
Lagrangean Duals and Exact Solution to the

Capacitated p-Center Problem

Maria Albareda-Sambola
Dpt. Estad́ıstica

Universidad Carlos III de Madrid
e-mail:maria.albareda@uc3m.es

Juan A. Dı́az
Dpt. Ingenieŕıa Industrial y Mecánica

Universidad de las Américas. Puebla. México
e-mail:juana.diaz@udlap.mx

Elena Fernández
Dpt. d’ Estad́ıstica i Investigació Operativa

Universitat Politècnica de Catalunya. Barcelona. Spain.
e-mail:e.fernandez@upc.edu

Abstract

In this work we study the Capacitated p-Center Problem (CpCP) and we propose an
exact algorithm to solve it. We study two auxiliary problems and their relation to CpCP ,
and we propose two different Lagrangean duals based on each of the auxiliary problems. The
lower and upper bounds provided by each of the Lagrangean duals reduce notably the set
of candidate radii and allow to solve the problem with an exact algorithm based on binary
search. The results obtained with experimental testing on various data sets from literature
show the efficiency of the proposal that outperforms previous proposals.

1 Introduction

In p-center problems we have to partition a set of customers in exactly p clusters. A cluster is
defined both by the location of its facility and by its set of customers. There is a given cost
for assigning each customer to each facility, and we want to minimize the maximum assignment
cost among all the customers. These are discrete location problems since facilities must be
located within a given set of potential locations. In the Capacitated p-Center Problem CpCP ,
in addition, each customer has a known demand and each potential location a known capacity.
Each cluster must be such that the total demand of all its customers cannot exceed the capacity

1

of its facility. Thus, the CpCP is the problem of finding the set of p locations and the assignment
pattern that satisfies the capacity constraints were the maximum assignment cost is as small as
possible.

The uncapacitated version of the problem has been extensively studied, and both exact and
approximated algorithms have been proposed. The paper by Elloumi, Labbé and Pochet [3] is a
recent work with a comprehensive up-to-date state of the art. On the contrary, the capacitated
p-center problem has received much less attention in the literature. A local search heuristic is
presented in [10]. Approximation algorithms for the particular case in which all the demands
are the same have been proposed in [1, 7], and a polynomial exact algorithm for tree networks is
developed in [6]. To the best of our knowledge, there is only one exact algorithm for the problem
in the literature, recently proposed by Özsoy and Pinar [11].

In this work we propose a new model for this min-max problem with an objective function
that is linear, together with an exact algorithm to solve the CpCP . The model uses decision
variables associated with different coverage radii and extends the one proposed by Elloumi,
Labbé and Pochet in [3] for the uncapacitated p-center problem. Similarly to the uncapacitated
case, the efficiency of a solution method based on the model relies strongly on the ability to
derive a priori upper and lower bounds on the optimal value, since this makes it possible to
reduce considerably the number of variables in the model. To this end we study two auxiliary
problems: the Maximum Demand Coverage with Fixed Radius Problem, denoted PDδ, and the
Minimum Required Centers with Fixed Radius Problem, denoted PCδ. Problem PDδ consists
of finding the maximum demand that can be satisfied with at most p centers within a given
coverage radius δ, whereas problem PCδ consists of finding the minimum number of centers
that are needed in order to satisfy the customers demand within a given fixed radius δ. We
derive bounds (both lower and upper) for CpCP from two different Lagrangean duals based on
PDδ and PCδ, respectively, for fixed radii δ. The radius that provides the best lower bound for
CpCP is obtained with binary search. Experimental testing on various data sets from literature
shows the quality of the obtained bounds that allow a reduction on the number of considered
radii within 88.93% and 100.00%. This, in turn, allows to obtain the optimal solution to the
problems very efficiently in small computation times.

The paper is structured as follows: Section 2 gives some notation and presents the proposed
model. In Sections 3 and 4 we define the two auxiliary problems PDδ and PCδ, their relation
to the CpCP , and their corresponding Lagrangean dual and heuristic. Sections 5 and Section
6 present the algorithmic framework to obtain the lower and upper bounds, and the exact
algorithm, respectively. The computational experiments that we have performed as well as the
obtained results are presented in Section 7. Finally, in Section 8 we draw some conclusions and
give some final remarks.

2 The Problem

Let I = {1, · · · , n} and J = {1, ...,m} be the sets of indices for customers and centers, respec-
tively. Let also hi denote the demand of customer i ∈ I, and bj the capacity of a center located
at site j ∈ J . For each pair (i, j), i ∈ I, j ∈ J , dij is the distance from customer i to center j.

2

We define two sets of decision variables

yj =
{

1 if a center is located at site j ∈ J ;
0 otherwise.

and

xij =
{

1 if customer i ∈ I is assigned to a center located at site j ∈ J ;
0 otherwise.

Then, a classical mathematical programming formulation for the Capacitated p-Center Prob-
lem CpCP is:

(M0) min z (1)

s.t.
∑
j∈J

dijxij ≤ z ∀ i ∈ I (2)

∑
j∈J

xij = 1 ∀ i ∈ I (3)

∑
i∈I

hixij ≤ bj ∀ j ∈ J (4)

xij ≤ yj ∀ i ∈ I, j ∈ J (5)∑
j∈J

yj = p (6)

z ≥ 0, xij ∈ {0, 1}, yj ∈ {0, 1} ∀ i ∈ I, j ∈ J (7)

Variable z together with constraints (2) model the min-max objective function. The as-
signment constraints (3) ensure that each customer is assigned to exactly one center, and the
capacity constraints (4) guarantee that the capacities of the open centers are not violated. Con-
straints (5) ensure that no customer is assigned to a facility that is not open. Finally, constraints
(6) state that p centers are used. Model M0 has one continuous variable, |I| × |J |+ |J | binary
variables and 2× |I|+ |J |+ |I| × |J |+ 1 constraints.

For building the new model for CpCP we use some additional notation. For a given radius
δ, for each j ∈ J , let Iδ(j) denote the set of customers whose distance to j does not exceed the
radius δ. That is, Iδ(j) = {i ∈ I : dij ≤ δ}. Let D0 < D1 < · · · < Dkmax be the sorted different
values in the distance matrix D = (dij), and K = {1, · · · , kmax}. For each k ∈ K we define one
additional binary variable zk that takes the value 0 if it is possible to satisfy the demand of all
customers with p plants within a radius Dk−1. That is zk = 1 if there is no feasible solution to
CpCP within a radius Dk−1. Then, an alternative model for the problem is the following:

3

(M1) min D0 +
∑
k∈K

(Dk −Dk−1)zk (8)

s.t.
∑
j∈J

xij = 1 ∀ i ∈ I (9)

∑
i∈I

hixij ≤ bj ∀ j ∈ J (10)

xij ≤ yj ∀ i ∈ I, j ∈ J (11)
xij ≤ zk ∀ i ∈ I, j ∈ J, k ∈ K s.t. i /∈ IDk−1(j) (12)∑
j∈J

yj = p (13)

zk ∈ {0, 1}∀ k ∈ K, xij ∈ {0, 1}, yj ∈ {0, 1} ∀ i ∈ I, j ∈ J (14)

Model M1 extends the model of Elloumi, Labbé and Pochet [3] for the uncapacitated p-center
problem to the capacitated case. Constraints (9), (10), and (11) are the same as constraints
(3), (4), and (5) of M0. For a fixed k ∈ K, its corresponding set of constraints (12) activates
the variable zk at value 1 whenever some customer is assigned to a facility located at distance
at least Dk from the customer. The value of the objective function is precisely the value of the
radius associated with the activated variable zk with a larger index. This corresponds to the
maximum assignment distance among all customers. Therefore, in an optimal solution zk = 0 if
and only if all customers can be served at a distance strictly smaller than Dk. Thus, the above
model is valid for CpCP .

