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Abstract

The paper proposes a new approach to the problem of determining optimal form-closure
grasps of polygonal objects using four frictionless contacts. A new set of grasp parameters is
determined based only on the directions of the applied forces. These parameters are used to
obtain a new formulation of the necessary and sufficient condition for the existence of four-
finger frictionless form-closure grasps, as well as to determine the optimal grasp. Given a set
of contact edges, using an analytical procedure a solution that is either the optimal one or is
very close to it is obtained (only in this second case an iterative procedure is needed to find a
root of a non-linear equation). This procedure is the used for an efficient determination of the
optimal grasp on the whole object. The algorithms have been implemented and numerical
examples are shown.

1 Introduction

Grasping and manipulation of objects using multi-finger mechanical hands has become a field
of great interest in the two last decades. Good overviews of the state of the art in this field
including the related problems were done by Bicchi (2000) and Shimoga (1996).

The obtention of grasps capable of ensuring the immobility of the object despite external
disturbances has been a topic extensively studied in the literature. These grasps are charac-
terized by one of the following properties: form-closure (the position of the fingers ensures the
object immobility) or force-closure (the forces applied by the fingers ensure the object immo-
bility) (Bicchi, 1995). Mishra et al. (1987) enunciated a necessary and sufficient condition that
a form-closure grasp must satisfy. Nguyen (1988) determined a set of geometrical conditions
that four frictionless contacts and two frictional contacts must satisfy to obtain force-closure
grasps of 2D polygonal objects. Ponce and Faverjon (1995) and Ponce et al. (1997) extended
Nguyen’s approach to three finger grasps of 2D polygonal objects and to four finger grasps of
3D polyhedral objects, respectively, using a sufficient condition for force-closure. Li et al. (2003)
enunciated necessary and sufficient conditions for three finger force-closure grasps of 2D and 3D
objects. These works are specific for a given number of fingers. For any number of fingers, Chen
and Burdick (1993) developed a qualitative test to determine if a set of contact points allows
a force-closure grasp and Liu (1998) and Li et al. (2002) proposed algorithms to determine the
set of all the force-closure grasps of 2D polygonal objects.

∗This work was partially supported by the CICYT projects DPI2004-03104 and DPI2005-00112
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Finding the optimal grasp among all the force/form-closure grasps is a common problem
in grasp and fixture planning, and several criteria have been proposed for the grasp quality
evaluation (Suárez et al., 2006). Some of these criteria consider only the geometrical aspect of
the grasp (i.e., the immobility of the object is assured but without considering the magnitudes
of the forces applied by the fingers). In this line, Ponce and Faverjon (1995) proposed a grasp
quality criterion based on the minimization of the distance between the object’s center of mass
and the geometric center of the grasping points, criterion that was used for the grasp synthesis
by Ding et al. (2001), among others. A more complete problem is the determination of the
optimal force/form-closure grasp considering constraints on the fingers forces (a review of the
most used constraints was done by Mishra (1995)). In this line, Ferrari and Canny (1992), and
Kirkpatrick et al. (1992) proposed a criterion based on the maximum wrench that the grasp
can safely resist in any direction considering that the forces applied by the fingers are limited,
which is known as the criterion of the maximum ball. This criterion has been frequently used to
evaluate force-closure grasps generated with different strategies (Pollard, 1996; Borst et al., 1999;
Miller et al., 2003), but although these approaches provide good grasps they do not generate
the optimum. The synthesis of optimal grasps considering this criterion and with a reasonable
computational cost is a problem of great interest and it remains largely unsolved. The main
drawback of the general approaches developed until now is the computational cost, implying that
these approaches must be simplified when they are applied in systems with time constraints (Liu
et al., 2004). Variations of this criterion were also used to obtain general procedures. Trinkle
(1992) presented a variant that allows to obtain the final grasp with linear programming and
Zhu et al. (2003) used a different norm to compute the module of the wrenches, nevertheless, the
convergence to the optimal grasp is not guaranteed. In the field of fixture design it is common
the use of heuristics and exhaustive search procedures to obtain the final fixture design (Kumar
et al., 2000; Tan et al., 2004).

The quality according to the criterion of the maximum ball depends on the position of the
origin of the reference system and requires the definition of a metric in the wrench space. A
solution with physical sense is the selection of the center of mass as the origin of the reference
system for torque measurement and the selection of the radius of gyration for the metric adjust
between forces and torques. Other solutions were proposed by Mirtich and Canny (1994) de-
coupling forces and torques, and Teichmann (1996) defining an invariant metric. A comparison
of the criteria proposed by Ferrari and Canny (1992), Mirtich and Canny (1994) and Ponce and
Faverjon (1995) was done by Bone and Du (2001).

1.1 Contributions of this work

This paper presents a new procedure to determine the optimal form-closure grasp (hereafter
FC grasp) of 2D polygonal objects using four frictionless contacts and the quality measure of
the maximum ball. This implies that the final grasp is a basic solution with respect to the
number of fingers (four is the minimum number of frictionless contacts that allow a FC grasp
of 2D objects (Markenscoff et al., 1990)) and a conservative solution with respect to friction,
whose existence increases the robustness of the solution (even when the exact friction coefficient
is not known). The obtention of a procedure to solve this specific problem with a reasonable
computational cost was presented as an open problem in the literature (Mishra, 1995) and, up
to where we know, it has not been solved yet. The approach developed here follows a previous
work (Cornellà and Suárez, 2003), where the particular case of determining the optimal position
of a fourth finger given the positions of the other three was solved in a fully analytical way. In
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this paper, the determination of the optimal position of the four fingers is deeply analyzed and,
as a result, a procedure to determine the optimal grasp without involving hard iterative search
procedures is obtained. Specifically, the main contributions of this paper are:
Grasp analysis: Determination of a new set of intrinsic grasp parameters that depend only

on the object shape. These parameters are used to obtain a new necessary and sufficient
condition for the existence of a FC grasp and to identify different cases for the optimal grasp
determination.

Grasp synthesis: Development of an efficient procedure to determine the optimal grasp in each
case considering one of the most popular quality measures. This procedure obtains analyti-
cally a solution that is either the optimal solution or is very close to it. In this second case,
an iterative procedure is needed to find a root of a non-linear equation.
The authors are not aware of any previous work that analytically determines the optimal

grasp of 2D objects using the quality measure of the maximum ball. The approach presented by
Jia (1995) identified equivalent cases for the optimal grasp although not all of them were solved.
Here, a faster identification of each case is presented as well as the methodology to solve all of
them. The proposed approach to determine FC grasps with four frictionless contacts is also of
practical interest in the design of fixtures for 2D polygonal objects and some particular cases
of 3D polyhedral objects (Brost and Goldberg, 1996; Wallack and Canny, 1996; Stappen et al.,
2000).

The main general assumptions considered in this work are that the contact between the object
and the fingertip is punctual, and that the forces applied by the fingers act only against the
object boundary (positivity constraint).The vertices of the object are not considered as possible
contact points even when concave vertices may be actually considered for grasping purpose.

There is no constraint regarding the number of fingers per edge. Thus, in this approach, it
is possible to consider two fingers on the same edge (for polygonal objects a minimum of three
edges must be contacted to allow a FC grasp).

