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A B S T R A C T   

We propose a neural network model to explore how humans can learn and accurately retrieve temporal se
quences, such as melodies, movies, or other dynamic content. We identify target memories by their neural 
oscillatory signatures, as shown in recent human episodic memory paradigms. Our model comprises three 
plausible components for the binding of temporal content, where each component imposes unique limitations on 
the encoding and representation of that content. A cortical component actively represents sequences through the 
disruption of an intrinsically generated alpha rhythm, where a desynchronisation marks information-rich op
erations as the literature predicts. A binding component converts each event into a discrete index, enabling 
repetitions through a sparse encoding of events. A timing component – consisting of an oscillatory “ticking clock” 
made up of hierarchical synfire chains – discretely indexes a moment in time. By encoding the absolute timing 
between discretised events, we show how one can use cortical desynchronisations to dynamically detect unique 
temporal signatures as they are reactivated in the brain. We validate this model by simulating a series of events 
where sequences are uniquely identifiable by analysing phasic information, as several recent EEG/MEG studies 
have shown. As such, we show how one can encode and retrieve complete episodic memories where the quality 
of such memories is modulated by the following: alpha gate keepers to content representation; binding limita
tions that induce a blink in temporal perception; and nested oscillations that provide preferential learning phases 
in order to temporally sequence events.   

1. Introduction 

When we remember detailed episodic memories, we often do this in a 
temporally accurate way (e.g. when we hum a melody that we only 
heard once). This implies that our brain has the ability to represent 
temporally accurate patterns as they unfold over time. Through exten
sive electroencephalography (EEG) & magnetoencephalography (MEG) 
recordings, we have been able to identify the neural oscillations that are 
thought to implement such functionality, in particular, during learning 
(Buzsáki, 2002; Fell and Axmacher, 2011) and information processing 
(Hanslmayr et al., 2012; Jensen and Mazaheri, 2010; Klimesch et al., 
2007). Here, it has been proposed that oscillations provide shared 
up-states that enable precise communication between disparate neural 
populations (Fries, 2005). A candidate mechanism for the regulation of 
such information processing are brain oscillations in the alpha band 

(8–12Hz). Such rhythmic oscillations are thought to provide a gating 
function to the representation of information (Jensen and Mazaheri, 
2010; Klimesch et al., 2007), where information representation would 
be measurable by oscillatory power changes in specific frequencies. As 
such, alpha frequency de-synchronisations are thought to signify infor
mation processing in cortical regions, as de-regulated neural activation 
enables potential information gain (Hanslmayr et al., 2012). Evidence 
has also been provided that successful episodic memory encoding and 
retrieval can be predicted by alpha power decreases (i.e. 
de-synchronisations) in several experimental (Fell et al., 2011; Hansl
mayr and Staudigl, 2014; Khader et al., 2010; Klimesch et al., 2005; 
Waldhauser et al., 2016), and modelling (Parish et al., 2018) studies. 

Importantly, the timing of activation relative to this intrinsic rhythm 
generator is key (Canavier, 2015). A form of representational similarity 
analysis (RSA; see Equation (16) of the Appendix), that involves 
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convolving one pattern across another to detect similarity, has recently 
been employed to detect the active representation of neural patterns at 
encoding (Ng et al., 2013; Schyns et al., 2011) and retrieval (Staresina 
et al., 2016; Staudigl et al., 2015; Wimber et al., 2012; Yaffe et al., 
2014). In this way, it is thought that the active representation of infor
mation breaks the rhythmicity of an entraining oscillation by resetting 
its intrinsic phase relative to some input (Canavier, 2015), enabling 
stimuli of interest to stand out from the surrounding rhythmicity of the 
brain (Hanslmayr et al., 2012). Consecutive phase-resets such as these, 
have been found to form a temporal signature that uniquely identifies 
specific sequences, allowing detection of the reactivation of visual or 
auditory stimuli (Staudigl and Hanslmayr, 2019), replay of complex 
movie sequences (Michelmann et al., 2019), reactivation in working 
memory (Michelmann et al., 2018) and episodic memory (Michelmann 
et al., 2016), and even reactivation during sleep (Schreiner et al., 2018). 
More broadly, a number of recent MEG studies leveraged other multi
variate analysis methods to detect reactivation of sequences (Korny
sheva et al., 2019; Kurth-Nelson et al., 2016; Lui et al., 2019). 

In addition to the alpha band, which is thought to regulate infor
mation representation in a decipherable manner (Hanslmayr et al., 
2012; Michelmann et al., 2016), an oscillatory hierarchy also seems to 
be important for stimulus processing (Lakatos et al., 2005). These occur 
when the phase of slower oscillations modulates the amplitude of faster 
oscillations, typically in a hierarchy of delta (1–4Hz), theta (4–8Hz) & 
gamma (30–50Hz) frequencies. It is thought that the synchronisation of 
these nested EEG oscillations enables attentional (Lakatos et al., 2008) 
and sensory (Schroeder and Lakatos, 2009) selection, by providing a 
temporal reference frame for visual (Barczak et al., 2019) and auditory 
(Tai et al., 2020) processing. 

In light of these findings, there is a substantial lack of theoretical 
work that explores the functional role that such oscillations might play 
in information processing and human episodic memory. As such, we aim 
here to model the memory-reinstatement of temporal patterns in the 
cortex, in a way that is physiologically plausible and consistent with 
empirical findings. The respective code can be found here (https://githu 
b.com/GP2789/The-Sync-fire-deSync-Model). Here, we focus on the 
dichotomy of oscillatory synchronisation, and it’s functional role for 
human episodic memory (Hanslmayr et al., 2016). As in previous 
modelling work (Parish et al., 2018), we build on the notion that low 
frequency desynchronisation in the alpha/beta frequency range 
(8–25Hz) is indicative of the active representation of information 
(Hanslmayr et al., 2012), which we further decode here to decipher 
information content (Michelmann et al., 2016). Previously (Parish et al., 
2018), we explored the notion that hippocampal theta synchronisation 
provides phases of optimal learning (Hasselmo et al., 2002; Huerta and 
Lisman, 1995; Pavlides et al., 1988). Here, we model a potential neural 
substrate for hierarchical frequency coupling, which is thought to pro
mote stimulus (Lakatos et al., 2005), sensory (Schroeder and Lakatos, 
2009) & attentional (Lakatos et al., 2008) selectivity. Previous model
ling work has suggested that such a nested hierarchy of oscillators might 
play a role in maintaining an ordinal sequence in working memory 
(Jensen et al., 1996), where successive items are stored in successive 
gamma slots within a theta cycle (Lisman and Jensen, 2013). We here 
explore the notion that these intrinsic hierarchical oscillators might 
more generally imbue the brain with the capability to encode the beats 
of human episodic memory, providing temporal reference points for the 
encoding of information, as is thought to occur in auditory (Tai et al., 
2020) and visual (Barczak et al., 2019) processing. 

We here take inspiration from previous modelling work on the notion 
of time-keeping in the brain (Itskov et al., 2011; Rolls and Mills, 2019; 
Shankar and Howard, 2012), though the focus of these works has typi
cally not been to demonstrate the ability to encode and retrieve 
temporally reliable content. As such, our primary motivation here is to 
explore the necessary ingredients for a neuro-physiologically plausible 
framework, grounded by experimental findings, to encode and retrieve 
identifiable episodic memories. The current modelling work is a 

continuation of the Sync/deSync hypothesis (Hanslmayr et al., 2016; 
Parish et al., 2018).Oscillatory synchronisations are thought to mediate 
communication (Fries, 2005), processing (Lakatos et al., 2005) & 
learning (Fell and Axmacher, 2011; Hasselmo et al., 2002), whilst also 
acting to control cortical excitability (Klimesch et al., 2007).In this way 
a desynchronisation represents information flow (Hanslmayr et al., 
2012) that can be decoded (Michelmann et al., 2016). 

We achieve the encoding and retrieving of episodic content by 
implementing a complementary learning systems (CLS) framework 
(McClelland et al., 1995), where the encoding of content is facilitated by 
a plastic hippocampal region, and the storage and representation of that 
content is enabled by a stable cortical region. We simulate three inter
acting neural assemblies that together enable the encoding and reac
tivation of episodic memories. We show that our model can learn and 
retrieve temporally dynamic episodes and that these episodes become 
identifiable via their temporal pattern of activity, which is accompanied 
by power decreases in the alpha band. This model implements recent 
theoretical considerations about the role of alpha (Hanslmayr et al., 
2012; Klimesch et al., 2007) and other nested frequencies (Lakatos et al., 
2005). We reproduce several empirical findings that show content spe
cific reactivation of temporal patterns in the alpha band (Michelmann 
et al., 2016), enabling us to make predictions as to how the quality of 
episodic content can be affected by oscillatory modulation and binding 
processes. 

2. Model architecture 

The following modelling work is intended as a proof of concept, 
exploring a plausible theoretical position as to how the encoding and 
retrieval of a temporally accurate memory might be achieved in the 
human brain. This allows us to explore the validity of several hypothesis 
made by contemporary empirical studies. Specifically, two hypotheses 
are that jumps in the phase of the intrinsic alpha oscillation can be 
“read” by a higher function (or external observer) to consistently iden
tify unique memory traces (Michelmann et al., 2016) and that nested 
frequency bands might contextualise episodic memories by providing 
temporal reference frames (Tai et al., 2020). By exploring such phe
nomena in a theoretical model, we go on to show how oscillations might 
enhance the episodic distinctiveness of memories, that is, by providing 
oscillatory blind spots that act to segregate temporal episodes into 
discernible chunks, maximising temporal context and minimising 
binding errors. 

To achieve these goals, our modelling works with interacting pop
ulations of single cells in an abstract manner. Though single cells are 
modelled in depth to allow us to accurately capture the phasic and 
plastic properties of a population, populations do not directly map onto 
any given neurophysiological counterpart – though their functions are 
inspired by them. Similarly, the scope of our analyses is limited to small 
target memories of just a few stimuli over a short period of time. Our 
primary motivation being to investigate the limitations of our entire 
theoretical structure with respect to both representing and binding in
formation, rather than the potential storage capacity or versatility in 
forward or backward replay of episodic sequences. Once encoded, 
temporal memories are reactivated by reversing the pathway of acti
vation with no concern for the context of the retrieval, such as time 
delays, wakefulness or sleep stage, etc. Our primary consideration in this 
matter is the strengthening of target synapses through co-activation 
under a Hebbian approach, allowing for the accurate reactivation of 
temporally organised content that can be identified through contem
porary analytical means, such as RSA. 