Model M1 has |I| × |J | + |J | + |K| binary variables, which is considerably more than the
number of variables in M0, given that |K| typically will be quite large. The number of constraints
is |I|+ |J |+ |I|× |J |+ |I|× |J |× |K|+1 which will also be considerably larger than the number
of constraints in M0. However, as we will see, when upper and lower bounds on the optimal
value of the problem are available, it is possible to reduce considerably the size of this model so
it becomes very useful to solve efficiently large instances of the problem in small computation
times.

To this end we will obtain lower and upper bounds on the optimal value of CpCP to reduce
the size of M1 by fixing variables at values 0 or 1. In particular, if LB is a lower bound, then
in any optimal solution to M1, zk = 1, ∀k ∈ K s.t. Dk < LB. Similarly, if UB is a valid
upper bound, then zk = 0, ∀k ∈ K s.t. Dk ≥ UB in any optimal solution to M1. In order to
obtain tight lower and upper bounds for CpCP in the next two sections we address two different
auxiliary problems.

3 Maximum demand coverage within fixed radius problem.

The same y and x variables defined in the above section can also be used for building a model
for the problem of finding the maximum demand that can be satisfied with at most p plants
within a given radius δ. For i ∈ I, let Jδ(i) := {j ∈ J : i ∈ Iδ(j)}. The model is as follows:

4

(PDδ) H(δ) = max
∑
j∈J

∑
i∈Iδ(j)

hixij (15)

s.t.
∑

j∈Jδ(i)

xij ≤ 1 ∀ i ∈ I (16)

∑
i∈Iδ(j)

hixij ≤ bjyj ∀ j ∈ J (17)

∑
j∈J

yj ≤ p (18)

xij ∈ {0, 1}, yj ∈ {0, 1} ∀ j ∈ J, i ∈ Iδ(j) (19)

In constraints (17) we substitute the coefficients bj by b̂δ
j , ∀j ∈ J , where b̂δ

j =
∑

i∈Iδ(j)

hi, when∑
i∈Iδ(j)

hi ≤ bj ; and b̂δ
j = bj , otherwise. Throughout we assume that capacity constraints (17) are

expressed in this stronger form.

The following observations help us to appreciate the close relationship between the above
problem and CpCP . Throughout Hag =

∑
i∈I

hi will denote the aggregated demand.

Remarks

1. The optimal solution to CpCP can be obtained by finding the smallest k ∈ K such that
H(Dk) ≥ Hag. Note that the solutions to PDδ correspond to binary assignments of
customers to open facilities. Thus, if the total demand that can be satisfied within the
radius Dk is at least the aggregated demand, all customers are assigned and Dk is a valid
upper bound on CpCP .

2. If, for a given δ, H(δ) < Hag, then δ gives a valid lower bound on the value of CpCP .
Moreover, when δ = Dk for some k ∈ K such that H(Dk−1) < Hag, then Dk is also a valid
lower bound on the optimal value of CpCP , even if H(Dk) ≥ Hag.

The above remarks can be summarized in the following result:

Proposition 1 The optimal solution to CpCP is given by Dk∗, where k∗ ∈ K is such that
H(Dk∗−1) < Hag ≤ H(Dk∗).

Unfortunately, for a given value of δ, problem PDδ is not easy to solve since it is an NP-hard
problem (notice that it has the generalized assignment problem as a particular case). For this
reason, we will not try to solve PDδ exactly. Instead, we will use a relaxation of PDδ for finding
valid lower bounds for CpCP . Let H(δ) denote the value of a relaxation of PDδ. Note that
Remark 1 no longer holds for relaxations of PDδ, since δ need not be an upper bound on the
optimal value of CpCP when H(δ) ≥ Hag. The reason is that satisfying the aggregated demand
constraint for a relaxation of PDδ, no longer guarantees that there exists a feasible allocation

5

of all the customers. On the contrary, Remark 2 also holds for the relaxations of PDδ. For this
reason we will obtain a valid lower bound for CpCP by solving a relaxation of PDδ.

Proposition 2 For k ∈ K, if H(Dk) < Hag then Dk is a valid lower bound on the optimal
value to CpCP . The best such bound is given by Dk∗, where k∗ ∈ K is such that H(Dk∗−1) <
Hag ≤ H(Dk∗).

We next present the relaxation of PDδ that we have used and we show how to solve it in
order to obtain the value H(δ), for a given value of δ.

3.1 Variable splitting relaxation of PDδ

In this section we define a relaxation of PDδ that is a Lagrangean decomposition based on
variable splitting. Lagrangean decomposition based on variable splitting has been successfully
used to address various discrete problems (see, for instance, [5]) and, in particular, for solving
some discrete location problems [2]. In our case we do variable splitting on the x variables of
PDδ, by making mirror copies w of these variables, and by introducing a parameter α, 0 < α < 1.
The resulting model is:

(PDSδ) v(δ) = max
∑
j∈J

∑
i∈Iδ(j)

αhixij +
∑
j∈J

∑
i∈Iδ(j)

(1− α)hiwij (20)

s.t.
∑

j∈Jδ(i)

wij ≤ 1 ∀ i ∈ I (21)

∑
i∈Iδ(j)

hixij ≤ b̂δ
jyj ∀ j ∈ J (22)

∑
j∈J

yj ≤ p (23)

xij = wij ∀ j ∈ J, i ∈ Iδ(j) (24)
wij ∈ {0, 1}, xij ∈ {0, 1}, yj ∈ {0, 1} ∀ j ∈ J, i ∈ Iδ(j) (25)

In the computational experiments in Section 7 we have used α = 0.5 When relaxing con-
straints (24) in a Lagrangean fashion, the Lagrangean subproblem for a given multipliers vector
λ ∈ R|I|×|J | is:

6

L1δ(λ) = max
∑
j∈J

∑
i∈Iδ(j)

αhixij +
∑
j∈J

∑
i∈Iδ(j)

(1− α)hiwij +
∑
j∈J

∑
i∈Iδ(j)

