

A variable neighbourhood search algorithm for
the constrained task allocation problem

Amaia Lusa, Chris N. Potts

EOLI: Enginyeria d’Organització i Logística Industrial

IOC-DT-P-2006-5
Gener 2006

1

A Variable Neighbourhood Search Algorithm for the Constrained Task
Allocation Problem

Amaia Lusa*1; Chris N. Potts2
1Research Institute (IOC) / Engineering School (ETSEIB)

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

amaia.lusa@upc.edu
2School of Mathematics, University of Southampton,, Southampton, UK

C.N.Potts@maths.soton.ac.uk

ABSTRACT

A Variable Neighbourhood Search algorithm is proposed for solving a task allocation problem whose
main characteristics are: (i) each task requires a certain amount of resources and each processor has a
finite capacity to be shared between the tasks it is assigned; (ii) the cost of solution includes fixed
costs when using processors, assigning costs and communication costs between tasks assigned to
different processors. A computational experiment shows that the algorithm is satisfactory in terms of
time and solution quality.

Keywords: task allocation problem, variable neighbourhood search, local search, heuristics.

Introduction

The task allocation problem (TAP) consists in assigning a set of tasks to a set of processors (or
machines) so that the overall cost is minimised. This cost may include a fixed cost for using a
processor, a task assignment cost (which may depend on the task and processor), and a communication
cost between tasks that are assigned to different processors. The problem can be constrained (CTAP)
or unconstrained (UTAP), depending on whether or not the processors have a limited capacity to be
shared between the tasks they are assigned.

The problem arises in distributed computing systems1, where a number of tasks (programs, editing
files, managing data, etc.) are to be assigned to a set of processors (computers, disks, etc.) to guarantee
that all tasks are executed within a certain cycle time. The aim is to minimise the cost of the processors
and the interprocessor data communication bandwidth installed. The problem also has many industrial
applications. For example, Rao2 introduces a specific constrained task allocation problem belonging to
the automobile manufacturing industry: in the modern automobile, many tasks such as integrated

* Corresponding author: Amaia Lusa, Research Institute IOC, Av. Diagonal 647 (edif. ETSEIB), p.11, 08028
Barcelona, Spain; Tlf. + 34 93 401 17 05; Fax. + 34 93 401 66 05 ; e-mail: amaia.lusa@upc.edu

2

chassis and active suspension monitoring, fuel injection monitoring, etc., are performed by a
subsystem consisting of micro-computers linked by high-speed and/or low-speed communication
lines. The cost of the subsystem is the sum of costs of the micro-computers (or processors) and the
installation costs of the data links that provide interprocessor communication bandwidth. Each task
deals with the processing of data coming from sensors, actuators, signal processors, digital filters, etc.,
and has a throughput requirement in KOP (thousand operations per second). Several types of
processors are available, and for each one the purchase cost and throughput capacity in terms of the
KOP it can handle are known. The tasks are interdependent: a task may need data from other tasks to
be completed. Hence, if two tasks are assigned to different processors, they may need a
communication link with a certain capacity. The communication load between two tasks is
independent of the processors to which they are assigned.

Since its introduction by Stone1, many authors have tackled different versions of the problem by
applying exact algorithms, heuristic procedures and meta-heuristics. However, only a few studies have
dealt with the constrained version3,4,5,6 and, due to the complexity of the problem, none of them are
capable of solving some real-world applications optimally. To date, the best of the known approaches
for the CTAP is the hybrid method developed by Chen and Lin3, whose algorithm combines a tabu
search and a noise method.

Variable neighbourhood search (VNS) is a relatively recent meta-heuristic for obtaining near-optimal
solutions to combinatorial optimisation problems, its main feature being the systematic change of
neighbourhood within a local search procedure7. Different versions of VNS have been successfully
applied to a variety of problems such as bin-packing, the p-median problem, the quadratic assignment
problem, the travelling salesman problem and the vehicle routing problem8.

In this paper we propose an algorithm based on a VNS scheme for solving the CTAP. The results of a
computational experiment show that our procedure outperforms the hybrid method developed by Chen
and Lin3. The paper is organised as follows: first section introduces the problem, second section
describes the VNS approach. Forth section describes our computational experiments and reports the
main results. Finally, we present our conclusions in last section.

The constrained task allocation problem

The problem consists in assigning tasks to processors, whilst respecting their capacity. The objective is
to minimise the total allocation cost, which may include assigning, fixed and communication costs.

We make use of the following notation.

