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ABSTRACT 

 

A Variable Neighbourhood Search algorithm is proposed for solving a task allocation problem whose 
main characteristics are: (i) each task requires a certain amount of resources and each processor has a 
finite capacity to be shared between the tasks it is assigned; (ii) the cost of solution includes fixed 
costs when using processors, assigning costs and communication costs between tasks assigned to 
different processors. A computational experiment shows that the algorithm is satisfactory in terms of 
time and solution quality.   

 

Keywords: task allocation problem, variable neighbourhood search, local search, heuristics. 

 

 

Introduction 

 

The task allocation problem (TAP) consists in assigning a set of tasks to a set of processors (or 
machines) so that the overall cost is minimised. This cost may include a fixed cost for using a 
processor, a task assignment cost (which may depend on the task and processor), and a communication 
cost between tasks that are assigned to different processors. The problem can be constrained (CTAP) 
or unconstrained (UTAP), depending on whether or not the processors have a limited capacity to be 
shared between the tasks they are assigned. 

 

The problem arises in distributed computing systems1, where a number of tasks (programs, editing 
files, managing data, etc.) are to be assigned to a set of processors (computers, disks, etc.) to guarantee 
that all tasks are executed within a certain cycle time. The aim is to minimise the cost of the processors 
and the interprocessor data communication bandwidth installed. The problem also has many industrial 
applications. For example, Rao2 introduces a specific constrained task allocation problem belonging to 
the automobile manufacturing industry: in the modern automobile, many tasks such as integrated 
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chassis and active suspension monitoring, fuel injection monitoring, etc., are performed by a 
subsystem consisting of micro-computers linked by high-speed and/or low-speed communication 
lines. The cost of the subsystem is the sum of costs of the micro-computers (or processors) and the 
installation costs of the data links that provide interprocessor communication bandwidth. Each task 
deals with the processing of data coming from sensors, actuators, signal processors, digital filters, etc., 
and has a throughput requirement in KOP (thousand operations per second). Several types of 
processors are available, and for each one the purchase cost and throughput capacity in terms of the 
KOP it can handle are known. The tasks are interdependent: a task may need data from other tasks to 
be completed. Hence, if two tasks are assigned to different processors, they may need a 
communication link with a certain capacity. The communication load between two tasks is 
independent of the processors to which they are assigned. 

 

Since its introduction by Stone1, many authors have tackled different versions of the problem by 
applying exact algorithms, heuristic procedures and meta-heuristics. However, only a few studies have 
dealt with the constrained version3,4,5,6 and, due to the complexity of the problem, none of them are 
capable of solving some real-world applications optimally. To date, the best of the known approaches 
for the CTAP is the hybrid method developed by Chen and Lin3, whose algorithm combines a tabu 
search and a noise method.  

 

Variable neighbourhood search (VNS) is a relatively recent meta-heuristic for obtaining near-optimal 
solutions to combinatorial optimisation problems, its main feature being the systematic change of 
neighbourhood within a local search procedure7. Different versions of VNS have been successfully 
applied to a variety of problems such as bin-packing, the p-median problem, the quadratic assignment 
problem, the travelling salesman problem and the vehicle routing problem8. 

 

In this paper we propose an algorithm based on a VNS scheme for solving the CTAP. The results of a 
computational experiment show that our procedure outperforms the hybrid method developed by Chen 
and Lin3. The paper is organised as follows: first section introduces the problem, second section 
describes the VNS approach. Forth section describes our computational experiments and reports the 
main results. Finally, we present our conclusions in last section. 

  

 

The constrained task allocation problem 

 

The problem consists in assigning tasks to processors, whilst respecting their capacity. The objective is 
to minimise the total allocation cost, which may include assigning, fixed and communication costs. 

 

We make use of the following notation. 