λij(wij − xij)

s.t.
∑

j∈Jδ(i)

wij ≤ 1 ∀ i ∈ I

∑
i∈Iδ(j)

hixij ≤ b̂δ
jyj ∀ j ∈ J

∑
j∈J

yj ≤ p

wij ∈ {0, 1}, xij ∈ {0, 1}, yj ∈ {0, 1} ∀ j ∈ J, i ∈ Iδ(j)

which is separable in:

L1δ
w(λ) = max

∑
j∈J

∑
i∈Iδ(j)

[(1− α)hi + λij]wij

s.t.
∑

j∈Jδ(i)

wij ≤ 1 ∀ i ∈ I

wij ∈ {0, 1} ∀ j ∈ J, i ∈ Iδ(j)

and

L1δ
x,y(λ) = max

∑
j∈J

∑
i∈Iδ(j)

[αhi − λij]xij

s.t.
∑

i∈Iδ(j)

hixij ≤ b̂δ
jyj ∀ j ∈ J

∑
j∈J

yj ≤ p

xij ∈ {0, 1}, yj ∈ {0, 1} ∀ j ∈ J, i ∈ Iδ(j)

The solution to L1δ
w(λ) can be obtained by inspection. For solving L1δ

x,y(λ), we first solve
for each j ∈ J the following knapsack problem

KPj(λ) = max
∑

i∈Iδ(j)

[αhi − λij]xij

s.t.
∑

i∈Iδ(j)

hixij ≤ b̂δ
j

xij ∈ {0, 1} ∀ i ∈ Iδ(j)

and then we order the indices in J by non increasing values of KPj(λ), so that KPj1(λ) ≥
KPj2(λ) ≥ · · · ≥ KPj|J|(λ). Let p∗ = min {p, max{r : KPjr(λ) > 0}}. Then, the solution

7

to L1δ
x,y(λ) consists of opening the plants j1, j2, · · · , jp∗, and assigning to each of them the

customers given by the optimal solution to its corresponding knapsack problem.

Thus, for a given vector of multipliers λ, we can apply the above procedures to obtain the
value L1δ(λ) = L1δ

x,y(λ) + L1δ
w(λ), that is a valid lower bound on the value of PDδ. As usual,

the best lower bound is obtained by solving the Lagrangean dual. Therefore,

(D1) H(δ) = max
λ∈R|I|×|J|

L1δ(λ)

For a given vector λ, a subgradient of L1δ(λ) is given by γ = w(λ)−x(λ), where w(λ) and x(λ)
are the solutions to the subproblems, L1δ

w(λ) and L1δ
x,y(λ), respectively. Hence, (D1) can be

solved by applying subgradient optimization.

3.2 Heuristic solutions to CpCP from L1δ(λ).

At the inner iterations of subgradient optimization we apply a very simple heuristic for obtaining
feasible solutions to CpCP . For a given vector of multipliers λ, let w(λ), x(λ), y(λ) denote the
optimal solution to L1δ(λ). Throughout the heuristic, the set of open facilities is given by
J(λ) = {j ∈ J : yj(λ) = 1} and the facility to which customer i ∈ I is assigned is denoted j(i).
The heuristic has 2 steps, that are the following:

1. First, all customers i ∈ I, such that there exists a facility j∗ ∈ J(λ) with xij∗(λ) = 1,
are assigned to that facility: i.e., j(i) = j∗ (ties are broken by the minimum assignment
distance).

2. All customers that are not yet assigned are ordered by decreasing values of their de-
mands. Then, each unassigned customer is assigned to the open facility with more avail-
able capacity (if any). That is, for each unassigned customer let j(i) ∈ arg max{sj : j ∈
J(λ) ∩ Jδ(i), sj ≥ hi} where sj = bj −

∑
i∈Aj

hi denotes the available capacity of facility j

(Aj is the set of customers already assigned to facility j).

Obviously, the above heuristic may fail to obtain a feasible solution. At the iterations when
the heuristic succeeds, we compare the obtained solution with the best solution obtained so far,
and we record it if it improves its objective function value.

4 The minimum required centers within fixed radius problem.

The problem that we present next is also closely related to CpCP . It consists of finding the
minimum number of centers that are needed to satisfy the customers demands within a fixed
radius δ. We refer to that problem as to the Minimum Required Centers within Fixed Radius

8

Problem. Using the same decision variables as before the problem can be modeled as:

(PCδ) Y (δ) = min
∑
j∈J

yj (26)

s.t.
∑

j∈Jδ(i)

xij = 1 ∀i ∈ I (27)

∑
i∈Iδ(j)

hixij ≤ b̂δ
j ∀j ∈ J (28)

xij ≤ yj ∀j ∈ J, i ∈ Iδ(j) (29)∑
j∈J

b̂δ
jyj ≥ Hag (30)

xij ∈ {0, 1}, yj ∈ {0, 1} ∀ j ∈ J, i ∈ Iδ(j) (31)

The aggregated demand constraint (30) is redundant in PCδ, but we include it in its formu-
lation in order to strengthen the relaxation that we will consider later in this section. Problems
similar to PCδ, but with the non reinforced expression of the capacity constraints (28) and
without constraint (30), have been considered in the work of Özsoy and Pinar [11] for solving
CpCP . Note that when for a given δ, Y (δ) > p, then δ is a lower bound on the optimal value of
CpCP . Thus, similarly to Proposition 1 in Section 3, the optimal solution to CpCP is given by
Dk∗ , where k∗ ∈ K is such that Y (Dk∗−1) > p ≥ Y (Dk∗). Again, problems PCδ are NP -hard
so we will resort to solving relaxations of PCδ in order to obtain valid lower bounds. Let, Y (δ)
denote the optimal value of the relaxed problem for a fixed value of δ.

Proposition 3 For k ∈ K, if Y (Dk) > p then Dk is a valid lower bound on the optimal value
to CpCP . The best such bound is given by Dk∗, where k∗ ∈ K is such that Y (Dk∗−1) > p ≥
Y (Dk∗).

We next present the relaxation of PCδ that we have used and we show how to solve it in
order to obtain the value Y (δ), for a given value of δ.

4.1 Lagrangean relaxation of PCδ

When relaxing constraints (27) in a Lagrangean fashion the subproblem that we obtain for a
given multipliers vector u ∈ R|I| is:

L2δ(u) = min
∑
j∈J

yj +
∑
i∈I

ui

1−
∑

j∈Jδ(i)

xij

 =
∑
i∈I

ui + min

∑
j∈J

yj −
∑

i∈Iδ(j)

uixij

s.t.

