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1 Introduction

This report describes some aspects of the theory of Variable Structure Systems (VSS). It starts with the
state-of-the-art classical methods of control and evolves to a description based on average port hamiltonian
models.

In the framework of GEOPLEX, VSS appear due to the fact that some of the plants of interest are
controlled using power converters, which are systems with switches, changing between several circuit
topologies.

In Section 2, the basic ideas of Sliding Mode Control (SMC) for VSS are presented, and a somewhat
detailed exposition of its application to the control of a power converter is given.

Most of Section 3 is unpublished material, describing some preliminary results about the relation
between (generalized) averaging and the port hamiltonian description. The fundamentals of State Space
Averaging (SSA) and Generalized State Space Averaging (GSSA) are presented, and averaged port hamil-
tonian models for second order power converters are introduced. There is a summary of some rigorous
mathematical results about GSSA, and a relationship between the hamiltonians of the GSSA models and
the original hamiltonian is stablished for systems with quadratic hamiltonian functions.



2 Sliding mode control

2.1 Introduction

The use of sliding-control techniques in variable structure systems (VSS) improves considerably the
dynamic behavior of these systems compared to the conventional control method. The dynamic per-
formances of VSS in sliding regime are basically a fast transient response without overshoot and a low
sensitivity to external perturbations.

Switching converters constitute an important case of VSS, and different sliding mode strategies to
control this class of circuits have been reported in the last years [5], [21]. Depending on the task they
are supposed to do, and the control algorithm, they are nonlinear time-varying dynamical systems. They
can be modelled as variable structure systems because of the abrupt topological changes that the circuit,
commanded by a discontinuous control action, undergoes. They constitute a natural field of application
of Sliding Mode Control techniques which is based on the following two main concepts:

• to define a surface, i.e. a relationship between state variables, in such a way that, if trajectories
slide on this surface, a previously stated behavior (for instance reaching an equilibrium point) is
achieved.

• to design an appropriate control law forcing this surface to be an attractor and a dynamically
invariant set.

2.1.1 Definitions

Let us consider a single input dynamical system given by

ẋ = f(x) + ug(x) (1)

where x ∈ U , an open set of R
n, f and g are smooth vector fields on U with g(x) 6= 0 everywhere, and

u : U −→ R is the control input.

Let Σ be a submanifold in U defined by a smooth function s : U −→ R, namely

Σ = {x ∈ U | s(x) = 0} (2)

where (grad s)(x) 6= 0, ∀x ∈ U and Σ ∩ U 6= ∅ are assumed.

As for the input, let us take u defined by

u =

{

u+(x) if s(x) > 0
u−(x) if s(x) < 0

(3)

where both u+ and u− are smooth functions of x. There is no loss of generality in assuming 〈grad s, g〉 > 0.

Finally, let φ(x, t) be the trajectory of the dynamical system defined by (1), (2) and (3) with initial
conditions x(0) = x. It is worth remarking that the former dynamical system is discontinuous on H = 0;
thus the standard results on differential equations do not apply. We will deal with this subject later; let
us assume for the moment the existence and uniqueness of trajectories.

Definition: Σ is said to be a sliding surface for the dynamical system defined by (1), (2) and (3) if there
exists θ, an open set in U containing Σ, in such a way that ∀x ∈ θ \ Σ, one of the following conditions
holds:

(i) There exists a finite time ts > 0 such that

s(φ(x, t)) 6= 0 0 ≤ t < ts and s(φ(x, t)) = 0 t ≥ ts.

(ii) There exist ts and t̂s, 0 < ts < t̂s < ∞ such that

s(φ(x, t)) 6= 0 0 ≤ t < ts and s(φ(x, t)) = 0 ts ≤ t < t̂s.

and φ(x, t̂s) ∈ ∂(Σ ∩ U)
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Roughly speaking, the trajectories starting in a neighborhood of Σ must fall on Σ and remain there
(case 1) or, should one escape, it must go through ∂(Σ∩U). As a first consequence of the definition, two
questions arise, namely

(i) Existence. Which conditions on f , g, u and Σ, if any, guarantee that Σ be a sliding surface?

(ii) Ideal sliding dynamics. Note that the dynamics defined by (1), (2) and (3) do not consider Σ;
however, if Σ is a sliding surface, it is dynamically invariant. Then the question is which vector
field governs the system on Σ.

Both problems are solved below.

2.1.2 Method of equivalent control and ideal sliding dynamics

Definition: Let us define equivalent control as the control law, ueq : U → R, which makes Σ an invariant
manifold for the dynamical system defined in (1), that is to say, ueq is such that the vector field f + gueq

is tangent to Σ. This results in
〈grad s, f + g ueq〉 = 0 (4)

where 〈·, ·〉 denotes the standard scalar product, and thus

ueq = −〈grad s, f〉
〈grad s, g〉 (5)

As it is proved in [6], a paper by Filipov on differential equations with discontinuous right-hand side,
ideal sliding dynamics, i.e. the dynamics on Σ, are governed by the vector field

f(x) + g(x) ueq(x)

Notice that a necessary condition for the existence of equivalent control is 〈grad s, g〉 6= 0. This
equivalent control makes the sliding surface dynamically invariant. Hence, system trajectories reaching Σ
slide on it. Ideal sliding dynamics remains to be studied, particularly by computing possible equilibrium
points and determining whether they are stable or not.

2.1.3 Control law and sliding motion

As far as existence is concerned, two results, depending on whether u+ and u− are fixed or not, are given
below.

Proposition: Σ is a sliding surface for the dynamical system defined by (1), (2) and (3) if and only
if there exists θ, a neighbourhood of Σ, such that

d

dt
s(φ(x, t)) < 0 if s(φ(x, t)) > 0

d

dt
s(φ(x, t)) > 0 if s(φ(x, t)) < 0



















Remark
We consider derivatives of s along the trajectories of the vector field f(x) + ug(x) for the values of u
defined in (3). These conditions may also be written as

lim
s→0+

Lf+gu+s(x) < 0

lim
s→0−

Lf+gu−s(x) > 0











(6)

where Lf+gu+s(x) denotes the directional derivative of the scalar function s with respect to the vector
field f + gu at point x. That is to say, the change rate of the scalar surface coordinate function s(x),
measured in the direction of the controlled field, is such that a crossing of the surface is guaranteed.
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Figure 1: A graphic interpretation of the conditions given in (6).

These conditions are equivalent to

lim
s→0+

〈grad s, f + gu+〉 < 0

lim
s→0−

〈grad s, f + gu−〉 > 0











(7)

The geometrical meaning is that on Σ the projections of the controlling vector fields f + gu+ and
f + gu− on (grad s) are of the opposite sign, and hence the controlled fields locally point towards the
surface Σ (Figure 1). In practice, sliding motion is not attainable; imperfections such as hysteresis,
delays, sampling and unmodelled dynamics will result in a chattering motion in a neighbourhood of the
sliding surface, as it has been schematized in Figure 2. Such a real model will usually lie in the field of
ordinary differential equations, and therefore there is no need for Filipov’s theory. Moreover, if the control
functions u+ and u− can be designed arbitrarily, the next proposition gives a very simple condition for
Σ to be a sliding surface.

Proposition: A necessary and sufficient condition for the existence of control functions u+ and u−

making Σ be a sliding surface is
〈grad s, g〉 6= 0 (8)

which is known as the transversality condition.

The proof is easy and can be found in [21] where this subject is widely considered. The cornerstone
of the proof is to take the function s2 as a Lyapunov function.

2.2 The single phase back-to-back converter.

2.2.1 Introduction

The most popular AC/DC/AC power conversion is performed by means of a PWM rectifier-inverter
system with dc voltage link. This approach makes use of a capacitor (normally electrolytic, bulky and
expensive) in the DC link, which causes decoupling between the rectifier and the inverter. Some of the
latest studies on AC/DC/AC power conversion deal with the strategies to reduce the dc-link capacitors
[14]-[11].

The desired unity power factor constitutes one of the rectifier requirements. In the same way, the
AC output voltage has to be in phase with the AC input voltage and with a reduced THD factor. The
control technique mostly used to drive the two decoupling converters is based on the usual and well-known
linearisation technique applied to the design of PWM control schemes. Sliding-mode control techniques
have been proposed as an alternative to PWM control strategies in DC-DC switching regulators since
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Figure 2: Chattering.

Figure 3: Single-phase inverter with rectifier.

they make these systems very robust to perturbations, namely variations of the input voltage and/or
in the load [20]-[24]. These techniques have also been applied to the design of high-efficiency inverters,
where a switching DC-DC converter is forced to track an external sinusoidal reference by means of an
appropriate sliding-mode control action [7],[4],[1].

We propose two switching surfaces and their respective control policies to track the output voltage
tracking and to guarantee unity power factor in a single-phase inverter with input rectifier, respectively.
Whereas the former sliding surface is a linear combination of the output voltage error and its derivative,
the latter results in a surface not only depending on time, but on the energy balance as well. This energy
balance is measured at each period of the AC input voltage. The problem we deal with can be redefined
as the design of appropriate surfaces in order to make the outputs of the system reach zero as a stable
equilibrium point. One of these surfaces has to be iteratively defined, otherwise the zero dynamics is not
stable.

2.2.2 The single-phase inverter with input rectifier. State equations

Let us consider the single-phase inverter with phase controlled rectifier acting as power supply depicted
in Figure 3, where half bridges have been employed to ensure the bipolarity of the AC output.

