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2 Institute of Industrial and Control Engineering, UPC
Av. Diagonal 647, 08028 Barcelona, Spain.

3 Lab. des Signaux et Systèmes
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Abstract

We consider a doubly–fed induction machine—controlled through the rotor volt-
age and connected to a variable local load—that acts as an energy–switching device
between a local prime mover (a flywheel) and the electrical power network. The con-
trol objective is to optimally regulate the power flow which is achieved commuting
between two different steady–state regimes. We first show that the zero dynamics of
the system is only marginally stable complicating its control via feedback lineariza-
tion. Instead, we apply the energy–based Interconnection and Damping Assignment
Passivity–Based Control technique that does not require stable invertibility. It is
shown that the partial differential equation that appears in this method can be
obviated fixing the desired closed-loop total energy and adding new terms to the
interconnection structure. Furthermore, to obtain a globally defined control law we
introduce a state–dependent damping term that has the nice interpretation of ef-
fectively decoupling the electrical and mechanical parts of the system. This results
in a globally asymptotically stabilizing controller parameterized by two degrees of
freedom, which can be used to implement the power management policy. An indi-
rect adaptive scheme for the rotor and stator resistances is also introduced. The
controller is simulated and shown to work satisfactorily for various realistic load
changes.
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1 Introduction

Doubly–fed induction machines (DFIM) have been proposed in the literature, among other
applications, for high performance storage systems [2], wind-turbine generators [13][14][16]
or hybrid engines [3]. The attractiveness of the DFIM stems primarily from its ability
to handle large speed variations around the synchronous speed (see [19] for an extended
literature survey and discussion.) In this paper we are interested in the application of
DFIM as part of an autonomous energy–switching system that regulates the energy flow
between a local prime mover (a flywheel) and the electrical power network to satisfy the
demand of a time–varying electrical load.

Most DFIM controllers proposed in the literature are based on vector–control and
decoupling [9]. Along these lines, an output feedback algorithm for power control with
rigorous stability and robustness results is presented in [19]. In this paper we propose
an alternative viewpoint and use the energy–based principles of passivity and control as
interconnection [4] [8] [11] [20]. More specifically, we prove that the Interconnection and
Damping Assignment Passivity–Based Control (IDA–PBC) technique proposed in [11]
can be easily applied to regulate the dynamic operation of this bidirectional power flow
system.

The paper is organized as follows. In Section 2 we introduce the architecture of the
system to be controlled and derive its model. Since IDA–PBC concerns the stabilization
of equilibrium points, we use the Blondel–Park synchronous dq-coordinates1 to write the
equations in the required form. Then, to render more transparent the application of IDA–
PBC, we give the Port–Controlled Hamiltonian (PCH) version of the model. Section 3
discusses the zero dynamics of interest for the kind of task we are trying to solve and
show it to be only marginally stable—hampering the application of feedback linearization
principles. The power management scheme consists of the assignment of suitable fixed
points and is introduced in Section 4. The main result of the paper is a globally stable
IDA–PBC controller that is presented in Section 5. We start with the solution of the
partial differential equation (PDE) that arises in IDA–PBC by direct assignment of the
desired energy function and modification of the interconnection structure. Unfortunately,
the resulting control law contains a singularity, hence it is not globally defined. To re-
move this singularity we introduce a state–dependent damping that, in the spirit of the
nested–loop PBC configuration of Chapter 8 in [10], has the nice interpretation of effec-
tively decoupling the electrical and mechanical parts of the system. Section 6 introduces
an indirect adaptive scheme to cope with some of the time–varying parameters of the
DFIM and Section 7 presents the results of several simulations. Conclusions are stated in
Section 8.

Notation Throughout the paper we use standard notation of electromechanical sys-
tems, with λ, v, i, τ, θ, ω denoting flux, voltage, current, couple, angular position and ve-
locity, respectively; while R,L, J,B are used for resistance, inductance, inertia and friction
parameters, respectively. Self–explanatory sub–indices are introduced also for the signals
and parameters of the different subsystems. Finally, to underscore the port interconnec-
tion structure of the overall system we usually present the variables in power conjugated
couples, i.e., port variables whose product has units of power.