∑
i∈Iδ(j)

hixij ≤ b̂δ
j ∀ j ∈ J

xij ≤ yj ∀ j ∈ J, i ∈ Iδ(j)∑
j∈J

b̂δ
jyj ≥ Hag

xij ∈ {0, 1}, yj ∈ {0, 1} ∀ j ∈ J, i ∈ Iδ(j)

9

For each center j ∈ J , consider the subproblem

KPj(u) = max
∑

i∈Iδ(j)

uixij

s.t.
∑

i∈Iδ(j)

hixij ≤ b̂δ
j

xij ∈ {0, 1} ∀ i ∈ Iδ(j)

The index set of centers to be open in the optimal solution to L2δ(u), denoted J(u) ⊆ J , can
be found by solving

AG(u) = min
∑
j∈J

(1−KPj(u)) yj

s.t.
∑
j∈J

b̂jyj ≥ Dag

yj ∈ {0, 1} ∀ j ∈ J

In particular, if y(u) denotes the optimal solution to AG(u) then J(u) = {j ∈ J : yj(u) = 1}.
Thus, the optimal solution to L2δ(u) consists of opening the centers indexed in J(u) and for these
centers performing the assignment of customers given by the optimal solution to subproblem
KPj(u). Let x(u) denote the resulting assignment vector.

Again, we use subgradient optimization to solve the Lagrangean dual

(D2) Y (δ) = max
u∈R|I|

L2δ(u)

For a given vector u, the components of a subgradient vector γ ∈ R|I| of L2δ(u) are given by
γi = 1−

∑
j∈Jδ(i)

xij(u).

4.2 Heuristic solutions to CpCP from L2δ(u).

At the inner iterations of subgradient optimization we apply a heuristic for obtaining feasible
solutions to CpCP . The idea of the heuristic is opening enough plants so as to assign all the
customers within the coverage radius δ. Note that for a given set of plants J(u) there might
be customers that do not fall within the coverage radius δ of any of the plants in J(u). We
will denote Inc = {i ∈ I : dij > δ,∀j ∈ J(u)} =

⋃
j∈J(u)

(I \ Iδ(j)), the set of such “uncovered”

customers. Let JO denote the set of plants opened by the heuristic (initially JO = ∅). The
heuristic consists of three steps which are the following:

1. Let J1 = {j ∈ J \ J(u) : Inc ∩ Iδ(j) 6= ∅} be the set of plants that cover at least one
customer in Inc within the coverage radius δ. When Inc 6= ∅, in order to obtain a feasible
solution to CpCP , some plants in J1 must open. For this reason, we successively open
plants in J1, until all the customers in Inc are assigned to some open plant within the

10

coverage radius δ. The criterion that is used to select plants to open is to maximize the
demand that is satisfied. Recall that if plant j is opened the demand that it will satisfy is
given by sj = min{b̂δ

j ,
∑

i∈Iδ(j)∩Inc

hi}, and corresponds to the total demand of the customers

that will be assigned to it if opened. Let Aj denote the set of such customers. A summary
of Step 1 is depicted in Algorithm 1

Algorithm 1 Step 1.
Ia = ∅
while Inc 6= ∅ do

Select the non open plant in J1 with more available capacity
j∗ ∈ arg max{sj : j ∈ J1}
JO := JO ∪ {j∗}
J1 := J1 \ {j∗}
j(i) = j∗∀i ∈ Aj∗

Inc := Inc \Aj∗

Ia := Ia ∪Aj∗

end while

2. In the second step, we order unassigned customers (Ina) by decreasing values of their
demands and try to assign them to some open plant within its coverage radius δ, with
enough available residual capacity. If no such plant exists, since unassigned customers fall
within the coverage radius δ of at least one plant in J(u) we open one plant in J(u) and
assign the customer to it. In both cases the selected plant is the one (in the corresponding
set of candidate plants) with more residual capacity sj = b̂δ

j −
∑

i:j(i)=j

hi. A summary of

Step 2 is depicted in Algorithm 2

3. If there are still customers that have not been assigned, new plants are opened until all
unassigned customers are assigned to one open plant. Note that at this point the only
non opened plants that could cover some unassigned customer within the radius δ, with
enough capacity, are the ones in J \ (JO∪J(u)). Again we consider unassigned customers
by decreasing values of their demand and the criterion that is used to select the plants is
the available capacity.

5 Lower and upper bounds to CpCP

We next obtain two lower bounds, LB1 = Dk∗1 and LB2 = Dk∗2 , that satisfy the conditions of
Propositions 2 and 3, respectively. Both radii, Dk∗1 and Dk∗2 , are obtained by applying binary
search on the value of the index, k such that the radius Dk gives a valid lower bound. The
procedure to obtain Dk∗1 solves a series of Lagrangean duals of the type H(Dk), whereas the
procedure to obtain Dk∗2 resorts to the solution of Lagrangean duals of the type Y (Dk). When
solving the corresponding Lagrangean duals, both procedures may also generate valid upper
bounds, ub1(Dk) and ub2(Dk), by applying the heuristics as explained in Subsections 3.2 and
4.2, respectively. More specifically, the values of the bounds are the objective function value in

11

Algorithm 2 Step 2.
Ina = I \ Ina

for i ∈ Ina do
Define set of candidate plants
if JO ∩ {j ∈ Jδi : hi ≤ sj} 6= ∅ then

J2 = JO ∩ {j ∈ Jδi : hi ≤ sj}
else

J2 = {j ∈ J(u) : hi ≤ sj}
end if
if J2 6= ∅ then

Select the candidate plant with more available capacity
j∗ ∈ arg max{sj : j ∈ J2}
if j∗ ∈ J(u) then

J(u) := J(u) \ {j∗}
JO := JO ∪ {j∗}

end if
j(i) := j∗

Ina := Ina \ {i}
end if

end for

CpCP of the corresponding feasible solutions. Let UB1 and UB2 denote the best such bounds.
The two procedures follow a very similar structure which is summarized in Algorithm 3:

Algorithm 3 Identification of lower and upper bounds.

a = 1, b = kmax, UB1 = Dkmax

while a 6= b do
k := ba+b

2 c
Solve H(Dk)
if ub1(Dk) < UB1 then

UB1 := ub1(Dk)
b := k

end if
if H(Dk) < Hag then

a := k + 1
else

b := k
end if

end while
k∗1 = a
LB1 := Dk∗1

a = 1, b = kmax, UB2 = Dkmax

while a 6= b do
k := ba+b

2 c
Solve Y (Dk)
if ub2(k) < UB2 then

UB2 := ub2(Dk)
b := k

end if
if Y (Dk) > p then

a := k + 1
else

b := k
end if

end while
k∗2 = a
LB2 := Dk∗2

12

6 The exact algorithm

In this section we describe the exact algorithm that we apply to obtain the optimal solution of
CpCP . The algorithm performs binary search on the value of the largest radius Dk such zk = 1
in the optimal solution to M1. Let Dk denote the trial value at a given iteration of the binary
search. At the end of the iteration we want to fix the value of zk. That is, we want to know
whether zk = 0 or zk = 1 in the optimal solution to M1. The answer to that question can be
obtained by solving the auxiliary problem PCδ with δ = Dk−1.