As the purpose of this model is to explore a theoretical position 
concerning the accurate encoding and reactivation of temporally 
organised content, we here put forward several hypotheses as to the 
components that seem necessary to fulfil this objective. Primarily, we 
are theorising that there might exist some form of stable, non-plastic 
timekeeper that maintains a sequential order of unique temporal 
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positions. We argue that this is an important concept for not only 
remembering the sequential order of beats in a rhythm, but also the 
temporal lag between them. In doing so, we put forward that a hierar
chical oscillatory solution would be the most cost-effective and robust. 
Additionally, if our two primary ingredients in the formation of mem
ories are the co-activation of dynamic content and temporal position, we 
also consider that there might be a discrete binding region that 
abstractly glues these two elements together. The purpose of this region 
would be to create a unique identifiable index for each temporally 
consecutive element in an episodic memory trace, such as a content shift 
or scene change, which unifies all sensory elements of the content under 
a single abstract label. We can also show that an attentional deficit is 
induced for content shifts that occur very close together in time, aligning 
our model with the well explored attentional-blink phenomenon 
(Bowman and Wyble, 2007; Swan and Wyble, 2014; Wyble et al., 2011; 

Raymond et al., 1992; Chun and Potter, 1995). 
As one of the first neurophysiological models to foray into the 

encoding, reactivation & detection of whole human episodic memories, 
we hope to stimulate alternative theoretical frameworks to tackle this 
issue in a way that is also consistent with empirical studies. 

Previous modelling work (Parish et al., 2018) explored how alpha 
power decreases could be due to the active processing of stimuli 
(Hanslmayr et al., 2012), which entails alpha acting as an inhibitory 
gate-keeper to the representation of cortically stored information (Kli
mesch et al., 2007) in a CLS framework (O’Reilly et al., 2011). Such a 
framework considers the proposition that catastrophic forgetting is an 
ever-present danger when learning occurs in a single system framework 
(McCloskey and Cohen, 1989), proposing instead that two comple
mentary systems are better suited to encode new memories and store old 
memories, respectively (McClelland et al., 1995). As in other models 

Fig. 1. Architecture of a spiking neural network model, using Hodgkin-Huxley equations (Hodgkin and Huxley, 1952). A neo-cortical (NC) region comprised of 
recurrent excitatory-inhibitory interactions, intrinsically oscillates through the reception of low-level (non-oscillatory) background noise (A, left-hand section: blue 
excitatory population & red inhibitory population). “Winner-take-all” behaviour was encouraged by short-range excitatory and long-range inhibitory connections, 
enabling the clear representation of each input. During encoding (blue top-down arrows), a sequence of incoming cortical stimuli trigger activation in a binding pool 
(B, left-hand section: blue excitatory population, red inhibitory population & additional red inhibitory “off-switch” node), a broadly tuned population that indexes 
each stimulus as a unique event through a combination of long-term potentiation (LTP) and hetero-synaptic long-term depression (LTD). An additional inhibitory 
node was required to prevent runaway excitation, what we term an “off-switch”. Through LTP, active binding assemblies form a direct connection between 
concurrently active hierarchical synfire chains (C, left-hand section: a feed-forward & clock-like structure used for the encoding of time, described in Figs. 2 and 3), 
and the NC representation of the stimulus. Conversely, LTD occurs within active binding pool assemblies, diminishing the likelihood that they would be able to 
compete for the indexing of subsequent stimuli. This is a form of hetero-synaptic LTD in response to the LTP occurring on other dendrites (Volgushev et al., 2016). 
Altogether, binding pool LTP & LTD ensures a sparse coding to index unique events. During recall (green bottom-up arrows), synfire chains are re-started and the 
relevant bindings are activated in sequence until the original pattern is re-instantiated in representational regions. Visualising this process through time in the 
right-hand sections of A-C, observable phase-reset patterns emerge in the intrinsically oscillating cortical region to represent information content (A, right-hand 
section: blue top-down arrows indicate the occurrence of stimuli and subsequent phase-resets). Describing the top-down encoding state, a sparse coding then in
dexes events in the binding pool region (B, right-hand section; numbered nodes indicate the occurrence of a unique binding assembly), which are bound to the ticking 
hierarchical oscillator (C, right-hand section: nested oscillatory frequencies). This enables events to be bound relative to a temporal rhythm (blue top-down arrows), 
ensuring that they can be recalled (green bottom-up arrows) with the correct absolute timing between events. We assume the presence of a neuro-modulator that 
switches information processing between the encoding direction (blue top-down arrows) and the retrieval direction (green bottom-up arrows), which is important to 
prevent cross-communication from contaminating encoding and recall processes. This is achieved by setting the weights of each pathway to zero at the appropriate 
processing phase. See the supplementary materials for more information on topology and parameter definitions. 
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(O’Reilly et al., 2011), we here instantiate a cortical region where 
long-term memories can be stored and safely reactivated without the 
risk of catastrophic interference (see Fig. 1A). We build on our previous 
modelling work (Parish et al., 2018) by further exploring the relation of 
information processing to a simulated alpha rhythm. In our previous 
implementation of cortical alpha as an extrinsic constant frequency, we 
showed how a gradual increase in stimulus strength overcomes inhibi
tion, at first synchronising and strengthening the entraining oscillation, 
until input succeeds in desynchronising the rhythm to actively represent 
the stimulus in question. In our current implementation of cortical alpha 
as an intrinsically oscillating neural assembly, we show how the timing of 

a stimulus is as important as its strength in predicting whether the 
stimulus will trigger a desynchronising phase-reset, or be lost in the 
entraining rhythm. As such, we explore a cortical oscillatory mechanism 
that enables information to be represented with respect to the sur
rounding rhythmicity of the brain. 

When taken together with the implication of nested rhythmic pace
makers in stimulus processing (Lakatos et al., 2005; Barczak et al., 2019; 
Tai et al., 2020), we here show how human episodic memories might be 
formed by desynchronised content being bound together relative to 
synchronised time-keeping oscillators (see Fig. 1C). This binding process 
makes up the other half of our CLS framework (O’Reilly et al., 2011), 

Fig. 2. Considering the storage cost of using multi-dimensional synfire chains in the representation of time (A). In B, we show how the required storage for the use of 
synfire chains in representing a given set of unique time points decreases as one increases the dimensionality of the nested hierarchy. Firstly, we show how one can 
increase the dimensions of a linear time-keeper by likening our topology to the face of a clock (A), where completion of the circling hand of a faster dimension (i.e. 
dashed arrow) moves a slower dimension forward by one tick (i.e. solid arrow). In the example shown there are 8 nodes per dimension, such that the number of 
unique time points each dimension can represent increases in a piecewise linear fashion (B) that is proportional to the number of nodes in prior dimensions (i.e., 8 
unique time points for 1 dimension [D1] of 8 unique nodes; 64 unique time points for 2 dimensions [D2] of 16 unique nodes; 512 unique time points for 3 dimensions 
[D3] of 24 unique nodes). We continue the trajectories of each dimension’s informational capacity to show the improvements that additional dimensions have on 
storage cost. We show both the typical (C-D) topology of a synfire chain from other modelling works (Diesmann et al., 1999; Itskov et al., 2011) as well as the novel 
hierarchical (E) topology described here. In the initial description of synfire chains (Diesmann et al., 1999), it was only necessary for a single dimension to pass 
activation through consecutive groups of excitatory (E, blue, nodes) cells (C). The addition of inhibitory (I; red nodes) cells in a “Mexican-hat” topology allowed for 
the emergence of winner-take-all behaviour (D), which allows temporal context to emerge in a broadly tuned population (Itskov et al., 2011). The hierarchical 
topology (E) adds further complexity by doubling-up on the winner-take-all framework. This scalable and compact assembly allows an additional inhibitory node 
(off-node, or O cell) to terminate persistent activation in an excitatory population (E node) when it receives a signal from an additional excitatory node (prop
agation-node, or P cell). Simultaneously, this propagation-node feeds into consecutive E nodes, permitting signal transmission once lateral inhibition subsides from 
terminated predecessors. The P cell also initiates feed-forward excitation in the first E node of any existing higher dimensional chains (D+1), as well as feed-back 
termination of any existing lower dimensions (D− 1). This enables the simultaneous and persistent activation of multiple temporal dimensions, akin to a ticking 
clock (Barnard, 2002; Friston, 2018). A dynamic visualisation of this process can be found in the video file of Supplementary Fig. 4. 
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which operates by discretising input to avoid repetition induced 
conjunction errors. Here, a sparsely encoded unique index binds cortical 
content to a moment in time (see Fig. 1B). Similar to other models 
(Bowman and Wyble, 2007), this binding process can trigger an 
attentional-blink phenomenon, where indices occurring very close 
together in time are poorly encoded. In exploring the functionality of 
this phenomenon, we find that these binding induced attentional deficits 
function to further increase episodic distinctiveness, creating bound
aries between encoded events. Altogether, the current modelling work 
explores a plausible framework to generate the temporal signatures 
observed in human EEG/MEG signals, and what functional role these 
observed physiological signals might play in information processing and 
episodic memory formation. 

Our model comprises three distinct mechanisms (as shown in Fig. 1) 
which independently implement timing, binding, and information con
tent, and together encode episodic memories that can be dynamically 
detected via cortical temporal signatures (Michelmann et al., 2016). In 

doing so, we aim to provide theoretical evidence for the 
inhibition-timing (Klimesch et al., 2007) and information via desynch
ronisation hypotheses (Hanslmayr et al., 2012). As such, information 
representation occurs in a neocortical (NC) area (Fig. 1A), where an 
alpha desynchronisation indicates information processing (Hanslmayr 
et al., 2012), as described in previous modelling work (Parish et al., 
2018). In the current work, we create an intrinsic and dynamic alpha 
frequency through recurrent excitatory-inhibitory interactions (Fig. 1A, 
left-hand section; blue excitatory node & red inhibitory node), where the 
frequency is dependent on the length of inhibitory post-synaptic po
tentials (Brunel, 2000). This allows changes in the environment to cause 
phase reset patterns with some specific temporal pattern (Fig. 1A, 
right-hand section; phase angle time series punctuated by event-driven 
phase-resets), thus conveying temporal information (Canavier, 2015; 
Ng et al., 2013; Schyns et al., 2011). This mechanism allows us to 
explore how phase-resets (and therefore information) might be gener
ated relative to a gate-keeping alpha frequency (Klimesch et al., 2007), 

Fig. 3. Consequences of binding content onto hierarchical synfire chains that are used to represent temporal positions. In A-C, we show that if one increases the 
dimensionality of the synfire chain, then one can no longer directly bind content repetitions without the use of a discretising binding pool. If the synfire chain is 1- 
dimensional (A), then each repetition of content is bound to a unique temporal position, ensuring that later reactivation of content is unambiguous. As one considers 
2-dimensional chains (B), however, then each repetition of content is incorrectly bound to multiple temporal positions, due to the recurrence of faster chains for 
every tick of a slower chain. This necessitates the instantiation of a binding pool (C), which discretises content into unique binding contexts akin to other models 
(Bowman and Wyble, 2007), allowing the recovery of the original content upon reactivation. In D-E, we show another complication in the use of hierarchical synfire 
chains for the representation of time. When content occurs on the border between nodes (D), then it is again ambiguously bound to multiple temporal positions. This 
issue can be addressed with the introduction of oscillatory synfire chains (E), which have down-phases during which time content cannot be fully bound. This 
oscillatory mechanism increases episodic distinctiveness (i.e. segregation into distinct temporal episodes), at the cost of reduced content specificity. 
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by adjusting the timing and strength of events relative to the intrinsi
cally oscillating phase of this cortical representation (shown later in 
Fig. 4). A time-series of the local field potential (LFP) is calculated as the 
summation of spike events, filtered by a band-pass filter within a 
particular range (see Appendix 1.1). A Gaborfilter is then applied, where 
the absolute or the angle of the resultant complex numbers is taken to 
approximate power or phase, respectively. 