1.2 Paper layout

The rest of the paper is organized as follows. Section 2 describes the constraint on the finger
forces and the grasp quality measure used in this work. Section 3 presents the main algorithm
to obtain the optimal grasp on the whole object and Section 4 presents an efficient procedure to
obtain the optimal grasp on a given set of edges, which is the main contribution of the paper.
Different examples of the proposed methodology are included in Section 5. Some concluding
remarks and possible future research lines to extend this work are pointed out in Section 6. The
paper also includes three Appendices: in the first one, the quality measure is further studied
and some of its properties are detailed; in the second one, some geometrical reasonings that
reduce the computational cost of the proposed algorithms are presented; and, in the third one,
the proofs of all the propositions stated in the paper are included.

2 Grasp quality measure

The following subsections formally present the constraint on the finger forces and the quality
measure used in this work.
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Figure 1: Force f i applied by finger i at the contact point pi.

2.1 Constraint on the finger forces

The forces applied by the fingers can be subject to different constraints, depending on the
characteristics of the grasp (an exhaustive analysis of the most used constraints with their
physical and geometrical meanings was done by Mishra (1995)). The constraint used in this
work is that the total force exerted by the fingers is limited, for instance, due to a maximum
available power for all the finger actuators.

Let pi be a contact point on the object boundary described with respect to the object center
of mass, and let f i = αif̂ i, with αi ≥ 0 and ‖f̂ i‖ = 1, be the force exerted by the finger i at
pi. In the absence of friction, f̂ i is normal to the object boundary, i.e. f̂ i =(cos θi sin θi)T ,
where θi indicates the inward direction normal to the contact edge (Fig. 1). The force exerted
by each finger produces a torque with respect to the object center of mass τi = pi × f i, and the
components of f i and τi form the wrench vector ωi = (fT

i λτi)T , where λ is a constant that
defines the metric of the wrench space. In order for the metric to have a physical meaning in
terms of energy, λ is considered to be the radius of gyration of the object. The proposed approach
is valid independently of the value of λ; thus, for simplicity, from now on it is considered λ = 1
and therefore it is removed from the equations.

Considering that the total force exerted by the four fingers is limited by αmax, the resultant
force f on the object is given by

f =
4∑

i=1

αif̂ i = αf̂ with
4∑

i=1

αi ≤ αmax (1)

Geometrically, this constraint implies that the fingers can apply forces on the object that
produce a resultant inside the polygon Pf defined in the force space as (Fig 2a),

Pf = ConvexHull(
4⋃

i=1

{f i}) with f i = αmaxf̂ i (2)

Analogously, the resultant wrench applied on the object lies inside the polyhedron Pω defined
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Figure 2: Constraint and quality measure on: (a) the force space (polygon Pf and circumference
of radius Qf ); (b) the wrench space (polyhedron Pω and sphere of radius Q).
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in the wrench space as (Fig 2b),

Pω = ConvexHull(
4⋃

i=1

{ωi}) for f i = αmaxf̂ i (3)

In a FC grasp, Pf and Pω must contain the origin of the force and wrench space respec-
tively (Mishra et al., 1987).

In the rest of the paper, for simplicity and without loss of generality, we consider αmax = 1
and therefore f i will refer always to the maximum (unitary) possible applied force. Regardless
of the application point on the object boundary, f i =(cos θi sin θi)T always represents a vector
in the force space.

2.2 Quality measure definition

The quality Q of a FC grasp is given by the maximum wrench that the finger forces can generate
in any direction of the wrench space (Ferrari and Canny, 1992), i.e.

Q = min
ω∈∂Pω

‖ω‖ (4)

where ∂Pω is the boundary of Pω.
Geometrically, the quality measure Q is the radius of the maximum ball centered at the

origin of the wrench space and fully contained inside Pω, which is determined by the shortest
distance from the origin to the faces of Pω. Let Dijk be the distance from the origin of the
wrench space to the plane defined by ωi, ωj and ωk (the wrenches produced by fingers i, j and
k). Then, the quality measure can also be expressed as,

Q = min
i,j,k∈{1,...,4},i�=j �=k

{Dijk} (5)

The same concept can be applied to define a quality measure considering only the force
space (Mirtich and Canny, 1994) as,

Qf = min
f∈∂Pf

‖f‖ (6)

where ∂Pf is the boundary of Pf .
Fig. 2 shows the geometrical interpretation of the constraints Pf and Pω and the quality

measures Qf and Q, respectively. Note that Pf is the projection of Pω on the force space and it
is not possible to obtain a sphere fully contained in Pω with radius larger than Qf . Therefore,
Qf is an upper bound for Q.

Some interesting properties of the quality measure that are useful in the followings sections
are detailed in Appendix A.

3 Main algorithm

This section presents the procedure to obtain the optimal grasp over the whole object. The
following terms will be used.

Definition 1. The edge-optimal grasp, Ge, is the set of four contact points that generates the
optimal grasp on a given set of three or four contact edges. �
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Definition 2. The object-optimal grasp, Go, is the set of four contact points that generates the
optimal grasp over the whole object (i.e. Go is the best Ge). �

Given a combination of three or four edges where the fingers will contact, the direction θi,
i = 1, ..., 4, of the force applied by each finger is known, and from them f i = (cos θi sin θi)T and
then Pf are directly obtained. Therefore, Qf can be easily computed from equation (6) once
the contact edge of each finger is given.

The object-optimal grasp Go over the whole object is obtained with the following algorithm,
which uses Qf of a set of contact edges as an upper bound for the quality Q of any grasp
produced on those edges.

Algorithm 1. (Computation of Go). Let C be the set of possible different combinations of
three and four edges:

1. Initialize Q = 0

2. Determine the subset C ′ of C with the combinations of edges that satisfy 0 ∈ Pf .

3. Compute Qf for each combination of edges in C ′.

4. Order C ′ from better to worse Qf .

5. For each combination of edges in C ′ and following the order established in step 3, do:

5.1) Determine Ge and its quality Q′.

5.2) If Q < Q′ then Go = Ge and Q = Q′.

5.3) If Q is greater that the value of Qf of the next combination of edges then exit the
loop.

6. Return Go and its quality Q.

�
The determination of Ge in step 5.1 is the critical operation in terms of computational cost.

The rest of the paper deals with an efficient procedure to solve this problem, which is the key
contribution of this work.

4 Optimal grasp for a set of contact edges

Considering a given combination of contact edges (either three or four), the goal now is the
determination of Ge on these edges.

Geometrically, the determination of Ge is equivalent to determine the polyhedron Pω that
contains the largest sphere centered at the origin (refer again to Fig. 2), which is completely
defined by its four vertices ωi = (fT

i τi)T , with i = 1, ..., 4. Given a set of contact edges, the
directions θi and, therefore, the components f i of the four wrenches are known, the problem
being the determination of the values of τi that maximize Q (i.e. the radius of the sphere).
Since f i is known, the values of τi determine the positions of the contact points pi on the
corresponding edges. For this reason, from now on we will frequently refer to the problem of
finding the optimal contact points pi as the problem of finding the optimal values of τi.
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Figure 3: Example of a FC grasp and of the directional ranges.

4.1 Determination of Form-Closure Grasps

Based on the univocal relation between the contact point pi and the torque component τi, the
following concepts are defined.

Definition 3. The real range of τi, Ri, is the set of values of τi produced by the contact force
f i applied at any point pi on the contact edge Ei, i.e.

Ri = {τi = pi × f i / pi ∈ Ei} (7)

�
Definition 4. The directional range of τi, Rdi

, is the set of values of τi produced by the contact
force f i at any point pi on the supporting line ei of the contact edge Ei, that allows a FC grasp
given any other three wrenches ωh, ωj and ωk applied on the object, i.e.