1In this coordinates the natural steady–state orbits are transformed into fixed points.
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Figure 1: Doubly fed induction machine, flywheel, power network and load.

2 The System and its Mathematical Model

Figure 1 shows a DFIM, controlled through the rotor windings port (vr, ir), coupled to
an energy–storing flywheel with port variables (τe, ω), an electrical network modelled
by an ideal AC voltage source with port variables (vn, in), and a generic electrical load
represented by its impedance Zl. Network equations are given by Kirchhoff laws

il = in − is, vn = vs. (1)

Figure 2 shows a scheme of a doubly-fed, three-phase induction machine. It contains
6 energy storage elements with their associated dissipations and 6 ports (the 3 stator and
the 3 rotor voltages and currents).

From the original three phase electrical variables yabc (currents, voltages or magnetic
fluxes) we compute transformed variables by means of

y = Tyabc

where
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Notice that, since T T = T−1, this is a power–preserving transformation:

〈i, v〉 = 〈iabc, vabc〉.

As it is common, from now on we will work only with the two first components
(the dq components) of any electrical quantity and neglect the third one (the homopolar
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Figure 2: Basic scheme of the doubly fed induction machine

component, which is zero for any balanced set and which, in any case, is decoupled from
the remaining dynamical equations.)

The electrical equations of motion in the original windings frame for the dq variables,
neglecting nonlinear effects and non–sinusoidal magnetomotive force distribution, take
the form [6] [7],

λ̇s + Rsis = vs (2)

λ̇r + Rrir = vr (3)

where λs, λr, is, ir ∈ R
2 and Rs = diag(rs, rs) > 0, Rr = diag(rr, rr) > 0, while the

mechanical equations are given by (we assume without loss of generality a 2-poles machine)

Jmω̇ = Lsri
T
s J2ir − Brω (4)

θ̇ = ω

where θ ∈ R, Jm > 0, Br ≥ 0, Lsr > 0 and we defined

J2 =

(

0 −1
1 0

)

.

Linking fluxes and currents are related by

λ = L(θ)i

where

λ =

[

λs

λr

]

, i =

[

is
ir

]

, L(θ) =

[

LsI2 Lsre
J2θ

Lsre
−J2θ LrI2

]

, I2 =

[

1 0
0 1

]

,

with Ls, Lr > 0 and LsLr > L2
sr. Putting together (2) and (3) we get

λ̇ + Ri = V

where

V =

[

vs

vr

]

, R =

[

RsI2 O2

O2 RrI2

]

, O2 =

[

0 0
0 0

]



The steady–state for the equations above are periodic orbits that can be transformed
into equilibrium points by means of the so-called Blondel-Park transformation. This
standard procedure also eliminates the dependence of the equations on θ, and consists in
defining new variables f r via

f = K(θ, δ)f r

K(θ, δ) =

[

eJ2δ O2

O2 eJ2(δ−θ)

]

where δ is an arbitrary function of time that, for convenience, we select as

δ̇ = ωs,

with ωs the line frequency, which is assumed constant.2

Applying this transformation to all the electrical variables, one gets

Lẋ + [Ω(ω)L + R]x = M1u + M2v
r
s (5)

where

x =

[

irs
irr

]

, u = vr
r , vr

s =

[

V0

0

]

L = K−1(θ, δ)L(θ)K(θ, δ) =

[

LsI2 LsrI2

LsrI2 LrI2

]

Ω(ω)L =

[

ωsLsJ2 ωsLsrJ2

(ωs − ω)LsrJ2 (ωs − ω)LrJ2

]

M1 =

[

O2

I2

]

, M2 =

[

I2

O2

]

with V0 > 0 the constant voltage set by the power network.
Summarizing: the overall system consists of the fourth–order electrical dynamics

(5) together with the scalar mechanical dynamics (4). The control input is the two–
dimensional rotor voltage u, and vr

s is viewed as a constant disturbance.3

As discussed in [4] (and references therein) a large class of physical systems of interest
in control applications can be modelled in the general form of PCH systems4

ż = [J (z) −R(z)](∇H)T + g(z)u

where z is the state, H(z) is the total energy of the system (representing its energy),
J (z) = −J T (z) is the interconnection matrix and Rd(z) = RT (z) ≥ 0 the dissipation
matrix. It is easy to see that PCH systems are passive with port variables (u, gT (z)(∇H)T )
and storage function the total energy. Before closing this section we derive the PCH
model of the system, a step which is instrumental for the application of the IDA–PBC
methodology.