 

Data: 

n  number of tasks 

m  number of processors 
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ai  requirement of task i (i=1..n) 

bk  capacity of processor k (k=1..m) 

sk  fixed cost of using processor k (k=1..m) 

cij  communication cost if tasks i and j are assigned to different processors (i=1,...,n; 
j=1,…,n). It is assumed to be independent of the processor. 

dik  cost of assigning task i to processor k (i=1,...,n; k=1..m) 

  

Variables: 

xik ∈ {0,1} indicates whether task i is assigned to processor k (i=1..n; k=1..m) 

yk ∈ {0,1} indicates whether any task is assigned to processor k (k=1..m) 

 

The problem can be formulated as follows as a quadratic integer program: 

1
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(1) is the allocation cost to minimise (communication, assigning and fixed costs); (2) imposes that 
each task is to be assigned to one and only one processor; (3) imposes that the binary variable yk takes 
value 1 if any task is assigned to processor k; and (4) imposes the capacity constraint. 

 

When the number of processors is equal to 2, the problem can be transformed into a minimum cost cut 
problem1 and optimally solved using network flow techniques. However, the problem has been shown 
to be NP-hard when the number of processors is equal to or greater than three2. 

 

Since Stone1, great progress has been made in both computational power and computational 
technology. Ernst et al.4 explore the potential of mathematical programming approaches and try 
different formulations for UTAP and TAP. Nevertheless, the results for the constrained problem 
cannot be considered to be fully satisfactory. Hence, some kind of heuristic or meta-heuristic 
procedure seems appropriate for dealing with the problem and finding near-optimal solutions.  

  

Some authors propose local search procedures for solving different versions of the constrained 
problem. Hadj-Alouane et al.5 develop a hybrid of the Lagrangian relaxation and genetic algorithm 
that is shown to be not very efficient when compared to other procedures3. Hamam and Hindi6 propose 
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a simulated annealing algorithm. Their computational experiment is very limited and there are no 
results allowing one to see how good their algorithm is in terms of quality solution. Finally, Chen and 
Lin3 propose a hybrid method, which combines a tabu search and a noise method algorithm. 
Essentially, there are three major steps in their approach: first, a relaxed initial solution is created, 
which consists in assigning all tasks to the cheapest processor (lower fixed cost); second, a local 
search is undertaken, which combines a tabu search and a noising method. Finally, a processor 
substitution technique is applied to improve the solutions. Each of the local search methods (tabu 
search and noising method) is run in two phases: the first uses as a neighbourhood those solutions in 
which a task is reallocated in another processor; the second uses solutions in which two tasks that are 
allocated in different processors are exchanged. The results of a computational experiment with a set 
of randomly generated instances lead them to conclude that their algorithm is better than the random 
method, the tabu search, the noise method and the genetic algorithm of Hadj-Alouane et al.5, in terms 
of both quality and solving time. All the aforementioned algorithms allow non-feasible solutions. 
Constraint violations are handled by adding appropriate penalties and the authors obtain feasible 
solutions, but using their procedures offers no guarantee of this. 

 

Our major concern about previous local search procedures is the neighbourhoods that they consider. 
These algorithms consider as a solution the processor in which each task is allocated, and try the 
following moves: (1) reallocating a task to another processor and (2) exchanging two tasks assigned to 
different processors. Although, theoretically speaking, it is possible to achieve any solution by 
combining these moves, some of them, when considered individually, are too bad to be performed and 
hence some solutions may remain unexplored. For example, to assign only one task to an empty 
processor is a very bad move (recall that there are fixed costs), but a good move could consist in 
allocating a group of high-communicated tasks to an empty processor. Thus, other kinds of moves 
should be considered (reallocating a group of tasks, for example). 

 

We add the three following types of neighbourhoods to the ones traditionally used (reallocating a task 
and exchanging two tasks) when solving TAP, which allows us to explore solution spaces of interest: 
(1) reallocating a cluster of tasks from one processor to another; (2) reallocating a cluster of tasks from 
different processors to another processor; and (3) emptying a processor by reallocating its assigned 
tasks to other processors. The results obtained, including these neighbourhood structures, in a VNS 
algorithm are very satisfactory. 