Rdi
= {τi = pi × f i / pi ∈ ei and 0 ∈ Pω} (8)

with Pω described by equation (3). �
Note that Rdi

may include values of τi that are not physically possible due to the real edge
length (Rdi

is obtained considering that the contact edge has infinite length).
From these two definitions, four contact points pi, with i = 1, ..., 4 allow a FC grasp if

τi ∈ Ri ∩ Rdi
. Fig. 3 shows an example of a FC grasp and the directional ranges associated to

each contact point.
Stappen et al. (2000) defined as critical grasps those grasps that separate the FC grasps from

the non FC grasps and, therefore, that have Q = 0. Taking into account that Rdi
is defined for

three other fixed wrenches, it is a continuous set whose extremes τim are the values of τi that
produce a critical grasp, i.e., τi = τim implies Q = 0 and either τi = τim + δ or τi = τim − δ (but
not both at the same time) produce a FC grasp, with δ arbitrarily small.
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Geometrically, τim implies that the origin of the wrench space belongs to a face of Pω whose
vertices are ωi and two other wrenches ωj and ωk, i.e.

0 = αiωi + αjωj + αkωk (9)

with αi > 0, αj, αk ≥ 0 and αi + αj + αk = 1. Solving equation (9) for ωi and expanding its
components results:

cos θi = βi,jk cos θj + βi,kj cos θk (10)
sin θi = βi,jk sin θj + βi,kj sin θk (11)

τim = βi,jkτj + βi,kjτk (12)

where βi,jk = −αj

αi
≤0 and βi,kj = −αk

αi
≤0 (note that βi,jk and βi,kj can not be simultaneously

null because cos(θi) and sin(θi) can not be simultaneously null).
Given two known wrenches ωj and ωk, the corresponding extreme of Rdi

can be determined
as follows:

1. Solving βi,jk and βi,kj from equations (10) and (11) as:

βi,jk =
sin(θi − θk)
sin(θj − θk)

(13)

βi,kj =
sin(θj − θi)
sin(θj − θk)

(14)

2. If βi,jk ≤ 0 and βi,kj ≤ 0 then the τim resulting from equation (12) is an extreme of Rdi

that produces Q = 0 (if either βi,jk > 0 or βi,kj > 0, the resulting τim from equation (12)
makes that the plane defined by ωi, ωj and ωk contains the origin, but with the origin
outside the face of Pω).

The exact determination of Rdi
is only possible when the other three applied wrenches

are known (i.e. the positions of the other three contact points are given). Nevertheless, the
number of finite extremes can be determined knowing how many pairs βi,jk and βi,kj from
equations (13) and (14), respectively, have non-positive values for i, j, k ∈ {1, ..., 4}. Thus, the
number of extremes of each directional range depends only on the directions of the applied
forces. Taking into account the number of finite extremes, the directional range is classified in
one of the following two types:

Limited: Rdi
= [τi1 , τi2 ], τi1 and τi2 being two finite extremes where Q = 0 (e.g., Rd1 and Rd4

in Fig. 3).

Infinite: Rdi
= (−∞, τi1 ] or Rdi

= [τi1 ,∞), τi1 being the unique finite extreme where Q = 0
while the quality for τi → ±∞ is a finite value L (L is given by equation (40) in the
properties of the quality function in Appendix A) (e.g., Rd2 and Rd3 in Fig. 3).

Proposition 1. Given the three or four edges where the four fingers will contact and, therefore,
the directions θi of the applied forces, the number of infinite directional ranges is:
General case: If all the angles between the applied forces are different from π, there are two

infinite directional ranges that correspond to the torques generated by the two forces that
lie between the negated of the other two (Fig. 4a and Fig. 4b).
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Figure 4: Examples of the determination of the types of directional ranges from the applied
forces: a) General case: Rdi

and Rdj
are infinite and Rdh

and Rdk
are limited; b) General case

(with two fingers on the same edge): Rdi
and Rdj

are infinite and Rdh
and Rdk

are limited; c)
Particular case (with two opposite forces): Rdk

is limited and Rdh
, Rdi

and Rdj
are infinite; d)

Particular case (with two pairs of opposite forces): all the directional ranges are infinite.

Particular cases: If the angle between two forces is π, there are three infinite directional ranges
corresponding to the torques generated by the other two forces and the force that lies between
them (Fig. 4c), and if the angles between two pairs of forces are π, the four directional ranges
are infinite (Fig. 4d). �
From Proposition 1, it always exists two wrenches whose force components define two con-

secutive vertices of Pf and whose torque components have infinite directional ranges. These
wrenches take an special relevance in order to establish the following necessary and sufficient
condition that a FC grasp must satisfy.

Proposition 2. (Necessary and sufficient condition) Four frictionless contacts allow a FC
grasp iff for f i and f j defining two consecutive vertices of Pf and τi and τj having infinite
directional ranges, the following condition is satisfied

sign(Γi) 
= sign(Γj) (15)

where
Γρ = βρ,hkτh + βρ,kh − τρ (16)

with ρ ∈ {i, j} and βρ,hk and βρ,kh being determined from equations (13) and (14). �
This necessary and sufficient condition can be interpreted as follows. When Γρ = 0 equa-

tion (16) is equivalent to equation (12), implying that τρ = τρ1 is the unique finite extreme of
Rdρ . Then, equation (15) establishes that τi has to be greater than τi1 while τj has to be smaller
than τj1, or viceversa, in order to obtain a FC grasp (how greater or smaller τi and τj are with
respect to τi1 and τj1 is irrelevant for the necessary and sufficient condition).

4.2 Optimal Grasp Cases

The four contact points define the polyhedron Pω in the wrench space, which has four faces and
the grasp quality Q is the distance from the origin to one or more of these faces. Jia (1995)
established a relation between the number of faces that are at a distance Q of the origin and
the number of contact points that lie on an extreme of an edge, classifying the optimal grasp
into one of the four possible cases:
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Figure 5: Examples of the internal bounds and of the three cases in the determination of
the directional-optimal grasp of Proposition 4 (a) Chj ≥ Qf and Cik ≥ Qf ; (b) Chj < Qf and
Cik ≥ Qf ; (c) Chj < Qf and Cik < Qf .

Case 1: If Q is the distance to one face of Pω, then the four contact points lie on the extremes
of the edges.

Case 2: If Q is the distance to two faces of Pω, then at least two contact points lie on the
extremes of the edges.

Case 3: If Q is the distance to three faces of Pω, then at least one contact point lie on an
extreme of the edge.

Case 4: If Q is the distance to the four faces of Pω, then there may be no contact point lying
on an extreme of the edge.

The approach presented by Jia (1995) determines the number of contact points that lie on an
extreme of the edge, which simplify the problem of computing the optimal grasp. Nevertheless,
given a set of contact edges, this approach does not determine which cases can really exist and
which contact points lie on extremes of the edges, implying that all the possible combinations
have to be checked. Moreover, the approach only solves the first and second cases.

In order to reduce computations, some useful parameters are introduced here; they are based
on the directions of the given contact edges and allow to identify which of the four cases are
possible and which contact points lie on extremes of the edges.