Data:

n number of tasks

m number of processors

3

ai requirement of task i (i=1..n)

bk capacity of processor k (k=1..m)

sk fixed cost of using processor k (k=1..m)

cij communication cost if tasks i and j are assigned to different processors (i=1,...,n;
j=1,…,n). It is assumed to be independent of the processor.

dik cost of assigning task i to processor k (i=1,...,n; k=1..m)

Variables:

xik ∈ {0,1} indicates whether task i is assigned to processor k (i=1..n; k=1..m)

yk ∈ {0,1} indicates whether any task is assigned to processor k (k=1..m)

The problem can be formulated as follows as a quadratic integer program:

1

1 1 1 1 1 1

(communication cost) (assigning cost) (fixed cost)[]

 1
n n m n m m

ij ik jk ik ik k k
i j k i k k

MIN z C A F

yc x x d x s
−

= = = = = =

= + + =

⋅ − ⋅ + ⋅ + ⋅

∑∑ ∑ ∑∑ ∑
 (1)

1

1,..,1
m

ik
k

i nx
=

==∑ (2)

1,.., ; 1,.., ik k i n k myx = =≤ (3)

1

1,..,
n

i ik k k
i

k mya x b
=

=⋅ ≤ ⋅∑ (4)

(1) is the allocation cost to minimise (communication, assigning and fixed costs); (2) imposes that
each task is to be assigned to one and only one processor; (3) imposes that the binary variable yk takes
value 1 if any task is assigned to processor k; and (4) imposes the capacity constraint.

When the number of processors is equal to 2, the problem can be transformed into a minimum cost cut
problem1 and optimally solved using network flow techniques. However, the problem has been shown
to be NP-hard when the number of processors is equal to or greater than three2.

Since Stone1, great progress has been made in both computational power and computational
technology. Ernst et al.4 explore the potential of mathematical programming approaches and try
different formulations for UTAP and TAP. Nevertheless, the results for the constrained problem
cannot be considered to be fully satisfactory. Hence, some kind of heuristic or meta-heuristic
procedure seems appropriate for dealing with the problem and finding near-optimal solutions.

Some authors propose local search procedures for solving different versions of the constrained
problem. Hadj-Alouane et al.5 develop a hybrid of the Lagrangian relaxation and genetic algorithm
that is shown to be not very efficient when compared to other procedures3. Hamam and Hindi6 propose

4

a simulated annealing algorithm. Their computational experiment is very limited and there are no
results allowing one to see how good their algorithm is in terms of quality solution. Finally, Chen and
Lin3 propose a hybrid method, which combines a tabu search and a noise method algorithm.
Essentially, there are three major steps in their approach: first, a relaxed initial solution is created,
which consists in assigning all tasks to the cheapest processor (lower fixed cost); second, a local
search is undertaken, which combines a tabu search and a noising method. Finally, a processor
substitution technique is applied to improve the solutions. Each of the local search methods (tabu
search and noising method) is run in two phases: the first uses as a neighbourhood those solutions in
which a task is reallocated in another processor; the second uses solutions in which two tasks that are
allocated in different processors are exchanged. The results of a computational experiment with a set
of randomly generated instances lead them to conclude that their algorithm is better than the random
method, the tabu search, the noise method and the genetic algorithm of Hadj-Alouane et al.5, in terms
of both quality and solving time. All the aforementioned algorithms allow non-feasible solutions.
Constraint violations are handled by adding appropriate penalties and the authors obtain feasible
solutions, but using their procedures offers no guarantee of this.

Our major concern about previous local search procedures is the neighbourhoods that they consider.
These algorithms consider as a solution the processor in which each task is allocated, and try the
following moves: (1) reallocating a task to another processor and (2) exchanging two tasks assigned to
different processors. Although, theoretically speaking, it is possible to achieve any solution by
combining these moves, some of them, when considered individually, are too bad to be performed and
hence some solutions may remain unexplored. For example, to assign only one task to an empty
processor is a very bad move (recall that there are fixed costs), but a good move could consist in
allocating a group of high-communicated tasks to an empty processor. Thus, other kinds of moves
should be considered (reallocating a group of tasks, for example).

We add the three following types of neighbourhoods to the ones traditionally used (reallocating a task
and exchanging two tasks) when solving TAP, which allows us to explore solution spaces of interest:
(1) reallocating a cluster of tasks from one processor to another; (2) reallocating a cluster of tasks from
different processors to another processor; and (3) emptying a processor by reallocating its assigned
tasks to other processors. The results obtained, including these neighbourhood structures, in a VNS
algorithm are very satisfactory.