During encoding (Fig. 1; blue top-down arrows), event-triggered 
activation is forwarded to the binding pool area. This discretises 
events consistent with the idea that the brain allocates unique tokens 
(Bowman and Wyble, 2007), allowing us to differentiate between 
repeating stimuli in a sequence. Here, the occurrence of a stimulus is 
treated as a distinct event through the activation of a selective popula
tion of units in a winner-take-all environment (Fig. 1B, left-hand sec
tion), implemented as long-range inhibitory and short-range excitatory 
connections (commonly termed a “Mexican-hat” topology”). In order to 
prevent runaway excitation in this event-driven and broadly tuned 
population, an additional inhibitory group was required. This received 
slow ramping excitatory input, eventually clamping down on the whole 
excitatory population. As such, we define this additional inhibitory 
group as “off-switch” cells. This mechanism has the additional effect of 
causing an attentional deficit immediately after a successful binding 
(shown later in Fig. 6), which we found to increase the episodic 
distinctiveness of encoded memories by creating clear boundaries be
tween events. During the binding process, a group of unique binding 
pool units are associated to any active cortical unit via a calcium 
dependent learning rule (Graupner and Brunel, 2012). As their local 
weights decrease during this process, which effectively models a form of 
hetero-synaptic long-term-depression (Volgushev et al., 2016), active 
binding groups become less likely to compete during successive events. 
Thus, active bindings are unique to the bound event. Concurrently, 
active temporal units (Fig. 1C, described in Figs. 2 and 3) are also 
associated with binding pool units, thus sequencing the timing of events 
as they occur. Once the hierarchical time-keepers are re-started in a 
cued-recall paradigm, the relevant binding pool units become active at 
specific moments in time (Fig. 1; green bottom-up arrows), causing a 
temporal pattern of events to be re-instantiated in the neo-cortex. As the 
timing mechanism is oscillatory, this allows us to explore the function
ality of oscillations in providing temporal reference frames in a more 
general sense (shown later in Fig. 7). 

In exploring the use of a feedforward neural substrate for the 
encoding of time (see Fig. 2), similar to other models (Itskov et al., 2011; 
Rolls and Mills, 2019), it was found that oscillations increased the 
quality of memory encoding by creating clear boundaries between 
temporal reference frames (see Fig. 3). This motivates us to further 
explore how hierarchical oscillators might regulate temporal perception 
(Barczak et al., 2019; Lakatos et al., 2005; Tai et al., 2020), examining 
the benefits and pitfalls of an oscillator-based model for serial order (see 
Fig. 3), similar to other models (Brown et al., 2000). Feedforward 
chains, often called synfire chains, are consecutively connected cell as
semblies (see Fig. 2C and D) that have been theorised to enable 
feed-forward signal transmission across the brain (Diesmann et al., 
1999). Feed-forward synfire activation is thought to be the best enabler 
of fast communication with high temporal precision. This is believed to 
be necessary for the distributed time-keeping that occurs during sensory 
and motor events (Mauk and Buonomano, 2004), possibly by enabling 
target cells to conjunctively represent distinct elements of a stimulus 
(Fries, 2005). Models of such synfire chains have shown that this kind of 
signal transmission can operate within a noisy environment (Diesmann 
et al., 1999), can co-exist within a randomly connected embedding 
network (Kumar et al., 2008), and might even naturally emerge in a 
plastic and locally connected environment (Fiete et al., 2010). It can be 
further demonstrated that a feed-forward synfire architecture can sup
port temporal encoding (Itskov et al., 2011), predicting that temporal 
sequences can be internally generated, being reliable from trial to trial, 
context dependent and long lasting, in a manner similar to time cells 

(Eichenbaum, 2014). However, a common criticism of such a means to 
model time is that the length of the chain must increase linearly with the 
desired duration (Shankar and Howard, 2012), especially important 
considering that humans can integrate experiences in time and space 
within the realm of milliseconds to minutes (Mauk and Buonomano, 
2004). 

Considering this, a goal of the current modelling work is to thus 
reduce the physical requirements of synfire chains in the encoding of 
longer temporal durations, which might be of interest from a systems as 
well as a physiological perspective. We achieve this by instantiating a 
hierarchical feed-forward chain (see Fig. 2), echoing principles of a 
recently published model (Rolls and Mills, 2019), where sequential cell 
assemblies maintain persistent activation in a feed-forward manner 
(Goldman, 2009; Itskov et al., 2011). To do this, we envisage a simple 
cell assembly of Hodgkin-Huxley neurons (Hodgkin and Huxley, 1952) 
that can be scaled up to encode for multiple, simultaneous and inter
acting temporal hierarchies. This cellular assembly exists as a compact 
unit with specific feedforward and feedback connections (see Fig. 2E), 
initiating and terminating persistent activation upon the completion of 
hierarchical sequences. We thus instantiate a hierarchy of synfire chains, 
where completion of a higher-dimensional faster sequence initiates the 
transmission of persistent activity to the next node in a 
lower-dimensional slower sequence. As such, higher-dimensional se
quences repeat at every node of the lower-dimensional sequence, 
decreasing the physical requirements of feedforward chains in the 
encoding of long temporal durations (see Fig. 2B). A moment in time is 
then marked as the concurrent activation of multiple temporal positions 
on simultaneous hierarchies, much like the multi-dimensional hands of a 
ticking clock (see Fig. 2A). 

However, there are associated costs with our hierarchical imple
mentation, namely, repetitions and conjunction errors (see Fig. 3). 
Repetitions occur when the same content is shown multiple times, where 
there is a marked difference if one were to bind repeating content 
directly onto a 1-dimensional (Fig. 3A) or a multi-dimensional (Fig. 3B) 
time-keeping device. There is no opportunity for confounds in the 
former, as each sequential synfire node represents a unique temporal 
position. In the latter, faster-dimensional chains repeat for every node of 
a slower-dimensional chain, meaning that temporal positions are rep
resented by unique combinations of hierarchical nodes. This means that 
confounds are incurred at recall when a repetition of content is directly 
bound onto multiple hierarchical nodes, as the encoded content will get 
reactivated at any combination of those respective nodes. This problem 
is overcome when one discretises content through the use of a broadly 
tuned binding pool. Here, each repeating item is treated as a wholly new 
event, meaning it will be uniquely transcribed onto any given multi- 
dimensional temporal position (see Fig. 3C). Whilst the necessary 
addition of a binding pool increases storage cost, we expect this to be a 
fixed size population of broadly tuned units, providing a highly 
distributed representation (O’Reilly and Munakata, 2000) that overall, 
does not impose too much on storage constraints when representing 
longer temporal durations. 

The secondary cost associated with the adoption of a hierarchical 
representation of time, regardless of substrate, is that of conjunction 
errors (Botella et al., 1992; Chennu et al., 2011). The conjunction errors 
we are interested in are the erroneous binding of content to multiple 
neighbouring moments in time. These can arise when content occurs at 
the boundary of temporal windows, especially those at 
slower-dimensions, as content is then incorrectly bound to multiple 
temporal positions in the hierarchy at once (see Fig. 3D). Interestingly, 
an effective solution to these conjunction errors is to switch from a 
continuous representation of time to an oscillatory one, as has been 
shown to be useful for auditory (Tai et al., 2020) and visual (Barczak 
et al., 2019) perception. This was achieved in the model by incorpo
rating ramping-up periods in our synfire-chain assemblies, similar to 
those observed in the hierarchical ramping cells of the lateral entorhinal 
cortex (Tsao et al., 2018), that slow down transmission from one node to 
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another in the inter-dimensional hierarchy. By implementing this 
oscillatory segregation in our nested chains, we were able to improve the 
episodic distinctiveness of temporal encoding within the model, albeit 
with the loss of any content that occurs within oscillatory troughs (see 
Fig. 3E). This is akin to the phenomenon of the attentional blink – 
described as a loss in temporal perception occurs for stimuli very close 
together in time. This suggests that the role that oscillations might play, 
is segregating temporal episodes into discernible chunks, as a previous 
model has also suggested (Brown et al., 2000). 

3. Results 

3.1. Cortical alpha as a mode for information representation 

We conduct several simulations using our model to evaluate its three 
distinct components (see Fig. 1). Firstly, we consider how information is 
generated relative to cortical alpha phase, given a stimulation of a given 
length (Fig. 4). This allows us to examine the inhibitory gating effect of 
cortical alpha oscillations, where the timing of an event is just as 
important as its strength when deregulating activation and representing 
information (Canavier, 2015; Ng et al., 2013; Schyns et al., 2011). This 

also informs the parameters used to simulate the representation of a 
stimulus for later simulations, allowing a stream of events to be 
consistently encoded. 

