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Abstract. We give an explicit construction, based on Hadamard matrices, for an infinite
series of

⌊
1
2

√
d
⌋
-neighborly centrally symmetric d-dimensional polytopes with 4d vertices.

This appears to be the best explicit version yet of a recent probabilistic result due to Linial
and Novik, who proved the existence of such polytopes with a neighborliness of d

400 .

1. Introduction

A polytope P ⊂ Rd is centrally symmetric (cs, for short) if P = −P . A cs polytope P
is k-neighborly if every set of k of its vertices, no two of which are antipodes, is the vertex
set of a face of P .

In their recent paper [7], Linial and Novik give probabilistic constructions for highly
neighborly cs polytopes. Namely, based on probabilistic techniques due to Garnaev and
Gluskin [4], they construct k-neighborly d-dimensional cs polytopes with 2m = 2(n + d)
vertices, such that k = Θ

(
d

1+log(m/d)

)
; moreover, they show that this value is asymptotically

optimal. In the “diagonal” case n = d they use a probabilistic result due to Kašin [5] to
construct d-dimensional d

400
-neighborly cs polytopes with 4d vertices, and ask if there exists

an explicit construction of highly neighborly cs polytopes.

In this note, we provide such an explicit and non-probabilistic construction:

Theorem 1. For each d ≥ 4 such that there exists a Hadamard matrix of size d, there is
an explicit construction for a

⌊
1
2

√
d
⌋
-neighborly cs d-polytope with 4d vertices.

Hadamard matrices exist for every d = 2e with integer e ≥ 2; see [8] for a survey.

Of course, Theorem 1 does not attain (by far) the bound given by Linial and Novik’s
probabilistic arguments, but to date no better explicit construction of highly neighborly
cs polytopes seems to be known; see also our additional comments in Section 4. We refer
to [7] for a (necessarily short) survey of the known results on neighborly cs polytopes.

To briefly outline the remaining contents of this note, we proceed to characterize k-
neighborly cs d-polytopes with 2(n + d) vertices in terms of a certain linear projection
(Proposition 3) and a certain matrix equation (Theorem 5). In Section 3, we then find
very special solutions of this equation in the “diagonal” case n = d and prove Theorem 1.
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2. cs-transforms, polarity, and a matrix equation

The key to our construction is the following lemma due to Linial and Novik, which
characterizes those point sets arising as McMullen and Shephard’s cs-transforms [6] of
cs polytopes:

Lemma 2 (Linial and Novik [7, Lemma 3.1]). A cs set V = {±v1, . . . ,±vm} ⊂ Rn is a
cs transform of the vertex set of a k-neighborly cs d-polytope with 2m = 2(d + n) vertices
if and only if the set V + = {v1, . . . , vm} does not contain dominant subsets of size k.

Here, Linial and Novik define a subset {vi : i ∈ I} of V + to be dominant if there exists
0 6= u ∈ Rn such that

(1)
∑

i∈I

∣∣〈vi, u〉
∣∣ ≥ 1

2

m∑

j=1

∣∣〈vj, u〉
∣∣ .

To interpret this characterization geometrically, let ♦m ⊂ Rm be the standard cross-
polytope, C±a(m) the m-dimensional cube {x ∈ Rm : −a ≤ xi ≤ a for 1 ≤ i ≤ m}, and
E(m, k) the m-dimensional convex hull of all 0/±1-vectors of length m with exactly k non-
zero entries. Thus, E(m, k) = C±1(m)∩k♦m; equivalently, we obtain E(m, k) by reflecting
the standard m-dimensional hypersimplex ∆(m, k) in the coordinate hyperplanes of Rm.

Now let T : Rn → Rm be the linear map given by the real (m×n)-matrix whose rows are
v1, . . . , vm, so that Tu = (〈v1, u〉, . . . , 〈vm, u〉)T for any u ∈ Rn (here and throughout, the
superscript T denotes transpose; we trust that this will not cause confusion). We assume
that T has full rank, and denote the image of T by L, a linear n-space in Rm.