The power system, considering ideal switches and lossless reactive elements, can be represented by
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the set of differential equations

L1
diL1

dτ
= (vg − vC1

) + u2(vC1
+ vC2

) (9)

C1
dvC1

dτ
= (iL1

− iL2
) + u1iL2

− u2iL1
(10)

L2
diL2

dτ
= (vC1

− vo) − u1(vC1
+ vC2

) (11)

C2
dvC2

dτ
= u1iL2

− u2iL1
(12)

C3
dvo

dτ
= iL2

− iload (13)

where, as can be seen in Figure 3, iL1
and iL2

are currents through the inductors, iload is the current
through the load, vC1

, vC2
and vo are voltages in the capacitors, L1 and L2 are inductance values, C1, C2

and C3 are capacitance values, vg = b sin(2πf0τ) is the input voltage, and u1, u2 are the control signals,
which belong to the discrete set {0, 1}; u1 drives (T3, T4) and u2 drives (T1, T2).

For a systematic study, it is convenient to consider a dimensionless model obtained by the change of
variables

x1 =
vC1

+vC2

b
x2 =

vC1
−vC2

b

y1 =
iL1

b

√

L1

C1
y2 =

iL2

b

√

L1

C1

x3 = vo

b
yload = iload

b

√

L1

C1

t = τ√
L1C1

f =
√

L1C1f0

v1 = 1 − 2u1 v2 = 1 − 2u2

h =
vg

b
= sin(2πft)















































































Namely,

dy1

dt
= h − x2

2
− v2x1

2
(14)

dx1

dt
= v2y1 − v1y2 (15)

dy2

dt
= L

(v1x1

2
+

x2

2
− x3

)

(16)

dx2

dt
= y1 − y2 (17)

dx3

dt
= C (y2 − yload) (18)

where L = L1

L2
, C = C1

C3
and C1 = C2 is assumed.

Also notice that the energy stored in the plant can be measured by

E = y2
1 +

x2
1

2
+

x2
2

2
+

y2
2

L
+

x2
3

C
(19)

and that
dE

dt
= 2 [y1h − yloadx3] (20)

describes the energy balance.

2.2.3 Design and analysis

The requirements which the AC/DC/AC converter have to meet are:
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• the input current must be in phase with the input voltage (unity power factor),

• the output voltage provided to the load must be a sinus wave of 50Hz of frequency and b = 220
√

2V
of amplitude.

• the voltage of the bus, represented by the dimensionless variable x1, should remain in a neighbor-
hood of a nominal value x∗

1. This is equivalent to |E − E∗| < ρ, where E∗ is the nominal energy
and ρ the radius of the neighborhood.

The first and second demands can respectively be written as

(i) ∀t ∈ [nT, (n + 1)T ), y1(t) − knh(t) = 0.

(ii) ∀t ≥ t0, x3(t) − h(t) = 0

where kn is constant for all t ∈ [nT, (n + 1)T ) and T = f−1. Concerning the third demand, it will be
achieved by an appropriate design of the coefficient kn.

In order to design sliding-mode controllers in such a way that the previous tracking conditions are
satisfied, remark that the relative degrees of y1 − knh and x3 − h with respect to (v1, v2) are (2, 1) and
(2, 3), respectively.

Then, let us define as sliding surfaces:

σ1 := y1 − knh = 0 (21)

σ2 := (x3 − h) + κ
d(x3 − h)

dt
= 0 (22)

It is straightforward to prove that
∂σ1

∂v1
= 0

∂σ2

∂v2
= 0,

so σ1 will tend to zero under an appropriate design of v2 irrespective of the value of v1, respectively for
σ2, v1 and v2.

The control law

v1 =

{

+1 if σ2 < 0
−1 if σ2 > 0

(23)

v2 =

{

+1 if σ1 < 0
−1 if σ1 > 0

(24)

locally qualifies σ2
1 and σ2

2 as Lyapunov functions; therefore, (21) and (22) tend to zero in the controlled
system, and the desired behaviour is ensured. As in [4], the performance of equation (22) guarantees a
robust dynamics with respect to load disturbances.

As to the value of kn, let us assume sliding motion on σ1 and on σ2, remember that h(t) = sin(2πft)
and solve E(t) from equation (20) for t ∈ [nT, (n + 1)T ); then

E(t) = E(nT ) + 2kn

[

t − nT

2
− sin(4πft)

8πf

]

−

− 2

∫ t

nT

yload(τ)h(τ)dτ (25)

Let γn be the average load defined by

γn = 2f

∫ (n+1)T

nT

yload(τ)h(t)dt

The energy of the system at t = (n + 1)T is

En+1 = E((n + 1)T ) = En + (kn − γn)T (26)

resulting in a discrete dynamical system with input kn and output En. Under the hypotheses that
γn = γn−1 almost every time, γn can be estimated through En − En−1. Namely,

(En − En−1) − Tkn−1 = −Tγn−1
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and equation (26) results in

En+1 − En = T (kn − kn−1) + En − En−1

Then, let us define

kn = kn−1 −
En − En−1

T
+

(1 + ε)(E∗ − En)

T
(27)

which is equivalent to

kn = γn−1 +
(1 + ε)(E∗ − En)

T
(28)

Equations (26) and (28) yield

(z + ε)Z(E) = (1 + ε)E∗ − T (z − 1)Z(γ)

which states that for −1 < ε < 1 the solution En of equation (26) is stable. En reaches the steady state
E∗ if γn does so too.

En can be computed from equation (19) presuming the initial condition is known. Finally, as one can
assume the initial conditions hold σ1 = 0 and σ2 = 0, E0 = E(0) is

x2
1(0)

2
+

y2
2(0)

L
(29)

2.3 Quasi-sliding mode control implementations in switching systems

This subsection deals with a comparative study of several sliding mode control implementations in switch-
ing systems. The switching frequency is required to be stable and synchronous for this type of systems,
this resulting in the hardest requirements for non-standard implementation strategies. The use of fixed
and variable bandwidth hysteresis comparators, the addition of an external synchronous signal and the
use of the equivalent control as duty cycle (with and without zero-order-hold) are considered here and
compared to the Zero Average Dynamics control strategy. Comparisons are referred to a Buck power con-
verter in tracking signal tasks. The paper includes simulations and experimental results. The ZAD fulfils
the requirement of fixed frequency and exhibits similar robustness properties to sliding mode control.

2.3.1 Introduction

The most important characteristics of sliding control is its robustness in the presence of parameter
variations and external perturbations [23], [20]. It is worth noting that this theory presumes an infinite
switching frequency when the system operates in sliding mode, and that actual switches cannot commute
at infinite frequency; at any rate, higher switching frequencies become harmful in some of the applications.
In power electronics for instance, the higher the switching frequency, the higher the losses in the converter.
Consequently, actual sliding mode controls operate at high, finite, possibly variable frequency which
results in a chattering around the sliding surface.

Classical approaches for eliminating chattering are based on the substitution of the discontinuous
control action for a continuous one in a strip containing the sliding surface (“boundary layer”). As a
result, ripple disappears. Several proposals in this line can be found in the literature. They approximate
the sign function through piecewise linear or sigmoidal functions. The sliding regime disappears using
these approximations, and the trajectories evolve close to ideal sliding dynamics. As reported in [25], for
these approximations, a full knowledge of parasitics dynamics is required so that it can be considered in the
controller design to avoid instabilities. Furthermore, defining a continuous signal from a discontinuous
one which, in turn, is pulse-with-modulated to obtain a discontinuous control action, like the actual
control action in power electronics, does not seem to be a good option.

Thus, several questions arise: first, what options does an engineer have, in order to implement a
control action based on sliding control theory? Second, what are the best methodology and the optimal
implementation? Third, what criteria must be followed to chose the implementation?
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Figure 4: Loosing switching opportunities due to the use of a Zero Order Hold

 �  ��

�

∆ � ∆ �

�
�

�
2∆ �

�

�

�

�

Figure 5: Hysteresis cycle and sliding surface dynamics

2.3.2 Sliding control mode implementation in switching converters

Let ẋ = f(x) + g(x) · u be a single input single output, autonomous, non linear system controlled trough
a sliding surface S(x, t) = 0 and an appropriate control law. Let us assume that the system behavior is
given by the ideal sliding dynamics:

{

S(x, t) = 0
ẋ = f(x) + g(x)ueq

(30)

where ueq is the equivalent control and, in this case, the switching frequency is assumed to be infinite.
As the actual system cannot reach the ideal sliding dynamics, the actual dynamics is characterized

by
{

S(x, t) ≈ 0
ẋ = f(x) + g(x)µ(x)

, (31)

where, in the particular case of having a fixed switching frequency

µ(x) =

{

u+ if ≤ t < (k + dk)T
u− if (k + dk)T ≤ t < (k + 1)T

. (32)

The duty cycle dk, or in general dk(x, t), defines the control action. Usually, it is obtained by pulse with
modulation of a processed system output. There are other control strategies providing fixed frequency
switching, for example, in [21] the duty cycle is defined as the equivalent control evaluated at the beginning

of the control period d(k) = ueq(t)−u−

u+−u−

∣

∣

∣

t=kT
. The weak point of this strategy lies in the need to know the

system parameters, this resulting in a loss of system robustness.
The use of a Zero Order Hold to synchronize the signal control changes does not seem to be an

appropriate option since commutations are gradually lost as the sampling period increases, as sketched
in Figure 4.

