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Abstract 

 

Annualising working hours (i.e., the possibility of irregularly distributing the total 

number of working hours over the course of a year) enables to adapt production 

capacity to fluctuations in demand. The demand, which is an essential data for an 

optimal planning of working time, usually depends on several and complex factors. 

Often, it is not possible to obtain a reliable prediction of the demand or it is not realistic 

to consider that can be adjusted to a probability distribution. In some cases, it is possible 

to determine a set of demand scenarios, each one with a related probability. In this work 

we present a multistage stochastic optimisation model which provides a robust solution 

(i.e., feasible for any possible scenario) and minimises the expected total capacity 

shortage. 
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1. Introduction 

 

To plan annualising working hours (i.e., the possibility of irregularly distributing the total 

number of working hours over the course of a year) it is essential to consider the demand of 

the products or services provided by the company (Corominas et al., 2004). However, the 

demand depends usually on several and complex factors and, often, it is not possible to obtain 

a reliable prediction of the demand or it is not realistic to consider that can be adjusted to a 

probability distribution. In some cases it is possible to determine a set of demand scenarios, 

each one with a related probability. 

 

The majority of the procedures used for planning and programming are based on deterministic 

data sets or on average values. It is clear that the error made by not considering the demand as 

a random variable can result in significant costs, due to lack or excess of capacity when the 

reality does not meet the prevision. Furthermore, considering demand as a deterministic data 

one can even get a solution that may be unfeasible depending on the real values of the 

demand. The stochastic optimisation and, in particular, the optimisation by means of 

scenarios, is one of the appropriate tools to deal with this uncertainty. The objective can be 

the optimisation of the expected value for a certain utility function (e.g., the cost) and it is also 

possible to include constraints which guarantee that the solution will be feasible for any 

possible scenario. 

 

This work presents a multistage stochastic optimisation model via scenarios in order to take 

into consideration the uncertainty of the demand when planning working time under 

annualised hours (AH).   

 

The layout of the rest of this paper is as follows: Section 2 introduces the multistage 

stochastic optimisation via scenarios as a procedure to face uncertainty; Section 3 describes 

the stochastic optimisation model; Section 4 describes the computational experiment and 

Section 5 presents the conclusions. 
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2. Multistage stochastic optimisation via scenarios 

 

The optimisation via scenarios has been successfully used in numerous cases when dealing 

with decision making while taking into consideration future possible scenarios (Ramos, 1992; 

Morton, 1996; Pallotino et al., 2002; Li et al., 2003; Mulvey et al., 2004). When considering 

the problem of planning working under annualised hours, the scenarios consist in different 

possible demands. 

 

The most studied and applied stochastic models by means of scenarios are the multistage 

stochastic linear programs (see, for example, Beraldi et al., 2005), even though most papers 

deal with two-stage programs (see Sen, 2003 and the references listed at 

http://mally.eco.rug.nl/spbib.html, for an updated survey on stochastic programming). 

 

In a multistage problem, at the beginning of each stage a decision is made based on an 

uncertain future; when reaching the end of this stage, some of the uncertain aspects of the 

future are revealed, thus reducing the number of possible scenarios. Figure 1 represents this 

process. In the example (Figure 1), three stages are considered and, at the beginning of the 

first one (state E0), it is totally unknown which one of the 12 possible scenarios will be met. 

At the end of this stage, thus at the beginning of the second stage (state E1, E2 o E3) 

additional information is available (i.e. the actual demand of the periods corresponding to the 

first stage), which allow us to reduce the range of possible scenarios. For example, let us 

assume that in the scenarios from 6 to 12 the demand is low for all the periods corresponding 

to the first stage. If the demand has been large, it can be concluded that we are in state E1 and 

all those scenarios will be discarded. An example of the demand (or required capacity) of 

each scenario can be seen in Figure 2. 
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Figure 1. Scenarios tree 

 
 

 
Figure 2. Scenarios required capacity 

 

The planning model must provide the decision to be made for each possible state. Thus, at the 

beginning, in state e0, the planning must provide all the decisions to be made in each one of 

the all following states. The planning is updated after each stage, taking into account the 

e0

e1 

e2 

e4

e5

e6

e7

e8

e10: Scenario 1

e11: Scenario 2

e12: Scenario 3

e13: Scenario 4

e14: Scenario 5

e15: Scenario 6

e16: Scenario 7

e17: Scenario 8

e18: Scenario 9

e19: Scenario 10

e3 e9
e20: Scenario 11

e21: Scenario 12
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additional information available and the reality occurred in the previous periods, as long as 

this is feasible since in some cases all or part of the decisions already taken cannot be 

modified.  

 

The number of stages (or their length) may depend on several factors. In the case of planning 

working time, the agreement between company and workers (or the collective bargaining 

agreement) must be considered. 

