closed loop system
project Geoplex with reference code 1ST-2001-34166 (&mtinformation . " .

for several operating conditions, and Section IV states our

is available atht t p: // www. geopl ex. cc), and partially supported by ’
the spanish project DP12004-06871-C0O2-02. conclusions.
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Fig. 1. The system: A DFIM controlled by a B2B converter. Currentsi? = (i iT) € R* and fluxesA are related by

A = L1, where the inductance matri& is

L= LsI2 LSTIQ R4><4
Il. BOND GRAPH AND PORT-CONTROLLED “\r.n L5, )%
HAMILTONIAN MODELS . . o
The interconnection matrix is

Bond graph theory is a powerful technique to model

physical systems [11]. This technique is graphically deen I Oz Sxd
and represents the power flow between the different elements gp=| Oz I €R
of a system. O1xz O1x2
Mathematical equations suitable for simulation can be eagith the port variables” = (vT,vT) € R*, wherev,, v, €

ily deduced, either manually or using specialized softwarer? are the stator and rotor voltages. Finally, the Hamiltonian

from the bond graph representation . This represents a lgnction is

advantage for complex and/or large systems made of smaller 1 1

subsystems, since the bond graph description is inherently Hp = gATﬁflAJr ﬁxfn

modular and scalable. . S
Port-controlled Hamiltonian systems (PCHS) can be seef'® Pond graph of the DFIM is depicted in Fig. 2.

as a mathematical description of bond graphs [6]. An exXplici Ll

PCHS has the form [3] Via :Se By

(324 RENTH@ o g
v =97 (@)(VH@)"

wherex € R™ are the energy variableg/(x) : R® — R is

the energy (or Hamiltonian) functiom, y € R™ are the port
variables,J (z) = —J % (z) € R™*" is the intra-connection
structure matrix, describing how the energy flows inside the
system,R = R > 0 € R"*" is the dissipation matrix,
andg(x) € R"*™ is the interconnection matrix, describing
the port connection of the system to the outside world. Port s, i \
variables are conjugated, so tHat[y] has units of power. R: Rs /\,1‘

Non-negativeness oR ensures that the map — vy is
V,, :Se / Se: V,

Se:Vy

passive.

A. The Doubly-fed Induction Machine Lur Loyl L,

A Port-controlled Hamiltonian model of a DFIM is given Fig. 2. Bond Graph of the DFIM.
in [12]. This model is described idg-coordinates [16], so
that three-phase variablesb€) are reduced to two-phase
variables {qg). The variables are (thé subindex refers B. The back-to-back converter

T _ T \T
to the DFIM subsystem)}, = (AJ, A7, Jmw,) € R?, or Fig. 3 shows the back-to-back converter selected for this

v = (AT, zy,), where AT = (AT, AT) € RY, A, A € R? system. It is made of a full bridge AC/DC single-phase
are the inductor fluxes img-coordinates (stator and rotor pq gt fike rectifier and a 3-phase DC/AC inverter. The whole
respectively),z,, = Jnw, is the mechanical Hamiltonian ¢,nyerter has an AC single-phase voltage input and its outpu
variable,w, the angular speed of the rotor, anfg, is the 516 3.phase PWM voltages which feed the rotor windings
total moment of mertlg of the rotating pgrts. The structurgs the electrical machine. This system can be split into
Jp € R?? and dampingR , € R**> matrices are two parts: a dynamical subsystem (the full bridge rectifier,
—wsLgJo —wsLgJo Osx1 containing the storage elements), and an static subsystem
JIp = | —wsLeds —(ws—wp)LpJo LgJois (the inverter, which, from the energy point of view, actelik
O1x2 LgilJs 0 a transformer).
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Fig. 4. Bond Graph of the B2B converter.
Fig. 3. Back-to-back converter.