To express Linial & Novik’s lemma in this language, write ε = (ε1, . . . , εm) and note that

1

2

m∑

j=1

∣∣〈vj, u〉
∣∣ =

1

2
max

{
m∑

j=1

εj〈vj, u〉 : ε ∈ vertC±1(m)

}

=
1

2
max

{
ε
(
〈v1, u〉, . . . , 〈vm, u〉

)T
: ε ∈ vertC±1(m)

}

= max
{
〈z, Tu〉 : z ∈ vertC± 1

2
(m)

}
,

and analogously, for any subset I ⊂ [m] of cardinality k,

∑

i∈I

∣∣〈vi, u〉
∣∣ = max

{∑

i∈I
δi〈vi, u〉 : δi = ±1 for all i ∈ I

}

= max
{
〈w, Tu〉 : w ∈ vertE(m, k)

}
.

Thus, Lemma 2, condition (1) and the fact that the maximum of any linear function
on a polytope is attained at one of the vertices together say that {±v1, . . . ,±vm} is a
cs-transform of a k-neighborly cs d-polytope with 2m vertices if and only if

max
w∈E(m,k)

〈w, v〉 < max
z∈C±1/2(m)

〈z, v〉 for all 0 6= v ∈ L .
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By dualizing — i.e., considering 〈v, w〉 instead of 〈w, v〉— we can also read this condition
as saying that for any non-zero vector v ∈ L, an affine hyperplane perpendicular to v
that sweeps outward from the origin along v should have left behind all vertices of E(m, k)
before encountering the last vertex of C±1/2(m). We have reached the following conclusion:

Proposition 3. The set {±v1, . . . ,±vm} ⊂ Rn is a cs-transform of a k-neighborly cs d-
polytope with 2m vertices if and only if

(2) projLE(m, k) ⊂ projL C±1/2(m),

where projL denotes orthogonal projection to L ⊂ Rm, the linear n-space that is the image
of the linear map T : Rn → Rm whose matrix has rows v1, . . . , vm.

To proceed, we take advantage of the following duality (Lemma 4) that relates the section
of a polytope P ⊂ Rm by a linear subspace L to the projection of P∆ to L. Recall that
the polar set of P is

(3) P∆ =
{
x ∈ Rm : 〈x, y〉 ≤ 1 for all y ∈ P

}
,

and that (P∆)∆ = P if 0 ∈ P .

Lemma 4. Let P ⊂ Rm be any polytope such that 0 ∈ P , let L ⊂ Rm be any linear
subspace, and denote the orthogonal projection of Rm to L by projL. Then

(4) projL(P∆) = (P ∩ L)∆ ∩ L.

We learned about this lemma from [10]; the proof is elementary and follows from the
definition (3) of a polar set.

By substituting (4) with P = E(m, k)∆, respectively P = C±1/2(m)∆, into (2), we obtain

(
E(m, k)∆ ∩ L

)∆ ∩ L ⊂
(
C±1/2(m)∆ ∩ L

)∆ ∩ L.

We now restrict to the subspace L and polarize. Because both polytopes contain the origin
and are full-dimensional in L (and therefore polarizing reverses inclusion, and (P∆)∆ = P ),
we obtain the equivalent condition

C±1/2(m)∆ ∩ L ⊂ E(m, k)∆ ∩ L.

This in turn is satisfied if and only if the 2m facet-defining inequalities of the polytope
C±1/2(m)∆ = 2♦m, together with some fixed set of d = m− n equations defining L, imply

the 2k
(
m
k

)
facet-defining inequalities of E(m, k)∆.

To find a linear subspace L that achieves this, we represent L as the kernel of the matrix
(Id |A), where Id is the (d×d) identity matrix and A = (aij) a real (d×n) matrix. Moreover,
we pass to homogeneous coordinates, which means to express each point x ∈ Rm as (1, x) ∈
R× Rm, and each inequality ax ≤ a0, for a ∈ (Rm)∗ and a0 ∈ R, as (a0, a) ∈ (Rm+1)∗.
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Phrased in this language, we must express each vertex (1, e) of {1}×E(m, k) ∈ R×Rm
as a linear combination of the following form:

(5)

µe1 2 −δe1,1 · · · −δe1,d −δe1,d+1 · · · −δe1,d+n
· · · · · · · · ·
µe2m 2 −δe2m ,1 · · · −δe2m,d −δe2m ,d+1 · · · −δe2m ,d+n
νe1 0 1 · · · 0 a1,1 · · · a1,n