The variable neighbourhood search algorithm

One of the most successful versions of the VNS is the General Variable Neighbourhood Search,
GVNS8, which is detailed in Figure 1. The final condition can be either a maximum CPU time or a
maximum number of iterations between two consecutive improvements. One of the steps of GVNS is
a descendent local search using different neighbourhoods, VND (see Figure 2). VND finishes when no
improvement is obtained, which yields a solution that is a local optimum in all the neighbourhoods
that are used.

5

We make use of the following notation: x is the initial solution; f(x) is the cost of solution x; umax is
the number of neighbourhood structures applied; and Nu(x) is the neighbourhood of type u of solution
x (u=1,…,umax). For the sake of efficiency, f(x) is updated in each step (not evaluated).

Figure 1. General Variable Neighbourhood Search Algorithm, GVNS

Figure 2. Descendent Variable Neighbourhood Search Algorithm, VND

Neighbourhoods

Five neighbourhood structures were used to allow the algorithm to explore any kind of solution. None
of the following moves allow non-feasible solutions. Hence, it is guaranteed that the algorithm will
always yield a feasible solution (in 5 and 3 non-feasible solutions are allowed to be explored).

Descendent Variable Neighbourghood Search (VND)

x is the initial solution for VND
While (no final condition) do

u = 1
While (u ≤ umax) do
 x’ is the best solution in Nu(x)
 If f(x’)<f(x) then
 x := x’ and u = 1
 else
 u:=u+1

end if
end while

end while
Return best found solution

General Variable Neighbourghood Search (GVNS)

Generate an initial solution, x, and evaluate (f(x))
While (no final condition) do

u = 1
While (u ≤ umax) do
 Choose, at random, a solution of Nu(x), x’
 x’’ is the result of applying VND to x’
 If f(x’’)<f(x) then
 x := x’’ and u = 1
 else
 u:=u+1

end if
end while

end while
Return best found solution

6

N1(x) reallocate a task i from processor k to processor l.

N2(x) exchange two tasks (task i from processor k to processor l and task j from processor l to
processor k).

N3(x) reallocate a cluster of tasks from processor k to processor l.

N4(x) reallocate a cluster of tasks from different processors to processor l.

N5(x) empty processor k.

Communication and assigning costs are considered when determining the cluster of tasks to be
reallocated. The three new types of neighbourhood proposed in our GVNS are described below.

We make use of the following notation:

xu is a solution belonging to Nu(x) (u=1,…,5)

Pk set of tasks currently assigned to processor k (k=1,…,m)

bk’ remaining capacity of processor k (k=1,…,m)

Tkl cluster (set of tasks) currently assigned to processor k that can be assigned to processor l
(k=1,…m; l=1,…,m | l ? k)

Tl cluster (set of tasks) that can be assigned to processor l (l=1,…,m)

In Figure 3 an algorithm for finding a neighbour in N3(x), x3, is detailed. The costs added in Cj are
“attracting” task j to processor l, while the costs substracted in Cj are “attracting” task j to the
processor in which the task is currently assigned. If an initial task s were not selected to begin a
cluster, there might be set of tasks with high communication costs among them that would not be
selected to be in the cluster. This would happen because each of these high-communicated tasks would
be attracted to the others or, that is to say, attracted to the processor in which the task is currently
assigned. Neighbourhood N3(x) is obtained by selecting all pairs of processors k-l and, for each of
them, choosing at random s different tasks to begin a cluster, and finally generating different values
for parameter α. The same ideas were used to design algorithms to find x4 and x5, which are detailed in
Figures 4 and 5 respectively.

7

Figure 3. Algorithm to find x3

Figure 4. Algorithm to find x4

Reallocate a cluster of tasks from processor k to processor l, N3(x). Determine x3

α = random number ∈ [0-1)
Select a task s (s ∈ Pk and as = bl’)
Initially, Tkl = {s}; bl’:= bl’– as
J is the set of tasks j that: j∈(Pk –Tkl) and aj = b’l

compute
() ()

() ()1
l kl k kl

j ji jt jk jl
i t

C c c d d
P T P T

α α
∀ ∈ ∪ ∀ ∈ −

 = ⋅ − + − ⋅ −

∑ ∑ , ∀j∈J

While (J ? {∅} and max(Cj)>0) do
t is the task that maximises Cj ; add t to cluster: Tkl = Tkl + t and b’l = b’l – at
and b’k = b’k + at
Determine J (set of tasks j that: j∈(Pk –Tkl) and aj = b’l)
Update : 2 α= + ⋅ ⋅ ∀ ∈j j jt j JC C c

end while
x3 is the result of reallocating tasks from Tkl to processor l.