In evaluating the effect of a stimulus on the stability of our intrin
sically generated oscillations, we explored both the length of the stim
ulus, (i.e. the time constant, τ, of the F[α] described in Equation (12) of 
the methods section) and the phase of the intrinsic cortical frequency at 
which it was presented (Fig. 4; − π→π). Here, we see how a small 
stimulation causes no phase-reset if it is presented near the peak of the 
intrinsic oscillation (Fig. 4A; τ ≤ ~20 ms), i.e. when the population has 
recently fired and is currently being inhibited by local circuitry. As the 
stimulation increases in length, it causes phase-resets no matter at which 
phase it was presented. Interestingly, if even a small stimulation occurs 
in the trough of the intrinsic oscillation, i.e. when the population is less 
inhibited and gradually self-exciting, then there is a high likelihood of 
causing premature activation in the network and inducing a phase-reset. 
Similarly, for small stimuli there is a power synchronisation of the 
intrinsic oscillation if they are presented near the peak of the intrinsic 
frequency (Fig. 4B; τ ≤ ~20 ms), where they cause an additive evoked 
response. This bears much resemblance to our previous modelling work 
(Parish et al., 2018), where weak, temporally non-specific activation 

Fig. 4. Effect of input stimulus strength & input timing on the modelled alpha rhythm. 
Evaluating the parameter space for a stimulation of a given length to cause a desynchronisation and phase-reset of the intrinsic cortical oscillation. Large inputs 
desynchronise and reset the phase of the intrinsic rhythm, however small inputs only do so dependent on the current phase of the gating rhythm. A cortical 
stimulation is simulated as a Poisson distributed spike-train of a given number of spikes, multiplied by an Alpha-function (F[α]) described in Equation (12) in the 
methods section (see supplementary section). Here, we simulate many thousands of trials whilst varying the time constant (τ), which modulates the length of that 
function. In panels A & B, we plot the stationarity (A) and power difference to a baseline period (B; the mean of a period of 500 ms, ending 250 ms prior to stimulus 
onset) of the simulated cortical population, with respect to the τ of the α-function (y-axis) and the cosine phase at the time of stimulation (x-axis), allowing us to 
examine the strength and timing of the stimulus and its effect on a simulated cortical population. In A, stationarity is calculated as the similarity (RSA) of the 
stimulated period in relation to a pre-stimulus period, where any value below 1 indicates the existence of phase-resets. When we collapse vertically (C; where τ ≤
~25 ms, indicated by the black horizontal line in A), the relationship between the intrinsic phase and time of stimulation is fully expressed, where the cosine wave of 
the intrinsic oscillation (C; black line) closely matches the stationarity of the population after stimulation (C; red line). We similarly consider power differences to a 
baseline period (B), where a positive or negative value indicates a synchronisation or desynchronisation of the intrinsically generated oscillation, respectively. 
Collapsing vertically, i.e., over stimulus strength, (D; where τ ≤ ~25 ms, indicated by the black horizontal line in B), one can also see how power desynchronisation 
tracks the intrinsic cortical phase at presentation, albeit with a small lag. Panels i-iv show individual trials, where red lines and boxes tie to the corresponding τ and 
phase on the y-axis and x-axis, respectively. A vertical black line indicates the time of the peak of the α-function, i.e. the τ. On the left-hand axes, the local field 
potential (LFP) is shown above the intrinsic phase over time, with power deflections and stationarity similarly shown on the right-hand axes in blue and red, 
respectively. We highlight examples of trials where the intrinsic phase during stimulation is stationary (i) or non-stationary (ii), as well as when oscillatory power is 
de-synchronised (iii; “de-synched”) or a transient evoked response occurs due to synchronisation of input and phase (iv; “synched evoked response”). 
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was found to similarly synchronise cortical alpha oscillations by 
increasing the firing rate of neurons at the peak, but not the trough, of a 
given frequency. The additional exploration here finds that the timing of 
that stimulation is important, where a desynchronisation is caused even 
by small stimulation if it occurs just before the peak of the intrinsic 
frequency (Fig. 4D). This indicates an increase in information, as stimuli 
of interest shift in phase relative to the synchronised and uniform alpha 
oscillations over the rest of the brain (Hanslmayr et al., 2012; Klimesch 
et al., 2007). 

3.2. Encoding & reactivation of an episodic sequence 

We next go on to simulate a single trial of our model (Fig. 5), where 
the relative temporal relations within a sequence of cortical events is 
discretely encoded and reactivated. Here, we use RSA to detect the re- 
instatement of an encoded sequence at recall. This allows us to 
explore how information is represented in the cortex through desynch
ronising the intrinsic rhythm (Hanslmayr et al., 2012), conveying a 
temporal phase-reset signature that can be dynamically decoded upon 
reactivation (Michelmann et al., 2016). 

Fig. 5. Encoding & replaying a single sequence. 
Raster plot of a single simulation (A-F; blue/red dots = excitatory/inhibitory spike events) and subsequent phase-angle RSA (G & I: local field potential (LFP); H & J: 
phase-angles; K: RSA method and application; L: similarity signal through time), for encoding (A-C; left panels) and recall (D-F; right panels). At encoding, a sequence 
of events (top left panel; black lines) were fed into a random selection of cortical excitatory units (A), which became active at the expense of the population due to a 
“Mexican-hat” topology. This triggered activation in a unique group of selective binding pool units (B), which was itself terminated by an additional “off-switch” 
node to prevent run-away excitation (red spike events, top line-separated panel). During this time, hierarchical synfire chains maintained temporal rhythm through 
sequential activation of cellular assemblies (C). Long-term-potentiation (LTP) worked to bind any active units together in time, from the temporal region to the 
binding pool region, and from the binding pool region to the cortical region. Long-term depression (LTD) worked to reduce the weights of active binding assemblies, 
ensuring a sparse coding for each incoming cortical stimulus. Orange shaded regions are applied to the raster plots at encoding (A-C) to visualise periods of synaptic 
modification, where calcium amplitudes were above the threshold for potentiation. During recall (D-F; right panels), the re-started temporal region reactivates 
relevant bound events in the correct temporal order. The disruption of the intrinsic cortical oscillation can be seen in the LFP (G & I), where a diminution signals a 
desynchronisation in the dominant frequency (set to ~8Hz in this simulation). A subsequent phase-reset pattern at encoding is highlighted in the red dotted box (H), 
which was used in an RSA approach (K) to detect the re-instatement of a similar phase-reset pattern at retrieval (L). 
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In Fig. 5, neo-cortical (NC) assemblies were designed such that they 
intrinsically oscillated at a particular frequency, determined by param
eters for excitation/inhibition interactions (Brunel, 2000). In addition, a 
winner-take-all environment was instantiated, as has been theorised in 
models of visual working memory (Itti et al., 1998). Hypothetically, this 
ensures that only one locally connected neuronal group can be active at 
any one time, minimising the simultaneous activation of multiple rep
resentations in a distributed manner. As can be seen in Fig. 5A, pa
rameters were chosen to enable activation to spread through the entire 
excitatory population before inhibitory interactions had time to clamp 
down, thus allowing intrinsic oscillations to emerge. Once input was fed 
into a group of excitatory units (Fig. 5A; sustained excitatory spike 
events, depicted as blue dots), the selective topology can be seen 
inhibiting competing representations (Fig. 5A; sustained inhibitory 
spike events, depicted as red dots). This subsequently causes a 
desynchronisation in the ongoing alpha oscillation (Fig. 5G; local field 
potential), a phenomenon shown in many studies (Haegens et al., 2011; 
Hanslmayr et al., 2011a; Griffiths et al., 2019) to be related to neuronal 
activation. During this desynchronised period, the phase-angle time-s
eries shows evidence of phase-resets (Fig. 5H; red-dotted box), as the 
on-going intrinsic oscillation is externally affected through its repre
sentation of incoming stimuli. This indicates that these phase-reset pe
riods are linked to periods of event-related cortical activation, lending 
theoretical evidence to the argument that phase-angle time-series can be 
used to decode information content (Canavier, 2015; Ng et al., 2013; 
Schyns et al., 2011). 

The binding pool within the model was developed with similar in
tentions as other models (Bowman and Wyble, 2007), where a unique 
node was selected from a broadly tuned population to encode an event. 
We argued earlier that this method allows for repetitions (Fig. 3), where 
each presentation of a stimulus is treated as an independent event. In 
this way, a binding node is only required to activate during an 
event-related cortical activation, as can be seen in the raster plot of 
Fig. 5B. Here, parameters were chosen such that intrinsic oscillatory 
activity is not sufficient to cause activation in the binding pool. This is 
fulfilled by a relatively large synaptic time constant to gate 
cortical-binding projections, requiring sustained input to trigger binding 
activity. It was also important to obtain weight variation on these pro
jections by sampling from a normal distribution, to increase the likeli
hood of winner-take-all behaviour during event-related sustained input. 
As depicted in Fig. 1B, a global “off-switch” inhibitory cell (red node 
marked O) adds an additional safeguard mechanism to prevent runaway 
activation across the excitatory population, operating to inhibit the 
entire binding pool once sustained excitatory input reaches a threshold. 
Active binding pool units engage in learning, making bindings between 
the active cortical content layer and the currently active temporal units 
which together index a moment in time (indicated by orange shaded 
regions in Fig. 5A–C). During this time, the connections between active 
binding pool assemblies undergo long-term-depression, meaning that 
these bound units would not be able to compete upon successive acti
vations of the binding pool due to its highly selective topology. This 
ensured that each binding pool assembly uniquely indexed an event in 
time. 

Fig. 5C also shows a raster plot of our hierarchical, clock-like synfire 
chains. Once these chains are re-started with an initiating burst in 
Fig. 5F, the relevant binding and cortical clusters are then successively 
activated dependent on the combined activation of synfire hierarchies 
(Fig. 5D and E). We then examine our model in light of recent experi
mental findings (Michelmann et al., 2016), where unique temporal 
signatures were detected for dynamic stimuli in the phase-angle time 
series. As such, we show the phase-angle time series of cortical regions at 
encoding (Fig. 5H, at 8Hz), where a phase-reset pattern coincides with 
the presentation of the pattern (red dotted box). Using RSA, we can then 
compare this phase-reset pattern at encoding with the phase-angle time 
series at recall (Fig. 5J), resulting in a similarity time-series that peaks at 
the time of the re-instatement of the encoded pattern in cortical regions 

(Figure 5L). 
As shown in Fig. 5F, the recall phase entailed restarting the hierar

chical synfire chain, reactivating any relevant bindings in sequence. 
During this time, a pronounced alpha desynchronisation is also 
observable (see the LFP in Fig. 5I), building upon previous modelling 
work (Parish et al., 2018) that indicates that this can predict both suc
cessful memory encoding and recall (Fell and Axmacher, 2011; Hansl
mayr and Staudigl, 2014; Khader et al., 2010; Klimesch et al., 2005; 
Waldhauser et al., 2016). A notable lag in cortical reinstatement 
(Fig. 5D) indicates that the upwards direction of retrieval processes 
takes longer than the downwards direction of encoding processes, which 
is also indicated by experimental findings (Michelmann et al., 2016; 
Griffiths et al., 2019). Neurophysiologically, there are likely to be many 
neuronal layers for detecting and processing stimuli that would subse
quently increase this recollection lag. In the model, however, this is 
mostly since binding units fire late in their respective temporal window 
(as indicated by Fig. 5E). This lag could be reduced within the model by 
increasing upwards directional weights to encourage binding units to 
activate earlier in their window. However, this could have the unde
sirable effect of shifting activation forwards from encoding to recall, as 
events that are bound at a later point during the relatively broad window 
of our self-completing chain (~200 ms in length, ~5Hz), might be 
reactivated at an earlier point. In response to this, one could reduce the 
error by choosing a finer temporal dimension for the fastest, 
self-completing synfire chain. Bindings should then be encoded and 
recalled with more temporal precision. Such a notion might go some 
way to addressing why high-frequency gamma oscillations (>40Hz) are 
prevalent during episodic memory formation (Sederberg et al., 2007). 
This line of reasoning has also been noted by Fell and Axmacher (2011) 
and other models of sequence encoding (Jensen et al., 1996), who argue 
that gamma provides a fine-grained window of activation to maximise 
precise communication and learning (Fries, 2015). 