Authors in [2]-[15] propose the addition of an hysteresis cycle to the sliding mode control comparator,
as shown in Figure 5.

The switching frequency fs can be derived as follows:







dS
dt

∣

∣

u=u+ = 2∆h
t1

dS
dt

∣

∣

u=u− = − 2∆h
t2

;











t1 = 2∆h
∂S
∂x

g(x)(u+−ueq)

t2 = 2∆h
∂S
∂x

g(x)(u−−ueq)

(33)

as a conclusion, we have

fs =
1

t1 + t2
=

∂S

∂x

g(x)

2∆h

(u− − ueq)(ueq − u+)

(u− − u+)
(34)
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Ṡlim

"

#
∆ $

"
"

%
&

')(+*-,

. (�*�,
/

0

0
PSfrag replacements

Ṡlim

Figure 6: Adding an external signal to the sliding surface.

Note that the switching frequency is bounded but variable (not fixed) for time dependent equivalent
controls. In this case, the maximum switching frequency is

fs max =
∂S

∂x

g(x)

2∆h

(u− − ueq(t))(ueq(t) − u+)

(u− − u+)

∣

∣

∣

∣

max

(35)

It is worth noticing that the processing time of the analog or digital processor subsystem has not been
taken into account. This processing time will affect the resulting dynamics in the case it cannot be
neglected in comparison with the switching period.

Several approaches, [17]-[13], consider a variable bandwidth hysteresis cycle, the implementation of
which depends on the system parameters and is also complex.

Note that

∆h = µ
(u− − ueq)(ueq − u+)

(u− − u+)
→ fs =

1

2µ

∂S

∂x
g(x) (36)

and the switching frequency can be stabilized.
Other electronic implementations of quasi-sliding controls are reported in [19]-[16]. The fixed switching

frequency is forced by an external signal, as can be seen in Figure 3.
In this approach, a successful design demands first, to achieve commutation (which means D > ∆h

2 ),
second Td < Tcmax (with hysteresis cycle fd > fs max), third to avoid double commutations and to
achieve fixed frequency, that is:

Ṡ lim ≥ Ṡmax → ∆h ≥ 1

4fs

∂S

∂x
g(x)(u+ − u−) (37)

Among the problems detected in the method, we can point out the difficult tuning of the commutation
system, the need for an external signal and the effect of the synchronism signal on the resulting dynamics.

Finally, in [9], [8] the duty cycle is defined so that the average of the sliding surface is zero in each
commutation period; that is to say, the controller guarantees

〈S(x, t)〉 =
1

T
·

(K+1)T
∫

KT

S(x, τ) · dτ = 0 (38)

The control algorithm is defined in Table I, and the behaviour of the sliding surface is outlined, using
the definitions given in Table I, in Figure 7. Note that the duty cycle only depends on the value of the
switching surface function S(x, t) and its derivatives.
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Figure 7: Zero Average Dynamics control.

2.3.3 Comparative study of the implementation methods

With the aim of comparing the aforementioned “quasi-sliding” implementation strategies, a sliding control
for solving a tracking problem in a buck power converter is designed. The signal to be tracked is a sinus
wave. Simulation results are obtained for each implementation strategy through Matlab-Simulink and
then compared.

The buck converter is widely used in DC-DC and DC-AC power electronic systems. Since the efficiency
of the conversion and the output signal spectrum strongly depend on the switching frequency, it is
necessary to establish procedures for managing it. For this reason, in industrial applications, an upper
bound on the switching frequency is a specification the control system must fulfil. Several reports and
proposals on this issue can be found in the literature. Some of them try to restrict or to predetermine
the actual switching frequency of sliding mode controllers. Contributions based on including a fixed
hysteresis bandwidth achieving a limited switching frequency are reported in [4], [15].

Starting from implementations based on an hysteresis cycle, some authors aim to combine the char-
acteristic robustness of the sliding control mode with fixed switching frequency fulfilments, either using a
variable bandwidth hysteresis cycle [17]-[13] or adding a synchronism signal external to the system [19],
[16].

The buck converter can be modelled in state-space by:

d

dt

(

i
v

)

=

(

0 − 1
L

1
C

− 1
RC

)(

i
v

)

+

(

E
L

0

)

u; (39)

where u ∈ {−1, 1}. As in [4], the sliding surface is defined by

S (x, t) = k1 · (V ref(t) − v) + k2 ·
(

dV ref(t)

dt
− dv

dt

)

(40)

which, together with the control strategy

u =

{

+1 if S(x, t) > 0
−1 if S(x, t) < 0

(41)

provides the specified ideal sliding dynamics, namely v = V ref(t) = A sin(2πft).
The simulation parameters are: E = 50V, L = 1.5mH, C = 60µF, R = 20Ω, f = 50. The integrator

is a 5 · 10−8 fixed step Runge-Kutta 4-5.
Figures 8 and 9 show the signal errors1 when the sliding control law is implemented using a hysteresis

cycle. ∆h = 0.5 and ∆h = 1 have been considered in the simulation, corresponding to a maximum
switching frequency of 44kHz and 22.5kHz, respectively.

Figures 10 and 11 depict the performance of the sliding surface S(x, t) and the voltage error when
an external signal of frequency 20kHz and amplitude 1.2 is added to S(x, t) and the hysteresis cycle is
∆h = 0.6. As can be seen, the error is high compared to the one obtained in the previous case.

Results for a controller based on Zero Average Dynamics at 20kHz do not much differ from the ones
obtained by a hysteresis cycle (the error dynamics is displayed in Figure 13). Figure 12, in turn, shows

1error = V ref(t) − v(t)

12



Figure 8: Voltage error when a fixed hysteresis cycle is used. ∆h = 0.5

Figure 9: Voltage error with a fixed hysteresis cycle. ∆h = 1.

the performance of the function S(x, t). As can be seen in Figure 12, the enveloping of the function S(x, t)
practically coincides with the values of the hysteresis cycle obtained in case that a technique based on a
variable bandwidth hysteresis cycle and a fixed switching frequency of 20kHz were used. The best result
are obtained with a Pulse Width Modulation (see Figures 14 and 15) which defines the duty cycle by
comparing the equivalent control with a triangular signal. Specifically, the switching time is given by the
signals intersection 0.5(1+ueq(t)) and t/T , T being the switching period. The enveloping of the function
S(x, t) coincides again with the one that is obtained with a technique based on a variable duty cycle and a
fixed switching frequency of 20kHz. Unfortunately, this method depends on the system parameters; thus,
it is not applicable in practice. The achieved results using a T−period Zero Order Hold in series with the
equivalent control d(k) = ueq(t)|t=kT are depicted in Figures 16 and 17. If these Figures are compared
with Figures 14 and 15, the negative effect of the sampling in the control action can be observed.

When evaluating the system at a frequency of 10kHz the results worsen, see Figures 18-23. As
expected, this effect is stronger in those methods which require a Zero Order Hold. In spite of this, the
ZAD method provides a maximum error of 2.5% with respect to the output signal amplitude. This is the
same error obtained with the strategy that uses the equivalent control and the Zero Order Hold. These
results show that sampling and Zero Order Holding prevent the enveloping of the function S(x, t) from
coinciding with the value of the hysteresis cycle obtained if a technique based on a variable bandwidth
hysteresis cycle and a 10kHz fixed switching frequency were established.

2.3.4 Experimental results

Experimental results obtained using the ZAD technique in an electronic prototype, using simulation
parameters, are presented in this subsection. The switching frequency was set to 23kHz and the control
algorithm was programmed in a digital logic FPGA (XC4010E-3-PC84) device, which solves the duty
cycle in the 6.3% of the switching period in the worst case. This allows us to assume, in practice, that

Figure 10: S(x, t) with a fixed hysteresis cycle and a 20kHz frequency external signal.
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Figure 11: Voltage error with a fixed hysteresis cycle and a 20kHz frequency external signal.

Figure 12: S(x, t) with a ZAD (20kHz).

Figure 13: Voltage error with ZAD (20kHz).

Figure 14: S(x, t) using the equivalent control -without ZOH- as duty cycle (20kHz).

Figure 15: Voltage error using the equivalent control -without ZOH- as duty cycle (20kHz).

14



Figure 16: S(x, t) using the equivalent control -with ZOH- as duty cycle (20kHz).

Figure 17: Voltage error using the equivalent control -with ZOH- as duty cycle (20kHz).

Figure 18: S(x, t) using ZAD (10kHz).

Figure 19: Voltage error using ZAD (10kHz).

Figure 20: S(x, t) using the equivalent control -without ZOH- as duty cycle (10kHz).
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Figure 21: Voltage error using the equivalent control -without ZOH- as duty cycle (10kHz).

Figure 22: S(x, t) using the equivalent control -with ZOH- as duty cycle (10kHz).

Figure 23: Voltage error using the equivalent control -with ZOH- as duty cycle (10kHz).
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Figure 24: Output voltage, input signal (led 180o) and voltage error in steady-state.

Figure 25: Output voltage and switching surface in steady-state.

the controller solves in real time.
The controller estimates the sliding surface derivatives, needed for solving the ZAD control algorithm,

from sampling the switching surface at the beginning, the half and the end of the switching period. The
duty cycle in the present switching period is solved from the estimate derivatives of the switching surface
S(x, t) and its value in the preceding switching period.