2This is the so–called synchronous reference frame. Notice the simple form of v
r

s
in this frame.

3To simplify the notation, in the sequel we will omit the super–index (·)r.
4To distinguish between energy–conserving and dissipating systems the latter are sometimes called

PCHD systems.



To cast our system into this framework it is convenient to select as state coordinates
the natural electromechanical Hamiltonian variables, fluxes (λ) and (angular) momentum
(Jmω), that is

z =

[

ze

zm

]

=

[

λ

Jmω

]

,

where, for convenience, we have introduced a natural partition between electrical (ze ∈ R
4)

and mechanical (zm ∈ R) coordinates. The equations of our system can be written as [15]

ż = [J (z) −R] (∇H)T + B1vr + B2vs (6)

with total energy

H(z) =
1

2
zT

e L
−1ze +

1

2Jm

z2
m,

interconnection and dissipation matrices

J (z) =





−ωsLsJ2 −ωsLsrJ2 O2×1

−ωsLsrJ2 −(ωs − ω)LrJ2 LsrJ2is
O1×2 Lsri

T
s J2 0



 , R =





RsI2 O2 O2×1

O2 RrI2 O2×1

O1×2 O1×2 Br



 ,

respectively, and

B1 =





O2

I2

O2×1



 , B2 =





I2

O2

O2×1



 .

Notice that the gradient of the Hamiltonian yields the original, Lagrangian (or co-
energy) variables:

(∇H)T =

[

L−1ze
1

Jm
zm

]

=

[

x

ω

]

3 Zero Dynamics

We will study the zero dynamics of the system, taking as output the stator current, i.e.,

y = Cx

where C =
[

I2 O2

]

. One easily gets

ẏ = CL−1[−(Ω(ω)L + R)x + M1u + M2vs].

Consistent with the problem formulation (that is given in Section 4) we consider a
constant desired output of the form y∗ = i∗s, hence ẏ∗ = 0 and the decoupling and
linearizing control is given by

u = D−1CL−1[(Ω(ω)L + R)x − CL−1M2vs]

with

D = CL−1M1 = −
Lsr

LsLr − L2
sr

I2 < 0,



where negative definiteness stems from the fact that LsLr > L2
sr. Substituting this control

into the system equations, one gets the following dynamics

ẋ = Ax − L−1(I4 − M1D
−1CL−1)M2vs

with
A = −L−1[Ω(ω)L + R− M1D

−1CL−1(Ω(ω)L + R)].

Some lengthy, but straightforward, calculations yield

A =

[

0 0
− 1

Lsr
(ωsLsJ2 + RsI2) −ωsJ2

]

which, interestingly, is a constant matrix independent of ω, with the forcing term matrix

L−1(I4 − M1D
−1CL−1)M2 =









0
0
∗
∗









where ∗ denotes some non–zero constants. Consequently, the zero dynamics is a linear
oscillator with a constant forcing input that depends on vs. It is well–known that a linear
oscillator is not bounded–input bounded–output stable hence unbounded trajectories of
the forced system may appear upon change of the line voltage, which stymies the control
of the system by direct inversion.

We should underscore that a similar result is obtained if we take as output the rotor,
instead of the stator, current [18].

4 Power Flow Strategy

The power management schedule is determined according to the following considerations.
The general goal is to supply the required power to the load with a high network power
factor, i.e., Qn ∼ 0, where Qn is the network reactive power. On the other hand, we will
show below that the DFIM has an optimal mechanical speed for which there is minimal
power injection through the rotor. Combining these two factors suggests to consider the
following three modes of operation:

– (Generator mode) When the real power required by the local load is bigger than
the maximum network power (say, PM

n ) we use the machine as a generator. In this
case we fix the references for the network real and reactive powers as P ∗

n = PM
n and

Q∗
n = 0.

– (Storage mode) When the local load does not need all the network power and the
mechanical speed is far from the optimal value the “unused” power network is
employed to accelerate the flywheel. From the control point of view, this operation
mode is the same that the generator mode thus we fix the same references—but
now we want to extract the maximum power from the network to transfer it to the
flywheel.