Reallocate a cluster of tasks to processor l, N4(x). Determine x4

α = random number ∈ [0-1)
Select a task s (s ∉ Pl and as = bl’)
Initially, Tl = {s}; bl’:= bl’– as
J is the set of tasks j that: j∉ (Pl ∪ Tl) and aj = b’l

compute
() ()

() ()1
l l k l

j ji jt jk jl
i t

C c c d d
P T P T

α α
∀ ∈ ∪ ∀ ∈ −

 = ⋅ − + − ⋅ −

∑ ∑ , ∀j∈J (where k is the

processor to which j is currently assigned)
While (J ? {∅} and max(Cj)>0) do

t is the task that maximises Cj ; add t to cluster: Tl = Tl + t and b’l = b’l – at
Determine J (set of tasks j that: j∉ (Pl ∪ Tl) and aj = b’l)

Update
2

kj jt

j
kj jt

j JC c P
C

j JC c P

α
α

+ ⋅ ⋅ ∀ ∈ ∩
= + ⋅ ∀ ∈ −

, where k is the processor to which task t

was assigned before adding it to cluster Tl
end while
x4 is the result of reallocating tasks from Tl to processor l.

8

Figure 5. Algorithm to find x5

Size of neighbourhoods

To compute the size of the neighbours it must be considered that, if all processors were used, each of
them would have, on average, n/m tasks allocated. The size of each neighbour used in the GVNS
algorithm is as follows:

N1(x) ()()1 1O n mSize = ⋅ −

N2(x) each task could be exchanged with the n/m tasks allocated in each of the other

processors. This gives a
() ()2

2

1 1
2 2

m m mn n nO OSize
m m m

+ ⋅ +
= ⋅ ⋅ = ⋅

N3(x) There are m·(m-1) combinations of pairs of processors and, for each of them, different
clusters can be found by selecting different tasks to begin. To avoid repeating too
many clusters, each task of the origin processor (k) is selected with a probability of
0.7. Hence, for each pair of processors (k,l), (0.7·n/m) clusters, on average, are

determined.This gives a () ()()3 1 0.7 0.7 1
n

O m m O n mSize
m

 = ⋅ − ⋅ ⋅ = ⋅ ⋅ −

N4(x) For each processor l, different clusters can be found by selecting different tasks
allocated in the other processors in order to begin the cluster. To avoid repeating too
many clusters, each of these tasks is selected with a probability of 0.7. Hence, for each

Empty a processor k, N5(x). Determine x5

α = random number ∈ [0-1)
Initially, Tkl = {∅}, ∀l ? k
Jl is the set of tasks j that: j ∈ Pk and aj = b’l , ∀l ? k

compute () ()1
l k

jl ji jt jl
i t

C c c d
P P

α α
∀ ∈ ∀ ∈

= ⋅ − − − ⋅

∑ ∑ , ∀l ? k ,∀ j∈Jl

While (Jl ? {∅}) do
(t-p) is the pair task-processor that maximises Cjl ; add t to cluster: Tkp = Tkp + t and
b’p = b’p – at

Determine Jl (set of tasks j that: j∈(Pk – ()
≠
∪ kl
l k

T) and aj = b’l , ∀l ? k)

Update
2
 (,);
α

α
+ ⋅ ∀ ∈ ⋅

= + ⋅ ∀ ≠ ∀ ∈

jl jt p
jl

jl jt l

jC c J
C

l p k jC c J

end while
x5 is the result of reallocating tasks from Tkl to processor l, ∀l ? k.

9

processor l, 0.7·(n-n/m) clusters, on average, are determined. This gives a

4 0.7
n

O m nSize
m

 = ⋅ ⋅ −
()()0.7 1O n m= ⋅ −

N5(x) For each processor k different ways of emptying it could be found by generating
different random values for the parameter α (if there are assigning costs). In the

experiments this parameter was generated once, which yielded ()5 O mSize =

Initial solution

The same basic ideas included in clustering procedures were used to obtain initial solutions. Although
random solutions give good results, a short experiment showed that on average the following
procedure is better.