If Y (δ) ≤ p for δ = Dk−1, then there exists a feasible solution to M1 with a radius no larger
than δ = Dk−1, so we can fix zk = 0 in the optimal solution to M1. In this case we can update
the value of the upper bound to δ = Dk−1. On the contrary, if Y (δ) > p there exists no feasible
solution to M1 with a maximum radius of δ. Thus, zk = 1 in the optimal solution to M1. In
this case we can update the value of the lower bound to Dk. A summary of the procedure is
given in Algorithm 4.

In practice, instead of knowing the exact optimal value of Y (δ), we just need to know
whether or not Y (δ) ≤ p. To this end lower and upper bounds can be very useful. In particular,
if Ȳ (δ) > p (Ȳ (δ) denotes the value of the LP relaxation of Y (δ)), then Y (δ) > p. Also if there
exists a feasible solution solution to Y (δ) with value smaller than or equal to p, then Y (δ) ≤ p.

Algorithm 4 Exact solution to M1 with binary search
1. Elimination Test.
Let kl, ku be such that LB = Dkl , and UB = Dku .
Fix zk = 1, ∀k ≤ kl.
Fix zk = 0, ∀k ≥ ku.

2. Optimal Solution to (M1).
a = kl, b = ku

while (a 6= b) do
k := ba+b

2 c
if Y (δ) > p then

a := k + 1
else

b := k
end if

end while
k∗ = a

7 Computational experiments

In order to evaluate the effectiveness of our algorithm, we have run a series of computational
experiments. In this section we report on the obtained results. All the algorithms have been

13

coded in C and run on a Dell PC Intel Pentium 4, 2GHz and 512 MB of RAM. All the benchmark
instances that we have used, have also been used in [11, 10] for the CpCP . They are the following:

1. The set of 20 instances with Euclidean distances, generated by Osman and Christofides
[9] for the capacitated p median problem. These instances are available in the OR-Library
(http://mscmga.ms.ic.ac.uk/info.html). This set consists of 2 groups of 10 instances
each, with |V | = 50 and p = 5, and |V | = 100 and p = 10, respectively. These instances
are referred to as Set S1.

2. The set of eight instances derived in [10] for CpCP from the two instances with non-
euclidean distances generated for the maximum covering location problem by Galvaõ and
ReVelle [4]. There are two instances of each of the following dimensions: (100, 5), (100,
10), (150, 10) and (150, 15). These instances are referred to as Set S2.

3. The set of six instances with euclidean distances of [8] that correspond to real data from the
Brazilian city of São José dos Campos. These instances are available from http://www.
lac.inpe.br/∼lorena/instancias.html. Their dimensions (n, p) are (100,10), (200,15),
(300,25), (300,30), (402,30) and (402,40), respectively. These instances are referred to as
Set S3.

The numerical results with sets S1, S2 and S3 are depicted in Tables 1, 2 and 3, respectively.
In these tables we evaluate our results in terms of quality, by comparing our lower and upper
bounds with the value of the optimal solutions, and also in terms of effectiveness via the required
cpu times. Our results are also compared with those of Öszoy and Pinar [11] which, to the best
of our knowledge, are the only known results of an exact algorithm for this problem. The results
that we report here have been obtained with our implementation of their method, which allows
a better comparison of the required cpu times. These results do not fully coincide with the ones
reported in their paper. In all the tables the first four columns give information on the instances.
In particular, the columns under the headings Prob, n and p give for each instance its name,
number of nodes and value of the parameter p, respectively. The value of an optimal solution to
each instance is given in column Opt (in Table 3 the optimal solution is not known for instance
SJC4a; for this instance the depicted value is marked with an asterisk and corresponds to the
best known lower bound). Columns 5-8, under the heading Lag.Dual, give information on the
results obtained with the Lagrangean Duals that we have presented. In particular, columns LB
and UB depict the obtained lower and upper bounds respectively. Columns under D1 refer to the
results obtained with the Lagrangean dual D1, based on the solution of PDδ, whereas columns
under D2 report the results obtained with the Lagrangean dual D2, based on the solution of
PCδ. Column OP-LB gives the lower bound obtained in the Phase I of the algorithm of Öszoy
and Pinar [11]. The next three columns under %gap give the percent deviation between the
lower bound and the optimal solution (defined as 100 ∗ Opt−LB

Opt) obtained with our Lagrangean
Duals (columns D1 and D2) and with the approach of Öszoy and Pinar [11] (column OP). The
last six columns give the required cpu times to obtain the lower bounds (columns under CPU
time LB) and to solve exactly the problem, including the time required to obtain the lower
bound (columns under CPU time exact). In both cases the columns under ADF refer to our
approach and the columns under OP refer to the results of the algorithm of Öszoy and Pinar.

14

In our opinion the obtained results are very satisfactory. In general, the lower bounds
obtained with the Lagrangean Duals are very good and the percent deviation with respect to
the optimal solution is very small. This can be appreciated, in particular, for the instances in
the set S1, where this bound was already optimal for 15 out of the 20 instances, both for D1
and D2. For the remaining instances in S1, and the instances in S2 and S3, the gap does not
exceed 5.00%, excepting for two instances (instance p20 of S1 with gap 9.52% and instance G3
of S2 with gap 40.68%). The quality of the lower bounds obtained with D1 and D2 is very
similar and, excepting two instances (G6 and 3b) with slight differences the two Lagrangean
duals give similar lower bounds. On the contrary, there is a clear difference in the quality of the
upper bounds obtained with D1 and D2, since D2 gives much better upper bounds. Despite its
simplicity, the quality of the upper bounds obtained with D2 is, in general, quite good and the
percent deviations from the optimal solutions are, on the average 6.91%, 3.92% and 13.00% for
instances in sets S1, S2 and S3, respectively. In general terms, our lower bounds are better than
those of OP : For the set S1, our lower bound is better for 17 instances and coincides for three
instances. For the set S2 our bound is better for four instances, and coincides with the bound of
OP for the other four instances whereas for the set S3, our lower bound is always better. The
improvement on the lower bounds that we obtain with the Lagrangean duals with respect to the
algorithm of Öszoy and Pinar can also be appreciated in the percent gaps with respect to the
optimal solutions. In particular, for the instances in set S1, our average percent gaps are 1.36%
both for D1 and D2, whereas it is 7.29% for the algorithm of Öszoy and Pinar. With set S2, our
average percent gap is 7.07% for D1 and 6.93% for D2, whereas it is 12.80% for OP. Similarly,
for the instances in S3, our percent gap is 1.94% for D1 and 2.09% for D2, and 4.25% for OP.

In our opinion, the increasing difficulty of instances in S1, S2 and S3 is due not only to the
increasing sizes of the instances but also to other characteristics on the instances like, for instance,
the range between the largest and the smallest radii. Thus, given that, for the considered sets
of instances, the distribution of the number of radii in the interval of their range is not uniform,
we believe that a better indicator of the quality of the lower bounds than the percent gap is the
number of radii in the interval [LB, Opt].