The steady-state dynamics of the output voltage, the voltage error signal and the switching surface
are depicted in Figures 24 and 25. Figure 26 shows the transient dynamics when the load varies from
open circuit to R = 20Ω. As can be seen in this plot the ZAD control strategy maintains the robustness,
which is the main sliding control mode characteristics.

Figure 26: Performance of the output voltage and current when the load resistance varies.

3 SSA and GSSA for port controlled hamiltonian systems

3.1 Introduction

In this Section we describe a method, used mainly in the power converter literature, and known as
GSSA (Generalized State Space Averaging), Selective Frequency Averaging or Multi-Frequency Averag-
ing, which tries to extract a smooth system from a VSS. As an introduction, we present the SSA (State
Space Averaging) approximation, which much better known in the literature and which can be considered
as a particular case of GSSA. General references for GSSA, as applied to power converters, are [3], [12]
and [18].

We apply the SSA and (truncated) GSSA approximations to a port hamiltonian model describing
in a unified way all the second order power converters. The general relationship between the hamilto-
nian description of the approximations and the original hamiltonian description presented later in 3.6 is
illustrated in this particular case.
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From a more theoretical point of view, we give a short summary of [22], where some rigorous bounds
on the convergence of the GSSA approximation are obtained. As stated above, in 3.6 we start with a
general quadratic+linear hamiltonian and prove that its GSSA approximations are also hamiltonian. We
give explicit expressions for the GSSA hamiltonian, structure and output functions, and apply the results
to a full-bridge rectifier converter.

3.2 The SSA approximation

Assume a VSS system such that the change in the state variables is small over the time length of an
structure change, or such that one is not interested about the fine details of the variation. Then one may
try to formulate a dynamical system for the time average of the state variables

〈x〉(t) =
1

T

∫ t

t−T

x(τ) dτ, (42)

where T is the period, assumed constant, of a cycle of structure variations.
Let our VSS system be described in explicit port hamiltonian form

ẋ = [J (S, x) −R(S, x)] (∇H(x))T + g(S, x)u, (43)

where S is a (multi)-index, with values on a finite, discrete set, enumerating the different structure topolo-
gies. For notational simplicity, we will assume from now on that we have a single index (corresponding
to a single switch, or a set of switches with a single degree of freedom) and that S ∈ {0, 1}. Hence, we
have two possible dynamics, which we denote as

S = 0 ⇒ ẋ = (J0(x) −R0(x))(∇H(x))T + g0(x)u,

S = 1 ⇒ ẋ = (J1(x) −R1(x))(∇H(x))T + g1(x)u. (44)

Note that controlling the system means choosing the value of S as a function of the state variables, and
that u is, in most cases, just a constant external input.

From (42) we have
d

dt
〈x〉(t) =

x(t) − x(t − T )

T
. (45)

Now the central assumption of the SSA approximation method is that for a given structure we can
substitute x(t) by 〈x〉(t) in the right-hand side of the dynamical equations, so that (44) become

S = 0 ⇒ ẋ ≈ (J0(〈x〉) −R0(〈x〉))(∇H(〈x〉))T + g0(〈x〉)u,

S = 1 ⇒ ẋ ≈ (J1(〈x〉) −R1(〈x〉))(∇H(〈x〉))T + g1(〈x〉)u. (46)

The rationale behind this approximation is that 〈x〉 does not have time to change too much during a
cycle of structure changes. We assume also that the length of time in a given cycle when the system is in
a given topology is determined by a function of the state variables or, in our approximation, a function
of the averages, t0(〈x〉), t1(〈x〉), with t0 + t1 = T . Since we are considering the right-hand sides in (46)
constant over the time scale of T , we can integrate the equations to get2

x(t) = x(t − T ) + t0(〈x〉)
[

(J0(〈x〉) −R0(〈x〉))(∇H(〈x〉))T + g0(〈x〉)u
]

+ t1(〈x〉)
[

(J1(〈x〉) −R1(〈x〉))(∇H(〈x〉))T + g1(〈x〉)u
]

.

2We also assume that u does not vary over this time scale; in fact u is constant in many applications.

S(x(tk), tk) ≥ 0 and S(x(tk), tk) + T
2 Ṡ

∣

∣

∣

(k,u+)
≥ 0 u(tk) = u+; dk = 1

S(x(tk), tk) ≥ 0 and S(x(tk), tk) + T
2 Ṡ

∣

∣

∣

(k,u+)
< 0 u(tk) = u+; dk = 1 −

√

|Ṡ|(k,u+)|−2
|S(x(tk),tk)|

T

|Ṡ|(k,u+)|+|Ṡ|(k,u−)|

S(x(tk), tk) ≤ 0 and S(x(tk), tk) + T
2 Ṡ

∣

∣

∣

(k,u−)
≤ 0 u(tk) = u−; dk = 1

S(x(tk), tk) ≤ 0 and S(x(tk), tk) + T
2 Ṡ

∣

∣

∣

(k,u+)
> 0 u(tk) = u−; dk = 1 −

√

|Ṡ|(k,u−)|−2
|S(x(tk),tk)|

T

|Ṡ|(k,u+)|+|Ṡ|(k,u−)|

Table 1: ZAD control algorithm.
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Using (45) we get the SSA equations for the variable 〈x〉:
d

dt
〈x〉 = d0(〈x〉)

[

(J0(〈x〉) −R0(〈x〉))(∇H(〈x〉))T + g0(〈x〉)u
]

+ d1(〈x〉)
[

(J1(〈x〉) −R1(〈x〉))(∇H(〈x〉))T + g1(〈x〉)u
]

, (47)

where

d0,1(〈x〉) =
t0,1(〈x〉)

T
, (48)

with d0 + d1 = 1. In the power converter literature d1 (or d0, depending on the switch configuration) is
referred to as the duty cycle.

3.3 The GSSA approximation

One can expect the SSA approximation to give poor results, as compared with the exact VSS model, for
cases where T is not small with respect to the time scale of the changes of the state variables that we
want to take into account. The GSSA approximation tries to solve this, and capture the fine detail of
the state evolution, by considering a full Fourier series, and eventually truncating it, instead of just the
“dc” term which appears in (42). Thus, one defines

〈x〉k(t) =
1

T

∫ t

t−T

x(τ)e−jkωτ dτ, (49)

with ω = 2π/T and k ∈ Z. The time functions 〈x〉k are known as index-k averages or k-phasors. Notice
that 〈x〉0 is just 〈x〉.

Under standard assumptions about x(t), one gets, for τ ∈ [t − T, t] with t fixed,

x(τ) =
+∞
∑

k=−∞
〈x〉k(t)ejkωτ . (50)

If the 〈x〉k(t) are computed with (49) for a given t, then (50) just reproduces x(τ) periodically outside
[t − T, t], so it does not yield x outside of [t − T, t] if x is not T -periodic. However, the idea of GSSA is
to let t vary in (49) so that we really have a kind of “moving” Fourier series:

x(τ) =

+∞
∑

k=−∞
〈x〉k(t)ejkωτ , ∀τ. (51)

A more mathematically advanced discussion is presented in [22] and summarized in 3.5.
In order to obtain a dynamical GSSA model we need the following two essential properties:

• Derivation. Writing (49) as

〈x〉k(t) =
1

T

∫ T

0

x(τ + t − T )e−jkω(τ+t−T ) dτ, (52)

one immediately gets
d

dt
〈x〉k(t) =

〈

dx

dt

〉

k

(t) − jkω〈x〉k(t). (53)

• Convolution. If x and y are two signals, then

〈xy〉k =
+∞
∑

l=−∞
〈x〉k−l〈y〉l. (54)

In particular, considering a first-harmonic GSSA approximation, one gets

〈xy〉0 = 〈x〉0〈y〉0 + 〈x〉−1〈y〉1 + 〈x〉1〈y〉−1,

〈xy〉1 = 〈x〉0〈y〉1 + 〈x〉1〈y〉0,
〈xy〉−1 = 〈x〉0〈y〉−1 + 〈x〉−1〈y〉0. (55)
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Figure 27: The buck converter.

−

+

PSfrag replacements

vC

iL

vL

iC

v1

i1

v2i2 vR

iR

E

iE

s1

s2
R

L

C

Figure 28: The boost converter.

Using (53) and (43) one gets

d

dt
〈x〉k =

〈

dx

dt

〉

k

− jkω〈x〉k

=
〈

[J (S, x) −R(S, x)] (∇H(x))T + g(S, x)u
〉

k
− jkω〈x〉k. (56)

Assuming that the structure matrices J and R, the hamiltonian H, and the interconnection matrix
g have a series expansion in their variables, the convolution formula (54) can be used and an (infinite)
dimensional system for the 〈x〉k can be obtained. More details for a general quadratic hamiltonian
are presented in 3.6. Notice that, if we restrict ourselves to the dc terms (and without taking into
consideration the contributions of the higher order harmonics to the dc averages), then (56) boils down
to (47) since, under these assumptions, the zero-order average of a product is the product of the zero-order
averages.

3.4 SSA and GSSA for second order power converters

Figures 27, 28, and 29 show the functional schemes of the buck, boost and buck-boost dc-dc power
converters, respectively.

The VSS port hamiltonian models with the resistive port left open can be written in an unified way
as

ẋ =

(

0 α − βS
−(α − βS) 0

)

(∇H(x))T +

(

−1 0
0 1 − γS

)(

iR
E

)

, (57)

where the state variables are x = (qC φL)T and the hamiltonian function is

H(qc, φL) =
1

2C
q2
C +

1

2L
φ2

L, (58)

with iL = ∂φL
H, vC = ∂qC

H. The parameters corresponding to the different converters are given in
Table 2. The variable S = 0, 1 represents the state of switch 2 (0 closed and 1 open), and switch 1 is
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Figure 29: The buck-boost converter.