Figure 6. Algorithm to find initial solution

Computational experiment

The objective of the computational experiment is to evaluate the operativeness of the GVNS algorithm
(that is to say, the algorithm gives good solutions in a reasonable time even for large instances) and to
compare the quality of the solutions obtained with the best known procedure, which is the hybrid
method developed by Chen and Lin3.

Initial solution, x

α = random number ∈ [0-1)
Initially, Pk ={∅}, k=1,…,m
Sort processors by increasing fixed cost (break ties at random), k is the first processor
While (there are non-assigned tasks) do

J is the set of non-assigned tasks j that: aj = b’k
While (J ? {∅}) do

compute () ()1
k

j ji jk
i

C c d
P

α α
∀ ∈

= ⋅ − − ⋅

∑ , ∀j∈J

t is the task that maximises Cj ; add t to processor k: Pk = Pk +t and b’k = b’k – at
Determine J (set of non-assigned tasks j that: aj = b’k)

end while
Go to next processor, k

end while
Initial solution, x, is determined by Pk , k=1,…,m

10

In 4 and 5 the results of 8 real-world instances from an automobile microcomputer system and a
Hughes air-defence system are reported. Chen and Lin3 describe the way the data is randomly
generated. Assigning costs (dik) are not considered in any of these papers. We programmed the hybrid
method (HYBRID) of Chen and Lin3, including assigning costs (dik), and we ran three experiments:
(1) to solve using GVNS and the HYBRID the 8 real-world instances provided by Hadj-Alouane,
Bean and Murty, and to compare these results with the ones obtained in 4 and 5; (2) to solve using
GVNS and the HYBRID a set of 108 randomly generated instances, without considering assigning
costs (so the HYBRID is exactly the algorithm described in 3); and (3) to solve using GVNS and the
HYBRID a set of 54 randomly generated instances, including assigning costs.

Each algorithm is run 50 times and, to get a fair comparison, the maximum solving time of HYBRID
is kept and GVNS is solved in two stages: (1) set as a final condition a maximum number of iterations
between two consecutive improvements, which is set to n, and a maximum solving time equal to
maximum HYBRID solving time (GVNS1) and (2) if solving time is equal to the HYBRID, continue
solving GVNS with the same final condition as (1) but with a maximum solving time equal to 50
seconds, which can be considered a reasonable solving time for large instances (GVNS2).

Real-world instances

The main data used in Experiment 1 are as follows:

§ Problems A, B, C, D, E and F: there are three instances with 20 tasks and 6 processors and three
with 40 tasks and 12 processors; task requirements (ai) range from a few up to approximately 50
units; processors capacities (bk) range from 100 to 250 units; fixed costs (sk) range from 1,000 to
5,000 units; communication cost matrices are very dense, with cij ranging from a few to 50 units;
and assigning costs, dik = 0.

§ Problem G: 15 tasks and 5 processors; ai = 1; bk range from 3 to 5 units; sk = 0; communication
cost matrices are very sparse, with cij equal to 0 or 1; and dik = 0.

§ Problem H: 41 tasks and 4 processors; ai range from a few up to 950 units; bk range from 800 to
1600 units; sk = 0; communication cost matrices are very sparse, with cij ranging from a few to 70
units; and dik = 0.

Generated data

The data used in Experiments 2 and 3 were generated as follows:

§ Experiment 2: n = 20, 40, 60, 80 and 100 number of tasks; Experiment 3: n = 20, 40 and 60.

§ m = 5, 10 (only for n≥40), 20 (only for n≥60) and 30 (only for n=100) number of processors

§ ai ∈ ∪ [50, 100];
1=

= ∑
n

i
i

A a

§ bk ∈ ∪ [bmin, bmax]:

11

− loose case:
3 5

,
⋅ ⋅

= =
A A

bmin bmax
m m

 (on average, only a quarter of the processors may be

necessary)

− medium case:
3

,
⋅

= =
A A

bmin bmax
m m

 (on average, half the processors may be necessary)

− tight case:
7

,
3 3

⋅
= =

⋅ ⋅
A A

bmin bmax
m m

 (on average, more than the available processors

would be necessary, but in practise feasible solutions are often obtained)

§ sk ∈ ∪ [bk , S·bk], with S = 10, 50 and 100

§ The communication cost between task i and task j is greater than 0 with a probability of 0.25. This

rule gives sparse communication cost matrices, which are good for algorithm testing. Then, cij ∈ ∪

[50 , 100] (with a probability of 25%) or cij = 0 (with a probability of 75%)

§ dik = 0 (Experiment 2) and dik ∈ ∪ [50 , 100] (Experiment 3)

Hardware and Software

The algorithms (GVNS and HYBRID) were programmed using C language and run on a PC Pentium
IV at 2.6 GHz with 1024 Mb RAM. The computational experiment reported in 5 was performed on a
IBM RS/6000-320H (in C language), and the algorithm was run 10 times with different seeds. Ernst et
al.4 implemented their approaches in C/C++ (using CPLEX for solving integer linear programming
formulations) and ran the code on a computer using a 500MHz alpha processor.