Definition 5. The internal bounds, Chj and Cik, of a FC grasp are the distances from the origin
of the force space to each one of the segments determined by two non-consecutive vertices of Pf

(e.g. fhf j and f ifk in Fig. 5). �
Definition 6. The directional-optimal grasp, Gd, is the set of four points on the supporting
lines of some given grasping edges that generate the optimal grasp (i.e. the length of the edges
is not considered and only the direction of the edges is relevant). �

Note that the points that determine Gd may not lie on the actual object boundary and,
therefore, Gd can actually be unreachable.

Proposition 3. Let ωh, ωi and ωj be three known wrenches (i.e. three wrenches produced by
three contact points already placed on some given edges of the object) and let ωk be a wrench
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whose torque component τk is unknown. The optimal value τdk
(without considering the real

range Rk) that produces the optimal grasp, can be analytically determined knowing the upper
bound Qf , the internal bounds Chj and Cik, and the type of the directional range Rdk

, according
the following cases:

1. If Rdk
is infinite and Chj ≥ Qf , then

τdk
→ ±∞ according to Rdk

2. Else (i.e. Rdk
is limited or Chj <Qf )

(a) If Cik ≥ Qf , then τdk
is the solution of:

Dhik = Dhjk (17)

where Dhik and Dhjk are the distances from the origin of the wrench space to the
faces of Pω defined by {ωh,ωi,ωk} and {ωh,ωj ,ωk}, such that the triangles defined
by {fh,f i,fk} and {fh,f j ,fk} intersect with the circumference of radius Qf in the
force space.

(b) Else (i.e. Chj < Qf ) τdk
is the solution of:

Dhik = Dhjk (18)
Dhik = Dijk (19)
Dhjk = Dijk (20)

where Dhik, Dhjk and Dijk are the distances from the origin of the wrench space to
the faces of Pω defined by {ωh,ωi,ωk}, {ωh,ωj,ωk} and {ωi,ωj,ωk} (i.e. the three
faces of Pω that contain ωk). �

This Proposition refines the results presented by Cornellà and Suárez (2003).
In order to obtain Gd, Proposition 3 is applied considering all the possible relations between

the upper bound, the internal bounds and the types of directional ranges for the four contact
points, obtaining the following result.

Proposition 4. Let ωh and ωi be the wrenches whose force components determine the upper
bound Qf , and let ωj and ωk be the other two wrenches. The directional-optimal grasp, Gd,
can be determined according to the values of Qf and the internal bounds Chj and Cik as follows:

• If Chj ≥ Qf and Cik ≥ Qf , then
τdj

→ ±∞ and τdk
→ ∓∞

τdh
and τdi

are determined from:

Max Dhij (21)
subject to Dhij = Dhik (22)

• If Chj < Qf and Cik ≥ Qf , then
τdj

→ ±∞
τdh

, τdi
and τdk

are determined from:

Max Dhij (23)
subject to Dhij = Dhik = Dhjk (24)
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• If Chj < Qf and Cik < Qf , then
τdh

, τdi
, τdj

and τdk
are determined from:

Max Dhij (25)
subject to Dhij =Dhik =Dhij =Dijk (26)

�
Fig. 5 shows examples of the force directions that produce each case in Proposition 4. Note

that although the type of directional range is useful in Proposition 3, it is not really necessary
for the computation of Gd when the four contact points are unknown.

The optimization problems presented in Proposition 4 are unbounded, since the optimal
grasp is obtained when the torques tends to infinite (satisfying in each case the corresponding
constraints). In order to obtain the reachable optimal grasp, the positions of some optimal
contact points lie on extremes of the edges, as it is stated in the following proposition.

Proposition 5. If τdi
→ ±∞, then the optimal reachable torque is the extreme of Ri closest

to τdi
. �

Note that when Chj < Qf and Cik < Qf there is also at least one point on an extreme
(otherwise the optimization problem is unbounded), but it is not possible to determine which
one.

From Propositions 4 and 5, the use of the upper bound and the internal bounds (parameters
that depend only on the directions of the applied forces) allows an easy identification of which
optimal contact points for sure lie on the extremes of the edges, and which of the distances from
the origin to the faces of Pω are equal to Q in the optimal case. Then, one of the cases from
those presented by Jia (1995) is also identified.

Since the real range of all the contact points have not been considered yet, this optimal case
may not be actually reachable, this implies that the reachable optimal solution will have other
contact points lying on an extreme of the edges. Then, in this situation, all the cases with more
contact points than those initially identify are also possible and must be considered in the search
of Ge.

4.3 Computation of Ge

The edge-optimal grasp, Ge, was introduced in Definition 1 (Section 3) as the set of four contact
points that generates the optimal grasp on some given contact edges. On the wrench space,
the determination of Ge is equivalent to the determination of four wrenches ωei = (fT

i τei)
T ,

i = 1, ..., 4, that fix the vertices of the polyhedron Pω to contain the largest possible sphere with
τei ∈ Ri (i.e. τei being actually reachable).

From Propositions 4 and 5, the optimal positions of some points lie on extremes of the edges
while the optimal positions of the others are the solution of one of the described optimization
problems. These optimization problems can be expressed in a generic form as follows:

Max Dhij (27)
subject to Cs = 0 (28)

where Cs is a constraint vector that includes s = 1, ..., 3 constraints depending on the optimiza-
tion problem that is considered. Note that the number of unknown torques is always s + 1.
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Since the constraints of the optimization problem defined by equations (27) and (28) are
equalities, this problem can be translated into a system of equations using the Lagrange Theo-
rem (Luenberger, 1973). Let L = [L1...Ls]T be the Lagrange multipliers vector, the solution of
the optimization problem can be determined by solving the following system of equations:

∇Dhij + LT∇Cs = 0 (29)
Cs = 0 (30)

where ∇ is the gradient operator. Since there are s constraints and s + 1 unknown torques,
equations (29) and (30) represent a system of 2s + 1 equations with 2s + 1 unknowns (including
the torques and the Lagrange multipliers).

Equation (29) represents s + 1 linear equations with respect to the Lagrange multipliers.
Since the determination of the Lagrange multipliers is not necessary, an evaluation function
F can be obtained from equation (29) by eliminating the Lagrange multipliers. For instance,
considering the optimization problem described by equations (21) and (22) with two unknown
torques, F is:

F =
∂Dhij

∂τh

∂(Dhij−Dhik)
∂τh

−
∂Dhij

∂τi

∂(Dhij−Dhik)
∂τi

(31)

Equation (30) represents s non-linear equations with respect to s + 1 unknown torques.
Analytically, it is possible to solve a maximum of two constraints with two unknowns (see
Appendix B for details). Taking into account this mathematical characteristic and the evaluation
function F , the following algorithm allows to efficiently determine the edge-optimal grasp Ge on
a given set of edges.

Algorithm 2. (Computation of Ge). Given a set of contact edges, Ge can be determined
with the following steps:

1. Determine Qf , Chj and Cik.

2. Obtain the s constraints that form Cs and the contact points whose optimal positions lie
on extremes of the edges (Propositions 4 and 5).

3. Depending on s, do:

(a) If s = 1 or s = 2, solve Cs = 0 from eq. (30) for, respectively, each of the four and
eight systems resulting from fixing the position of each unknown torque on an extreme
of the corresponding edge.

(b) If s = 3, solve the four resulting subsystems of two constraints of Cs resulting from
fixing the positions of each pair of unknown torques on two extremes of the corre-
sponding edges.

4. As a result of step 3:

(a) If at least one of the computed sets of torques is reachable, take as initial reachable
solution that with largest Q.