As can be seen, the cpu times required to obtain these bounds are small, taking into account
the size and the difficulty of the problems. In particular, for the instances in S1 this time never
exceeded 26 seconds, neither for D1 nor D2, and was on the average 8.62 seconds for D1 and
3.29 seconds for D2; for S2 the bounds were obtained in less than 132 seconds (68.00 secs. and
46.40 secs. on the average for D1 and D2, respectively); and for S3 the lower bounds were
obtained in less than 3,000 secs. (1,276.33 secs. and 161.72 secs. on the average for D1 and
D2, respectively). These results indicate that D2 is much more efficient than D1, since it gives
similar lower bounds and much better upper bounds in much smaller cpu times. The average
cpu times required by OP to obtain their lower bounds are 4.02, 7.48 and 1330.07 seconds,
respectively for sets S1, S2 and S3. These numbers show that, on the average, D1 consumes
considerably more time than OP for sets S1 and S2, D2 is faster than OP for sets S1 and S3,
whereas OP is faster than D2 in the set S2.

The quality of our lower and upper bounds indeed does have an effect on the performance
of the exact algorithm. As can be seen in Tables 1, 2 and 3, there is a high number of zk

variables that were fixed after solving our Lagrangean Duals: 96.28% and 98.40% for D1 and
D2, respectively, in S1; 83.72% and 95.81 for D1 and D2, respectively, in S2; and 92.06%

15

and 97.52 % for D1 and D2, respectively, in S3. The effect of this reduction on the number
of variables on the overall performance of the algorithm is that the algorithm is able to solve
exactly the instances in cpu times that we consider small for problems of this difficulty. First
we should note that the overall times are quite different among problems of the same sizes with
roughly the same initial gap. This is common both to our approach and to OP.

Finally, we can observe that the ratio CPU time exact ADF
CPU time exact OP of the total cpu time of ADF

over total cpu time of OP is on the average 1.58 and 0.77 for D1 and D2, respectively, in S1; 0.74
and 0.94 for D1 and D2, respectively, in S2; and 0.42 and 0.2 for D1 and D2, respectively, in S3.
Thus, the results of Tables 2 and 3 show that the cpu times required by our approach are, on
the average, considerably smaller than the ones of OP both with D1 and D2, and this reduction
is much higher in the largest more difficult instances in S3. However, for some instances our
total times are somewhat bigger than the ones of OP. This can be explained as follows. The
exact algorithm of OP starts with a trial value for the radius δ equal to the lower bound, and
increases this value to the next radius until the corresponding problem PCδ is feasible. When
there are few radii in the interval [LB, Opt] this strategy can be more efficient than binary
search, specially for the instances (like p20) where the upper bound is not tight. However, the
obtained results indicate that, when the number of radii in the interval [LB, Opt] is big, the
strategy of the binary search is much better. For better appreciating the above comment, Table
4 depicts in the columns under the heading “# radii in [LB, Opt]”, the values of the number
of radii in the intervals [LB, Opt] for our two approaches and for OP . In addition in Table 4
columns under the headings #rad and range give, for each instance, the number of different
radii (different values of the dij distances) the difference between the largest and the smallest
radii, respectively. Finally, columns under #fix give, both for D1 and D2, the number of zk

variables that have been fixed when applying the elimination test with the obtained bounds.

8 Conclusions

In this paper we have presented an exact algorithm for the CpCP , which is an NP-hard prob-
lem. We have proposed a new model based on the one of Elloumi, Labbé and Pochet [3] for
the uncapacitated p-center problem, and we have studied two different auxiliary problems: the
Maximum Demand Coverage with Fixed Radius Problem, denoted PDδ, and the Minimum Re-
quired Centers with Fixed Radius Problem, denoted PCδ. The difficulty of CpCP is remarkable
since, even if the optimal value of one instance is known, finding an optimal solution amounts
to solve a Maximum Demand Coverage within Fixed Radius Problem, which is also an NP-hard
problem that has the Generalized Assignment Problem as particular case.

Lower and upper bounds for CpCP have been obtained from two Lagrangean duals, derived
from each of the auxiliary problems. In turn, the lower and upper bounds allow to eliminate
most of the variables of the problem and make it possible to solve efficiently large instances in
small cpu times.

The numerical results obtained with the computational experiments on three well-known
sets of benchmark instances show the efficiency of our proposal that outperforms the algorithm
of Öszoy and Pinar which is, to the best of our knowledge, the only exact algorithm that has

16

L
a
g.

D
u
a
l

O
P

%
ga

p
C
P
U

ti
m

e
L
B

C
P
U

ti
m

e
ex

a
ct

L
B

U
B

L
a
g.

D
u
a
l

A
D

F
A

D
F

P
ro

b
n

p
O

p
t.