 

 

The variable neighbourhood search algorithm 

 

One of the most successful versions of the VNS is the General Variable Neighbourhood Search, 
GVNS8, which is detailed in Figure 1. The final condition can be either a maximum CPU time or a 
maximum number of iterations between two consecutive improvements. One of the steps of GVNS is 
a descendent local search using different neighbourhoods, VND (see Figure 2). VND finishes when no 
improvement is obtained, which yields a solution that is a local optimum in all the neighbourhoods 
that are used. 
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We make use of the following notation: x is the initial solution; f(x) is the cost of solution x; umax is 
the number of neighbourhood structures applied; and Nu(x) is the neighbourhood of type u of solution 
x (u=1,…,umax). For the sake of efficiency, f(x) is updated in each step (not evaluated). 

 

 
Figure 1. General Variable Neighbourhood Search Algorithm, GVNS 

 

 
Figure 2. Descendent Variable Neighbourhood Search Algorithm, VND 

 

 

Neighbourhoods 

 

Five neighbourhood structures were used to allow the algorithm to explore any kind of solution. None 
of the following moves allow non-feasible solutions. Hence, it is guaranteed that the algorithm will 
always yield a feasible solution (in 5 and 3 non-feasible solutions are allowed to be explored). 

 

Descendent Variable Neighbourghood Search (VND) 
 
x is the initial solution for VND 
While (no final condition) do 

u = 1 
While (u ≤ umax) do 
 x’ is the best solution in Nu(x) 
 If f(x’)<f(x) then 
  x := x’ and u = 1 
 else 
  u:=u+1 

end if 
end while 

end while 
Return best found solution 

General Variable Neighbourghood Search (GVNS) 
 
Generate an initial solution, x, and evaluate (f(x)) 
While (no final condition) do 

u = 1 
While (u ≤ umax) do 
 Choose, at random, a solution of Nu(x), x’ 
 x’’ is the result of applying VND to x’ 
 If f(x’’)<f(x) then 
  x := x’’ and u = 1 
 else 
  u:=u+1 

end if 
end while 

end while 
Return best found solution 
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N1(x) reallocate a task i from processor k to processor l. 

N2(x) exchange two tasks (task i from processor k to processor l and task j from processor l to 
processor k). 

N3(x) reallocate a cluster of tasks from processor k to processor l. 

N4(x) reallocate a cluster of tasks from different processors to processor l. 

N5(x) empty processor k. 

 

Communication and assigning costs are considered when determining the cluster of tasks to be 
reallocated. The three new types of neighbourhood proposed in our GVNS are described below. 

 

We make use of the following notation: 

 

xu is a solution belonging to Nu(x) (u=1,…,5) 

Pk set of tasks currently assigned to processor k (k=1,…,m) 

bk’ remaining capacity of processor k (k=1,…,m) 

Tkl cluster (set of tasks) currently assigned to processor k that can be assigned to processor l 
(k=1,…m; l=1,…,m | l ? k) 

Tl cluster (set of tasks) that can be assigned to processor l (l=1,…,m) 

  

In Figure 3 an algorithm for finding a neighbour in N3(x), x3, is detailed. The costs added in Cj are 
“attracting” task j to processor l, while the costs substracted in Cj are “attracting” task j to the 
processor in which the task is currently assigned. If an initial task s were not selected to begin a 
cluster, there might be set of tasks with high communication costs among them that would not be 
selected to be in the cluster. This would happen because each of these high-communicated tasks would 
be attracted to the others or, that is to say, attracted to the processor in which the task is currently 
assigned. Neighbourhood N3(x) is obtained by selecting all pairs of processors k-l and, for each of 
them, choosing at random s different tasks to begin a cluster, and finally generating different values 
for parameter α. The same ideas were used to design algorithms to find x4 and x5, which are detailed in 
Figures 4 and 5 respectively. 
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Figure 3. Algorithm to find x3 