Experimental results

The following tables (Tables 1 to 7) and figures (Figures 7 to 9) summarise the results of Experiments
1, 2 and 3. In Table 1, EJK (best lower bound and best found solution) stands for Ernst et al.4 and
HBM (best, average and worst found solutions) stands for Hadj-Alouane et al.5. For each instance, the
best solutions are shown in bold.

Table 1 shows that, for most of the 8 real-world instances, the GVNS algorithm outperforms, in a very
short solving time, the results obtained by the hybrid genetic algorithm (HBM), the column generation
models in 4 and the HYBRID. Although in Experiment 1 HYBRID does not seem to outperform
HBM, Chen and Lin3 carry out a wide computational experiment and show in their paper how their
hybrid method gives better results than HBM in terms of both quality solution and solving time.
Hence, if in Experiments 2 and 3 GVNS outperformed the HYBRID results, it could be concluded that
GVNS is also better than HBM.

12

 SOLUTION (min, average, max) TIME (min, average, max)

Problem

(n-m)

Best Low

EJK

Best

EJK
HBM HYBRID GVNS1 GVNS2 EJK HBM HYBRID GVNS1 GVNS2

A

(20-6)
13,310.37 13,450

13,804

13,866

13,903

13,519

15,508

15,558

13,450

13,940

14,263

13,450

13,832

14,120

35,120

3.43

25.93

87.48

0.015

0.022

0.063

0.015

0.021

0.047

0.109

0.153

0.266

B

(20-6)
11,946 11,946

11,946

11,946

11,946

11,946

12,018

12,320

11,946

11,998

12,397

11,946

11,946

11,946

671.46

10.56

28.74

73.53

0.015

0.019

0.032

0.015

0.019

0.047

0.109

0.139

0.218

C

(20-6)
11,120 11,120

11,120

11,228

11,864

11,156

11,268

11,315

11,126

11,285

12,039

11,126

11,204

11,431

14,589.12

6.94

18.95

46.45

0.015

0.020

0.032

0.015

0.019

0.031

0.109

0.184

0.453

D

(40-12)
37,662.39 39,738

39,680

39,869

41,149

41,557

41,753

41,850

39,293

39,591

40,051

39,214

39,385

39,833

2,440

205.2

274.9

395.9

0.374

0.409

0.515

0.172

0.250

0.359

1.875

3.331

7.859

E

(40-12)
33,438.86 38,602

36,575

37,214

38,767

37,731

38,052

38,518

35,674

36,481

38,203

35,671

35,901

37,953

3,436

52.79

307.6

389.5

0.375

0.411

0.468

0.172

0.250

0.390

2.047

2.950

6.890

F

(40-12)
32,126.36 35,016

35,821

36,427

36,568

36,410

36,570

36,707

34,674

35,575

36,360

34,674

34,950

35,890

5,809.13

44.8

346.8

394.9

0.422

0.481

0.532

0.204

0.305

0.453

2.578

4.952

11.187

G

(15-5)
16 16

16

16

17

no feas

16

17

19

16

16

17

181.1

1.31

2.73

6.87

_

0.015

0.016

0.016

0.015

0.029

0.078

H

(41-4)
40 40 _

40

45

52

40

40

48

40

40

44

0.29 _

0.281

0.313

0.625

0.109

0.154

0.188

1.125

1.485

2.375

Table 1. Results of experiment 1 (8 real-world instances)

Table 2 summarises the main results of Experiment 2 regarding the objective function, showing that
with a Variable Neighbourhood Search algorithm better solutions are obtained than with the hybrid
method. On average, our algorithm outperforms the HYBRID 72.22% of the times, and in these
situations the percentage of improvement is quite high (5.52% on average). Only for 27.77% of the
instances are the results of the Chen and Lin algorithm3 better than ours, and in these cases the
percentage of improvement is not very high (1.39%). The improvement of GVNS2 compared with
GVNS1 is not very great and it needs longer solving times (see Table 5). This led us to conclude that
the final condition of n iterations between two consecutive improvements may be too much and a
shorter number of non-improvement iterations could be used instead of n.