– (Stand-by mode) Finally, when the local load does not need all the power network
and the mechanical speed is near to the optimal one we just compensate for the
flywheel friction losses by regulating the speed and the reactive power. Henceforth,
we fix the reference for the mechanical speed at its minimum rotor losses value (to
be defined below) and set Q∗

n = 0.

The operation modes boil down to two kinds of control actions (we call them 0 and
1) as expressed in Table 1, where ǫ > 0 is some small parameter.

P ∗
n < Pl |ω − ωs| ≤ ǫ Mode Control References

True True Generator 0 P ∗
n = PM

n and Q∗
n = 0

True False Generator 0 P ∗
n = PM

n and Q∗
n = 0

False True Storage 0 P ∗
n = PM

n and Q∗
n = 0

False False Stand-by 1 Q∗
n = 0 and ω∗ = ωs

Table 1: Control action table.

The formulate mathematically the power flow strategy described above we need to
express the various modes in terms of equilibrium points. In this way, the policy will be
implemented transferring the system from one equilibrium point to another. Towards this
end, we compute first the fixed points of our system, i.e. the values z∗

e = Li∗, z∗m = Jmω∗,
v∗

r such that

[J (z∗) −R]

[

i∗

ω∗

]

+ B1v
∗
r + B2vs = 0.

Explicit separation of the rows corresponding to the stator, rotor, network and mechanical
equations yields the following system:

ωsLsJ2i
∗
s + ωsLsrJ2i

∗
r + Rsi

∗
s − vs = 0 (7)

(ωs − ω∗)[LsrJ2i
∗
s + LrJ2i

∗
r] + Rri

∗
r − v∗

r = 0 (8)

Lsri
∗T
s J2i

∗
r − Brω

∗ = 0. (9)

It is clear that—assuming no constraint on vr—the key equations to be solved are (7) and
(9).

As discussed above, a DFIM has an optimal mechanical speed for which there is
minimal power injection through the rotor. Indeed, from (8) one immediately gets

Pr ≡ i∗Tr v∗
r = (ωs − ω∗)Lsri

∗T
r J2i

∗
s + Rr|i

∗
r|

2,

where | · | is the Euclidean norm. Further, using (9), we get

Pr = Brω
∗(ω∗ − ωs) + Rr|i

∗
r|

2. (10)

Although the ohmic term in (10) does depend also on ω, its contribution is small for the
usual range of parameter values, so |Pr| is small near ω∗ = ωs. Another consideration
that we make to justify our choice of “optimal” ω∗ concerns the reactive power supplied
to the rotor—that we would like to minimize. It can be shown that

Qr ≡ i∗Tr J2v
∗
r = (ω∗ − ωs)f(Qn, ω

∗),



where f is a bounded function. Consequently, Qr = 0 for ω∗ = ωs. Taking this into
account, we will set the reference of the mechanical speed as ω∗ = ωs.

Let us explain now the calculations needed to determine the desired equilibria for the
generating and stand–by modes. For, we recall that, assuming a sinusoidal steady–state
regime, the network active and reactive powers are defined as

Pn ≡ iTnvs = V0ind (11)

Qn ≡ iTnJ2vs = V0inq, (12)

where we have denoted in = [ind, inq]
T .

In generating (and storage) mode we fix P ∗
n = PM

n and Q∗
n = 0 thus immediately

obtain from (11) and (12) that i∗n = [P M
n

V0

, 0]T . Next, from equation (1) and the measured
il we obtain i∗s which, upon replacement on (7) yields i∗r. Then, ω∗ is computed from (9),
and finally v∗

r is obtained via (8).
For the stand–by mode we still set Q∗

n = 0, but now fix ω∗ = ωs. This is a more
complicated scenario as we have to ensure the existence of i∗s and i∗r solutions for the
nonlinear equations (7) and (9). First of all, multiplying equation (7) by i∗Ts and using
equation (9) one gets

Rs|i
∗
s|

2 − vT
s i∗s + Brω

2
s = 0. (13)

This is a quadratic equation that has an infinite number, a unique, or no solutions de-
pending on whether ωs is smaller, equal or larger than V0√