 

 

 
Figure 4. Algorithm to find x4 

 

Reallocate a cluster of tasks from processor k to processor l, N3(x). Determine x3 
 
α = random number ∈ [0-1) 
Select a task s (s ∈ Pk and as = bl’) 
Initially, Tkl = {s}; bl’:= bl’– as 
J is the set of tasks j that:  j∈( Pk –Tkl) and aj = b’l 

compute 
( ) ( )

( ) ( )1
l kl k kl

j ji jt jk jl
i t

C c c d d
P T P T

α α
∀ ∈ ∪ ∀ ∈ −

 
 = ⋅ − + − ⋅ −
 
 

∑ ∑  , ∀j∈J 

While (J ? {∅} and max(Cj)>0) do 
t is the task that maximises Cj ; add t to cluster: Tkl = Tkl + t and b’l = b’l –  at  
and b’k = b’k +  at 
Determine J (set of tasks j that:  j∈( Pk –Tkl) and aj = b’l) 
Update : 2     α= + ⋅ ⋅ ∀ ∈j j jt j JC C c  

end while 
x3 is the result of reallocating tasks from Tkl to processor l. 

Reallocate a cluster of tasks to processor l, N4(x). Determine x4 
 
α = random number ∈ [0-1) 
Select a task s (s ∉ Pl and as = bl’) 
Initially, Tl = {s}; bl’:= bl’– as 
J is the set of tasks j that:  j∉ (Pl ∪ Tl) and aj = b’l 

compute 
( ) ( )

( ) ( )1
l l k l

j ji jt jk jl
i t

C c c d d
P T P T

α α
∀ ∈ ∪ ∀ ∈ −

 
 = ⋅ − + − ⋅ −
 
 

∑ ∑  , ∀j∈J (where k is the 

processor to which j is currently assigned) 
While (J ? {∅} and max(Cj)>0) do 

t is the task that maximises Cj ; add t to cluster: Tl = Tl + t and b’l = b’l –  at 
Determine J (set of tasks j that:  j∉ (Pl ∪ Tl) and aj = b’l) 

Update 
2     

       
kj jt

j
kj jt

j JC c P
C

j JC c P

α
α

+ ⋅ ⋅ ∀ ∈ ∩ 
=  + ⋅ ∀ ∈ − 

, where k is the processor to which task t 

was assigned before adding it to cluster Tl 
end while 
x4 is the result of reallocating tasks from Tl to processor l. 
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Figure 5. Algorithm to find x5 

 

Size of neighbourhoods 

 

To compute the size of the neighbours it must be considered that, if all processors were used, each of 
them would have, on average, n/m tasks allocated. The size of each neighbour used in the GVNS 
algorithm is as follows: 

 

N1(x)  ( )( )1 1O n mSize = ⋅ −  

N2(x)  each task could be exchanged with the n/m tasks allocated in each of the other 

processors. This gives a 
( ) ( )2

2

1 1
2 2

m m mn n nO OSize
m m m

+ ⋅ +   
= ⋅ ⋅ =   ⋅   

 

N3(x) There are m·(m-1) combinations of pairs of processors and, for each of them, different 
clusters can be found by selecting different tasks to begin. To avoid repeating too 
many clusters, each task of the origin processor (k) is selected with a probability of 
0.7. Hence, for each pair of processors (k,l), (0.7·n/m) clusters, on average, are 

determined.This gives a ( ) ( )( )3 1 0.7 0.7 1
n

O m m O n mSize
m

  = ⋅ − ⋅ ⋅ = ⋅ ⋅ −    
 

N4(x) For each processor l, different clusters can be found by selecting different tasks 
allocated in the other processors in order to begin the cluster. To avoid repeating too 
many clusters, each of these tasks is selected with a probability of 0.7. Hence, for each 