(b) If none of the sets of torques is reachable:

i. If there is only one unknown torque, its optimal value is on the edge extreme
closest to the value computed in step 3. Then, Ge has all the contact points
lying on extremes of the edges and the algorithm ends. Return Ge.
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ii. Else fix the position of each unknown torque on an extreme of an edge and obtain
new constraints Cs applying Proposition 3 for the remaining unknown torques
(note that Cs is independent of the selected extremes). Return to step 3.

5. Obtain the evaluation function F and evaluate the initial reachable solution.

6. If F 
= 0, determine in which direction the contact points fixed on extremes of the edges
in step 3 have to be moved in order to make F → 0:

(a) If the points have to be moved inside the edge, an iterative procedure is applied in
order to obtain the solution that satisfies Cs = 0 and F = 0.

(b) Else the initial reachable solution can not be improved.

7. If s = 3, determine in which direction the contact points fixed on extremes of the edges in
step 3 have to be moved in order to make the distances from the origin to the four faces
of Pω be the same.

(a) If the points have to be moved inside the edges, an iterative procedure is applied in
order to obtain this solution.

(b) Else the initial reachable solution can not be improved

8. Return as Ge the best of the results computed in steps 4a, 6a or 7a. �
As a difference from the approach proposed by Jia (1995), where the cases 3 and 4 were not

solved, Algorithm 2 is complete, since it always finds the optimal grasp taking into account all
the possible cases. Moreover, this algorithm is also really efficient, since in many cases the initial
reachable solution obtained in step 4 either is Ge or is very close to it, completely avoiding or at
least decreasing the number of iterations in steps 6 and 7. Even in this case, these are not hard
iterative procedures since they are function of only one torque and they can be easily solved
using the Bolzano theorem.

5 Examples

Numerical examples of the proposed methodology are presented in this section using the object
shown in Fig. 6. The initial data of the object are the directions normal to the edges and the
real ranges Ri of possible actual torques (Table 1). Since the optimal grasp has always at least
one contact point on an extreme of the real range, in order to avoid placing a contact point on
a vertex of the object, the real ranges were slightly reduced considering a security distance from
the vertices of the object.

The Algorithm 1 described in Section 3 is applied to obtain the object-optimal grasp Go.
Since the object has eight edges, the total number of possible sets of three and four edges is 238.
There are 95 sets whose Pf contains the origin. Considering the upper bounds Qf of these sets,
only 26 of them have been evaluated by Algorithm 1 to obtain Go.

The following examples shows the determination of Go as well as the determination of the
edge-optimal grasp Ge for other combinations of edges that were also computed when Algo-
rithm 1 was applied. The optimal grasp was also computed using the brute force method taking
50 sample points per edge and evaluating all the possible contact combinations. The results
were always coincident (up to the sample resolution).
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Figure 6: Polygonal object used in the examples.

Table 1: Initial object data

E1 E2 E3 E4 E5 E6 E7 E8

Normal direction (θi) 0 4.9574 5.9160 3.7002 2.7744 4.1123 1.5708 0.7854
Minimum torque (τmini ) -0.5979 0.0179 -2.1544 0.8559 0.2943 -2.4130 -0.5539 -0.6937
Maximum torque (τmaxi) 0.3021 1.1548 -0.8615 1.6993 1.5872 -0.2108 2.1461 0.3376

In all the examples the contact points are numbered such that the normal forces define
consecutive vertices of Pf and the upper bound is determined by f1f2.

Example 1 (edges E1, E4, E6 and E7). The edge-optimal grasp, Ge, on this set of edges
is the object-optimal grasp, Go. This is the eleventh evaluated set of edges considering the
order based on the upper bounds. According to the numbering convention of the contact points:
p1 ∈ E6, p2 ∈ E1, p3 ∈ E7 and p4 ∈ E4. Given the contact edges, Algorithm 2 is applied to
obtain Ge:

1. Determination of Qf , C13 and C24:
Qf = 0.4665, C13 = 0.2956, C24 = 0.2756.

2. C13 < Qf and C24 < Qf . Then, s = 3,
Cs =(D123−D124 D123−D134 D123−D234)

T and it is not possible to determine which con-
tact points lie on an extreme of the edge.

3. s = 3, then the four subsystems of two constraints of Cs are solved fixing the positions of
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Figure 7: Edge-optimal grasps and the intersection of the directional range with the real range
for each contact point (bold segments); Case (a) is the object-optimal grasp; Case (f) considers
a slight different object.

two unknown contacts on extremes of the edges.

4. Step 3 produced reachable solutions, and the best one is produced when τ2 = τmax2 and
τ3 = τmin3 . In this case:

τ1 = −1.0819; τ2 = 0.3021;
τ3 = −0.5539; τ4 = 1.5742.

with Q = D124 = D134 = D234 = 0.4040 and D123 = 0.4309.

5. Evaluation of the initial reachable grasp in F : If τ2 is fixed, then F = 0.0062.
If τ3 is fixed, then F = −0.0349.

6. F → 0 for values greater than τmax2 or smaller than τmin3. Then, the solution of step 4
can not be improved.

7. The distances to the four faces of Pω tend to be equal for values greater than τmax2 . Then
the solution can not be improved.

8. As a result, Ge is the grasp obtained in step 4.

Fig. 7a shows the resulting contact points.
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Example 2 (edges E2, E5, E6 and E8). The quality of Ge on this set of edges is close to
the quality of Go. This is the fourth evaluated set of edges considering the order based on the
upper bounds. According to the numbering convention of the contact points: p1 ∈ E2, p2 ∈ E8,
p3 ∈ E5 and p4 ∈ E6. Given the contact edges, Algorithm 2 is applied to obtain Ge:

1. Determination of Qf , C13 and C24:
Qf = 0.4927, C13 = 0.4612, C24 = 0.0925.

2. C13 < Qf and C24 < Qf . Then, s = 3,
Cs =(D123−D124 D123−D134 D123−D234)T and it is not possible to determine which con-
tact points lie on an extreme of the edge.

3. s = 3, then the four subsystems of two constraints of Cs are solved fixing the positions of
two unknown contacts on extremes of the edges.

4. Step 3 produced reachable solutions, and the best one is produced when τ1 = τmax1 and
τ4 = τmin4 . In this case,

τ1 = 1.1548; τ2 = −0.4940;
τ3 = 1.0218; τ4 = −2.4130.

with Q = D123 = D124 = D234 = 0.3999 and D134 = 0.6120.

5. Evaluation of the initial reachable grasp in F : If τ1 is fixed, then F = −0.0222.
If τ4 is fixed, then F = −0.0001.

6. F → 0 for values greater than τmax1 or smaller than τmin4. Then, the solution of step 4
can not be improved.

7. The distances to the four faces of Pω tend to be equal for values smaller than τmin4. Then
the solution can not be improved.

8. As a result, Ge is the grasp obtained in step 4.

Fig. 7b shows the resulting contact points.

Example 3 (edges E2, E4, E5 and E8). This set of edges produces one of the worst cases
in the determination of the optimal grasp because none of the constraints of the optimization
algorithms can be satisfied. This is the third evaluated set of edges considering the order based
on the upper bounds. According to the numbering convention of the contact points: p1 ∈ E2,
p2 ∈ E8, p3 ∈ E5 and p4 ∈ E4. Given the contact edges, Algorithm 2 is applied to obtain Ge:

1. Determination of Qf , C13 and C24:
Qf = 0.4927, C13 = 0.4612, C24 = 0.1132.

2. C13 < Qf and C24 < Qf . Then, s = 3,
Cs =(D123−D124 D123−D134 D123−D234)

T and it is not possible to determine which con-
tact points lie on an extreme of the edge.