2BrRs

, respectively. Since Br is
usually a small coefficient typically there will be an infinite number of i∗s that solve the
equation. We will choose then the one of minimum norm. Once we have fixed i∗s we can
proceed as in the generating mode to compute i∗r and v∗

r .
Before closing this section we make the interesting observation that, under the assump-

tions that the load can be modelled as a linear RL circuit and small friction coefficient,
we can get a simple condition on the load parameters that ensure the existence of ω∗ and
P ∗

n , with Q∗
n = 0. Indeed, tacking a general RL-load

Zl = RlI2 + ωsLlJ2,

replacing in (13), using (1), and the network power definitions (11), (12) we obtain

(P ∗
n)2 − |vs|

2

(

2Rl

|Zl|2
+

1

Rs

)

P ∗
n +

|vs|
4

|zl|2

(

1 +
Rl

Rs

+
2ωsLlQ

∗
n

|vs|2

)

−
|vs|

2Brω
2
s

Rs

= 0.

In our case Q∗
n = 0 and considering Br = 0 yields the quadratic equation

(P ∗
n)2 − |vs|

2

(

2Rl

|Zl|2
+

1

Rs

)

P ∗
n +

|vs|
4

|Zl|2

(

1 +
Rl

Rs

)

= 0.

It is easy to show that this equation has a positive real solution if and only if

Rs <
R2

l

2ωsLl

+
ωsLl

2
, (14)

hence it always has a real real solution for pure resistive loads, but the condition (14)
appears when an RL load is connected.



5 Controller Design

As mentioned in the Introduction, to implement the proposed power flow strategy we
design an IDA–PBC [11]. The central idea of this technique is to, still preserving the
PCH structure, assign to the closed loop a desired energy function via the modification
of the interconnection and dissipation matrices. That is, the desired target dynamics is a
PCH system of the form

ż = [Jd(z) −Rd(z)](∇Hd)
T (15)

where Hd(z) is the new total energy and Jd(z) = −J T
d (z), Rd(z) = RT

d (z) > 0, are the
new interconnection and damping matrices, respectively. To achieve stabilization of the
desired equilibrium point we impose

z∗ = arg min Hd(z).

It is easy to see that the matching objective is achieved if and only if the following
PDE is satisfied

[Jd(z) −Rd(z)](∇Ha)
T = −[Ja(z) −Ra(z)](∇H)T + B1vr + B2vs. (16)

where, for convenience, we have defined

Hd(z) = H(z) + Ha(z), Jd(z) = J (z) + Ja(z), Rd(z) = R(z) + Ra(z).

The standard way to solve (16) is to fix the matrices Ja(z) and Ra(z)—hence the
name IDA—and then solve the PDE for Ha(z). In general, solving the PDE is a very
complicated task. Fortunately, the special structure of our system allows us, in the spirit
of [5, 15], to fix a quadratic Hd(z) and then solve (16) for Ja(z) and Ra(z). Notice that
vs is fixed, so the only available control is in fact vr.

5.1 Control Law

Following the strategy outlined above to solve the PDE (16), we choose the following
desired total energy

Hd(z) =
1

2
(ze − z∗e)

TL−1(ze − z∗e) +
1

2Jm

(zm − z∗m)2,

which clearly has a global minimum at the desired fixed point. This implies

Ha(z) = Hd(z) − H(z) = −z∗Te L−1ze −
1

Jm

z∗mzm +
1

2
z∗Te L−1z∗e +

1

2Jm

z∗2m .

Notice that

(∇Ha)
T =

[

−i∗

−ω∗

]

.

Using this relation, (16) becomes

[Jd(z) −Rd(z)]

[

i∗

ω∗

]

= [Ja(z) −Ra(z)]

[

i

ω

]

− B1vr − B2vs. (17)



The control action appears on the third and fourth rows, which suggests the choice

Ja(z) =





O2 O2 O2×1

O2 O2 −Jrm(z)
O1×2 J T

rm(z) 0



 , Ra =





O2 O2 O2×1

O2 rI2 O2×1

O1×2 O1×2 0



 (18)

where Jrm(z) ∈ R
2×1 is to be determined, and we have injected an additional resistor

r > 0 for the rotor currents to damp the oscillations in the tracking dynamics.
Substituting in (17) and using the fixed-point equations, one gets, after some algebra,

J T
rm(z) = Lsr

(ir − i∗r)
T

|ir − i∗r|
2

(is − i∗s)
T J2i

∗
r,

vr = v∗
r − (ω − ω∗)(LrJ2i

∗
r + Jrm(z)) − Lsrω

∗J2(is − i∗s) − rI2(ir − i∗r).