Empty a processor k, N5(x). Determine x5 
 
α = random number ∈ [0-1) 
Initially, Tkl = {∅}, ∀l ? k 
Jl is the set of tasks j that:  j ∈ Pk and aj = b’l , ∀l ? k 

compute ( ) ( )1
l k

jl ji jt jl
i t

C c c d
P P

α α
∀ ∈ ∀ ∈

 
= ⋅ − − − ⋅  

 
∑ ∑ , ∀l ? k ,∀ j∈Jl 

While (Jl ? {∅}) do 
(t-p) is the pair task-processor that maximises Cjl ; add t to cluster: Tkp = Tkp + t and  
b’p = b’p –  at 

Determine Jl (set of tasks j that:  j∈( Pk – ( )
≠
∪ kl
l k

T ) and aj = b’l , ∀l ? k) 

Update
2     
    ( , );
α

α
+ ⋅ ∀ ∈ ⋅

=  + ⋅ ∀ ≠ ∀ ∈ 

jl jt p
jl

jl jt l

jC c J
C

l p k jC c J
 

end while 
x5 is the result of reallocating tasks from Tkl to processor l, ∀l ? k. 
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processor l, 0.7·(n-n/m) clusters, on average, are determined. This gives a 

4 0.7
n

O m nSize
m

  = ⋅ ⋅ −    
( )( )0.7 1O n m= ⋅ −  

N5(x) For each processor k different ways of emptying it could be found by generating 
different random values for the parameter α (if there are assigning costs). In the 

experiments this parameter was generated once, which yielded ( )5 O mSize =  

 

Initial solution 

 

The same basic ideas included in clustering procedures were used to obtain initial solutions. Although 
random solutions give good results, a short experiment showed that on average the following 
procedure is better. 

 

 
Figure 6. Algorithm to find initial solution 

 

 

Computational experiment 

 

The objective of the computational experiment is to evaluate the operativeness of the GVNS algorithm 
(that is to say, the algorithm gives good solutions in a reasonable time even for large instances) and to 
compare the quality of the solutions obtained with the best known procedure, which is the hybrid 
method developed by Chen and Lin3.  

 

Initial solution, x 
 
α = random number ∈ [0-1) 
Initially, Pk ={∅}, k=1,…,m 
Sort processors by increasing fixed cost (break ties at random), k is the first processor 
While (there are non-assigned tasks) do 

J is the set of non-assigned tasks j that: aj = b’k 
While (J ? {∅}) do 

compute ( ) ( )1
k

j ji jk
i

C c d
P

α α
∀ ∈

 
= ⋅ − − ⋅  

 
∑  , ∀j∈J 

t is the task that maximises Cj ; add t to processor k: Pk = Pk +t and b’k = b’k –  at 
Determine J (set of non-assigned tasks j that: aj = b’k) 

end while 
Go to next processor, k 

end while 
Initial solution, x, is determined by Pk , k=1,…,m 
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In 4 and 5 the results of 8 real-world instances from an automobile microcomputer system and a 
Hughes air-defence system are reported. Chen and Lin3 describe the way the data is randomly 
generated. Assigning costs (dik) are not considered in any of these papers. We programmed the hybrid 
method (HYBRID) of Chen and Lin3, including assigning costs (dik), and we ran three experiments: 
(1) to solve using GVNS and the HYBRID the 8 real-world instances provided by Hadj-Alouane, 
Bean and Murty, and to compare these results with the ones obtained in 4 and 5; (2) to solve using 
GVNS and the HYBRID a set of 108 randomly generated instances, without considering assigning 
costs (so the HYBRID is exactly the algorithm described in 3); and (3) to solve using GVNS and the 
HYBRID a set of 54 randomly generated instances, including assigning costs.  

 

Each algorithm is run 50 times and, to get a fair comparison, the maximum solving time of HYBRID 
is kept and GVNS is solved in two stages: (1) set as a final condition a maximum number of iterations 
between two consecutive improvements, which is set to n, and a maximum solving time equal to 
maximum HYBRID solving time (GVNS1) and (2) if solving time is equal to the HYBRID, continue 
solving GVNS with the same final condition as (1) but with a maximum solving time equal to 50 
seconds, which can be considered a reasonable solving time for large instances (GVNS2). 