3.3. The binding pool enhances the episodic distinctiveness of memories 

Next we explore the relationship between the timing of two target 
stimuli and weight change in the model (Fig. 6). This analysis examines 
the attentional-blink phenomenon, as in other models (Bowman and 
Wyble, 2007), which is produced here as a by-product of an inhibitory 
off-node, the primary purpose of which is to control over-excitation in a 
broadly tuned population. By encoding events very close together in 
time, we examine the limitations of binding more generally, where an 
attentional-deficit might actually enhance episodic distinctiveness by 
clearly separating the boundaries between encoded events (Wyble et al., 
2009). The “binding” element of our model (Fig. 6) entails that events 
are discretely encoded as novel indexes using a binding pool of a fixed 
capacity. We can evaluate the limitations of this binding process by 
seeing what happens when two target stimuli are presented when 
varying temporal lags between them. Over many simulations, we can 
determine that the closer these two target stimuli (T1 & T2) are pre
sented in time, the more likely they are indexed by a single binding, 
reducing the episodic distinctiveness of these separate events and 
potentially increasing conjunction errors upon reactivation. This can be 
seen in Fig. 6, where for lags of ≤150 ms, we see that the binding pool 
capacity of the model is only decreased by the amount of one binding 
(Fig. 6A and B; grey shaded, ~15% binding pool capacity per binding). 
During this time, we can show that the T1 binding is often outcompeted 
by the subsequent T2 rival. Here, weight change is near maximal for the 
encoding of the T2 stimulus (Fig. 6B; all lines, ≤150 ms), whilst a 
decrease in T1 weight change occurs if it is followed by a T2 (Fig. 6A; 
black solid line, ≤150 ms). This is likely due to the “Mexican-hat” to
pology of our cortical network, which promotes the activation of only 
one representation at a time. We verify this theory by assessing the 
consequences of the content not changing between target stimuli, i.e. if 
the T1 is repeated (Fig. 6A; black dashed line). As can be seen, in this 
case there is no reduction in T1 efficacy. 
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When we increase the temporal lag between the two target stimuli, 
episodic distinctiveness increases as one begins to make multiple bind
ings for multiple target stimuli, though a lapse in binding capability at 
this junction begins to occur, in what is known as the “attentional-blink” 
phenomenon. Between a lag of 150 & 300 ms, there is a drastic reduction 
in the weight efficacy of the encoding of the T2 stimulus (Fig. 6B; all 
lines, 150 < lag ≤ 300 ms), whilst that for T1 remains very high (Fig. 6A; 
both lines, 150 < lag ≤ 300 ms). This is due to the “off-switch” node of 
our binding pool population, whose main priority was to stop runaway 
excitation from occurring after a successful binding. However, when the 
binding pool is inhibited, it is impaired in its capacity to register the next 
incoming stimulus. We explore several parameter settings for the syn
aptic time constant (τS) of the binding pool “off-node” to the excitatory 
population, whereupon we clearly see how a larger value (i.e. larger 
inhibition) leads to a further reduction in T2 efficacy at short lags 

(Fig. 6B; black dashed line τ = 5, black solid line τ = 15, black dotted 
line τ = 30). This interesting finding indicates the secondary role that 
such an “off-switch” might have evolved to play in improving the quality 
of our episodic memories, by segregating episodes into clearly distin
guishable bindings, despite the loss of attention for very short lags. 

As the lag increases past 150 ms, binding pool capacity is further 
reduced (Fig. 6A and B; grey shaded region), indicating that another 
indexing has taken place (upon which intra-binding pool weights are 
reduced by activation induced LTD). When it is clear that the majority of 
simulations have made two distinct bindings (Fig. 6A and B; grey shaded 
region, lag > 300 ms), we see that both T1 and T2 efficacy are high 
(Fig. 6A and B; weight change > ~0.8), indicating that both target 
stimuli have been successfully encoded as distinct episodes. 

In addition to the binding mechanics at encoding, we also explore the 
stationarity and power deflections of the cortical population at recall 

Fig. 6. Evaluating the attentional blink & episodic distinctiveness. 
Presenting two target stimuli (T1 & T2) to the model, where the T1 occurs before the T2. We simulate 2000 trials, each with a random time for the T1 & T2, thus 
varying the temporal lag between them. In the left-hand panels, we show the lag between the T1 & T2 on the x-axis with 50 ms bin width. In panels A-B, we show 
weight change of any active binding pool neurons at encoding on the right-hand axis, where a value of 1 indicates a strong replication of the successful indexing of 
neo-cortical content across trials. Similarly, on the left-hand axis, we show the remaining capacity of the binding pool (BP) after encoding, i.e. the proportion of 
weights that have not been reduced by LTD and thus are still capable of indexing further events. This allows us to see how many bindings are made at any given lag, 
where ~15% capacity is used per binding. In panel A, we show the accuracy for the T1 stimulus, both when a T2 (black line) or a repeating T1 (dashed line) stimulus 
occurred afterwards. As a random neo-cortical subpopulation is activated for each target stimulus, a repeated T1 is discerned as the same cortical population being 
activated twice in succession. In panel B, we show the accuracy for the T2 stimulus, this time varying the strength of inhibition that the binding pool “off-node” exerts 
on the population (O→E τS). We show the default parameter (τS=15 ms; black line, 2000 trials), as well as a lower value (τS=5 ms; black dashed line, 2000 trials) and 
a higher value (τS=30 ms; black dotted line, 2000 trials). This analysis allows us to explore the parameter that causes an “attentional-blink” phenomenon in this 
model, where the T2 stimulus has lower accuracy if the lag between T1 and T2 is small. In panel C, we show power change (blue line) and phase similarity (red line) 
relative to a baseline period (the mean of a period of 500 ms, ending 250 ms prior to stimulus onset) of the total neo-cortical population, i.e. independent of which 
target stimulus is active, at recall (shaded regions indicate 95% confidence intervals). In the right-hand panels (i-iv), we show the mean similarity (RSA) of the phase 
of each trial at recall to that of similar patterns (i.e., where T1 & T2 lag is similar; red lines), to that of different patterns (i.e., where T1 & T2 lag is dissimilar; black 
lines), and the content specificity (i.e., similarity to same minus to different patterns; pink lines). The overall content specificity of all trials is shown in the grey 
shaded area on each of i-iv, though we separate data by lag for each panel. This allows us to see how much the specificity for each lag region (pink lines) contributes 
to the overall specificity (grey shaded area). We here determine lag regions by looking at the left-hand panels, where vertical black lines have been drawn to mark the 
boundaries of behaviourally distinguishable regions. The underlying components of similarity to same (red) and similarity to different (black) patterns further allows 
us to examine why the overall content specificity varies by lag region, informing our discussion as to what we might consider interpretable signal using this method. 
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(Fig. 6C; stationarity in red, power change from a baseline period in 
blue). This was done to assess the quality of the binding process upon 
reactivation in the non-specific manner available to most EEG/MEG 
studies, where stationarity and power track the imaginary and real 
components of a Fourier transformed complex time-series. In doing so, 
we show how asynchronous firing can cause desynchronisations in two 
different ways, namely, by suppressing power through irregular spike 
patterns and by resetting the intrinsic phase (explored in Fig. 4). Initially 
(<150 ms), the stationarity and synchronisation of the cortical popu
lation at recall closely matches the binding pool capacity (Fig. 6A and B; 
grey shaded), indicating the singular binding made at encoding was 
recalled as a single item (Fig. 6C; ~-20% desynchronisation & ~0.3 
reduction in stationarity per represented item in the phasic signal). 
Between lags 150–300 ms, there are variably 1–2 items successfully 

encoded and recalled, indicated by reducing values in cortical syn
chronicity and stationarity. However, as we are considering a window 
centred over the midpoint between the target stimuli, we see a gradual 
increase in the length of oscillatory stability between the T1 and T2 for 
increasing lags. This has an important effect on the quality of the phasic 
temporal signatures that are later used to detect the re-instatement of 
content. 

In Fig. 6i–iv, we show how one can use the RSA approach to detect 
the re-instatement of unique temporal signatures that were identified at 
an encoding stage, as described by Michelmann et al., 2016. Using this 
method, one can calculate the mean of RSA to all similar patterns 
(Fig. 6i–iv; red lines), as well as the mean of RSA to all different patterns 
(Fig. 6i–iv; black lines). The difference between these is termed the 
specificity of the similarity measure (Fig. 6i–iv; pink lines), i.e. how 

Fig. 7. An oscillatory segregation of time. 
Presenting three target stimuli (T1, T2 & T3) to the model, where T1 occurs before T2, and T2 occurs before T3. We simulate 2000 trials, each with a random time for 
T1, T2 & T3, thus varying the temporal lags between them. The distribution of target stimuli over a 1500 ms period is shown as a stacked histogram in panel A. For 
example, at 1000 ms, T1 is rarely presented (vertical distance that is dark blue) whilst there is an almost equal chance of presenting a T2 & T3 (vertical distances that 
are light blue & yellow, respectively). The distribution of lags between target stimuli is shown in panel B (blue histogram), alongside the probability of a miss 
occurring at any given lag (red line), where a miss here is defined as a cortical activation not followed by any binding pool activity. The proportion of misses per 
sequence of target stimuli is shown in panel C, which includes another type of miss: a binding pool activation that occurs at encoding but not at recall, indicating that 
little synaptic change with synfire chain groups took place. Having described the simulation procedure, we then go on to examine the timing mechanism of the model 
in panels D–G. Here, we show the local-field potential (LFP) of the faster dimensional synfire chain (D; green line), calculations shown in Appendix section 1.2, 
filtered by an α-function (τ = 15 ms) & a 3–5Hz band-pass filter, which estimates the firing frequency of the synfire chain. This LFP was found to modulate several 
learning outcomes in the model. Firstly, it modulates the mean synaptic increase from any given synfire chain (SC) group to any active binding pool (BP) group (D; 
grey histogram), where a value of 1 indicates an all-to-all mapping and lower values indicate a weaker inter-group connection. Secondly, the LFP modulated the 
proportion of binding pool units that were active at encoding that are also active at recall (i.e. the “replay-ability” of the encoded binding, E; blue histogram), where a 
value of 1 indicates that all binding units that indexed a cortical event were also activated at recall, and lower values indicate a smaller proportion of those binding 
units were activated at recall. Lastly, the SC LFP negatively correlated with the reduced episodic distinctiveness (E; red histogram), described in Fig. 3, where a given 
binding might attach itself to sequential temporal positions (i.e. n SC binds = 2 in E; left-hand axis), which gives the false impression of a repetition at recall. This 
phenomenon can be shown to exist in anti-phase with the SC LFP (F), whilst the “replay-ability” of the encoded binding can be shown to exist in phase with the SC 
LFP (G). In the far-right hand panels (i-iii), we show the similarity (RSA) of phasic time series at encoding to recall for similar patterns (i.e. when the lags between T1, 
T2 & T3 were similar at encoding, i; red lines), to recall for different patterns (i.e. when the lags between T1, T2 & T3 were dissimilar at encoding, ii; black lines) and 
the content specificity across trials (i.e. similarity to same minus to different patterns, iii; pink lines). We do this for three conditions: for any sequence of target 
stimuli that contained at least one miss (i-iii; dotted lines, ≥ 1 miss); for any sequence with no misses, though a double SC binding occurs (i.e. “temporal smearing”, i- 
iii; dashed lines, > 1 binds); and finally for all other sequences (i.e. no misses or double SC binds, i-iii; solid lines, other). The purpose here is to highlight the effect 
that misses and mistakes have on the quality of the signal being decoded using the RSA approach. 