Unfortunately, the control is singular at the fixed point. Although from a numerical point
of view we could implement it by introducing a regularization parameter, we are going to
show below that it is possible to get rid of the singularity by adding a variable damping
which turns out to decouple the mechanical and electrical subsystems.

5.2 Subsystem Decoupling via State–Dependent Damping

We keep the same Hd(z) and Jd(z), but instead of the constant Ra given in (18) we
introduce a state–dependent damping matrix

Ra(z) =





O2 O2 O2×1

O2 rI2 O2×1

O1×2 O1×2 ξ(z)



 ,

where we set

ξ(z) =
τ ∗
e − τe(ze)

ω − ω∗

with τe the electrical torque
τe = Lsri

T
s J2ir

and τ ∗
e = Brω

∗ its fixed point value. Notice that, when substituted into the closed-loop
Hamiltonian equations, ξ(z) is multiplied by ω − ω∗ and hence no singularity is brought
into the equations.

Since we only have changed the mechanical part of (17), only the value for Jrm(z)
is changed while the expression for vr in terms of Jrm(z) remains the same. After some
algebra and using the fixed point equations, one gets

Jrm(z) = LsrJ2is.

The closed loop dynamical system is still of the form (15) with

Jd(z) =





−ωsLsJ2 −ωsLsrJ2 O2×1

−ωsLsrJ2 −(ωs − ω)LrJ2 O2×1

O1×2 O1×2 0



 ,Rd(z) =





RsI2 O2 O2×1

O2 (Rr + r)I2 O2×1

O1×2 O1×2 Br + ξ(z)



 .

We underscore the fact that the main effect of the proposed control is to decouple the
electrical and mechanical parts in the closed-loop interconnection and dissipation matrices.



5.3 Main Stability Result

Due to the fact that we cannot show that Br + ξ(z) > 0, we cannot apply the standard
stability analysis for PCH systems [20]. However, the overall system has a nice cascaded
structure, with the electrical part a bona fide PCH subsystem with well–defined dissi-
pation. (This situation is similar to the Nested PBC proposed in Chapter 8 of [10].)
Asymptotic stability of the overall system follows from well known properties of cascaded
systems [17]. For the sake of completeness we give the specific result required in our
example in the form of a lemma in the Appendix.

We are in position to present the following:

Proposition 1 Consider the DFIM system (6) in closed–loop with the static state–feedback
control

vr = v∗
r − (ω − ω∗)(LrJ2i

∗
r + LsrJ2is) − Lsrω

∗J2(is − i∗s) − rI2(ir − i∗r). (19)

Assume the motor friction coefficient Bm is sufficiently small to ensure the solution of
the equilibrium equations (7) and (9) and v∗

r is given by (8). Then, each operating mode
of the proposed power flow policy is globally asymptotically stable.

Proof. The proof follows immediately checking that the conditions of Lemma 1 in Ap-
pendix A. To do that, we identify x1 with the electric variables and x2 with the mechanical
variable. The electric subsystem has (i∗s, i

∗
r) as a global asymptotically stable fixed point

for any function ω(t). Hence the closed loop dynamics has (i∗s, i
∗
r, ω

∗) as a global asymp-
totically stable point. ⊳

6 Indirect adaptive scheme

In this section we present an indirect adaptive method (see [12] and references therein)
to cope with the uncertainty of the machines resistances Rs and Rr. The method works
for uncertain parameters appearing linearly in the dynamical equations, and could be
extended to other system parameters.