 

For example, the agreement may establish a frozen period for the working hours so that the 

workers can plan their free time without being subjected to continuous changes of agenda. 

Thus, if the frozen period is one month long it will not be possible to consider stages shorter 

than that, as in this case it would be impossible to maintain the working hours of a full month 

without changes: notice that the number of working hours to be performed by the workers in a 

certain week of a stage cannot be known until it is known in which one of the possible states 

starting that stage we are. 

 

Moreover, there can be a communication period. This means that the working hours to be 

done from a certain stage (e.g., from states e2, e3 o e4) must be announced to the workers in 

advance. Note that this thought about the communication period affects neither the scenarios 

tree (Figure 1) nor the model presented in the following section. Nonetheless, it must be 

considered that the information to be taken into account to determine a new planning to be 

performed from the beginning of a stage (e.g., states e2, e3 o e4) is actually the information 

available some time (communication period) before the beginning of that stage. 

 

Figure 3 represents an example of the planning process. The length of the stages is equal to 

the frozen period. In the time tP2 a new planning for the weeks corresponding to Stage 2 and 

the following ones is determined and told to the workers; in tP3, if new information is 

available, a new planning for the weeks corresponding to Stage 3 and the following ones is 

determined and told to the workers; and so forth. 
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Figure 3. Planning process 

 

On the other hand, it is meaningless to consider states for which there is no additional 

information. In Figure 1, this is the case of state e9: in state e3 the available information allow 

us to know for certain that the real scenario is the number 11 or 12; in state e9 it is still not 

possible to distinguish between scenarios 11 and 12. Thus, all the planning done starting from 

state e9 for the periods of the last stage is going to be the same as the one that can be done at 

the beginning of the second stage (in state e3). This means that the number of stages  between 

two consecutive states is not constant. In fact, the tree of Figure 1 could be considered as a 

general graph in which the arches do not represent period of time but connection between 

states only. In this case, it must be known which period corresponds to each state. 

 

 

3. Multistage optimisation model via scenarios 

 

Following the optimisation scheme by means of scenarios a linear program model was 

developed. The solution, which will be feasible for all scenarios, provides the decisions that 

must be taken at each possible state and minimise the expected value for the total capacity 

shortage. 

 

The notation used in this paper is defined in the following: 

 

Data: 

 

E set of states 

CP 

 FP 

CP 

 FP 

CP 

Stage 2 Stage 3 Stage 1 Stage 4 

 FP 

FP: frozen period 
CP: communication period 

tP3 tP2 tP4

 FP 

time
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e0 first state 

e
+Γ  set of states reachable starting from state e (∀e ∈ E) 

eτ  time period (beginning of the week) corresponding to state e (∀e ∈ E). Note that 

  , ei j i jτ τ += ∀ ∈Γ . 

ae state immediately precedent of state e (∀e ∈ E\e0).  

pe  probability of reaching state e from the previous state, ae (i.e., is the probability that, 

being in state ae, the future demand corresponds to any of the scenarios that are 

possible from state e, ∀e ∈ E\e0). 

TFe set of weeks belonging to the stage that finishes at the state e. That is to say, is the set 

of weeks between the precedent state of e (ae) and the state e: 

{ } 0,....., 1 , \
ee ea e E eTF τ τ= − ∀ ∈  

TIe set of weeks belonging to the stage that starts at the state e. That is to say, is the set of 

weeks between state e and its successors ( e
+Γ ): 

{ }..... 1  with ,  |e ee c c e e EaTI τ τ += − = ∀ ∈ ≠∅Γ .  

PTHI set of paths of the scenario tree. Each one starts at state e0 and finishes at a state 

corresponding to the beginning of the last stage (i.e., the final states do not belong to a 

path). In the example of Figure 1, there are six possible paths: PTHI={e0-e1-e4, e0-e1-

e5, e0-e1-e6, e0-e2-e7, e0-e2-e8, e0-e3}; note that according to previous explanations, state 

e9 has been deleted. 

PTHF set of paths of the scenario tree, finishing each one in a final state (i.e., a scenario) and 

not including first state e0. In the example of Figure 1, there are twelve possible paths: 

PTHF={e1-e4-e10, e1-e4-e11, e1-e5-e12, e1-e6-e13, e1-e6-e14, e2-e7-e15, e2-e7-e16, e2-e8-e17, 

e2-e8-e18, e2-e8-e19, e3-e20, e3-e21}.  

qpth probability that the actual demand is the one of the scenario corresponding to the last 

state of the path pth (∀pth ∈ PTHF). This probability is calculated as follows:   

pth e
e pth

q p
∀ ∈

= ∏  

Cte demand or required capacity (in working hours) for the scenarios that are possible 

from state e, and for the week t corresponding to the stage that finishes in that state 

( 0\ ;  ee E te TF∀ ∈ ∀ ∈ ). Note that in the weeks before state e, the required capacity 

(demand) is the same for all the scenarios that are possible from this state.  
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W set of workers. 