· · · · · · · · ·
νed 0 0 · · · 1 ad,1 · · · ad,n
ε 1 0 · · · 0 0 · · · 0

1 e

In this table, the µ’s, ν’s and ε are understood to multiply the adjacent row vectors, and
the result of this linear combination is the row vector (1, e). Specifically, ε ≥ 0, µei ≥ 0, and
νei ∈ R for all relevant indices, and not all of these coefficients are required to be non-zero;
moreover, δeij = ±1, and the reason for introducing the minus signs for the δ’s will become
clear in a moment. We will also use the notation M e

j =
∑

i∈Ie µ
e
i δ
e
ij, for 1 ≤ j ≤ d + n,

where Ie ⊂ {1, . . . , 2m} indexes the non-zero µei . Note the constraint
∑

i∈Ie µ
e
i ≤ 1

2
implied

by the “0-th” column of this linear combination, which in turn implies |M e
j | ≤ 1

2
.

From columns 1 ≤ j ≤ d of (5), we learn that
∑

i∈Ie µ
e
i (−δeij) + νej = ej, so that in fact

we know the coefficients νej = ej + M e
j . With this information, we obtain from columns

d+ 1 ≤ j ≤ d+ n that
∑d

i=1(ei +M e
i )ai,j−d = ej +M e

j . Expressed in matrix notation, we
have arrived at the following result:

Theorem 5. Finding a cs-transform of a k-neighborly cs d-polytope with 2m = 2(n + d)
vertices is equivalent to finding a (d × n)-matrix A and a (2k

(
m
k

)
× m)-matrix M ′ that

satisfy the following requirements:

(a) All entries of M ′ are bounded in absolute value by 1
2
.

(b) Let E ′ = (E|F ) be a (2k
(
m
k

)
× m)-matrix whose rows are the vertices of E(m, k) in

some order, and decompose it into a matrix E with d columns and a matrix F with
n columns. Similarly, decompose M ′ = (M |N) into a matrix M with d columns and a
matrix N with n columns. Then the matrices A, E, F , M and N must satisfy

(6) (E +M)A = F +N.

(c) The rows of M ′ must be expressible as linear combinations as in (5).

As an aside, it is clear that any expression of (1, e) as a linear combination as in (5)
immediately yields an expression of (1,−e) as a similiar linear combination, by reversing
the signs of the relevant δeij and νi. It would therefore be enough to consider only one
member of each pair of antipodal vertices of E(m, k), and consequently only keep those
rows of the {0,±1}-matrix E ′ whose first non-zero entry is positive. However, to keep the
symmetry of the problem we choose not to do this.

We do, however, partially order the rows of E ′. Namely, we partition E ′ into k+1 blocks
E ′l = (El|Fk−l) with 0 ≤ l ≤ k, such that each row of El has exactly l non-zero entries
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(and consequently each row of Fk−l has k − l of them). The order inside each such block
is immaterial for our purposes. Note that with this partial ordering, the number of rows
of both El and Fk−l is

2l
(
d

l

)
· 2k−l

(
n

k − l

)
= 2k

(
d

l

)(
n

k − l

)
.

By decomposing M and N into blocks labeled Mk−l, Nl with the same number of rows as
El and Fk−l, equation (6) above decomposes into the k + 1 equations

(7) (El +Mk−l)A = Fk−l +Nl , for 0 ≤ l ≤ k.

3. Hadamard matrices

In the diagonal case n = d, we will exhibit a very special solution of (7). Namely, we
find matrices A, Mk−l, Nl such that

ElA = Nl,

Mk−lA = Fk−l,

in the following way:
Let d be such that there exists a Hadamard matrix of order d, i.e., a (d× d) matrix Hd

with entries ±1 such that HT
d Hd = d Id, and set

A = αHd = α


v1 · · · vd


 = α




w1
...
wd


 ,

for some real constant α > 0 to be determined later. Here the (±1)-vector vi denotes
the i-th column, and respectively wj the j-th row of Hd; this implies that vTi vi = d and
vTi vj = 0 for j 6= i, and similarly for the w’s. Moreover, set

Nl = ElA

and

Mk−l = βFk−lH
T
d = β




vT1 + · · ·+ vTk−l
vT1 + · · · − vTk−l

. . .
−vTd−k+l+1 − · · · − vTd


 ,

for β > 0 another real constant. The displayed pattern of signs and indices in Mk−l reflects
the one in Fk−l, and thus corresponds to a fixed but arbitrary ordering of the rows of Fk−l.