 

Real-world instances 

 

The main data used in Experiment 1 are as follows: 

 

§ Problems A, B, C, D, E and F: there are three instances with 20 tasks and 6 processors and three 
with 40 tasks and 12 processors; task requirements (ai) range from a few up to approximately 50 
units; processors capacities (bk) range from 100 to 250 units; fixed costs (sk) range from 1,000 to 
5,000 units; communication cost matrices are very dense, with cij ranging from a few to 50 units; 
and assigning costs, dik = 0. 

§ Problem G: 15 tasks and 5 processors; ai = 1; bk range from 3 to 5 units; sk = 0; communication 
cost matrices are very sparse, with cij equal to 0 or 1; and dik = 0. 

§ Problem H: 41 tasks and 4 processors; ai range from a few up to 950 units; bk range from 800 to 
1600 units; sk = 0; communication cost matrices are very sparse, with cij ranging from a few to 70 
units; and dik = 0. 

 

Generated data 

 

The data used in Experiments 2 and 3 were generated as follows: 

 

§ Experiment 2: n = 20, 40, 60, 80 and 100 number of tasks; Experiment 3: n = 20, 40 and 60. 

§ m = 5, 10 (only for n≥40), 20 (only for n≥60) and 30 (only for n=100) number of processors 

§ ai ∈ ∪ [50, 100]; 
1=

= ∑
n

i
i

A a   

§ bk ∈ ∪ [bmin, bmax]: 
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− loose case: 
3 5

,  
⋅ ⋅

= =
A A

bmin bmax
m m

 (on average, only a quarter of the processors may be 

necessary) 

− medium case: 
3

,  
⋅

= =
A A

bmin bmax
m m

 (on average, half the processors may be necessary) 

− tight case: 
7

,  
3 3

⋅
= =

⋅ ⋅
A A

bmin bmax
m m

 (on average, more than the available processors 

would be necessary, but in practise feasible solutions are often obtained) 

§ sk ∈ ∪ [bk , S·bk], with S = 10, 50 and 100 

§ The communication cost between task i and task j is greater than 0 with a probability of 0.25. This 

rule gives sparse communication cost matrices, which are good for algorithm testing. Then, cij ∈ ∪ 

[50 , 100] (with a probability of 25%) or cij = 0 (with a probability of 75%) 

§ dik = 0 (Experiment 2) and dik ∈ ∪ [50 , 100] (Experiment 3) 

 

Hardware and Software 

 

The algorithms (GVNS and HYBRID) were programmed using C language and run on a PC Pentium 
IV at 2.6 GHz with 1024 Mb RAM. The computational experiment reported in 5 was performed on a 
IBM RS/6000-320H (in C language), and the algorithm was run 10 times with different seeds. Ernst et 
al.4 implemented their approaches in C/C++ (using CPLEX for solving integer linear programming 
formulations) and ran the code on a computer using a 500MHz alpha processor.  

 

Experimental results 

 

The following tables (Tables 1 to 7) and figures (Figures 7 to 9) summarise the results of Experiments 
1, 2 and 3. In Table 1, EJK (best lower bound and best found solution) stands for Ernst et al.4 and 
HBM (best, average and worst found solutions) stands for Hadj-Alouane et al.5. For each instance, the 
best solutions are shown in bold. 