G. Parish et al.                                                                                                                                                                                                                                  



Neuropsychologia 158 (2021) 107867

12

similar is your signal to that of similar patterns relative to how similar it 
is to that for different patterns. We show here that for different patterns, 
where the lag between the target stimuli constitutes a bar-code like 
pattern, there is generally a positive content specific detection of the 
re-instatement of target patterns, followed by a smaller dip in detection 
performance (Fig. 6i–iv; grey shaded regions). We further break down 
our target patterns into those with varying lags between them, as 
defined by the vertical black lines in Fig. 6A–C (Fig. 6: i, lag ≤ 150; ii, 
150 < lag ≤ 300; iii, 300 < lag ≤ 600; iv, 600 < lag ≤ 1200), which 
separate the behaviourally distinguishable regions described previously. 

For small lags (Fig. 6i), it seems as though the high error-rates in 
encoding meant that the content specific detection of reinstated signa
tures was weak, where the similarity to the similar patterns is mostly 
weaker than that to different patterns. As 1–2 target stimuli are variably 
encoded (Fig. 6ii), this content specificity increases, though there is still 
some dissimilarity between similar and different patterns. Fig. 6iii 
highlights the sweet spot of this simulation procedure, when both target 
stimuli are successfully encoded and there is little stationarity in the 
signal between them, indicated by a consistently positive content 
specificity rating (pink line). However, as the lag between T1 & T2 in
creases and there is more stationarity in the identifying temporal 
signature (Fig. 6C; lag > 600 ms), there seems to be a much lower degree 
of similarity with different patterns (Fig. 6iv). Here, similarity also peaks 
when the convolved identifying signature perfectly aligns with the 
phasic signature of similar patterns at recall, otherwise it exists almost in 
perfect anti-phase to itself (indicated by the sinusoidal shape of the red 
line in Fig. 6iv). One can, for example, think of this as a binary 101 
pattern convolving over a 000-101-000 pattern. This observation might 
be important for those considering using RSA in the reinstatement of 
temporal signatures, who might want to understand more about the 
neural code that might underlie the quality of the signal being decoded. 

3.4. Oscillations enhance the episodic distinctiveness of memories 

Next, we evaluate the timing mechanism of our model by repro
ducing many sequences of 3 randomly timed stimuli (Fig. 7). This allows 
us to consider the effect of the perceptual trade-off explained in Fig. 3, 
where a ramping up period of activation in our hierarchical synfire 
chains produces oscillatory down-phases that regulate temporal 
perception. This leads to the phasic modulation of both the quality and 
accuracy of bindings that are made. This allows us to examine the 
functional limitations of using oscillations to provide a temporal refer
ence frame, as might occur in the brain (Barczak et al., 2019; Tai et al., 
2020), where segregating perception into discernible chunks might 
actually improve the episodic distinctiveness of memories. 

In evaluating the “timing” mechanism of our model, we initiate a 
similar simulation procedure as for evaluating the “binding” mecha
nism, though this time we introduce an additional target stimulus. In 
this way, we have initiated a T1, T2 & T3 sequence, where T1 occurs 
before T2 and T2 before T3. Aside from this, all stimulation times are 
random, where Fig. 7A shows the distribution of times for all target 
stimuli. As before, there is a binding punishment for a stimulus that 
occurs immediately after another stimulus, as indicated by Fig. 7B, 
where the probability a stimulus is missed negatively correlates with the 
lag between targets. Out of 2000 simulations, about 40% contained at 
least one missed stimulus (Fig. 7C). Some of these misses were not a 
binding issue, however, but a timing one. This is due to the ramping up 
nature of our hierarchical synfire chains, described in Fig. 4, which ul
timately provides a sinusoidal segregation of time. Fig. 7D–G shows how 
the filtered synfire chain (SC) local field potential (LFP) modulates 
learning efficacy (Fig. 7D; grey histogram), binding pool “replay-ability” 
(Fig. 7E; blue histogram) and binding mistakes (Fig. 7E; red histogram). 
The modulation of weights bears some resemblance to the Theta 
modulated learning rule of our previous modelling work (Parish et al., 
2018), where the intention was to create optimal phases of encoding, 
similar to experimental findings (Huerta and Lisman, 1995; Pavlides 

et al., 1988). The “replay-ability” factor here is defined as the proportion 
of binding pool units that were active at encoding that are also active at 
retrieval. This gives us an indication of how many successful bindings 
were unable to be temporally contextualised by the oscillatory clock, 
due to them arriving during a down-phase. 

One can appreciate the necessity of these oscillatory blind-spots 
when one considers the quality of encoded memory traces. Here, 
reduced episodic distinctiveness occur at a time when there is less 
weight change (Fig. 7D; grey histogram) that results in either a missed 
recall (Fig. 7E; blue histograms), or overlaps two consecutive synfire 
chain groups (Fig. 7E; red histograms, n SC binds = 2) to produce the 
false sense of a repetition at recall. When we analyse the content specific 
reinstatement of target memories, as we similarly did in Fig. 6, we see 
that sequences with multiple SC bindings were able to be recognised 
about as well as those with at least one miss in them (Fig. 7i–iii; multiple 
bindings shown as dashed lines, sequences with a miss shown as dotted 
lines, all other hits shown as a solid line. Similarity to similar sequences 
shown in red [i], similarity to different sequences shown in black [ii], 
and content specificity shown in pink [iii]). This indicates the role that 
oscillations might play in temporally segregating our episodic mem
ories, providing clear windows that are optimal for learning (see Fig. 7G; 
where “replay-ability” is positively modulated by synfire chain phase), 
yet also segregate with down-phases to unambiguously discern 
sequential order more easily (see Fig. 7F; where multiple bindings is 
negatively modulated by synfire chain phase). 

Previous research indicates that a cortical alpha desynchronisation 
and subsequent phase-reset patterns might signify information flow 
(Hanslmayr et al., 2012) and convey information content (Ng et al., 
2013; Schyns et al., 2011), respectively. Here, we have shown some 
theoretical evidence for these findings, where a reduction in power 
(Fig. 4C; blue line) and phasic non-stationarity (Fig. 4C; red line) sig
nifies the active representation of information (see also Fig. 7). Further, 
experimental evidence has suggested that one can decode information 
content through analysis of the phase-angle time series, enabling the 
identification of dynamic stimuli through examination of their unique 
temporal signatures (Michelmann et al., 2016). We have shown that this 
position can also be supported theoretically through the use of compu
tational simulations. By presenting many unique temporal patterns to 
our model (Figs. 6 and 7), we can compare phasic signatures from 
encoding to retrieval between trials of the same pattern as well as to 
other patterns. Here, we use RSA to compare these phase-reset patterns 
(an example being given in Fig. 5K). The high degree of content speci
ficity we observed, indicates that patterns were unique enough that on 
average, they did not resemble other patterns, and also that the phasic 
time-series of each pattern across trials was robust enough that on 
average, they resembled the same temporal signature. Taken together, 
the difference between these similarities can indicate the content spe
cific reinstatement of unique temporal patterns. The lag in the rein
statement of these patterns can partly be attributed to the lag discussed 
in a previous paragraph, yet also resonates with the fact that the highest 
similarity occurs at the midpoint of comparable time-series (as seen in 
Figure 5L), which is further delayed for longer sequences (see Fig. 6i–iv; 
where the peak of content specificity moves according to the lag period 
being observed). The occasional dip in performance after content spe
cific recognition, which is not present in the literature (Michelmann 
et al., 2016), seems to be due to the amount of stationarity in the 
identifying signature that is being convolved at recall. This means that as 
the pattern is convolved, the likelihood that the pattern exists in 
anti-phase to itself is higher. This is probably an unlikely occurrence in 
the brain due to the highly dynamic and complex representations that 
are active at any one time, and which are only observable as distributed 
and overlapping brain regions by non-specific methods such as 
EEG/MEG. 
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4. Discussion 

We have here presented a novel neural network with three distinct 
mechanisms (see Fig. 1 for model architecture). We have shown how 
oscillations might facilitate the encoding and retrieval of episodic 
memories in a Sync/deSync framework (Hanslmayr et al., 2016; Parish 
et al., 2018).Here, oscillatory synchronisation enables communication 
and learning (Fell and Axmacher, 2011), whereas a desynchronisation 
indicates the active representation of information (Hanslmayr et al., 
2012), which can further be decoded to decipher information content 
(Michelmann et al., 2016). This allows us to examine the quality of 
encoded episodes in relation to the interacting ensemble of our model. It 
was found that memories can be enhanced when oscillations are used to 
provide temporal reference frames (Lakatos et al., 2005), segregating 
episodic perception into discernible chunks. Encoding quality can also 
be diminished due to the limitations of binding within the model, which 
glues content together in time, such that events close together in time 
can be missed (Bowman and Wyble, 2007). Together, these mechanisms 
operate in harmony to enable us to bind discrete, observable events in 
time, though each mechanism allows us to explore a distinct set of 
hypotheses. 

4.1. On examining the quality of neo-cortical representations 

We first instantiate a neo-cortical (NC) mechanism (Fig. 1A), where 
intrinsic oscillations are generated at a resting alpha frequency through 
recurrent excitatory-inhibitory interactions. Here, we have imple
mented a winner-take-all mechanism in a “Mexican-hat” like topology, 
as has also been described in hierarchical models of vision, recognition 
and attention (Carpenter and Grossberg, 1987; Itti et al., 1998; Rei
senhuber and Poggio, 1999). By introducing an external event to our NC 
region, a subset of winning units that coded for that specific stimulus 
remained active whilst others were silent. During this time, the intrinsic 
frequency was de-synchronised (Fig. 4Ai), consistent with the experi
mental hypothesis that oscillatory desynchronisations are due to 
increased neural activation (Haegens et al., 2011; Hanslmayr et al., 
2011a), which occurs due to relevant representations becoming active at 
the expense of others (Hanslmayr et al., 2012). However, in Fig. 6 we 
found that this competitive framework produced an effect that was more 
pronounced than typically observed in the “attentional-blink” paradigm. 
Here, the first of two target stimuli (the T1), had a substantially reduced 
accuracy if the second target stimulus (the T2) was presented around the 
same time, an effect observed in traditional “attentional-blink” para
digms (Bowman and Wyble, 2007), but typically more weakly. This is 
due to the “Mexican-hat” topology of the simulated network, in partic
ular when we instead used repeating stimuli (Fig. 6A; dashed line, a T1 
repetition, i.e. where there was no competition in representations), T1 
accuracy for short lags was high. This resembles experimental findings 
where a reduced T1 blink was observed for stimuli where the T1 and T2 
shared some content or overlapping neural representations (Lindh et al., 
2019). 