3. s = 3, then the four subsystems of two constraints of Cs are solved fixing the positions of
two unknown contacts on extremes of the edges.
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4. None of the results computed in step 3 is reachable. Then, the number of constraints
included in Cs is reduced, obtaining the best solution when all the contact points lie on
extremes of the edges. In this case,

τ1 = 0.0179; τ2 = −0.6937;
τ3 = 0.2943; τ4 = 1.6993.

with Q = D123 = 0.0986, D124 = 0.2145, D134 = 0.3842 and D234 = 0.3281.

As a result, this grasp is Ge and the algorithm ends.

Fig. 7c shows the resulting contact points.
Example 4 (edges E2, E3, E5 and E8). This is the fourteenth evaluated set of edges

considering the order based on on the upper bounds. According to the numbering convention
of the contact points: p1 ∈ E5, p2 ∈ E2, p3 ∈ E3 and p4 ∈ E8. Given the contact edges,
Algorithm 2 is applied to obtain Ge:

1. Determination of Qf , C13 and C24:
Qf = 0.4612, C13 = 0, C24 = 0.4927.

2. C13 < Qf and C24 > Qf . Then, s = 2,
Cs =(D123−D124 D123−D134)

T and the optimal position of p3 is on an extreme of the
edge.

3. s = 2, then the constraints of Cs are solved for the six combinations resulting from fixing
the position of each unknown contact point on each extreme of an edge .

4. None of the results computed in step 3 is reachable. Then, the best solution is obtained
when τ1 = τmin1, τ3 = τmin3 and τ4 = τmax4 . In this case,

τ1 = 0.2943; τ2 = 0.3369;
τ3 = −2.1544; τ4 = 0.3376.

with Q=D123 =D124 =0.3228, D134 = 0.3726 and D234 = 0.5496.

5. Evaluation of the initial reachable grasp in F , obtaining F = 0.1343.

6. F → 0 for values smaller than τmax1 . Then, the solution of step 4 can not be improved.

7. Since s = 2 this step is not applicable.

8. As a result, Ge is the grasp obtained in step 4.

Fig. 7d shows the resulting contact points.
Example 5 (edges E2, E5 with two contact points and E8). This is the seventeenth

evaluated set of edges considering the order based on the upper bounds. According to the
numbering convention of the contact points: p1 ∈ E2, p2 ∈ E5, p3 ∈ E5 and p4 ∈ E8. Given
the contact edges, Algorithm 2 is applied to obtain Ge:

1. Determination of Qf , C13 and C24:
Qf = 0.4612, C13 = 0.4612, C24 = 0.5449.

2. C13 ≥ Qf and C24 ≥ Qf . Then, s = 1,
Cs =(D124−D134) and the optimal positions of p2 and p3 are on an extreme of the edge.
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3. s = 1, then the constraint of Cs is solved for the four combinations resulting from fixing
the position of each unknown contact point on each extreme of an edge.

4. None of the results computed in step 3 are reachable. Then, the best solution is obtained
when all the contact are on extremes. In this case,

τ1 = 0.0179; τ2 = 0.2943;
τ3 = 1.5872; τ4 = −0.6937.

with Q = D124 = 0.0986, D123 = 0.46115, D134 = 0.1832 and D234 = 0.5449.

As a result, Ge is this grasp and the algorithms ends.

Fig. 7d shows the resulting contact points (note that there is a mark on E5 limiting the
intersection of the directional range with the real range for each of the two contact points on
this edge).

Example 6 (edges E4, E6 and modified edges E1 and E7). The obtention of Ge such
that only one point is on an extreme is not very frequent (for instance, the considered object
does not have any combination of edges that allows this case), but when it happens the quality
of these grasps is very high. Then, the iterative procedures of steps 6 and 7 of the algorithm 2
are not frequently necessary. For illustrative purposes, the edges E1 and E7 are slightly enlarged
in order to make this case possible and show all the steps of Algorithm 2.

The edges E1 and E7 have been enlarged such that τmax1 = 0.9 and τmin7 = −1. According
to the numbering convention of the contact points: p1 ∈ E6, p2 ∈ E1, p3 ∈ E7 and p4 ∈ E4.
Given the contact edges, Algorithm 2 is applied to obtain Ge:

1. Determination of Qf , C13 and C24:
Qf = 0.4665, C13 = 0.2956, C24 = 0.2756.

2. C13 < Qf and C24 < Qf . Then, s = 3,
Cs =(D123−D124 D123−D134 D123−D234)

T and it is not possible to determine which con-
tact points lie on an extreme of the edge.

3. s = 3, then the four subsystems of two constraints of Cs are solved fixing the positions of
two unknown contacts on extremes of the edges.

4. Step 3 produced reachable solutions, and the best one is produced when τ2 = τmax2 and
τ4 = τmax4 . In this case:

τ1 = −1.7268; τ2 = 0.9;
τ3 = −0.9132; τ4 = 1.6993.

with Q = D123 = D124 = D234 = 0.4134 and D134 = 0.4340.

5. Evaluation of the initial reachable grasp in F : If τ2 is fixed, then F = 0.0190.
If τ4 is fixed, then F = 0.0131.

6. F → 0 for values smaller than τmax2 . Then, the solution of step 4 can be iteratively
improved obtaining that F 
 0 when:

τ1 = −1.3147; τ2 = 0.6002;
τ3 = −0.7644; τ4 = 1.6993.

with Q = D123 = D124 = D234 = 0.4147 and D134 = 0.4181.
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7. s = 3, and the distances to the four faces of Pω tend to be equal for values smaller than
τmax2 . Then, step 4 can also be improved iteratively making the four distances tend to be
equal; the result is:

τ1 = −1.2437; τ2 = 0.5440;
τ3 = −0.7341; τ4 = 1.6993.

with Q=D123 =D124 =D134 =D234 =0.4146

8. As a result, the grasp computed in step 6 is the one with maximum quality (Q = 0.4147).
Then, this grasp is Ge.

Fig. 7f shows the resulting contact points.

6 Conclusions and future works

This paper provides a new approach to determine the optimal form-closure grasp on polygonal
objects using the quality measure of the maximum ball. As a result of the problem analysis
some intrinsic grasp parameters have been determined: the upper bound, the internal bounds
and the type of directional range. These parameters can be easily determined since they depend
only on the directions of the applied forces. The type of directional range is used to obtain a
new necessary and sufficient condition for the existence of form-closure grasps and the upper
bound and the internal bounds are used to identify the case in the determination of the object-
optimal grasp. The upper bound is also used as bound in the search of the object-optimal grasp.
The main advantage of this proposed approach is that it is not necessary to obtain the edge-
optimal grasp for all the sets of edges to find the object-optimal grasp, and that there are cases
in the computation of the edge-optimal grasp where some contact points can be analytically
determined.

The paper also introduces a new concept: the directional-optimal grasp, defined considering
virtual edges with infinity lengths. Although the directional-optimal grasp is actually unreach-
able, it is useful to determine which cases of optimal grasp can take place and which optimal
contact points lie on an extreme of the edges. With this information, an initial solution is
obtained in a fully analytical way, that is either the edge-optimal grasp or very close to it. In
this second case an iterative procedure, function of only one unknown, is used to obtain the
edge-optimal grasp.