First, from any set of three phase electrical variablesc

vi(t) = Esin(wt) is a single-phase AC voltage source, ;e ¢ompyte transformed variables;., by means of
L is the inductance (including the effect of any transformer

in the source) (' is the capacitor of the DC part, takes Yapy = Tyapc, (3
into account all the resistance losses (inductor, source an
switches), s, and ¢, k = 1,2,4,5,6. Switch states take With

values in{—1,1} and ¢-switches are complementary to % *% *%
switches:t, = s, = —s;. Additionally, s, = §7 = —s;. T = 0 % —% ,
The PCHS averaged model of the full-bridge rectifier is 1 L 1
as follows. The Hamiltonian variables are (B subindex efer Vi V3 V3
to the B2B subsystem}y% = ()\,q) € R?, where ) is the with 77 = T-! so that this is a power—preserving
inductor flux andg is the DC charge in the capacitor. Thetransformation{(i,v) = (iapc,vapc). For a three-phase
Hamiltonian function is equilibrated system, one has, + yp + yo = 0; the dg-
1, 1, transformation allows then working with only the two first
Hp = ﬁ)‘ + @q ) components (thex — 8 components) and neglect the third

one, the~, or homopolar, component, which is zero for
any balanced set and which, in any case, is dynamically
Tp = ( 0 —s ) cR>*? Rp= ( r 0 ) c p2x2 decoupled from the other components. _

st 0 0 0 The second part of the transformation relies on the as-
The interconnection matrix is sumption that the induction machine is symmetric, with a
sinusoidal distribution of magnetic fluxes in the air gap. It

while the structure and damping matrices are

(1 Oiqxs R2%4 1 56 54 R eliminates the dependence of the equationg ¢mechanical
gB=\ o 47 )€ » f=5 | ssose | ERYG position of the rotor), and consists in defining new variable
5473 Ydq via
with inputs
p ", ( Yaps ) :K(975) ( Ydgs ) (4)
u = ( ot ) c R4’ Yapr Ydgr
—labe
. . e’t29 Oy
whereil, = (i,,ip,i.) € R? are the three-phase currents in K(0,6) = ( Oy oT2(6-6) ) € R4
the inverter part. Notice that the inverter subsystem can be 2 ¢
seen as a Dirac structure [3] with whered is an arbitrary function of time, and
Vabe = JvpC o720 _ ( cos(¢)  —sin(¢) ) c R2%2
tpc = f Labe Sln(¢) COS(¢)

wherevl, . = (iq.is,i.) € R? are the three-phase voltagesif § is the stator frequencys,, this has the nice additional
andvpc € R, is the DC voltage, andpc € R is the DC  property of converting the sinusoidal time-dependentostat
current supplied by the rectifier subsystem. variables into constant values, which is useful for cotitigl
The bond graph model of the B2B converter is depictegurposes [12].

in Fig. 4. The switch model has been taken as a transformer,The total ABC' < dq transformation can be seen as a
which has the same behavior than an ideal switch for gnjrac structure defined by
averaged model [17].

vape = K(0,0)Tva, ®)

C. The dg-transformation .
1 ig = —(K(6,6)T)"iapc. (6)

From an analysis point of view it is convenient to express
the three-phase inverter voltages of the DFIM sidedn The dg-transformation can be seen, in bond graph terms,
components [16]. as a modulated transformation in two steps, Fig. 5. First the
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. . - Fig. 8. Interconnection scheme.
T transformation reduces, in an equilibrated case, from a 3-

phase ¢bc) to a 2-phased3). Then K (4, 6) simplifies the
dynamical equations of the DFIM.
Fig. 6 shows a completed bond graph of the first step o[?' PCHS model of the whole system

the dg-transformation. Indeed, we write the output equations Fig- 8 shows the interconnection scheme of the whole
system (B2B+DFIM). Thedg-transformation connects the