 

Table 1 shows that, for most of the 8 real-world instances, the GVNS algorithm outperforms, in a very 
short solving time, the results obtained by the hybrid genetic algorithm (HBM), the column generation 
models in 4 and the HYBRID. Although in Experiment 1 HYBRID does not seem to outperform 
HBM, Chen and Lin3 carry out a wide computational experiment and show in their paper how their 
hybrid method gives better results than HBM in terms of both quality solution and solving time. 
Hence, if in Experiments 2 and 3 GVNS outperformed the HYBRID results, it could be concluded that 
GVNS is also better than HBM. 
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 SOLUTION (min, average, max) TIME (min, average, max) 

Problem 

(n-m) 

Best Low 

EJK 

Best 

EJK 
HBM HYBRID GVNS1 GVNS2 EJK HBM HYBRID GVNS1 GVNS2 

A 

(20-6) 
13,310.37 13,450 

13,804 

13,866 

13,903 

13,519 

15,508 

15,558 

13,450 

13,940 

14,263 

13,450 

13,832 

14,120 

35,120 

3.43 

25.93 

87.48 

0.015 

0.022 

0.063 

0.015 

0.021 

0.047 

0.109 

0.153 

0.266 

B 

(20-6) 
11,946 11,946 

11,946 

11,946 

11,946 

11,946 

12,018 

12,320 

11,946 

11,998 

12,397 

11,946 

11,946 

11,946 

671.46 

10.56 

28.74 

73.53 

0.015 

0.019 

0.032 

0.015 

0.019 

0.047 

0.109 

0.139 

0.218 

C 

(20-6) 
11,120 11,120 

11,120 

11,228 

11,864 

11,156 

11,268 

11,315 

11,126 

11,285 

12,039 

11,126 

11,204 

11,431 

14,589.12 

6.94 

18.95 

46.45 

0.015 

0.020 

0.032 

0.015 

0.019 

0.031 

0.109 

0.184 

0.453 

D 

(40-12) 
37,662.39 39,738 

39,680 

39,869 

41,149 

41,557 

41,753 

41,850 

39,293 

39,591 

40,051 

39,214 

39,385 

39,833 

2,440 

205.2 

274.9 

395.9 

0.374 

0.409 

0.515 

0.172 

0.250 

0.359 

1.875 

3.331 

7.859 

E 

(40-12) 
33,438.86 38,602 

36,575 

37,214 

38,767 

37,731 

38,052 

38,518 

35,674 

36,481 

38,203 

35,671 

35,901 

37,953 

3,436 

52.79 

307.6 

389.5 

0.375 

0.411 

0.468 

0.172 

0.250 

0.390 

2.047 

2.950 

6.890 

F 

(40-12) 
32,126.36 35,016 

35,821 

36,427 

36,568 

36,410 

36,570 

36,707 

34,674 

35,575 

36,360 

34,674 

34,950 

35,890 

5,809.13 

44.8 

346.8 

394.9 

0.422 

0.481 

0.532 

0.204 

0.305 

0.453 

2.578 

4.952 

11.187 

G 

(15-5) 
16 16 

16 

16 

17 

no feas 

16 

17 

19 

16 

16 

17 

181.1 

1.31 

2.73 

6.87 

_ 

0.015 

0.016 

0.016 

0.015 

0.029 

0.078 

H 

(41-4) 
40 40 _ 

40 

45 

52 

40 

40 

48 

40 

40 

44 

0.29 _ 

0.281 

0.313 

0.625 

0.109 

0.154 

0.188 

1.125 

1.485 

2.375 

Table 1. Results of experiment 1 (8 real-world instances) 

 