Converter α β γ

buck 1 0 1
boost 1 1 0

buck-boost 0 1 1

Table 2: Parameter values for the unified description of the second-order power converters.

complementary to switch 2. The natural hamiltonian outputs of the system are

y =

(

−1 0
0 1 − γS

)T

(∇H(x))T =

(

−vC

(1 − γS)iL

)

=

(

−vR

−(1 − γS)iE

)

. (59)

The resistive port can be terminated (i.e. one can use vR = RiR) and then the structure matrix in
(57) gets a dissipative part:

ẋ =

(

−1/R α − βS
−(α − βS) 0

)

(∇H(x))T +

(

0
1 − γS

)

E. (60)

Applying (47) to (60), one immediately gets

d

dt
〈x〉 = d0(〈x〉)

[(

−1/R α
−α 0

)

(∇H(〈x〉))T +

(

0
1

)

E

]

+ d1(〈x〉)
[(

−1/R α − β
−(α − β) 0

)

(∇H(〈x〉))T +

(

0
1 − γ

)

E

]

=

(

−1/R α − βd1(〈x〉)
−(α − βd1(〈x〉)) 0

)

(∇H(〈x〉))T +

(

0
1 − γd1(〈x〉)

)

E, (61)

where d0 + d1 = 1 has been used. Since

〈S〉 = 0 · d0 + 1 · d1,

one finally gets

d

dt
〈x〉 =

(

−1/R α − β〈S〉
−(α − β〈S〉) 0

)

(∇H(〈x〉))T +

(

0
1 − γ〈S〉

)

E, (62)

which is well-known in the literature in terms of co-energy variables.
Let us turn now to a GSSA truncated approximation, considering the fundamental terms and the first

harmonics. Using the hamiltonian (58), we have

d

dt

(

qC

φL

)

=

(

−1/R α − βS
−(α − βS) 0

)( qC

C
φL

L

)

+

(

0
1 − γS

)

. (63)
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We define real variables xi, i = 1, . . . , 6 by means of

〈φL〉1 = x1 + jx2,

〈φL〉−1 = x1 − jx2,

〈qC〉1 = x3 + jx4,

〈qC〉−1 = x3 − jx4,

〈φL〉0 = x5,

〈qC〉0 = x6,

so that, using (53),

ẋ1 = ωx2 +
1

2

(

〈φ̇L〉1 + 〈φ̇L〉−1

)

,

ẋ2 = −ωx1 +
1

2j

(

〈φ̇L〉1 − 〈φ̇L〉−1

)

,

ẋ3 = ωx4 +
1

2
(〈q̇C〉1 + 〈q̇C〉−1) ,

ẋ4 = −ωx3 +
1

2j
(〈q̇C〉1 − 〈q̇C〉−1) ,

ẋ5 = 〈φ̇L〉0,
ẋ6 = 〈q̇C〉0. (64)

Next we compute the right-hand sides of (64) using (63) and the convolution property, and get

ẋ1 = ωx2 − (α − β〈S〉0)
x3

C
+ β〈S〉1R

x6

C
− γE〈S〉1R,

ẋ2 = −ωx1 − (α − β〈S〉0)
x4

C
+ β〈S〉1I

x6

C
− γE〈S〉1I ,

ẋ3 = (α − β〈S〉0)
x1

L
− 1

R

x3

C
+ ωx4 − β〈S〉1R

x5

L
,

ẋ4 = (α − β〈S〉0)
x2

L
− ωx3 −

1

R

x4

C
− β〈S〉1I

x5

L
,

ẋ5 = 2β〈S〉1R

x3

C
+ 2β〈S〉1I

x4

C
− (α − β〈S〉0)

x6

C
+ E(1 − γ〈S〉0),

ẋ6 = −2β〈S〉1R

x1

L
− 2β〈S〉1I

x2

L
+ (α − β〈S〉0)

x5

L
− 1

R

x6

C
,

where 〈S〉1R,1I are the real and imaginary parts of 〈S〉1. As it is shown in 3.6, using the hamiltonian

HPH =
1

2L
(x2

1 + x2
2 +

1

2
x2

5) +
1

2C
(x2

3 + x2
4 +

1

2
x2

6), (65)

this can be cast into hamiltonian form

ẋ = (JPH −RPH)(∇HPH(x))T + gPHE

with

JPH =

















0 ωL −α + β〈S〉0 0 0 2β〈S〉1R

−ωL 0 0 −α + β〈S〉0 0 2β〈S〉1I

α − β〈S〉0 0 0 ωC −2β〈S〉1R 0
0 α − β〈S〉0 −ωC 0 −2β〈S〉1I 0
0 0 2β〈S〉1R 2β〈S〉1I 0 −2(α − β〈S〉0)

−2β〈S〉1R −2β〈S〉1I 0 0 2(α − β〈S〉0) 0

















,

(66)

RPH = diag

(

0, 0,
1

R
,

1

R
, 0,

2

R

)

, (67)
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and

gPH =

















−γ〈S〉1R

−γ〈S〉1I

0
0

1 − γ〈S〉0
0

















(68)

3.5 Mathematical foundations of the GSSA method

In [22], Tadmor studies the case of dissipative systems with quadratically nonlinear lossless dynamics and
gives some arguments to substantiate the approximation procedure for periodic solutions. More precisely,
the type of systems considered there are described by an equation of the form

W
d

dt
x = −(D + S(x))x + f , (69)

where W > 0, D ≥ 0 and S(x) = −S(x)T . The stored energy is V (x) = 1
2xT Wx and f is thought to

be a periodic forcing term in some finite-dimensional space of Fourier coefficients f ∈ F(k0). Two main
situations are considered. One in which transients do not occur, and another one in which an abrupt
deviation from steady-state might happen at some time —such as an impulsive disturbance or a change
from one periodic forcing term to another.

We collect in what follows some of the results that are presented in [22]:

(i) The proof of existence of periodic solutions of system (69) is given and therefore of the corresponding
harmonic balancing equations:

0 = −(D + jkω0W )〈x〉k(t) − 〈S(x)x〉k(t) + 〈f〉k(t) , k ∈ Z (70)

As a consequence, bounds on the phasors of exact, periodic solutions x are provided by

‖〈x〉k(t)‖ ≤ 1
√

k2ω2
0 + λ2

·
{

(‖W−1f‖1 + βρ2) , |k| ≤ k0

βρ2 , |k| > k0

(71)

where the Euclidean norm is used and λ, β, ρ are constants depending on the data of the system
and a neighborhood of the periodic solution. Moreover, it is shown how these bounds for k > k0

can be replaced by higher-order decay bounds of the form

‖〈x〉k(t)‖ ≤ νl

kl
‖x‖2 ≤ µl

kl

(72)

where again, νl and µl are adequate constants. These bounds provide absolute and relative error
bounds when truncating the Fourier series of the periodic solutions.

(ii) The paper follows along the same lines to prove the existence of periodic solutions x̃ of the com-
pressed balancing equations. That is, the set of the first l equations of (70). Similar bounds to the
former ones are obtained for these compressed solutions x̃ in terms of the Euclidean and L∞ norms.

(iii) Then, under some technical conditions that include a regularity assumption for the operator

Λl(φ) = W
d

dτ
φ + Dφ + Πl(S(φ)φ) ,

defined on Λl : F(l) −→ F(l) , a first approximation result is given that, roughly speaking, states
how an approximate periodic solution x̃ becomes increasingly close to an exact periodic solution x.

(iv) The last part of the paper deals with the same type of approximations but when transients are also
considered. Given an initial state history xt0 , it is assumed that after a transient the corresponding
solution with settle at a stable steady state φ. It is observed that, unlike what happens in the non-
transient case, here there are not bounds available for phasor decay rates of compressed solutions,
and for exact solutions these bounds only yield the first order decay rate (71) while the Fourier
expansion does not converge uniformly on [T−t, t]. Now the main result states that for a sufficiently
large l the F(l) compression of the dynamic phasor model, gives rise to a good approximation of
x during transients and will converge to a neighborhood of Πlφ. The approximation can only be
provided in terms of L2 norms.
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(v) Finally, some numerical examples are presented in which the strengths and weaknesses of the theory
are shown. In particular, the numerical simulations show a better performance when the truncated
Fourier series are evaluated with a half-period delay. This is previously supported by the following
fact. A signal can be expressed as the sum of x = xp + xlin, where xp is a periodic signal and
xlin is the straight line passing through xlin(t − T

2 ) = 0 with a slope of 1
T

(x(t) − x(t − T )). It can
be seen that the Fourier expansion of xlin converges uniformly over any open set of [t − T, t], that
symmetric tails of its expansion are uniformly bounded on the entire [t − T, t] that its symmetric
subseries actually vanish at the middle point t − T

2 . This could explain the better performance of
algorithms when mid-point evaluations are taken.

3.6 GSSA for quadratic hamiltonians

Consider a port-controlled Hamiltonian system defined by

ż = (J(z, v) − R(z))
∂H

∂z
+ f , z ∈ R

n (73)

with a Hamiltonian function of the form

H =
1

2
zT Wz + DT z , W > 0 , and W T = W .