The degree to which spikes conform to the local field potential is not 
fully explored here. We have instantiated a population with a high de
gree of spike uniformity to the alpha rhythm, though this is likely not the 
case for a typical cortical population (Chapeton et al., 2019). We 
anticipate that the degree of cortical spike coherence to alpha does not 
impact learning very much in our model, which is simply generated by 
stimulus locked neural activity, not alpha specifically. The impact would 
most likely be felt in the ability of a higher function or external observer 
to “read” the unique phasic signature that arises from underlying neural 
firing relative to the alpha rhythm, as deviations in neural firing become 
indistinguishable from the increasingly non-uniform background. 
Whilst further theoretical work can still be undertaken to determine the 
level of spike uniformity required to be able to decipher memories in 
such a manner, this work is more focused with the encoding and reac
tivation of entire episodic memories. Any experimental work on this 

issue would help us to further constrain our parameters for this aspect of 
our model. 

The model described here was built on previous modelling work 
(Parish et al., 2018), where a cortical desynchronisation signified gen
eral information processing as content was being represented and 
reinstated. Recently, experimental evidence suggested that one can 
decode more than general signals of processing from cortical alpha os
cillations, where phasic patterns are thought to convey information 
content (Ng et al., 2013; Schyns et al., 2011). Here, one can even identify 
a stimulus by a unique temporal signature that can be used to later 
detect its re-instatement in memory (Michelmann et al., 2016; Michel
mann et al., 2018; Michelmann et al., 2019), a method that has also been 
applied in several recent MEG studies (Kornysheva et al., 2019; 
Kurth-Nelson et al., 2016; Lui et al., 2019). In order to theoretically 
explore the neural mechanisms underlying such a phasic code, it was 
important to add a temporal dynamic to our model. In doing so, we 
expanded upon the simple cosine wave that dictated phasic information 
of previous modelling work (Parish et al., 2018), by implementing a 
feedback network of excitatory and inhibitory neurons (see Fig. 1). This 
allowed the phase of the population to be dictated by internally gener
ated population dynamics, further allowing an external stimulation to 
trigger a phase-reset of the intrinsically generated oscillation. We 
explored this dynamic in Fig. 4, where a stimulation of varying length 
was presented to the cortical network at various phases of the internally 
generated frequency. Stimuli that occurred during the peak of the 
entraining oscillation did not cause a phase-reset, and indeed caused a 
small synchronisation in the power spectrum. This aligns with experi
mental evidence where phase locking of transcranial magnetic stimu
lation (TMS) bursts occurred as a function of pre-stimulation alpha 
phase (Thut et al., 2011). This indicates that internally generated alpha 
phase gates the representation of stimuli, a theory known as the 
“inhibition-timing” hypothesis (Klimesch et al., 2007). We also show 
here that a desynchronisation of the frequency can be used to identify 
whether a stimulus was able to surpass the gating mechanism of local 
inhibitory circuits, where desynchronisation occurred as a function of 
phase (Fig. 4D). Indeed, desynchronisation negatively correlates with 
the form of the recurrent inhibitory α-function that after a small delay, 
follows excitatory activity during the peak. 

Here, we simulate a single cortical population, with lateral compe
tition within the local circuitry. In future works, we would like to in
crease this in scale to incorporate many such populations. Other models 
have found that several regions, each with an independent intrinsic 
oscillation, can align in phase through the mediation of a coordinating 
pacemaker (Vicente et al., 2008). As this is a proposed mechanism 
through which independent cortical columnal alpha oscillators are 
thought to align in phase, possibly through recurrent thalamo-cortical 
loops, it would be of further interest to instantiate a similar environ
ment and assess whether phase can be robustly used to convey infor
mation content. One could then also explore whether a priming event 
might cause a general phase-reset in thalamo-cortical columns, as has 
been hypothesised to occur during the P1 ERP component (~110 ms) of 
general recognition (Hanslmayr et al., 2011b). This might ensure that 
cortical regions are pre-aligned in phase and thus optimally entrained to 
a given stimulus. Then any subsequent phase-reset patterns might be 
more consistent across trials and not as reliant on initial intrinsically 
generated oscillatory conditions. This larger scale model would also 
allow us to encode multiple trace memories, where cortical content 
would be more distributed across several populations rather than 
competing within a single one, perhaps leading to a more identifiable 
phase-reset signature. 

Episodic memories have an inherent temporal dynamic. Studies have 
suggested that our perception is not continuous but is rhythmically 
sampled in discrete alpha-frequency time-steps (Hanslmayr et al., 2013; 
Landau and Fries, 2012; VanRullen et al., 2007). It might therefore be 
the case that there is a more qualitative element to alpha desynchroni
sations. As neocortical and hippocampal gamma oscillations have both 
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been found to be important when predicting successful memory 
encoding (Sederberg et al., 2007), it might be the case that an alpha 
desynchronisation deregulates alpha-frequency inhibition in order for a 
gamma-frequency sequence to be allowed to activate. In this sense, our 
neocortex within the model might undergo learning to inherit a hippo
campal sequence during encoding (or more likely, during sleep), as 
other models have shown is possible (Itskov et al., 2011), even in the 
absence of a downstream feed-forward architecture. The deregulation of 
alpha inhibition might then enable the inherited cortical sequence to 
play in full, both decreasing alpha power and increasing respective 
gamma power. 

4.2. On the discrete indexing of events using a binding pool 

The second mechanism within our model (Fig. 1B) ensured that 
events were treated discretely such that they could be bound as inde
pendent components of a sequence, similar to other models of ordinal 
working memory (Bowman and Wyble, 2007). Verification of the exis
tence of such a binding component could be achieved through the 
identification of such “index” cells, possibly in the medial-temporal-lobe 
(Squire et al., 2004). Through our explorations, we predict that the 
bursting of single cells is an essential component of this indexing pro
cess, an observation also made when inducing plasticity in hippocampal 
cell cultures (Huerta and Lisman, 1995), where a single burst can be 
sufficient for long term plasticity (Ison et al., 2015). 

We here argue that the use of a binding-pool enables the encoding of 
repetitions when employing a hierarchical representation of time (see 
Fig. 3), as might be the case if nested oscillatory frequencies are 
considered to aid selectivity in attention (Lakatos et al., 2008) and 
stimulus processing (Schroeder and Lakatos, 2009) by providing a 
temporal reference frame (Tai et al., 2020). Perhaps this then speaks for 
the necessity of discretisation, thought to occur in the medial temporal 
lobe (Squire, 1992; Squire et al., 2004) as part of the CLS framework 
(McClelland et al., 1995; O’Reilly et al., 2011). One might then consider 
this framework to have evolved into a steady-state, where the length of 
activation of any given discretised binding would be shorter than the 
down-phase of any oscillatory temporal reference frame, lest a 
conjunction between multiple competing reference frames occurs (see 
Fig. 3D and E). An investigation into the existence of these specific forms 
of temporal conjunction errors would give more insight into the brain’s 
adherence to a hierarchical and oscillatory discretisation of time. 
Alternatively, considering that a repetition seems to induce a “jump-
back in time” in human MTL neurons (Howard et al., 2012), an argu
ment might be made that the brain is not so tolerant towards repetition 
induced binding errors such as these, and thus might not discretise 
events in the manner of our binding pool. 

An interesting phenomenon exhibited by the model is the effect of 
the “off switch” mechanism in the binding pool that operates to prevent 
spreading activation across the excitatory population (see Fig. 1 for 
description). It was found that a new event would not be encoded during 
this inhibitory pulse, as cortical impulses could not overcome the 
increased global inhibition (see Fig. 6; for analysis of binding accuracy 
of two target stimuli close together in time). This is reminiscent of the 
hypothesised function of binding in other models (Bowman and Wyble, 
2007), where it is thought that attentional deficits for events very close 
together in time arise as a consequence of the need to limit the temporal 
extent of the binding process (Wyble et al., 2011). In our model, it is 
sufficient that the synaptic time constant from the “off-switch” cells to 
excitatory cells merely match that between excitatory cells (in Fig. 6B; 
this is the black dashed line, τ = 5 ms). This would then quench the 
possibility that activation escalates out of control. However, this time 
constant might be larger to further minimise binding errors, as well as 
acting in its default role of preventing runaway activity (Bowman and 
Wyble, 2007; Swan and Wyble, 2014). This might especially be neces
sary when encoding over very fine-grained temporal dimensions, where 
a global inhibitory pulse could be useful in separating events close 

together in time, though it risks causing an attentional blink for those 
events that follow before inhibition subsides. In our model, we varied 
the parameter that dictates the depth and length of this attentional blink 
(see Fig. 6B; varying the time constant for binding pool O→E synapses), 
indicating how the brain’s mechanism to maintain network stability 
might have been adapted to separate events into distinguishable epi
sodes, where a balance between network stability and minimising 
attentional costs evolves over generations. If these two functions were 
indeed intrinsically linked, then one might expect to see this attentional 
deficit correlate with individual differences in levels of inhibition. 

Our model also allowed for multiple events to be encoded within the 
same binding, as shown in Fig. 6A and B, where binding pool capacity 
was only reduced by the amount of a single binding yet both target 
stimuli were invariably encoded. This echoes the “illusion of integra
tion” finding (Simione et al., 2017), where it was found that when 
illusory conjunctions of a T1 and T2 could create a meaningful inte
grated percept, that percept was subjectively experienced similarly well 
as a T1 on its own. The lower T1 accuracy here parallels the existence of 
order errors when reactivating these events later, as has also been found 
in the literature for the encoding of events close together in time (Wyble 
et al., 2009). We also analyse the stationarity and synchronicity of the 
cortical intrinsic oscillation in these instances (Fig. 6C), showing that 
neural representations at recall only slightly increased in quality for two 
target stimuli at low lags. It would be good to further investigate the link 
between cortical oscillatory stability and the lag between target stimuli 
in line with other research, where overlapping representations were 
found to have an effect on the attentional blink (Lindh et al., 2019). This 
could be achieved by expanding on the number of cortical populations 
and creating more distributed representations. It would also be inter
esting to link our broadly tuned binding pool, likely hippocampal in 
origin, with the adaptive coding theory of the prefrontal cortex (Duncan, 
2001), where very broadly tuned units were also found. Here, one might 
theoretically explore how communication between these regions en
ables and maintains the adaptive coding of tasks and stimuli. In sum, we 
here argue for the existence of a binding pool in episodic memory for
mation by correlating the occurrence of an attentional-blink phenome
non in our model to that which is well documented in the literature 
(Botella et al., 1992; Bowman and Wyble, 2007; Swan and Wyble, 2014; 
Wyble et al., 2009). Due to the abstractedness of content representation 
in our model, we cannot make claims as to the modality of the stimuli 
involved. We show here how events occurring very close together in 
time have a lower chance of being encoded, and thus also failing to be 
retrieved from memory. The novelty of our analysis lies in relating these 
attentional demands on memory to alpha oscillations, where we predict 
that alpha power and stationarity should track the number of items that 
were successfully encoded (see Fig. 6C). Therefore, it might be possible 
to detect if attentional demands have inhibited memory performance 
through analysing electrophysiological time series. 