D
1

D
2

D
1

D
2

L
B

D
1

D
2

O
P

D
1

D
2

O
P

D
1

D
2

O
P

p
1

5
0

5
2
9

2
9

2
9

2
9

2
9

2
9

0
.0

0
0
.0

0
0
.0

0
1
.3

1
0
.1

1
1
.7

2
1
.3

1
0
.1

1
1
.8

8

p
2

5
0

5
3
3

3
3

3
3

3
3

3
3

3
0

0
.0

0
0
.0

0
9
.0

9
1
.3

6
0
.2

2
0
.5

3
1
.3

6
0
.2

2
2
.3

0

p
3

5
0

5
2
6

2
6

2
6

2
6

2
6

2
5

0
.0

0
0
.0

0
3
.8

5
0
.5

5
0
.4

5
0
.9

1
0
.5

5
0
.4

5
1
.1

6

p
4

5
0

5
3
2

3
2

3
2

3
2

3
2

3
0

0
.0

0
0
.0

0
6
.2

5
1
.0

5
0
.1

9
0
.5

0
1
.0

5
0
.1

9
1
.0

9

p
5

5
0

5
2
9

2
9

2
9

2
9

2
9

2
7

0
.0

0
0
.0

0
6
.9

0
1
.0

5
0
.2

0
0
.4

2
1
.0

5
0
.2

0
0
.8

4

p
6

5
0

5
3
1

3
0

3
0

3
5

3
4

2
8

3
.2

3
3
.2

3
9
.6

8
2
.7

0
1
.3

8
0
.4

1
5
.3

6
3
.1

3
5
.5

8

p
7

5
0

5
3
0

3
0

3
0

3
1

3
3

3
0

0
.0

0
0
.0

0
0
.0

0
2
.0

8
0
.9

7
0
.5

9
2
.6

6
1
.9

8
0
.8

3

p
8

5
0

5
3
1

3
1

3
1

3
1

3
1

3
0

0
.0

0
0
.0

0
3
.2

3
1
.5

2
0
.2

5
0
.5

3
1
.5

2
0
.2

5
1
.1

7

p
9

5
0

5
2
8

2
8

2
8

2
8

2
8

2
6

0
.0

0
0
.0

0
7
.1

4
2
.2

0
0
.5

6
0
.5

9
2
.2

0
0
.5

6
2
.2

5

p
1
0

5
0

5
3
2

3
2

3
2

3
2

4
2

2
8

0
.0

0
0
.0

0
1
2
.5

0
2
.4

2
2
.2

2
0
.4

4
2
.4

2
6
.8

4
6
.0

9

p
1
1

1
0
0

1
0

1
9

1
9

1
9

3
0

2
2

1
8

0
.0

0
0
.0

0
5
.2

6
1
2
.2

5
4
.4

7
8
.5

6
2
9
.0

5
1
3
.3

9
1
4
.5

9

p
1
2

1
0
0

1
0

2
0

2
0

2
0

2
0

2
0

1
9

0
.0

0
0
.0

0
5
.0

0
1
7
.2

0
0
.6

7
7
.1

7
1
7
.2

0
0
.6

7
1
4
.0

6

p
1
3

1
0
0

1
0

2
0

2
0

2
0

2
1

2
0

1
8

0
.0

0
0
.0

0
1
0
.0

0
1
3
.5

3
1
.9

1
8
.2

8
1
8
.2

8
1
.9

1
9
.8

1

p
1
4

1
0
0

1
0

2
0

2
0

2
0

3
0

2
0

1
9

0
.0

0
0
.0

0
5
.0

0
1
6
.1

6
1
.7

3
5
.2

5
2
4
.5

5
1
.7

3
6
.8

1

p
1
5

1
0
0

1
0

2
1

2
0

2
0

3
1

2
3

2
0

4
.7

6
4
.7

6
4
.7

6
1
6
.3

0
4
.3

8
7
.1

7
3
4
.5

0
1
0
.9

2
1
3
.0

9

p
1
6

1
0
0

1
0

2
0

1
9

1
9

2
1

2
1

1
8

5
.0

0
5
.0

0
1
0
.0

0
1
9
.9

3
1
.9

8
1
0
.3

6
5
8
.6

9
4
1
.1

4
5
5
.0

0

p
1
7

1
0
0

1
0

2
2

2
2

2
2

3
1

2
3

2
0

0
.0

0
0
.0

0
9
.0

9
1
2
.3

8
1
1
.3

3
8
.3

0
1
,4

7
7
.0

3
1
,4

7
6
.5

5
1
,5

2
4
.6

6

p
1
8

1
0
0

1
0

2
1

2
0

2
0

3
0

2
2

1
8

4
.7

6
4
.7

6
1
4
.2

9
1
8
.5

6
3
.3

8
5
.6

7
6
1
.4

8
3
6
.7

8
3
1
.3

6

p
1
9

1
0
0

1
0

2
1

2
1

2
1

3
0

2
2

2
0

0
.0

0
0
.0

0
4
.7

6
1
2
.1

9
3
.6

3
5
.1

7
3
1
.7

0
8
.1

7
2
9
.8

6

p
2
0

1
0
0

1
0

2
1

1
9

1
9

3
0

3
0

1
7

9
.5

2
9
.5

2
1
9
.0

5
1
7
.6

6
2
5
.6

7
7
.7

8
3
5
2
.0

0
3
5
7
.5

0
7
6
.8

4

T
ab

le
1:

R
es

ul
ts

w
it

h
in

st
an

ce
s

S1

17

L
a
g.

D
u
a
l

O
P

%
ga

p
C
P
U

ti
m

e
L
B

C
P
U

ti
m

e
ex

a
ct

L
B

U
B

L
a
g.

D
u
a
l

A
D

F
A

D
F

P
ro

b
n

p
O

p
t.

D
1

D
2

D
1

D
2

L
B

D
1

D
2

O
P

D
1

D
2

O
P

D
1

D
2

O
P

G
1

1
0
0

5
9
4

9
3

9
3

9
5

1
0
1

9
3

1
.0

8
1
.0

8
1
.0

8
2
6
.1

4
1
3
1
.2

4
3
.3

0
1
2
1
.6

4
2
4
1
.5

8
6
5
.4

4

G
2

1
0
0

5
9
4

9
3

9
3

9
5

9
4

9
3

1
.0

8
1
.0

8
1
.0

8
1
7
.9

4
8
3
.7

7
2
.5

8
5
6
.5

6
1
0
8
.5

9
6
2
.3

1

G
3

1
0
0

1
0

8
3

5
9

5
9

1
1
6

8
7

5
8

4
0
.6

8
4
0
.6

8
4
3
.1

0
1
4
.8

0
4
.2

2
1
.5

6
2
6
2
.6

9
2
1
2
.5

9
3
0
8
.8

4

G
4

1
0
0

1
0

8
4

8
1

8
1

1
1
6

8
7

5
8

3
.7

0
3
.7

0
4
4
.8

3
2
9
.1

4
4
.5

9
1
.8

3
1
3
9
.5

9
5
8
.8

8
5
0
6
.0

8

G
5

1
5
0

1
0

9
5

9
3

9
3

1
3
6

9
7

9
3

2
.1

5
2
.1

5
2
.1

5
5
5
.4

1
6
3
.2

2
1
4
.5

2
8
3
5
.2

8
4
6
8
.8

8
2
,1

3
9
.1

6

G
6

1
5
0

1
0

9
6

9
3

9
4

1
3
6

9
7

9
3

3
.2

3
2
.1

3
3
.2

3
1
1
2
.8

3
5
9
.9

5
1
7
.9

4
6
2
7
.0

3
2
0
9
.5

2
1
,0

1
1
.8

1

G
7

1
5
0

1
5

8
9

8
6

8
6

9
7

9
7

8
6

3
.4

9
3
.4

9
3
.4

9
6
0
.4

4
1
0
.8

8
7
.0

2
3
4
1
.3

3
2
8
0
.4

5
7
2
5
.0

2

G
8

1
5
0

1
5

8
9

8
8

8
8

9
2

9
2

8
6

1
.1

4
1
.1

4
3
.4

9
6
7
.3

4
1
3
.3

0
1
1
.1

1
6
3
5
.8

0
5
6
4
.5

0
1
,1

0
8
.2

0

T
ab

le
2:

R
es

ul
ts

w
it

h
in

st
an

ce
s

S2

18

L
a
g.

D
u
a
l

O
P

%
ga

p
C
P
U

ti
m

e
L
B

C
P
U

ti
m

e
ex

a
ct

L
B

U
B

L
a
g.

D
u
a
l

L
a
g.

D
u
a
l

A
D

F
P
ro

b
n

p
O

p
t.