for efforts ] _
B2B converter with the DFIM as a Dirac structure.
€a = t11€q +l12€p +t13€c The interconnection relations are
e = t21€a + t2zep +tozee (7) Uy = Vdq, by = Z‘dqa VABC = Vabe; TABC = fabe- (12)
= tzeq+t tazec. . . -
r 31€a + 13265 + 536 We use equations (12) and introduce a révmatrix
which implement (3). For the flows we have (10) K = TTe20-0) ¢ R3%2,
1 1 1 . )
Ja = Tfal = bel = chl with T, defined so as to remove the homopolar component:
11 12 13
1 1 1 v2o o1 _ 1
fﬁ = 7fa2 = 7fb2 = 7.fc2 (8) T, = V3 i/g ‘{6 c RQXB.
o1 l22 log 0 X -
1 1 1 2 V2
fy = Ef(ﬁ = @fw = %fc3 The variables of the whole PCHS system aré =
(AT, Jwr, A, q) € R7, with energy function
fa = fa1 + faz + fa3 1 1 1 1
H=Hp+Hp=-ATLT'A+ —a2, + =N+ —".
Fo=For + For + foa 9) PTEET 2 ™ 2L7 T 20
fo=fo1 + foo + fos The R™*7 structure and dissipation matrices are
and finally O2x1 Osz1
fabc - TTfaﬁ'y, (10) jD - RD O2><1 K f
i ) . J—-R= 0 0 ,
which, expressed ia3y-components, is O1xa Oixs 0

One —fik 0 JE R

-1
fozﬂ’y — (TT) fabc- (11) ) ) ) )
and the interconnection matrix and port variables are

SinceT” = T—! we recover expression (3) for flows. Note

that for an equilibrated 3-phase system the bond graph takes Iy O

a form where they-port disappears. Oy Oz . . - 5
For the second part of the transformation, the bond grapty = O1x2 0 eR””uh = (vy,v:) R

is shown in Fig.7. Following the same steps as for the first O1x2 1

part of the transformation, we recover (4), since’?? = Oix2 0

(e2)T, The bond graph of the whole system is shown in Fig. 9.
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Fig. 10. Mechanical speed, .

[l. SIMULATIONS

In this Section we implement a numerical simulation of
the whole system controlled via the IDA-PBC controllers
[10], using two controllers designed for the DFIM and
the B2B in [12] and [18], respectively. The simulation has
been performed using tH20-sim* modeling and simulation
software. The parameters used in the simulations are given
in Table I. For the purposes of testing the model, the desired

DFIM| Lsr | Ly, Ls Tm B, R, R, vg |
Value| 0.041 | 0.042 | 0.0005 | 0.005 | 0.087 | 0.0228(380,0)|
B2B T L C E
Value | 0.08 | 1-10=3 | 4.5-10~3 | 68.16
TABLE |

SIMULATION PARAMETER VALUES (IN SI UNITS) FOR THEDFIM AND
THE B2B. ADDITIONALLY , ws = w, = 2750.

mechanical speed changes around- 2 - 507 (dotted line
in Fig. 10) and a desired bus voltagg, = 150 has been
selected.

Fig. 10 shows the desired and simulated mechanical speed.
Fig. 11 shows the reactive power compensation of the stator
side of the DFIM. Fig. 12 showsp¢, which remains close
to the desired value even in the transient of the machine.
The small oscillations of the DC-link voltage are intrinsic
to the system, due its 0-dynamics [19]. Finally, voltage
and current at the single phase source feeding the B2B are
depicted in Fig. 13, showing that they are nearly in phase.
The small phase shift is due to the fact that the controller
designed in [18] disregards higher harmonics (for example
the second harmonic component of the DC-link voltage).

IV. CONCLUSIONS

We have modeled and simulated a complex system, with
several subsystems from the electric, power electronids an
mechanical domains, using both the PCHS and the Bond
Graph paradigms. The simulations have been run in closed

1Sseewww. 20si m com



loop with controllers designed with the IDA-PBC technique
- et votage (), cument s8) developed for port Hamiltonian systems. The description of
the whole system as a network of interconnected subsystems
which exchange power in a preserving way has proved itself
useful both from the modelling and the control specification
and design points of view.
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