13

In Table 3, the percentage of improvement (average) of the GVNS and HYBRID algorithms is
detailed by capacity case (loose, medium or tight) and S (related to fixed costs). The improvement
offered by our algorithm is greater in situations in which the number of required processors (on
average) is greater than the number available (loose and medium cases). This is not surprising, as these
are exactly the cases in which it is possible to take greater advantage of the new neighbourhoods. In
most solutions of the tight case, the remaining capacity of the processors may be very low, and it may
very difficult, or even impossible, to reallocate a cluster of tasks to a processor or to empty a
processor, which is exactly what is done in moves 3, 4 and 5. Hence, there may not be a great
difference between the results of GVNS and those of HYBRID. On the other hand, the improvements
offered by both algorithms are approximately the same for the different values of S (fixed costs).
GVNS takes advantage of emptying a processor because this move allows it to lower fixed costs, but
the HYBRID method begins with a solution in which all tasks are allocated to a cheapest processor, so
the final solution is also good in terms of fixed cost.

Final condition
GVNS

% instances G better
than H

% instances H better
than G

% improvement

G (average)*

% improvement H
(average)**

GVNS1 72.22 27.77 5.52 1.39

GVNS2 74.1 25.9 6.03 0.87

Table 2. Results of experiment 2 (generated data set without assigning costs)
* () /% Improvement G (only if) 100 H GG H Hf ff f f−< = ⋅

** () /% Improvement H (only if) 100 G HH G Gf ff f f−< = ⋅

Final condition

GVNS
capacity case

% instances G
better than H

% instances H
better than G

% improvement

G (average)*

% improvement H
(average)**

lose 77.77 22.22 2.96 0.77

medium 75 25 11.70 1.74 GVNS1

tight 63.88 36.11 1.39 1.52

lose 80.56 19.44 3.42 0.45

medium 75.00 25.00 12.77 0.32 GVNS2

tight 66.67 33.33 1.61 1.54

Table 3. Results of experiment 2 (generated data set without assigning costs) by capacity case
* () /% Improvement G (only if) 100 H GG H Hf ff f f−< = ⋅

** () /% Improvement H (only if) 100 G HH G Gf ff f f−< = ⋅

14

Final condition

GVNS
S (fixed cost)

% instances G
better than H

% instances H
better than G

% improvement

G (average)*

% improvement

H (average)**

10 77.78 22.22 4.67 1.39

50 66.67 33.33 6.04 1.48 GVNS1

100 72.22 27.78 5.96 1.27

10 77.78 22.22 5.27 0.99

50 69.44 30.56 6.49 0.87 GVNS2

100 75.00 25.00 6.40 0.78

Table 4. Results of experiment 2 (generated data set without assigning costs) by S
* () /% Improvement G (only if) 100 H GG H Hf ff f f−< = ⋅

** () /% Improvement H (only if) 100 G HH G Gf ff f f−< = ⋅

The final condition set for GVNS1 ensures that its solving time is always equal to or shorter than the
maximum HYBRID solving time. Obviously, both algorithms need more time when the number of
tasks (n) and the number of processors (m) grow (see Table 5 and Figures 7 and 8), but the results
confirm that the GVNS algorithm is very efficient and can be used even for large instances.

 Solving times (min, average, max)

n HYBRID GVNS1 GVNS2 m HYBRID GVNS1 GVNS2

20

0.01

0.01

0.02

0.02

0.03

0.05

0.14

0.21

0.36

5

1.93

2.05

2.37

2.40

2.51

2.77

12.41

15.57

22.42

40

0.29

0.32

0.37

0.37

0.43

0.66

2.89

4.03

7.76

10

9.96

10.56

14.06

12.06

13.26

15.20

23.59

29.02

37.81

60

2.36

2.59

3.03

3.07

3.21

3.54

15.97

23.83

38.32

20

15.70

16.76

23.76

21.09

23.48

25.14

34.20

42.75

50.65

80

8.72

9.28

11.55

11.41

11.89

12.73

34.89

42.11

49.43

30

34.52

39.45

56.50

49.14

56.61

58.98

50.00

59.20

62.10

100

31.79

34.64

49.66

42.02

47.98

52.04

46.03

53.24

58.61

Table 5. Experiment 2 (generated data set without assigning costs). Solving times by n and m (final
condition for GVNS2 includes a maximum solving time of 50)