Consider a system which can be expressed as

ẋ = f(x) + Ψs(x)θs + Ψr(x)θr + g(x)u

where θs and θr are the uncertain parameters. In our case, θs = Rs, θr = Rr, x = z,

f(x) + g(x)u = [J (x) −R′](∇H)T + B1vr + B2vs,

and
Ψs(x) = −Ks(∇H)T

Ψr(x) = −Kr(∇H)T

with

Ks =





I2 O2 O2×1

O2 O2 O2×1

O1×2 O1×2 0



 , Kr =





O2 O2 O2×1

O2 I2 O2×1

O1×2 O1×2 0



 , R′ =





O2 O2 O2×1

O2 O2 O2×1

O1×2 O1×2 Br



 .



We define e = x̂ − x, θ̃s = θ̂s − θs and θ̃r = θ̂r − θr, where x̂ obeys

˙̂x = f(x) + g(x)u + Ψs(x)θ̂s + Ψr(x)θ̂r − Λe. (20)

Then it is easy to show that

ė = Ψs(x)θ̃s + Ψr(x)θ̃r − Λe.

The candidate Lyapunov function

V =
1

2
|e|2 +

1

2γs

θ̃2
s +

1

2γr

θ̃2
r

has derivative

V̇ = −eT Λe + eT Ψs(x)θ̃s +
1

γs

θ̃s
˙̃
θs + eT Ψr(x)θ̃r +

1

γr

θ̃r
˙̃
θr.

Then, to ensure V̇ ≤ 0, we set

˙̃
θs =

˙̂
θs = −γse

T Ψs(x). (21)

˙̃
θr =

˙̂
θr = −γre

T Ψr(x). (22)

Equations (20), (21) and (22) define the identifier. A certainly equivalent control is
obtained replacing the actual parameters by their estimator in (19).

7 Simulations

In this Section we implement a numerical simulation of the IDA–PBC Hamiltonian scheme
developed in the previous Sections. We use the following parameter values (in SI units):
Lsr = 0.041, Lr = Ls = 0.041961, Jm = 5.001, Br = 0.005. The machine ohmic resistances
start at Rs = 0.087 and Rr = 0.0228, and are increased by 50% to simulate temperature
effects.

We have simulated two varying loads, one resistive and the other resistive-inductive.
The resistive load is initially Rl = 1000, changes to Rl = 5 at t = 1 in 0.2 seconds
and returns to Rl = 1000 at t = 1.8 also in 0.2 seconds. The same envelope (shifted 4
s forward) is used for the second load, with values Rl = 1000, Ll = 0.01 and Rl = 1,
Ll = 0.01. The voltage source is, in dq coordinates, vg = (380, 0). The simulation has
been performed using the 20-sim [1] modelling and simulation software.

For the purposes of testing the controller, we have set a maximum power network
Pn = 10000. The parameters of the adaptive scheme are Λ = 10, γs = 5 and γr = 1. The
damping parameter is fixed at r = 100000. A hysteresis filter is used to prevent chattering
around ω = ωs.

Figure 3 shows the load and the network active power for a purely resistive load for
t ∈ [0, 4]. Notice that Pn is never bigger than its maximum value even if the load demand
is higher. After the load demand returns to its initial value, Pn is kept at its peak value
to accelerate the flywheel, until it reaches the optimum speed. The evolution of ω during
this sequence is also shown in Figure 3; the minimum attained represents 96% of the
optimal speed ωs.

Figure 4 corresponds to the varying resistive-inductive load for t ∈ [4, 8]; the reactive
powers are also shown in this case. One should notice that, in spite of the huge change
of reactive power by the load, Qn is kept to zero. Also, the minimum mechanical speed
is 99% of the optimal value.
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8 Conclusions

IDA–PBC techniques have been applied to the control of a doubly-fed induction machine
in order to manage the power flow between a mechanical source (flywheel) and a varying
local load, under limited grid power conditions. We have been able to solve the IDA–PBC
equations by assigning the desired Hamiltonian and introducing a variable damping to
eliminate the resulting singularity. The controller obtained is globally stable and decouples
the mechanical and electrical subsystems in the interconnection matrix. An indirect
adaptive scheme has also been introduced to estimate the machine resistances.

The system not only provides the active power required by the load, but at the same
time compensates the reactive power, so that the power grid sees the load+machine
system as a pure resistive load, even for varying inductive local loads. There is no actual
restriction about the kind of local load, as long as its parameters allow the assignment of
equilibrium points.