We now adjust k, α and β to make these matrices compatible with the conditions in
Theorem 5. For this, first note that each row of Nl = ElA is of the form α

∑
i∈I σiwi, for

some index set I ∈
(

[d]
l

)
and signs σi ∈ {±1}. In particular, the absolute value of each

entry of Nl is bounded by αl ≤ αk, so that α is constrained by

(8) αk ≤ 1

2
.
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Similarly, each element of Mk−l is bounded in absolute value by β(k − l) ≤ βk, so we also
need

(9) βk ≤ 1

2
.

Because A = αHd, we obtain Mk−lA = αβFk−lHT
d Hd = αβdFk−l, so we must set β = 1

αd
in

order to fulfill (7), and thus condition (b) of Theorem 5. Now (8) and (9) taken together
say that k, α and d must satisfy

(10)
2k

d
≤ α ≤ 1

2k
,

so that we arrive at the bound k ≤ 1
2

√
d for the cs-neighborliness of our cs-polytope. In

fact, for d ≥ 4, the choices k :=
⌊

1
2

√
d
⌋
, α := 1

2k
and β := 1

αd
= 2k

d
satisfy (8) and (9),

and thus we have found a matrix M ′ = (M |N) that satisfies conditions (a) and (b) of
Theorem 5.

It only remains to check condition (c), i.e., that the rows of M ′ can in fact be expressed
as linear combinations as in (5). For this, note that by the definitions of Mk−l and Nl, each
row of M ′ is a sum of row vectors of the form

(
α
∑

i∈I
σiv

T
i

∣∣∣∣ 0
)

+

(
0

∣∣∣∣ β
∑

j∈J
σjwj

)

for index sets I ∈
(

[d]
k−l
)

and J ∈
(

[d]
l

)
and signs σi, σj = ±1, where 0 denotes the zero row

vector of length d and 0 ≤ l ≤ k. We now represent
(
α
∑

i∈I
σiv

T
i

∣∣∣0
)

=
∑

i∈I

(
α
2

(
σiv

T
i

∣∣1
)

+ α
2

(
σiv

T
i

∣∣−1
))
,(11)

(
0
∣∣∣β
∑

j∈J
σjwj

)
=

∑

j∈J

(
β
2

(
1
∣∣σjwj

)
+ β

2

(
−1
∣∣σjwj

))
(12)

as linear combinations of 2(k − l), respectively 2l, vectors of length 2d with entries ±1,
where 1 represents the all-ones vector of length d. The sum over all coefficients in this
linear combination is then

∑

i∈I

(α
2

+
α

2

)
+
∑

j∈J

(
β

2
+
β

2

)
= (k − l) 1

2k
+ l

2k

d

=
1

2
− l
(

1

2k
− 2k

d

)

≤ 1

2

by (10), as required. This concludes the proof of Theorem 1.
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4. Discussion

We are plainly still quite far away from an explicit construction of Θ(d)-neighborly d-
dimensional cs-polytopes with 4d vertices. This situation is all too familiar: Linial & Novik
find the linear subspace L defined by our matrix A using a probabilistic construction due
to Kašin, and remark on the difficulty of explicitly finding such subspaces.

In the light of the discussion in Ball [1, p. 24], our explicit construction of Θ(
√
d)-

neighborly cs polytopes using Hadamard matrices is what can reasonably be expected in
this context, and it may not be realistic to hope for more: “There are some good reasons,
related to Ramsey theory, for believing that one cannot expect to find genuinely explicit
matrices of any kind that would give the right estimates”.

We close the present note by briefly mentioning some variations and alternatives.

4.1. Special Hadamard matrices. The bound k = O(
√
d) arises via (8), (9) from (10)

because m is our best a priori upper bound for the largest absolute value of an entry of the
sum of m rows (or columns) of Hd. If this largest absolute value could instead be taken of
order O(

√
m) for m = O(d), we would reach our goal of a cs-neighborliness of k = Θ(d).