This Hamiltonian satisfies
∂H

∂z
= Wz + D and

〈∂H

∂z
〉l = W 〈z〉l + 〈D〉l =

{

W 〈z〉0 + D , l = 0

W 〈z〉l , l 6= 0

and, therefore, the phasor system associated with (73) is given by

d

dt
〈z〉k = −jkw0〈z〉k + 〈(J − R)

∂H

∂z
〉k + 〈f〉k

= −jkw0〈z〉k + (〈J〉k − 〈R〉k)(W 〈z〉0 + D) +
+∞
∑

l=−∞, l 6=0

(〈J〉k−l − 〈R〉k−l) · W 〈z〉l + 〈f〉k.

In this derivation we have made use of
d

dt
〈z〉k = 〈ż〉k − jkω0〈z〉k and the set of formal equalities

〈J · Wz〉k =





∑

j

〈Jij(Wz)j〉k





1≤i≤n

=





∑

j

∞
∑

l=−∞
〈Jij〉k−l〈(Wz)j〉l





1≤i≤n

=





∞
∑

l=−∞

∑

j

〈Jij〉k−l〈(Wz)j〉l





1≤i≤n

=

+∞
∑

l=−∞
〈J〉k−l〈Wz〉l =

+∞
∑

l=−∞
〈J〉k−l · W 〈z〉l .

To better identify the Hamiltonian structure of the phasor equations, we will split them into their real
and imaginary parts:

d

dt
〈z〉Rk = kω0〈z〉Ik + (〈J〉Rk − 〈R〉Rk )(W 〈z〉0 + D)

+

+∞
∑

l=−∞, l 6=0

[

(〈J〉Rk−l − 〈R〉Rk−l)W 〈z〉Rl − (〈J〉Ik−l − 〈R〉Ik−l)W 〈z〉Il
]

+ 〈f〉Rk ,

d

dt
〈z〉Ik = −kω0〈z〉Rk + (〈J〉Ik − 〈R〉Ik)(W 〈z〉0 + D)

+
+∞
∑

l=−∞, l 6=0

[

(〈J〉Ik−l − 〈R〉Ik−l)W 〈z〉Rl + (〈J〉Rk−l − 〈R〉Rk−l)W 〈z〉Il
]

+ 〈f〉Ik .
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Or, equivalently, using that 〈z〉−l = 〈z〉l and gathering the coefficients of W 〈z〉Rl and W 〈z〉Il , ∀l ∈ Z,
these equations can be expressed as

d

dt
〈z〉0 = (〈J〉0 − 〈R〉0) (W 〈z〉0 + D)+

2

∞
∑

l=1

[(

〈J〉Rl − 〈R〉Rl
)

W 〈z〉Rl +
(

〈J〉Il − 〈R〉Il
)

W 〈z〉Il
]

+ 〈f〉0 , (74)

d

dt
〈z〉Rk = kω0〈z〉Ik + (〈J〉Rk − 〈R〉Rk )(W 〈z〉0 + D)

+

+∞
∑

l=1

[(

〈J〉Rk−l − 〈R〉Rk−l + 〈J〉Rk+l − 〈R〉Rk+l

)

W 〈z〉Rl

−
(

〈J〉Ik−l − 〈R〉Ik−l − 〈J〉Ik+l + 〈R〉Ik+l

)

W 〈z〉Il
]

+ 〈f〉Rk , (75)

d

dt
〈z〉Ik = −kω0〈z〉Rk + (〈J〉Ik − 〈R〉Ik)(W 〈z〉0 + D)

+

+∞
∑

l=1

[(

〈J〉Ik−l − 〈R〉Ik−l + 〈J〉Ik+l − 〈R〉Ik+l

)

W 〈z〉Rl

+
(

〈J〉Rk−l − 〈R〉Rk−l − 〈J〉Rk+l + 〈R〉Rk+l

)

W 〈z〉Il
]

+ 〈f〉Ik . (76)

Consider now the Hamiltonian function defined by the formal series expansion

HPH =
1

2
DT 〈z〉0 +

1

4

∞
∑

k=−∞
〈z〉T−kW 〈z〉k

=
1

2
DT 〈z〉0 +

1

4
〈z〉T0 W 〈z〉0 +

1

2

+∞
∑

k=1

(〈z〉R,T
k W 〈z〉Rk + 〈z〉I,T

k W 〈z〉Ik) .

The main property of this Hamiltonian is that it satisfies

2
∂HPH

∂〈z〉0
= 〈∂H

∂z
〉0 ,

∂HPH

∂〈z〉Rk
= 〈∂H

∂z
〉Rk ,

∂HPH

∂〈z〉Ik
= 〈∂H

∂z
〉Ik , ∀k ≥ 1 .

Then, equations (74)–(76), k ∈ Z, can be rewritten as the infinite-dimensional Hamiltonian system

ΣPH :
d

dt
〈z〉 = (JPH − RPH)

∂HPH

∂〈z〉 + fPH , (77)

where 〈z〉 = (〈z〉T0 , 〈z〉R,T
1 , 〈z〉I,T

1 , . . . , 〈z〉R,T
k , 〈z〉I,T

k , . . . )T , JPH (respectively RPH) is a infinite-dimensional

matrix, and fPH = (〈f〉T0 , 〈f〉R,T
1 , 〈f〉I,T

1 , . . . , 〈f〉R,T
k , 〈f〉I,T

k , . . . )T .

Using that 〈J〉−k = 〈J〉k, we can find the following expression for the first k × k block submatrix of
JPH:

















2〈J〉0 , 2〈J〉R1 , 2〈J〉I1 , . . . 2〈J〉Rk , 2〈J〉Ik
2〈J〉R1 , 〈J〉0 + 〈J〉R2 , ω0W

−1 + 〈J〉I2 , . . . 〈J2〉Rk−1 + 〈J〉Rk+1 , 〈J〉Ik−1 + 〈J〉Ik+1

2〈J〉I1 , −ω0W
−1 + 〈J〉I2 , 〈J〉0 − 〈J〉R2 , . . . −〈J2〉Ik−1 + 〈J〉Ik+1 , 〈J〉Rk−1 − 〈J〉Rk+1 ,

. . . . . . . . . . . . . . . . . .
2〈J〉Rk , 〈J〉Rk−1 + 〈J〉Rk+1 , −〈J〉Ik−1 + 〈J〉Ik+1 , . . . 〈J〉0 + 〈J〉R2k , kω0W

−1 + 〈J〉I2k

2〈J〉Ik , 〈J〉Ik−1 + 〈J〉Ik+1 , 〈J〉Rk−1 − 〈J〉Rk+1 , . . . −kω0W
−1 + 〈J〉I2k , 〈J〉0 − 〈J〉R2k

















Since JT + J = 0, we have 〈JT + J〉k = 0. By definition 〈J〉k = (〈Jij〉k) and then 〈J〉Tk = −〈J〉k, ∀k.
On the other hand, it is easy to see that

(−kω0W
−1 + 〈J〉I2k)T = −kω0W

−1 − 〈J〉I2k = −(kω0W
−1 + 〈J〉I2k) , ∀k ∈ N .
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All these facts can be used together to prove the antisymmetry of JPH by induction on its k × k block
submatrices.

The expression for a general k × k block submatrix of RPH is similar to the above one and is given by

















2〈R〉0 , 2〈R〉R1 , 2〈R〉I1 , . . . 2〈R〉Rk , 2〈R〉Ik ,
2〈R〉R1 , 〈R〉0 + 〈R〉R2 , 〈R〉I2 , . . . 〈R〉Rk−1 + 〈R2〉Rk+1 , 〈R〉Ik−1 + 〈R〉Ik+1

2〈R〉I1 , 〈R〉I2 , 〈R〉0 − 〈R〉R2 , . . . −〈R〉Ik−1 + 〈R〉Ik+1 , 〈R〉Rk−1 − 〈R〉Rk+1 ,
. . . . . . . . . . . . . . . . . .

2〈R〉Rk , 〈R〉Rk−1 + 〈R〉Rk+1 , −〈R〉Ik−1 + 〈R〉Ik+1 , . . . 〈R〉0 + 〈R〉R2k , 〈R〉I2k ,
2〈R〉Ik , 〈R〉Ik−1 + 〈R〉Ik+1 , 〈R〉Rk−1 − 〈R〉Rk+1 , . . . 〈R〉I2k , 〈R〉0 − 〈R〉R2k ,

















Again, because of the symmetry of R, this submatrix is also symmetric and so will be RPH.

Remark 3.1 For Hamiltonians H of the form

W =

(

W1 0
0 0

)

,

such that W1 > 0, and 2H(z) = 2H(z1, z2) = zT
1 W1z1, we can also derive a phasor Hamiltonian system

that differs from the previous one in the expressions for JPH and fPH. To define the new JPH we only
have to substitute

(

W−1
1 0
0 0

)

,

by W−1 in the former JPH. Observe this does not spoil the antisymmetry of JPH and it still accounts for
the terms kω0〈z1〉Ik and −kω0〈z1〉Rk . However, the other terms kω0〈z2〉Ik and −kω0〈z2〉Rk are necessarily
to be included in fPH as

fPH = 〈f〉 +
(

0, 0, 0, ω0〈z2〉I,T
1 , 0,−ω0〈z2〉R,T

1 , 0, . . . , 0, kω0〈z2〉I,T
k , 0,−kω0〈z2〉R,T

k , 0, . . .
)T

An example of this situation is the following model of a full-bridge rectifier with a resistive load.