D
1

D
2

D
1

D
2

L
B

D
1

D
2

O
P

D
1

D
2

O
P

D
1

D
2

O
P

S
J
C

1
1
0
0

1
0

3
6
4
.7

3
3
5
0
.0

4
3
5
0
.0

4
4
9
5
.1

4
4
9
5
.1

4
3
1
6
.1

2
4
.1

9
4
.1

9
1
5
.3

8
1
1
5
.9

4
1
0
3
.2

8
9
.5

0
2
,8

4
7
.9

1
3
,0

1
3
.9

7
3
0
,6

4
5
.6

3

S
J
C

2
2
0
0

1
5

3
0
4
.1

4
3
0
2
.8

3
3
0
2
.8

3
3
1
4
.8

4
3
1
4
.4

3
3
0
1
.0

1
0
.4

3
0
.4

3
1
.0

4
4
2
3
.3

6
4
4
.5

5
1
7
3
.6

4
6
8
2
.0

6
3
2
3
.6

4
5
2
9
.0

6

S
J
C

3
a

3
0
0

2
5

2
7
8
.9

6
2
7
5
.1

8
2
7
5
.1

8
5
0
8
.0

4
2
9
0
.0

1
2
7
5
.0

7
1
.3

7
1
.3

7
1
.4

1
9
5
6
.3

4
1
0
3
.6

6
8
5
7
.6

3
1
,6

9
8
.1

1
7
8
0
.0

5
4
,3

8
5
.7

2

S
J
C

3
b

3
0
0

3
0

2
5
3
.7

1
2
4
8
.7

1
2
4
6
.5

2
5
0
8
.0

4
2
9
0
.0

1
2
4
5
.1

2
2
.0

5
2
.9

2
3
.5

0
8
7
4
.4

9
1
1
3
.5

0
8
4
7
.8

0
1
,1

2
4
.2

8
4
0
8
.7

3
2
,1

8
6
.2

0

S
J
C

4
a

4
0
2

3
0

2
8
4
.6

8
2
7
7
.0

3
2
7
7
.0

3
5
6
0
.1

5
3
2
0
.2

6
2
7
6
.0

0
2
.7

6
2
.7

6
3
.1

4
2
,9

9
3
.8

9
2
6
4
.3

8
3
,0

5
1
.6

9
7
,3

6
7
.5

2
4
,2

2
4
.9

1
6
6
,3

2
9
.4

2

S
J
C

4
b

4
0
2

4
0

2
3
9
.3

8
2
3
7
.3

2
2
3
7
.3

2
5
6
0
.1

5
2
5
8
.8

1
2
3
7
.0

0
0
.8

7
0
.8

7
1
.0

1
2
,2

9
3
.9

8
3
4
0
.9

5
3
,0

4
0
.1

6
3
,3

6
0
.5

5
9
8
4
.2

2
2
2
,6

7
7
.4

2

T
ab

le
3:

R
es

ul
ts

w
it

h
in

st
an

ce
s

S3

19

radii in[LB, Opt]
Prob n p #rad range

#fix
ADF

D1 D2 D1 D2
OP

p1 50 5 116 119 116 116 1 1 1
p2 50 5 113 131 113 113 1 1 4
p3 50 5 110 118 110 110 1 1 2
p4 50 5 114 122 114 114 1 1 3
p5 50 5 113 116 113 113 1 1 3
p6 50 5 110 115 105 106 1 1 4
p7 50 5 110 120 109 110 1 1 1
p8 50 5 117 130 117 117 1 1 2
p9 50 5 108 121 108 108 1 1 3
p10 50 5 115 123 115 105 1 1 5
p11 100 10 121 123 110 118 1 1 2
p12 100 10 124 125 124 124 1 1 2
p13 100 10 126 131 125 126 1 1 3
p14 100 10 123 126 113 123 1 1 2
p15 100 10 125 129 114 122 2 2 2
p16 100 10 114 120 112 111 2 2 3
p17 100 10 125 128 116 124 1 1 3
p18 100 10 123 123 113 121 3 2 4
p19 100 10 122 130 113 121 1 1 2
p20 100 10 123 126 112 112 3 3 5
G1 100 5 116 186 114 108 2 2 2
G2 100 5 116 186 114 115 2 2 2
G3 100 10 116 186 79 108 5 5 6
G4 100 10 116 186 81 110 4 4 7
G5 150 10 153 230 111 150 3 3 3
G6 150 10 153 230 111 150 3 3 4
G7 150 15 153 230 142 142 4 4 4
G8 150 15 153 230 144 149 2 2 4
SCJ1 100 10 4,907 2,725.39 4,351 4,351 40 40 199
SCJ2 200 15 19,303 2,758.71 19,194 19,194 14 14 32
SCJ3a 300 25 43,047 3,375.08 39,499 42,862 46 46 49
SCJ3b 300 30 43,047 3,375.08 41,181 42,524 59 74 89
SCJ4a 402 30 75,930 3,509.67 69,143 75,076 134 134 151
SCJ4b 402 40 75,930 3,509.67 68,454 75,573 41 41 51

Table 4: Number of fixed radii and number of radii in [LB, Opt]

20

been previously proposed for CpCP .

9 Acknowledgements

This work has been partially supported through grant TIC 2000 1750 006/3 of the Inter-
Ministerial Spanish Commission of Science and Technology. The research of the third author
has been partially supported by the Departamento de Ingenieŕıa Industrial y Textil, Universidad
de las Américas, Puebla, México. These supports are gratefully acknowledged.

References

[1] J. Bar-Ilan, G. Kortsarz, and D. Peleg. How to allocate network centers. Journal of
Algorithms, 15:385–415, 1993.

[2] J. Barceló, E. Fernández, and K. Jörnsten. Computational results from a new lagrangean
relaxation algorithm for the capacitated plant location problem. European Journal of Op-
erational Research, 53:38–45, 1991.

[3] S. Elloumi, M. Labbé, and Y. Pochet. A new formulation and resolution method for the
p-center problem. INFORMS Journal on Computing, 16:84–94, 2004.

[4] R.D. Galvaõ and C. ReVelle. A lagrangean heuristic for the maximum covering location
problem. European Journal of Operational Research, 88:114–123, 1996.

[5] M. Guignard. Lagrangean relaxation. TOP, 11:151–228, 2003.

[6] M. Jaeger and J. Goldberg. A polynomial algorithm for the equal capacity p-center problem
on trees. Transportation Science, 28:167–175, 1994.

[7] S. Khuller and Y.J. Sussmann. The capacitated k-center problem. SIAM Journal on
Discrete Mathematics, 13:403–418, 2000.

[8] L.A.N. Lorena and E.L.F. Senne. A column generation approach to capacitated p-median
problem. Computers and Operations Research, to appear, 2002.

[9] I.H. Osman and N. Christofides. Capacitated clustering problems by hybrid simulated
annealing and tabu search. International Transactions in Operational Research, 1:317–336,
1994.

[10] M.P. Scaparra, S. Pallotino, and M.G. Scutellà. Large-scale local search heuristics for the
capacitated vertex p-center problem. Networks, 43:241–255, 2004.

[11] F. A. Özsoy and M. Ç. Pinar. An exact algorithm for the capacitated vertex p-center
problem. Computers and Operations Research.

21