Si set of working weeks for worker i, i W∀ ∈ . 

Hi number of annual working hours for worker i, i W∀ ∈ . 

hmit lower bound for the number of working hours of worker i in week t ( ; ii W t S∀ ∈ ∀ ∈ ) 

hMit upper bound (>hmit) for the number of working hours of worker i in week t 

( ; ii W t S∀ ∈ ∀ ∈ ). 

L, hL for every worker, the average number of working hours in a group of L consecutive 

weeks cannot be larger than hL (with L = 12 and hL = 44 hours). 

 

Variables: 

 

dte capacity shortage (in working hours) for the week t belonging to the stage that finishes 

at state e ( 0\ ;  ee E te TF∀ ∈ ∀ ∈ ), when the required capacity corresponds to any of 

the scenarios that are possible from state e. Remember that in the weeks before state e, 

the required capacity of the scenarios that are possible from this state is the same. 

xite number of working hours of worker i in week t, which belongs to the stage starting 

from state e ( { };  | ;  e e ii W e E t STI+∀ ∈ ∀ ∈ ≠∅ ∀ ∈ ∩Γ )  

 

Model: 

[ ] tepth
pth PTHF e pth t e

MIN z q d
TF∀ ∈ ∀ ∈ ∀ ∈

 
= ⋅ 

 
 

∑ ∑ ∑       (1) 

( ) 

           ;iite
e pth t e i

i W pth PTHIx H
STI∀ ∈ ∀ ∈ ∩

= ∀ ∈ ∀ ∈∑ ∑     (2) 

0
  

      \ ;  
e

i

eit te tea
i W t

e E tx d C e TF
S∀ ∈ ∈

 
  + ≥ ∀ ∈ ∀ ∈
 
 

∑     (3) 

[ ] ( )00
[ 1.. ]

;  , ..., |  1,...,   iitE L
t j L j

ei W j L T j L j S TILx h
∈ − +

∀ ∈ = − + ∈ ∩
 

≤ ⋅ 
 
 

∑   (4) 
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[ ]( ) ( )
[ 1.. ]  [ 1.. ]  

0             ; ,..., | 1,..., ; \  | 

  
e

eae

it ite L
t j L j tt j L j t

e ei

a
TITI

i W j L T j L j e E jS TI

Lx x h

e

∈ − + ∈∈ − + ∈

+∀ ∈ = − + ∈ ∀ ∈ ≠∅∧ ∈Γ

   
   + ≤ ⋅       

∑ ∑
   (5) 

( )         ;  | ;  e eit ite it ii W e E thm x hM STI+≤ ≤ ∀ ∈ ∀ ∈ ≠∅ ∀ ∈ ∩Γ    (6) 

 

The objective function to minimise (1) corresponds to the expected value for the total capacity 

shortage; (2) expresses, for each worker, the annual balance of working hours. The balance is 

set for each possible path of the graph, thus guaranteeing that the solution will be feasible for 

all the possible scenarios; (3) imposes, for each state (except the first, e0) and week belonging 

to the stage that finishes at this state, that the sum of  the planned capacity and the capacity 

shortage must be larger than or equal to the required capacity; (4) and (5) impose, for each 

worker and group of L consecutive working weeks, the upper bound for the average number 

of working hours: Equation (4) refers to the weeks corresponding only to the first stage and 

equation (5) includes the possibility that a block of L weeks is distributed on two consecutive 

stages. In the case of short stages, this equation can be easily modified in order to include the 

possibility that the block of L weeks comprise the necessary number of stages; lastly, (6) 

imposes the lower and the upper bound for the number of working hours for each worker and 

week. 

 

 

4. Computational experiments 

 

A computational experiment was performed in order to evaluate the effectiveness of the 

stochastic model. Overall, the results can be considered very satisfactory. Two were the main 

objectives of  the experiments: (1) to check if the model can be solved in short times for 

realistic size instances (i.e., involving a large number of scenarios and states); and (2) to 

quantify the benefit of applying a scenario optimisation model instead of considering the 

required capacity as a deterministic value. For this purpose, the average required capacity was 

token as a data of the deterministic model and  the comparing criterion was the expected value 

for the total capacity shortage. 
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A total amount of 360 instances were generated combining the different data, which is 

described below. 

 

− Number of workers: 10, 50, 100 

 

− Planning horizon: 52 weeks (one year) 

 

− For each path and from each state, a required capacity is generated for each one of the 

weeks belonging to the stage starting in that state. The required capacity is set at random 

between 20·N and 50·N.  