Currently we are working on the experimental validation of the proposed controller,
the implementation of the controller through a power converter connected also to the grid
and the introduction of a grid model instead of the ideal bus considered in this paper.
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2003.

[4] Dalsmo, M., and A. van der Schaft, On representations and integrability of mathe-
matical structures in energy-conserving physical systems, SIAM J. Control Optim.
37, pp. 54-91, 1998.

[5] Fujimoto, K., and T. Sugie, Canonical transformations and stabilization of general-
ized Hamiltonian systems, Systems & Control Letters, Vol. 42, No. 3, pp. 217–227,
2001.

[6] Krause, Paul C., Analysis of electric machinery, McGraw-Hill, 1986.

[7] Krause, Paul C., and Oleg Wasynczuk, Electromechanical motion devices, McGraw-
Hill, 1989.

[8] Kugi, A., Non-linear control based on physical models, Springer, 2001.

[9] Leonhard, W., Control of electric drives, Springer, 1995.

[10] Ortega, R., A. Loria, P.J. Nicklasson, and H. Sira-Ramirez, Passivity-based control of
Euler-Lagrange systems, Communications and Control Engineering, Berlin, Germany,
Spring-Verlag, 1998.



[11] Ortega, R, A. van der Schaft, B. Maschke and G. Escobar, Interconnection and
damping assignment passivity-based control of port-controlled Hamiltonian systems,
Automatica 38, pp. 585-596, 2002.

[12] Panteley, E., R. Ortega, and P. Moya, Overcoming the detectability obstacle in
certainty equivalence adaptive control, Automatica 38, pp. 1125-1132, 2002.

[13] Peña, R., J. C. Clare and G. M. Asher, Doubly fed induction generator using back-to-
back PWM converters and its application to variable speed wind-energy generation,
IEE Proc. Electric Power Applications, 143, pp. 231-241, 1996.

[14] Peña, R., J. C. Clare and G. M. Asher, A doubly fed induction generator using
back-to-back PWM converters supplying an isolated load from a variable speed wind
turbine, IEE Proc. Electric Power Applications, 143, pp. 380-387, 1996.
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A Appendix A

Lemma 1 Let us consider a system of the form

ẋ1 = f1(x1, x2),

ẋ2 = −Bx2 + h(x1), (23)

where x1 ∈ R
n, x2 ∈ R, B > 0 and h is a continuous function. Assume that the system

has fixed points x∗
1, x∗

2, and limt→+∞ x1(t) = x∗
1 for any x2(t). Then limt→+∞ x2(t) = x∗

2.

Proof.. Let (σ1(t), σ2(t)) be a given solution to (23). Since limt→+∞ σ1(t) = x∗
1 it follows

that σ1(t) is bounded and so is h(σ1(t)). Since Bx∗
2 = h(x∗

1), it follows that ∀ǫ > 0 ∃T > 0,
which may depend on σ1(t) and σ2(t), such that if t > T then |h(σ1(t)) − Bx∗

2| < ǫB
2
.

Using

1 = e−Bt + B

∫ t

0

e−B(t−τ)dτ



it is immediate to write,

σ2(t) − x∗
2 = e−Bt(x2(0) − x∗

2) +

∫ t

0

e−B(t−τ)(h(σ1(τ)) − Bx∗
2)dτ

= e−Bt(x2(0) − x∗
2) +

∫ T

0

e−B(t−τ)(h(σ1(τ)) − Bx∗
2)dτ

+

∫ t

T

e−B(t−τ)(h(σ1(τ)) − Bx∗
2)dτ

where t > T has been assumed. There exists T̃ > 0 such that if t > T̃ then

e−Bt

(

x2(0) − x∗
2 +

∫ T

0

eBτ (h(σ1(τ)) − Bx∗
2)dτ

)

<
ǫ

2
,

where the boundedness of h has been used. Furthermore
∣

∣

∣

∣

∫ t

T

e−B(t−τ)(h(σ1(τ)) − Bx∗
2)dτ

∣

∣

∣

∣

<

∫ t

T

e−B(t−τ)ǫ
B

2
dτ =

ǫ

2
(1 − e−B(t−T )) <

ǫ

2
.

Finally, taking t > max{T, T̃}, one gets |σ2(t) − x∗
2| < ǫ. This ends the proof. ⊳