Example 3.2 (Full-bridge rectifier with a resistive load) The equations of a full-bridge rectifier
[10] with a resistive load are given by

dz

dt
= (J(v) − R(z))

∂H

∂z
+ f ,

where z = (z1, z2)
T = (φ,

1

2
q2)T , H =

1

2L
z2
1 +

1

C
z2 , f = (E sin(ω0t), 0)

T = (vi, 0)
T

and J =

(

0 v
−v 0

)

, R =

(

r 0
0 2z2

R

)

.

In this particular case, the phasor Hamiltonian is

HPH =
1

2C
〈z2〉0 +

1

4L
〈z1〉20 +

1

2L

∞
∑

k=1

(

〈z1〉R
2

k + 〈z1〉I
2

k

)

,

the matrices JPH, RPH are

JPH =





















0 2〈v〉0 0 2〈v〉R1 0 2〈v〉I1 . . .
−2〈v〉0 0 −2〈v〉R1 0 −2〈v〉I1 0 . . .

0 2〈v〉R1 0 〈v〉0 + 〈v〉R2 ω0L 〈v〉I2 . . .
−2〈v〉R1 0 −〈v〉0 − 〈v〉R2 0 −〈v〉I2 0 . . .

0 2〈v〉I1 −ω0L 〈v〉I2 0 〈v〉0 − 〈v〉R2 . . .
−2〈v〉I1 0 −〈v〉I2 0 −〈v〉0 + 〈v〉R2 0 . . .

. . . . . . . . . . . . . . . . . . . . .
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and

RPH =























2r 0 0 0 0 0 . . .

0 4〈z2〉0
R

0
4〈z2〉R

1

R
0

4〈z2〉I
1

R
. . .

0 0 r 0 0 0 . . .

0
4〈z2〉R

1

R
0 2

R

(

〈z2〉0 + 〈z2〉R2
)

0
2〈z2〉I

1

R
. . .

0 0 0 0 r 0 . . .

0
4〈z2〉R

1

R
0

2〈z2〉I
1

R
0 2

R

(

〈z2〉0 − 〈z2〉R2
)

. . .
. . . . . . . . . . . . . . . . . . . . .























,

and the expression of fPH is given by

fT
PH

=
(

0, 0, vi, ω0〈z2〉I1, 0, −ω0〈z2〉R1 , 0, . . . , 0, kω0〈z2〉Ik, 0, −kω0〈z2〉Rk , 0, . . .
)

.

Now, it can be shown that the associated phasor system can be recovered as:

d

dt
〈z〉 = (JPH − RPH)

∂HPH

∂〈z〉 + fPH .

3.6.1 Projection of ΣPH

Consider that ΣPH is a system defined on the infinite-dimensional space of Fourier coefficients F whose
states are given by the tuples (〈z〉0, 〈z〉R1 , 〈z〉I1, . . . ) such that z(t + τ) =

∑+∞
k=−∞〈z〉k(t)ejkω0τ converges.

Le us define the finite-dimensional spaces F(k1,...,ks) as those whose elements are of the form
(〈z〉k1

, 〈z〉k2
, . . . , 〈z〉ks

), where ki is implicitly a function of R or I (meaning that we take the real or
imaginary part of phasor 〈z〉ki

). We can define a projection from F to F(k1,...,ks) which can be inter-

preted as a truncation of a series
∑+∞

k=−∞〈z〉k(t)ejkω0τ in F to the associated sum
∑s

l=k1
〈z〉l in F(k1,...,ks).

We call this projection π(k1,...,ks) : F −→ F(k1,...,ks), and denote it by π when it is clear from the context
which truncation we are referring to. Sometimes we will abuse of notation and consider F(k1,...,ks) as a
subspace of F .

A natural question that arises now is whether the Hamiltonian structure of ΣPH is preserved under
these projections. The answer will be positive due to the following observation. If from a symmetric
(respectively antisymmetric) matrix we delete the same numbered column and row (say, row i and
column i), then the resulting matrix will preserve its symmetry (or its antisymmetry).

Applying a projection π(k1,...,ks) ≡ π to ΣPH gives rise to a new system Σπ in which the differential
equations associated with 〈z〉l, l 6= ki are not present. In terms of the associated matrices JPH and RPH,
this means we have to remove all rows corresponding to 〈z〉l with l 6= ki, 1 ≤ i ≤ s and set to zero

any contribution of 〈z〉l in the other entries of JPH and RPH. On the other hand, since
∂HPH

∂〈z〉l
depends

linearly on 〈z〉l, the contributions of the columns that are multiplied by
∂HPH

∂〈z〉l
should not be considered

either. In other words, for each 〈z〉l row, we should also ignore the same W 〈z〉l column of JPH and RPH.
This operation defines new antisymmetric and symetric matrices, Jπ and Rπ, which together with Hπ,
obtained by setting to zero 〈z〉l in HPH, define a new Hamiltonian system:

Σπ : ẋ = (Jπ − Rπ)
∂Hπ

∂x
+ fπ ,

with x = (〈z〉k1
, 〈z〉k2

, . . . , 〈z〉ks
) and fπ = (〈f〉k1

, . . . , 〈f〉ks
).

Remark 3.3 In case the original hamiltonian H was defined by a matrix

W =

(

W1 0
0 W2

)

we could also apply additional projections that respect the Hamiltonian structure of the phasors’ system.
These projections are induced by τ1 : z 7−→ z1 and τ2 : z 7−→ z2 such that zT Wz = zT

1 W1z1 + zT
2 W2z2

and z = (zT
1 , zT

2 )T . Then, 〈z〉l = (〈z1〉Tl , 〈z2〉Tl )T and
∂HPH

∂〈z1〉l
= W1〈z1〉l,

∂HPH

∂〈z2〉l
= W2〈z2〉l. Again, this

linearity allows us to say that for each 〈z1〉l (respectively 〈z2〉l) row we delete in the phasors’ system, we
have to neglect the contribution of the 〈z1〉l (respectively 〈z2〉l) column of JPH and RPH matrices. In this
way, their antisymmetry or symmetry will be preserved.
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3.6.2 Control of ΣPH though Σπ

Under some mild conditions the process described in the former subsection could help us control the
original system Σ by controlling a projection Σπ.

Suppose we want to design our system so that it follows a desired signal in steady state. Assume also
that after an analysis of the equations of the system we find that the harmonic contents of the states and
inputs in steady state are in F(k1,...,kl), where f belongs too. Now, applying the projection π(k1,...,kl) to
ΣPH we obtain Σπ that we design using PBC. That is, from

Σπ : ẋ = (Jπ(x, u) − Rπ(x))
∂Hπ

∂x
+ f

we define u = β(x), Jd
π(x) = Jπ(x, β(x)), Rd

π(x) = Rπ(x) and Hd
π(x) = Hπ(x)+Ha(x), so that the above

system can be rewritten as

Σd
π : ẋ = (Jd

π(x) − Rd
π(x))

∂Hd
π

∂x
.

From now on we will only consider projections π such that Hπ includes the linear term DT 〈z〉0. Let
us write with a slight abuse of notation 〈z〉 = (x, xr) and HPH(x, xr) = Hπ(x) + Hr(xr). In fact,

∂HPH

∂x
=

∂Hπ

∂x
,

∂HPH

∂xr

=
∂Hr

∂xr

,
∂Hr

∂x
=

∂Hπ

∂xr

= 0 .

The same holds if we take instead Hd
PH

(x, xr) = Hd
π(x) + Hr(xr).

Consider the state 〈z〉∗ = (x∗, 0) or, in other words, π〈z〉∗ = x∗. Then,

(

d

dt
Hd

PH

)

|〈z〉∗
=

(

∂Hd
PH

∂〈z〉 · d

dt
〈z〉

)

|〈z〉∗
= 0

because of
∂Hd

PH

∂〈z〉 〈z〉∗
=

(

∂Hd
PH

∂x 〈z〉∗
,
∂Hd

PH

∂xr 〈z〉∗

)

=

(

∂Hd
π

∂x 〈z〉∗
,
∂Hr

∂xr 〈z〉∗

)

= (0, 0) .

If we compute the derivative of Hd
PH

along the trajectories of ΣPH we obtain:

d

dt
Hd

PH
=

(

∂Hd
π

∂〈z〉

)T

· d〈z〉
dt

+

(

∂Hr

∂〈z〉

)T

· d〈z〉
dt

=

(

∂Hd
π

∂x

)T
(

Jd
π − Rd

π

) ∂Hd
π

∂x
+

(

∂Hr

∂〈z〉

)T

· d〈z〉
dt

= −
(

∂Hd
π

∂x

)T

Rd
π

∂Hd
π

∂x
+

(

∂Hr

∂〈z〉

)T [

(JPH − RPH)
∂HPH

∂〈z〉 + fPH

]

It is easy to see that for either fPH ∈ F(k1,...,kl) or as Remark 3.1,

(

∂Hr

∂〈z〉

)T

· fPH = 0 holds, and the

former expression can further be developed as

d

dt
Hd

PH
= −

(

∂Hd
π

∂x

)T

Rd
π

∂Hd
π

∂x
+

(

∂Hr

∂〈z〉

)T

(JPH − RPH)

(

∂Hd
π

∂〈z〉 +
∂Hr

∂〈z〉

)

= −
(

∂Hd
π

∂x

)T

Rd
π

∂Hd
π

∂x
−

(

∂Hr

∂〈z〉

)T

RPH

∂Hr

∂〈z〉 +

(

∂Hr

∂〈z〉

)T

(JPH − RPH)
∂Hd

π

∂〈z〉 .