15

Solving times by n

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100

number of tasks

A
ve

ra
ge

 s
ol

vi
ng

 t
im

e
tmed Chen tmed GVNS1 tmed GVNS2

Figure 7. Experiment 2 (generated data set without assigning costs). Solving times by n

Solving times by m

0

10

20

30

40

50

5 10 15 20 25 30

number of processors

A
ve

ra
g

e
so

lv
in

g
 t

im
e

tmed Chen tmed GVNS1 tmed GVNS2

Figure 8. Experiment 2 (generated data set without assigning costs). Solving times by m

16

Finally, Tables 6 and 7 and Figure 9 summarise the main results of Experiment 3 regarding the
objective function and solving times. Again, the GVNS algorithm gives better results than the
HYBRID method in comparable solving times.

Final condition
GVNS

% instances G better
than H

% instances H better
than G

% improvement

G (average)*

% improvement H
(average)**

GVNS1 62.96 37.04 5.99 1.03

GVNS2 62.96 37.03 7.09 0.77

Table 6. Results of experiment 3 (generated data set with assigning costs)
* () /% Improvement G (only if) 100 H GG H Hf ff f f−< = ⋅

** () /% Improvement H (only if) 100 G HH G Gf ff f f−< = ⋅

 Solving times (min, average, max)

n HYBRID GVNS1 GVNS2

20

0.01

0.01

0.03

0.03

0.04

0.06

0.15

0.20

0.33

40

0.29

0.32

0.41

0.41

0.47

0.60

3.10

4.27

8.03

60

2.32

2.53

3.10

3.14

3.29

3.77

17.14

26.60

41.37

Table 7. Solving times of experiment 3 (generated data set with assigning costs)

17

Solving times by n

0

5

10

15

20

25

30

20 25 30 35 40 45 50 55 60

number of tasks

A
ve

ra
g

e
so

lv
in

g
 t

im
e

tmed Chen tmed GVNS1 tmed GVNS2

Figure 9. Experiment 3 (generated data set with assigning costs). Solving times by n

Conclusions

The Constrained Task Allocation Problem (CTAP), which has been shown to be NP-hard, consists in
assigning a set of tasks to a set of processors so that the overall cost is minimised. This cost includes a
fixed cost of using a processor, a task assigning cost (which may depend on the task and processor)
and a communication cost between tasks that are assigned to different processors.

In this paper, a Variable Neighbourhood Search algorithm for dealing with the CTAP is proposed.
Three new neighbourhoods are added to the neighbourhoods traditionally used (reallocating a task and
exchanging two tasks): (1) reallocating a cluster of tasks from one processor to another; (2)
reallocating a cluster of tasks from different processors to another processor; and (3) emptying a
processor by reallocating its assigned tasks to other processors. Three clustering algorithms, which
include assigning and communication costs, were designed to find the three new neighbourhoods.

An extensive computational experiment showed that the VNS algorithm outperforms the existing
algorithms both in terms of quality solution and computing times.

Acknowledgements

The authors are grateful to James Bean and Atidel Hadj-Alouane for providing test data.

18

References

Chen W-H., Lin, C-S. (2000). A hybrid heuristic to solve a task allocation problem. Computers &
Operations Research 27: 287-303.

Ernst, A., Jiang, H., Krishnamoorthy, M. (2003). Exact Solutions to Task Allocation Problems. Working
Paper.

Hadj-Alouane, A.B., Bean, J.C., Murty, K.G. (1999). A Hybrid Genetic/Optimization Algorithm for a
Task Allocation Problem. Journal of Scheduling 2: 189-201.

Hamam, Y., Hindi, K.S. (2000). Assignment of program modules to processors: A simulated annealing
approach. Eur J Opl Res 122: 509-513.

Hansen, P., Mladenovic, N. (1997). Variable neighbourhood search for the p-median. Location Science 5:
207-226.

Hansen, P., Mladenovic, N., Moreno J.A. (2003). Variable neighbourhood search. Inteligencia Artificial,
Revista Iberoamericana de Inteligencia Artificial 19: 77-92.

Rao, G.S., Stone, H. S., Hu, T.C. (1979). Assignment of tasks in a distributed processor system with
limited memory. IEEE Transactions on Computers C-28: 291-299.

Rao, K (1992). Optimal synthesis of microcomputers for gm vehicles. Technical Report.

Stone,H.S.(1977).Multiprocessor scheduling with the aid of network flow algorithms. IEEE Transactions
on Software Engineering 3: 85-93.