To address this issue, our construction of Section 3 works for any Hadamard matrix, but
these are in fact quite a varied and structured lot, cf. [3]. In particular, there exist so-called
regular Hadamard matrices of order d, for which all the entries of the sum of all d rows (or

columns) are precisely
√
d. However, this is not good enough for our purposes: it follows

from elementary considerations that any row or column of a (conveniently normalized)

regular Hadamard matrix contains exactly 1
2
(d+
√
d) entries ‘1’ and 1

2
(d−
√
d) entries ‘−1’;

therefore, there exist choices of l = O(d) rows or columns such that the maximal entry of
their sum will be O(d) in absolute value, and via (10) this ruins our cs-neighborliness.

Another reason for doubting the efficacy of Hadamard matrices in this respect is that the
fraction of the total number of vertices of the 2d-dimensional cube involved in the concrete
instances (11), (12) of the linear combination (5) is quite small.

4.2. Pseudo-inverses. Moving away from Hadamard matrices, one should really try to
find the right matrix A in (6) or (7), instead of prescribing it. In this context, we recall
the concept of generalized inverses, and refer to [2] for further discussion and notation.

A Moore-Penrose {1}-inverse of a real (m×n) matrix G is any real (n×m) matrix G(1)

such that GG(1)G = G; the set of all {1}-inverses of G is denoted G{1}. These are
important for our purposes because by [2, Theorem 2.1], the matrix equation

GA = H

has a solution A if and only if there exists G(1) ∈ G{1} such that

(GG(1) − Im)H = 0.

To apply these notions to our context, we set G = E +M and H = F +N , and remark
that in the diagonal case n = d, an especially nice ordering of the rows of E ′l = (El|Fk−l)
is the “doubly lexicographic” one:
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Proposition 6. If n = d, one can choose a total order on the rows of E ′ (that refines the
partial order given above), in such a way that the matrices El and Fk−l satisfy

ET
l El = 2k

(
d− 1

l − 1

)(
d

k − l

)
Id,

ET
l Fk−l = 0.

Proof. Let C̃l be the matrix of size
(
d
l

)
× d whose rows are, in lexicographical order, all

0/1-vectors of length d with exactly l entries ‘1’, set n(l) = 2l
(
d
l

)
, and let Cl be the matrix

of size n(l) × d obtained from C̃l by replacing each row with the 2l rows obtained by
choosing all possible signs for the non-zero entries, again in lexicographical order. Thus,
the non-zero entries of each column of Cl come in

(
d−1
l−1

)
blocks of size 2l each, so that the

scalar product of each column with itself is 2l
(
d−1
l−1

)
. Moreover, it easily follows by induction

that distinct columns of Cl are mutually orthogonal, so that

CT
l Cl = 2l

(
d− 1

l − 1

)
Id.

Now denote the all-ones column vector of length i by 1i. Then

El = Cl ⊗ 1n(k−l),

Fk−l = 1n(l) ⊗ Ck−l
combine in such a way that the matrix (El|Fk−l) is a valid representation of E ′l . (Recall
that A⊗B is the matrix obtained from A by replacing each entry aij by the block matrix
aijB, so that (A⊗ B)T = AT ⊗ BT and (A⊗B)(C ⊗D) = AC ⊗ BD.) Now, as claimed,

ET
l El = (CT

l ⊗ 1Tn(k−l))(Cl ⊗ 1n(k−l)) = 2k
(
d− 1

l − 1

)(
d

k − l

)
Id,

and

ET
l Fk−l = (CT

l ⊗ 1Tn(k−l))(1n(l) ⊗ Ck−l) = (CT
l 1n(l))⊗ (1Tn(k−l)Ck−l) = 0,

because, again by induction, the sum of all entries in any column of each Ci vanishes. �

Therefore, we can choose our matrices G and H to be

G =




Ck +Mk

Ck−1 ⊗ 1n(1) +Mk−1

. . .
C1 ⊗ 1n(k−l) +M1

M0



, H =




N0

1n(k−1) ⊗ C1 +N1

. . .
1n(1) ⊗ Ck−1 +Nk−1

Ck +Nk



.

The set of all {1}-inverses of G can be parametrized explicitly using the techniques in [9];
however, so far we have not succeeded in turning this to our advantage.
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