In case we can assure
(

∂Hr

∂〈z〉

)T

(JPH − RPH)
∂Hd

π

∂〈z〉 = 0, (78)

and
d

dt
Hd

PH
≤ 0, then, by LaSalle’s theorem, the dynamics of the system will converge to the largest

invariant set contained in
{

〈z〉 | Ḣd
PH

= −
(

∂xHd
π, ∂〈z〉Hr

)T
[

Rd 0
0 RPH

] (

∂xHd
π

∂〈z〉Hr

)

= 0

}
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In particular, we will have local stability of 〈z〉∗ = (x∗, 0). Observe that at least we have Rd
π ≥ 0, but

in general we don’t know the character of RPH. In particular, when R(x) = R ≥ 0 we can assure that

RPH ≥ 0 and then
d

dt
Hd

PH
≤ 0.

On the other hand, despite
∂Hr

∂〈z〉 and
∂Hd

π

∂〈z〉 being orthogonal vectors, equation (78) won’t be true

in general. Its value depends on the expressions of JPH and RPH. In order to guarantee this condition
and at least local convergence to the desired equilibrium, one could take more conservative candidates to
Lyapunov functions Hd = Hd

π + Hr such that HPH = Hd + H ′
r.

Example 3.4 (Full-bridge rectifier with a resistive load, revisited) The projection F(0(2),1(1,R),1(1,I))

of ΣPH gives rise to Σπ defined by

Hπ =
1

2C
〈z2〉0 +

1

2L

(

〈z1〉R
2

1 + 〈z1〉I
2

1

)

,

the matrices

Jπ =





0 −2〈v〉R1 −2〈v〉I1
2〈v〉R1 0 ω0L
2〈v〉I1 −ω0L 0



 , Rπ =





4〈z2〉0
R

0 0
0 r 0
0 0 r



 ,

and the forcing term fπ = (0, 0, vi)
T .

Designing the system so that x∗ =
(

C2V 2
d

2 , 0, −LId

2

)

is an asymptotically stable equilibrium of Σπ,

leaded us to choose certain functions 〈v〉R1 and 〈v〉I1 while setting 〈v〉l = 0 ∀l 6= 1,−1. In the higher-
dimensional phasor system, this means that the matrix JPH − RPH becomes



















































−2r 0 0 2〈v〉R1 0 2〈v〉I1 . . .

0 − 4〈z2〉0
R

−2〈v〉R1 − 4〈z2〉R
1

R
−2〈v〉I1 − 4〈z2〉I

1

R
. . .

0 2〈v〉R1 −r 0 ω0L 0 . . .

−2〈v〉R1 − 4〈z2〉R
1

R
0 − 2

R

(

〈z2〉0 + 〈z2〉R2
)

0 − 2〈z2〉I
1

R
. . .

0 2〈v〉I1 −ω0L 0 −r 0 . . .

−2〈v〉I1 − 4〈z2〉I
1

R
0 − 2〈z2〉I

1

R
0 − 2

R

(

〈z2〉0 + 〈z2〉R2
)

. . .
0 0 0 〈v〉R1 0 −〈v〉I1 . . .

0 − 4〈z2〉R
2

R
−〈v〉R1 − 2

R

(

〈z2〉R2 − 〈z2〉R3
)

〈v〉I1 2
R

(

〈z2〉I1 + 〈z2〉I3
)

. . .
0 0 0 〈v〉I1 0 〈v〉R1 . . .

0 − 4〈z2〉I
2

R
−〈v〉I1 − 2

R

(

〈z2〉I1 − 〈z2〉I3
)

−〈v〉R1 − 2
R

(

〈z2〉R1 + 〈z2〉R3
)

. . .
0 0 0 0 0 0 . . .

0 − 4〈z2〉R
3

R
0 − 2

R

(

〈z2〉R2 − 〈z2〉R4
)

0 2
R

(

〈z2〉I2 − 〈z2〉I4
)

. . .
. . .



















































Though JPH−RPH has infinite nonzero entries, the ones displayed above are enough to check that (78)
is satisfied. Since

Hr(〈z〉) =
1

4L
〈z1〉20 +

1

2L

∞
∑

k=2

(

〈z1〉R
2

k + 〈z1〉I
2

k

)

and Hd
π ≡ Hd

π(x), we have:

(

∂Hr

∂〈z〉

)T

=

( 〈z1〉0
2L

, 0, 0, 0, 0, 0,
〈z1〉R1

L
, 0,

〈z1〉I2
L

, 0,
〈z1〉R3

L
, 0, . . . , 0,

〈z1〉Ik
L

, 0, . . .

)

,

(

∂Hd
π

∂〈z〉

)T

= (0, H1, H2, 0, H3, 0, 0, 0, 0, 0, . . . , 0, . . . ) .
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Then,

(

(JPH − RPH)
∂Hd

π

∂〈z〉

)T

=

(

0, −4〈z2〉0
R

H1 − 2〈v〉R1 H2 − 2〈v〉I1H3, 2〈v〉R1 H1 − rH2 + ω0LH3,

−4〈z2〉R1
R

H1, 2〈v〉R1 H1 − ω0LH2 − rH3,−
4〈z2〉I1

R
H1, 0,

−4〈z2〉R2
R

H1 − 〈v〉R1 H2 + 〈v〉I1H3, 0,−
4〈z2〉I2

R
H1 − 〈v〉I1H2 − 〈v〉R1 H3, 0,

−4〈z2〉R3
R

H1, 0, −4〈z2〉I3
R

H1, 0, . . . , 0, −4〈z2〉Rk
R

H1, 0, . . .

)

,

and therefore
(

∂Hr

∂〈z〉

)T

(JPH − RPH)
∂Hd

π

∂〈z〉 = 0 .

One can also check here that

(

∂HPH

∂〈z〉

)T

· fPH = 0.

Let us study with more detail the expression

−
(

∂Hd
π

∂x

)T

Rd
π

∂Hd
π

∂x
−

(

∂Hr

∂〈z〉

)T

RPH

∂Hr

∂〈z〉 .

Since Rd
π ≥ 0, we have that

(

∂Hd
π

∂x

)T

Rd
π

∂Hd
π

∂x
≥ 0. In fact, assuming certain hypothesis, it was seen

in [10] that the equality holds only when π〈z〉 = x∗. On the other hand,

(

∂Hr

∂〈z〉

)T

RPH

∂Hr

∂〈z〉 =
r

2L2
〈z1〉20 +

r

L2

∞
∑

k=2

(

〈z1〉R
2

k + 〈z1〉I
2

k

)

≥ 0 ,

and the equality is satisfied only when 〈z1〉0 = 〈z1〉Rk = 〈z1〉Ik = 0, ∀k ∈ N − {1}. Thus the dynamics of
the system will converge to the largest invariant set contained in

M =
{

〈z〉 | π〈z〉 = x∗ , 〈z1〉0 = 〈z1〉Rk = 〈z1〉Ik = 0 , ∀k ∈ N, k 6= 1
}

(79)

Let us investigate now what this largest invariant set is. To do that, we need to study the phasor equations
for 〈z2〉k, k ∈ Z, k 6= 0. The general expresion of the equations is exactly

d

dt
〈z2〉k = −jkω0〈z2〉k − 1

L

∑

l

〈v〉k−l〈z1〉l +
2

RC
〈z2〉k .

In particular, the invariant dynamics satifies
∑

l

〈v〉k−l〈z1〉l = 〈v〉k−1〈z1〉1 + 〈v〉k+1〈z1〉−1 .

Moreover, since we are taking 〈v〉l 6= 0 only for l = 1,−1, the real and imaginary parts of the 〈z2〉k
equation for k 6= 0, 2 can be written as











d

dt
〈z2〉Rk = kω0〈z2〉Ik − 2

RC
〈z2〉Rk ,

d

dt
〈z2〉Ik = −kω0〈z2〉Rk − 2

RC
〈z2〉Ik ,

In other words, for each k this system is of the form

ẏ =

( −2
RC

kω0

−kω0
−2
RC

)

y .

Now, as −2
RC

6= 0, (〈z2〉Rk,∗, 〈z2〉Ik,∗) = (0, 0) is an asymptotically stable equilibrium for eack k system,
k 6= 0, 2 and the invariant set contained in M in necessarily within

E = {〈z〉 | π〈z〉 = x∗ , 〈z1〉0 = 〈z1〉k = 〈z2〉l = 0 , ∀k, l ∈ Z k 6= 1 , l 6= 2, 0}
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In terms of the original system Σ, this means we have asymptotic convergence to the set of trajectories

z1,∗(t) = LId sin(ω0t) , z2,∗(t) =
C2V 2

d

2
+ βz2

sin(2ω0t + θz2
) .

Now, if C is chosen so that there is a low voltage in the capacitor, then βz2
can be neglected with respect

to
C2V 2

d

2 , and we are practically achieving global asymptotic convergence to the desired trajectory

z1,∗(t) = LId sin(ω0t) , z2,∗(t) =
C2V 2

d

2
.

Remark 3.5 For the most general model of the full-bridge rectifier, all computations can be reproduced
until expression (79). From then on, a detailed analysis of the phasor equations is needed to reduce the
invariant set to E. In any case, the desired equilibrium (x∗, 0) is guaranteed to be locally stable by this
procedure.
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