4.3. On hierarchical and oscillatory temporal reference frames 

Our primary motivation for the third component of our model is to 
explore how nested oscillatory frequencies might provide a temporal 
reference frame for selective stimulus processing (Barczak et al., 2019; 
Lakatos et al., 2005; Schroeder and Lakatos, 2009; Tai et al., 2020). If we 
are to consider the binding of memories as a spike-timing-dependent 
plasticity (STDP) process (Markram et al., 1997; Boo and Poo, 2001), 
where neural populations that are concurrently active bind together to 
encode new information (Hebb, 1949), then a plausible framework for 
such a temporal referencing schema would be transiently active cell 
assemblies. These are typically implemented as synfire chains, groups of 
consecutively connected cell assemblies (Diesmann et al., 1999), which 
are thought to naturally occur (Kumar et al., 2008; Fiete et al., 2010) and 
contribute to the precise transmission of information across the brain 
(Mauk and Buonomano, 2004). One such implementation of synfire 
chains (Itskov et al., 2011) has been shown to produce time-cell 
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behaviour consistent with that observed in the rat hippocampus (Mac
Donald et al., 2013), which is thought to aid the temporal mapping of 
memories (Eichenbaum, 2014). However, such chains are thought un
likely to encode for the long temporal durations required of human 
episodic memory (Shankar and Howard, 2012), due to the length of the 
chain having to increase linearly with time. In the current modelling 
work, we show in Fig. 2B how discretising temporal encoding in such a 
feedforward manner is much more efficient if the chains are hierarchi
cal. Akin to another recent model of hierarchical time-ramping cells 
(Rolls and Mills, 2019) found in the entorhinal cortex (Tsao et al., 2018), 
we have aimed here to implement a novel instantiation of hierarchical 
synfire chains (see Fig. 2) that encodes for multiple temporal scales 
(Howard and Eichenbaum, 2013). Our contribution here then, is to have 
used such a representation of time in the wholesale encoding and 
reactivation of an episodic memory trace, as observed in human EEG 
signals (Michelmann et al., 2016). In doing so, we postulate that the 
ramping up nature of hierarchical chains, modelled here as elsewhere 
(Rolls and Mills, 2019), might serve the functional purpose of aiding the 
episodic distinctiveness of memories by providing buffers of suboptimal 
binding (see Figs. 2B & 7). This, then, is relatable to the nested oscil
latory hierarchies found in stimulus processing (Lakatos et al., 2005), 
that are thought to aid selectivity in attentional (Lakatos et al., 2008) 
and sensory processing (Schroeder and Lakatos, 2009), possibly by 
providing temporal reference frames (Barczak et al., 2019; Tai et al., 
2020). In making this relation, we have shown how a transiently active, 
feed-forward and oscillatory cell assembly can modulate the quality of 
memories (see Fig. 7), and possibly learning more generally (Hasselmo 
et al., 2002), if they were employed in maintaining oscillatory reference 
frames for episodic memory. A question that arises then, is whether such 
a temporal reference mechanism is central to the MTL, as has been found 
in the examination of time-ramping cells in the rat MTL (MacDonald 
et al., 2013; Tsao et al., 2018), or whether they are more distributed 
across the cortex, enabling enhanced selectivity in attentional (Lakatos 
et al., 2008), sensory (Schroeder and Lakatos, 2009) and stimulus pro
cessing (Lakatos et al., 2005), all of which are key for human episodic 
memory. 

As such, one neural substrate contender for our timing mechanism 
might be that it resides in the entorhinal cortex, corresponding to time- 
ramping cells, as in similar models (Rolls and Mills, 2019), or even in 
hippocampal CA1 as intrinsic sequences, as another theory has sug
gested (Cheng, 2013). In this case, time-keeping would be centralised 
and disseminated to sensory processing brain regions (Church, 1984). As 
an alternative neural substrate contender, local subsystems might pro
duce their own time-keeping (Mauk and Buonomano, 2004), perhaps 
inducing the nested oscillatory hierarchies implicated in stimulus pro
cessing in the auditory cortex (Lakatos et al., 2005). Thus, their 
distributed placement here would be made all the more feasible by using 
a hierarchical rather than one-dimensional discretisation, as shown in 
Fig. 2. Though the nature of our time-keeping mechanism might alter
natively arise from heteroclinic synchronisation (i.e. synchronisation 
between two equilibria of a continuous time dynamical system, where a 
weak periodic input is thought to synchronise low-frequency oscilla
tions, Rabinovich, et al., 2006), membrane resonance (Hutcheon et al., 
1996), or any other such means, we hope here to have contributed to the 
theoretical use of such a hierarchical discretisation of time, which allows 
us to encode the absolute distance between the beats and pauses of 
human episodic memory traces (Michelmann et al., 2016). 

Adaptations of hierarchical time-keeping mechanisms might enable 
a signal to traverse chains at varying speeds depending upon the 
strength of the initial burst or levels of background noise, as other feed- 
forward synfire models have explored (Diesmann et al., 1999; Kumar 
et al., 2008). In this way, one could reactivate events at a faster rate, as 
has been observed during sleep (Diekelmann and Born, 2010). It might 
also be the case that some attentional mechanism can skip through 
scene-sized chunks, as indicated by recent findings (Michelmann et al., 
2019), where selective additional excitatory input focussed on a specific 

temporal dimension might compress memory reactivation until a point 
of interest is identified through an additional event-driven feedback 
mechanism. As well as this temporal compression, the mechanism might 
also be adapted to allow for reactivation to occur in reverse, as has been 
found for human time cell sequences (Eichenbaum, 2014). Of further 
interest would be to restart chains from content-specific locations, in 
order to kickstart episodic memory traces from specific locations. 

Considering the degree to which the temporal structure proposed 
here can condense a long and complex representation of time onto a 
relatively small neuronal population, we anticipate that it is compatible 
with both a centralised and distributed encoding of time (Mauk and 
Buonomano, 2004), where time is either broadcast from a central 
location (possibly from the medial-temporal-lobe [MTL]) or is distrib
uted across cortical populations. Therefore, if MTL were damaged and 
temporal replay were not hampered, then it might be strong evidence 
that these chains exist in a more distributed fashion. If, following MTL 
damage, new sequences were also not encoded, then this might suggest 
that temporal sequences originate in the MTL, then migrate to distrib
uted regions in a one-to-one mapping to be stored as long-term mem
ories, as a recent model has shown is possible (Itskov et al., 2011). It 
appears that the brain facilitates sequential and temporal processing 
over shorter timescales, without requiring the MTL (Mauk and Buono
mano, 2004). This more distributed timekeeping might arise as an 
emergent property of a dynamical system (Mauk and Buonomano, 
2004). Another suggestion in line with the modelling work presented 
here, is that this might be achieved through the brain’s preference for 
synfire chains (Fiete et al., 2010), which help to facilitate high speed and 
accurate communication (Diesmann et al., 1999) – and perhaps, tem
poral processing. As one of the first models to encode and replay com
plete episodic memory traces, we hope to stimulate further theoretical 
work on understanding how the brain accurately processes temporal 
information, over short and long timescales. 

Though the paradigm we have simulated is rather simple, we can 
speculate as to what might occur in more complex paradigms by 
examining the three components of our model. For example, what would 
happen if two sequences made up of stimuli ABCD were played with 
variable inter stimulus intervals. Firstly, we can think of each stimulus as 
occupying a region of cortical space, activating the same neuronal 
population with each occurrence. Next, the binding pool will encode 
each repetition of content as a unique occurrence, enabling the differ
entiation of the same note occurring multiple times in a sequence, or in 
multiple sequences. If we then decide to cue with stimulus A, then one 
would have to first enable binding to synfire chain LTP. In this way, 
cortical to binding activation would induce the synfire chains to begin 
from the moment stimulus A was encoded. As there are multiple se
quences associated with stimulus A, then the model will have to choose 
which sequence to play. This would be achieved by the lateral inhibition 
of the binding pool, which would ensure that only one binding pool 
group could be active at any one time. This “decision” could be influ
enced in a number of ways not modelled here, such as feedback from 
cortical regions, emotional salience, etc. The strength of the division of 
labour that we describe here lies in the ability to temporally con
textualise repeating content, where each component works indepen
dently yet in unison to together index the occurrence of repeating 
content at a particular moment in a temporal sequence. 

As oscillations are an intrinsic part of our model, we might further 
speculate as to the consequence of their reduction in amplitude, for 
example, by a pharmacological agent. We regard alpha oscillations as 
gateways to content representation, where stronger baseline alpha os
cillations would entail higher informational capacity as stimulated re
gions signal content activation by desynchronising out of the entraining 
rhythm (Hanslmayr et al., 2012). Thus, in our model, a stronger alpha 
would both inhibit the emergence of weaker stimuli occurring on 
down-phases of alpha (as we have shown in Fig. 4) and increase the 
reliability of deciphering information content based on alpha phase, and 
vice versa for a weaker alpha. As for nested frequencies within this 
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model, we speculate that a contributing factor to their emergence might 
be the coactivation of hierarchical sequences that together, can provide 
unique temporal reference frames. If these were somehow reduced in 
amplitude, then one might expect that the ability to differentiate be
tween stimuli in a sequence might be compromised, both at encoding 
and retrieval. 

5. Conclusion 

In conclusion, we have here presented a neural network model to 
examine a set of theoretical mechanisms that might enable the accurate 
encoding and reactivation of dynamic episodic memory traces. These 
being: that a deregulation of cortical alpha phase can be interpreted to 
consistently identify information content; that a discrete indexing of 
events is necessary to contextualise overlapping or repeating compo
nents of a memory; and that nested frequencies are a cost-effective so
lution to the provision of reference frames for temporal sequences. In 
doing so, we hope to stimulate further discussion that takes a holistic 
approach towards human episodic memory. 
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