We would like to remark that the main concepts used in this approach depend only on
the applied forces and can be easily determined. This is a very interesting characteristic that
encourages to extend this work considering frictional contacts, non-polygonal objects and 3D
objects in future works. In the ongoing work, the necessary and sufficient condition has been
extended considering frictional contacts (Cornellà and Suárez, 2005b) and non-polygonal ob-
jects (Cornellà and Suárez, 2005a). Nevertheless, the determination of the optimal grasp using
the methodology developed here is still a problem under development.
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Appendices

A Quality measure properties

Let Q(τi) be the quality measure as a function of the torque τi of ωi given the other three
wrenches, and let Dijk be the distance from the origin of the wrench space to the plane defined
by ωi, ωj and ωk. From equation (5), Q(τi) is a function defined by pieces of Dijk(τi), with
i, j, k ∈ {1, ..., 4} and i 
= j 
= k, being:

Dijk(τi)=

∣∣∣∣∣
k1 + k2τi√

(k3+k4τi)2+(k5 + k6τi)2+k2
7

∣∣∣∣∣ (32)

where:

k1 = sin(θi−θj)τk + sin(θk−θi)τj (33)
k2 = sin(θj−θk) (34)
k3 = (sin θj−sin θi)τk+(sin θi−sin θk)τj (35)
k4 = sin θk−sin θj (36)
k5 = (cos θi−cos θj)τk+(cos θk−cos θi)τj (37)
k6 = (cos θj−cos θk) (38)
k7 = sin(θj−θi)+sin(θi−θk)+sin(θk−θj) (39)

The function Dijk(τi) has five relevant properties (Fig. 8):

1. It is a continuous function. The denominator can only be zero if all the forces are in the
same direction, and then the FC grasp is not possible.

2. It has only one zero at τi0 = −k1/k2.

3. It tends to a finite value L when τi → ±∞,

L = lim
τi→±∞Dijk(τi) =

k2√
(k2

4 + k2
6)

(40)

Geometrically, L is the distance from the origin to the straight line defined by f jfk.

4. It has only one maximum M at

τiM =
(k2

3 + k2
7 + k2

5)k2 − (k3k4 + k5k6)k1

−k2(k3k4 + k5k6) + k1(k2
4 + k2

6)
(41)

Geometrically, M is the distance from the origin to the straight line defined by ωjωk.

5. It is constant when θj = θk (if f j and fk have the same direction then k2 = k4 = k6 = 0).

Q(τi), as a function defined by pieces of Dijk(τi), has the following properties :

1. Q(τi) is defined by monotones pieces of Dijk(τi). The maximum and the zero of Dijk(τi)
can not define Q(τi) since the first would be the radius of a sphere not contained in Pω (see
property 4 of Dijk(τi)), and the second determines a critical grasp with Q = 0. Therefore,
ruling out these two points any other continuous piece of Dijk(τi) is monotone (see Fig. 9).
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2. If the triangle defined by f i, f j and fk, (i.e. the projection on the force space of the face
of Pω defined by ωi, ωj and ωk) does not intersect with the circumference of radius Qf

(i.e. the upper bound of Q), then Dijk > Qf , implying that Dijk can not determine Q
(see examples in Fig. 5).

B Computational Aspects

Considering the distance from the origin to the faces of Pω, the constraints included in equa-
tion (30) are four-order equations. Nevertheless, the order of these constraints can be reduced
using the following geometrical property.

Consider the constraint Dhij = Dhik (the same reasoning can be applied to the other con-
straints) and let Πhij, Πhik and Πhi0 be the planes defined in the wrench space by {ωh,ωi,ωj},
{ωh,ωi,ωk} and {ωh,ωi,0} as:

Πhij : nhijω + dhij = 0 (42)
Πhik : nhikω + dhik = 0 (43)
Πhi0 : nhi0ω = 0 (44)

where nhij, nhik and nhi0 are the vectors normal to the planes and dhij and dhik are the
independent terms. These normal vectors and independent terms are linear functions of τh, τi,
τj and τk.

The constraint Dhij = Dhik implies that Πhi0 is a bisector plane of Πhij and Πhik, and any
vector normal to Πhi0 intersects Πhij and Πhik at points located at the same distance from Πhi0.
Then, selecting the normal vector that passes through the origin, the distances D′

hij and D′
hik
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Figure 9: Quality measure (bold line) defined as pieces of distances Dijk(τi) and upper bound
Qf .

from the origin to Πhij and Πhik, respectively, satisfy D′
hij = −D′

hik and can be used instead
Dhij = Dhik (see Fig. 10). Using equations (42), (43) and (44) D′

hki = D′
hkj can be expressed as

dhik(nhij · nhi0) = −dhij(nhik · nhi0) (45)

Since nhij, dhij , nhik, dhik and nhi0 are linear functions of τh, τi, τj and τk, equation (45)
expressed as a function of τh or τi is a three order equation, while the same equation expressed
as a function of τj or τk is a linear equation. Using equation (45) to represent the constraints,
a system of two constraints with two unknowns torques can be solved in a fully analytical way.

C Proofs of the Propositions

Proof of Proposition 1: The type of a directional range, Rdi
, is determined by the number of

finite extremes that it has, which is equivalent to know how many pairs of coefficients βi,jk and
βi,kj, defined by equations (13) and (14), are non-positive, with i, j, k ∈ {1, 2, 3, 4} and i 
= j 
= k.

The coefficients βi,jk and βi,kj are defined by the directions of three applied forces, f i, f j

and fk, which also define the coefficients βj,ik and βj,ki, and βk,ji and βk,ij. Since there are four
forces, there are four different subsets of three forces, with each force belonging to three of the
four subsets.

When there is no opposite forces (general case), any three forces f i, f j and fk either span the
force space (i.e. each force strictly lies between the negated of the other two) implying that the
corresponding three pairs of coefficients {βi,jk, βi,kj}, {βj,ik, βj,ki} and {βk,ji, βk,ij} are negative
and define a finite extreme for Rdi

, Rdj
and Rdk

, or do not span the force space, implying that
some coefficients are positive and therefore do not define any extreme at all.
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Since a directional range can have only one or two finite extremes, then, only two of the
four subsets of three forces can generate valid pairs of coefficients (note that if more than two
subsets or only one subset were valid one of the four directional range would have more than
two extremes or none at all, respectively, which is not possible). Then, there are six pairs of
coefficients determining six finite extremes for the four directional ranges. This means that
two directional ranges have two finite extremes and they are limited (those of the two torques
generated by the forces that appear in the two valid subsets of forces), while the directional ranges
of the other two torques have only one finite extreme and they are infinite (those generated by
the forces that appear in only one of the two subsets of forces). Analyzing the signs produced
by the relative values of θi, i = 1, ..., 4, in equations (13) and (14) the forces that appear in only
one of the subsets of forces have to lie between the negated of the other two, therefore the two
infinite directional ranges are those corresponding to the two torques produced by the two forces
that lie between the negated of the other two (see Fig 4a and Fig 4b).