 

− Number and length of the stages: since the planning horizon is fixed, the number of stages 

depends on the length. As it has been said before, the length of the stages belonging to a 

scenario tree is not constant. From a state, the next stage can have a length of S, 2·S, 3·S or 

4·S with probabilities 0.8, 0.1, 0.05 and 0.05. Two values have been considered for the 

basic stage length S: 6 and 12 weeks. 

 

− Three types of scenario tree were generated as follows (in Figure 4 a scenario tree of each 

type is given): 

 

 Type 1 (regular diversification): The number of  states reachable from any state is 2 

or 3, at random. 

 

 Type 2 (diversification at the beginning): The number of states reachable from the 

states belonging to the first three stages is set at random between 3 and 6. For the 

following stages, the number of successor states is 1 or 2 with probabilities 0.75 and 

0.25 respectively. This way of generating the number of states gives a tree that 

expands a lot at the beginning but not so much at the end. 

 

 Type 3 (diversification at the end): The number of states reachable from the states 

belonging to the first stages is set to 1 or 2 with probabilities 0.75 and 0.25, 

respectively. For the last three stages, the number of successor states is set at 
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random between 3 and 6. This way of generating the number of states gives a tree 

with a great expansion at the end. 

 

 
Figure 4. Types of scenario tree 

 

This way of generating the scenario trees gives some instances with a very large number of 

states and scenarios, which may not look very realistic but are appropriate to test the 

effectiveness of the optimisation model. 

 

The experiment was performed with ILOG CPLEX 8.1 and a Pentium IV at 3.4 GHz with 512 

MB of RAM. The maximum computing time was set to 3,600 seconds. 42 of the 360 

instances were too large to be solved (the computer ran out of memory). The number of 

workers, scenarios and states and the number of variables and constraints of the solved 

instances (i.e., the size of solved instances) can be seen in Figure 5 and 6, respectively. 

 

 

Type 1 Type 2 Type 3 
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Figure 5. Number of workers, scenarios and states for each instance 
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Figure 6. Number of variables and constraints for each instance 

 

The main results of the computational experiments are given in Figure 7 and Table 1. The 

Figure show the computing times for the scenario model by number of workers, number of 

scenarios, number of states, number of variables and number of constraints. It can be 

observed that the influence of the number of scenarios, states, variables and constraints on the 

computing time is more clear than the influence of the number of workers. Overall, it is also 

shown that the proposed model can be solved in relatively short times for very large instances 

(probably larger than an actual instance would be). 
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Figure 7. Computing times (in seconds) by number of workers, scenarios, states, variables and constraints 

 

 

In Table 1 the quality of the deterministic and stochastic models solutions is compared: the 

minimum, the average and the maximum saving (i.e., the % of decrease obtained in the 

expected value for the total capacity shortage when solving the stochastic model instead of the 

deterministic one) is given. As expected, considering uncertainty by means of scenario 

analysis results in a significance reduction of the capacity shortage and, therefore, of the 

corresponding costs. 

 
Table 1. Minimum, average and maximum saving 

Min Saving* (%) Avg Saving* (%) Max Saving* (%) 

0.001 17.45 100 

 

deterministic model scenario model

deterministic model

* Saving 100  ;  : expected value for the total capacity shortageD D D
D

−
= ⋅
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5. Conclusions 

 

Annualising working hours allows companies to adapt capacity to demand. Mixed and Linear 

Programming, which have been tested in previous works, are appropriate and efficient tools to 

plan working time optimising the use of the productive resources (e.g., minimising costs due 

to the lack of capacity) whilst observing a set of conditions. 

 

The demand or required capacity, which is an essential data to plan working time, depends 

usually on several and complex factors and, often, it is not possible to obtain a reliable 

prediction of it or it is not realistic to consider that can be adjusted to a probability 

distribution. In some cases, however, it is possible to determine a set of demand scenarios, 

each one with a related probability. 

 

This work proposes the use of an scenario optimisation approach to face the uncertainty of the 

demand and presents a Linear Programming mathematical model that gives a robust solution 

(i.e., that will be feasible under any scenario) whilst optimising the expected value for the 

total capacity shortage. The results of a wide computational experiment allow us to conclude 

that the model can be efficiently solved to optimality even for very large instances. 

 

Finally, the expected value for the total capacity shortage obtained with the scenario model 

has been compared to the one that is obtained using the average demand with a deterministic 

model. The difference between the solutions of the two models gives and average saving of  

17.45%, which lead us to conclude that the proposed model is an appropriate and useful tool 

to deal with the uncertainty of the demand when planning working time under annualised 

hours. 
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