When there is one pair of opposite forces they must determine non-consecutive vertices of
Pf in order to 0 ∈ Pf . Without loss of generality consider that the two opposite forces are f i

and fk, i.e. θk = θi + π. Using equations equations (13) and (14) with the proper subindexes
for the possible combinations of forces, we obtain from the subset {fh,f i,fk} the coefficients
βi,hk = 0, βi,kh = −1, βk,hi = 0, βk,ih = −1, while βh,ik and βh,ki are undefined (division by zero),
obtaining therefore two finite extremes, one for Rdi

and Rdk
. In the same way, from the subset

{f j,f i,fk} we obtain the coefficients βi,jk = 0, βi,kj = −1, βk,ji = 0, βk,ij = −1, while βj,ik and
βj,ki are undefined (division by zero), obtaining therefore one finite extreme for Rdi

and another
for Rdk

; but, since in this case βi,hk = βi,jk, βi,kh = βi,kj, βk,hi = βk,ji, and βk,ih = βk,ij the two
finite extremes of Rdi

and Rdk
are actually the same, and then the two sets of forces that includes
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the two opposite forces define only two different finite extremes, one for the directional range
of each of the opposite forces. In the other two subsets of forces there are not opposite forces
and therefore, as in the general case, they will produce either three valid or three invalid pairs
of coefficients (and the same number of finite extremes). Since each of them contains one of
the opposite forces, only one of these two subsets of forces has the opposite force between the
negated of the other two, producing three new finite extremes. As a result, there will be five
finite extremes, two for the directional range of the opposite force that lies between the negated
of the non-opposite forces, so it is limited, and one extreme for each of the other directional
ranges, so they are infinite (see Fig 4c).

In the case of two pairs of opposite forces (e.g. θk =θi+π and θh =θj+π, following the same
reasonings above the subsets {fh,f i,fk} and {f j,f i,fk} produce one finite extreme for Rdi

and one for Rdk
, and {f i,f j ,fh} and {fk,f j ,fh} produce one finite extreme for Rdj

and one
for Rdh

. As a result each of the four directional ranges has only one finite extreme and they all
are infinite. �
Proof of Proposition 2 (necessary and sufficient condition): Consider first the general
case with two infinite and two limited directional ranges. Let Rdk

= [τk1, τk2 ] be one of the two
limited directional ranges, i.e. τk1 ≤τk≤τk2. Substituting τk1 and τk2 by the expressions derived
from equation (12), we obtain (note that the subscripts i and j could be swapped):

βk,hjτh + βk,jhτj ≤ τk ≤ βk,ihτi + βk,hiτh (46)

If τi and τj are solved from equation (46), then

τi ≤ 1
βk,ih

(τk − βk,hiτh) (47)

τj ≥ 1
βk,jh

(τk − βk,hjτh) (48)

Therefore, τi has an upper bound while τj has a bottom bound implying that Rdi
tends to −∞

and Rdj
tends to +∞. Equations (47) and (48) can be converted to equalities subtracting Γi

and adding Γj, respectively. As result, in a FC grasp the signs of Γi and Γj must be different
(signs are swapped if the subscripts i and j are swapped).

The two particular cases can be tackle as limits of the general case. Adding δθ arbitrarily
small to the direction of one of the aligned forces, the particular cases are transformed into
the general case. Then, the above reasoning can be applied obtaining the same results when
δθ → 0. �
Proof of Proposition 3: From property 1 of Q(τk) (Appendix A) the pieces of Dhik(τk),
Dhjk(τk) and Dijk(τk) that define Q(τk) are monotones.

When Rdk
is infinite and Chj ≥ Qf (case 1) there is only one extreme τk1 where Q(τk1) = 0

and the distances Dhik(τk), Dhjk(τk) and Dijk(τk), tend to values greater or equal to Qf

when τk → ±∞ (property 3 of the distance). As a consequence, all the pieces of Dhik(τk),
Dhjk(τk) and Dijk(τk) that define Q(τk) increase monotonously when Rfck

= [τk1,∞) or decrease
monotonously when Rfc4 = (−∞, τk1 ], obtaining the maximum value of Q(τk) when τdk

→ ±∞
according to the unbounded direction of Rdk

(see Fig 11).
When either Rdk

is limited or Chj < Qf (case 2), either there are two points, τk1 and τk2,
where Q(τk1) = 0 and Q(τk2) = 0, or the distance Dhjk tends to a value smaller than Q. As
a result in both situations, some of the pieces of Dhik(τk), Dhjk(τk) and Dijk(τk) that define
Q(τk) increase while other decrease, and the maximum Q(τk) is obtained at the intersection of
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Figure 11: Quality measure Q as a function of τk (case where Rdk
is infinite and Chj ≥ Qf ).

two of them (see Fig 12). In order to identify the intersections that may determine the optimal
value of Q(τk), property 2 of Q(τk) is used (see Appendix A): Dhik(τk), Dhjk(τk) and Dijk(τk)
may define Q(τk) only if the triangles formed on the force space by {fh,f i,fk}, {fh,f j ,fk}
and {f i,f j,fk}, respectively, intersect with the circumference of radius Qf . The number of
triangles that intersect with this circumference is determined by Cik, obtaining:

(a) If Cik ≥ Qf , two of the three triangles intersect with the circumference of radius Qf .
Then, the optimal value is obtained at the intersection of the two corresponding associated
distances.

(b) If Cik < Qf , the three triangles intersect with the circumference of radius Qf . Then, any
intersection between two of the corresponding distances may determine the optimal value.
�

Proof of Proposition 4: Given three wrenches, the conditions that the optimal value of the
fourth torque must satisfy are determined by its directional range, the upper bound and the
internal bounds (Proposition 3). Since these parameters do not depend on the values of the
torques, the conditions neither depend on them when the four torques are variable. Then, the
optimal value of each torque satisfies these conditions even when their exact values are unknown.
Consider that ωh and ωi are the wrenches whose force components determine the upper bound,
and ωi and ωj are the other two wrenches. In order to obtain the conditions that Gd must satisfy
when the four wrenches are unknown, all the possible combinations between directional ranges,
internal bounds and upper bound considering the four torques are checked, obtaining that all
the cases can be grouped in the three ones presented in the proposition. The demonstration of
all the cases is large and tedious, but the procedure is similar; for this reason we only include
here the proof of the first case.

When Chj ≥ Qf and Cik ≥ Qf , the forces f j and fk are always between the negated of fh
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Figure 12: Quality measure Q as a function τk (case where Rdk
is limited).

and f i. Then, from Proposition 1, Rdh
and Rdi

are always limited, while Rdj
and Rfck

are
always infinite. Proposition 3 is applied for each torque, obtaining the following result:

τh: Rdh
is limited and Cik ≥ Qf , then τdh

is the result of Dhij = Dhik.

τi: Rdi
is limited and Chj ≥ Qf , then τdi

is the result of Dhij = Dhik.

τj: Rdj
is infinite and Cik≥Qf , then the optimal τdj

→ ±∞ according the unbound side of
Rdj

.

τk: Rdk
is infinite and Chj ≥Qf , then τdk

→ ±∞ according the unbound side of Rdk
.

As a result, τj → ±∞ and τk → ∓∞ (from Proposition 2, the signs of these torques have
to be different to ensure a FC grasp). The other two torques, τh and τi, have to be determined
from the same equation (Dhij = Dhik), and therefore there are more unknowns that equations.
Then, an optimization is introduced such that the two distances that determines the constraint
are maximized. Similar reasoning can be applied in Cases 2 and 3.

Proof of Proposition 5: If τdi
→ ±∞, then Rdi

is infinite and Chj ≥ Qf (see Proposi-
tion 3). In this case Q(τi) increase or decrease monotonously according Rdi

. Therefore, τei is
the value τi ∈ Ri closest to τdi

, i.e. the closest extreme of Ri. �
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