Table 2 summarises the main results of Experiment 2 regarding the objective function, showing that 
with a Variable Neighbourhood Search algorithm better solutions are obtained than with the hybrid 
method. On average, our algorithm outperforms the HYBRID 72.22% of the times, and in these 
situations the percentage of improvement is quite high (5.52% on average). Only for 27.77% of the 
instances are the results of the Chen and Lin algorithm3 better than ours, and in these cases the 
percentage of improvement is not very high (1.39%). The improvement of GVNS2 compared with 
GVNS1 is not very great and it needs longer solving times (see Table 5). This led us to conclude that 
the final condition of n iterations between two consecutive improvements may be too much and a 
shorter number of non-improvement iterations could be used instead of n.  
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In Table 3, the percentage of improvement (average) of the GVNS and HYBRID algorithms is 
detailed by capacity case (loose, medium or tight) and S (related to fixed costs). The improvement 
offered by our algorithm is greater in situations in which the number of required processors (on 
average) is greater than the number available (loose and medium cases). This is not surprising, as these 
are exactly the cases in which it is possible to take greater advantage of the new neighbourhoods. In 
most solutions of the tight case, the remaining capacity of the processors may be very low, and it may 
very difficult, or even impossible, to reallocate a cluster of tasks to a processor or to empty a 
processor, which is exactly what is done in moves 3, 4 and 5. Hence, there may not be a great 
difference between the results of GVNS and those of HYBRID. On the other hand, the improvements 
offered by both algorithms are approximately the same for the different values of S (fixed costs). 
GVNS takes advantage of emptying a processor because this move allows it to lower fixed costs, but 
the HYBRID method begins with a solution in which all tasks are allocated to a cheapest processor, so 
the final solution is also good in terms of fixed cost. 

 

Final condition 
GVNS 

% instances G better 
than H 

% instances H better 
than G 

% improvement 

G (average)* 

% improvement H 
(average)** 

GVNS1 72.22 27.77 5.52 1.39 

GVNS2 74.1 25.9 6.03 0.87 

Table 2. Results of experiment 2 (generated data set without assigning costs) 
* ( ) /% Improvement G (only if  ) 100 H GG H Hf ff f f−< = ⋅  

** ( ) /% Improvement H (only if  ) 100 G HH G Gf ff f f−< = ⋅  

 

Final condition 

GVNS 
capacity case 

% instances G 
better than H 

% instances H 
better than G 

% improvement 

G (average)* 

% improvement H 
(average)** 

lose 77.77 22.22 2.96 0.77 

medium 75 25 11.70 1.74 GVNS1 

tight 63.88 36.11 1.39 1.52 

lose 80.56 19.44 3.42 0.45 

medium 75.00 25.00 12.77 0.32 GVNS2 

tight 66.67 33.33 1.61 1.54 

Table 3. Results of experiment 2 (generated data set without assigning costs) by capacity case 
* ( ) /% Improvement G (only if  ) 100 H GG H Hf ff f f−< = ⋅  

** ( ) /% Improvement H (only if  ) 100 G HH G Gf ff f f−< = ⋅  
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Final condition 

GVNS 
S (fixed cost) 

% instances G 
better than H 

% instances H 
better than G 

% improvement 

G (average)* 

% improvement 

H (average)** 

10 77.78 22.22 4.67 1.39 

50 66.67 33.33 6.04 1.48 GVNS1 

100 72.22 27.78 5.96 1.27 

10 77.78 22.22 5.27 0.99 

50 69.44 30.56 6.49 0.87 GVNS2 

100 75.00 25.00 6.40 0.78 

Table 4. Results of experiment 2 (generated data set without assigning costs) by S 
* ( ) /% Improvement G (only if  ) 100 H GG H Hf ff f f−< = ⋅  

** ( ) /% Improvement H (only if  ) 100 G HH G Gf ff f f−< = ⋅  

 

The final condition set for GVNS1 ensures that its solving time is always equal to or shorter than the 
maximum HYBRID solving time. Obviously, both algorithms need more time when the number of 
tasks (n) and the number of processors (m) grow (see Table 5 and Figures 7 and 8), but the results 
confirm that the GVNS algorithm is very efficient and can be used even for large instances. 

 

 Solving times (min, average, max) 

n HYBRID GVNS1 GVNS2 m HYBRID GVNS1 GVNS2 

20 

0.01 

0.01 

0.02 

0.02 

0.03 

0.05 

0.14 

0.21 

0.36 

5 

1.93 

2.05 

2.37 

2.40 

2.51 

2.77 

12.41 

15.57 

22.42 

40 

0.29 

0.32 

0.37 

0.37 

0.43 

0.66 

2.89 

4.03 

7.76 

10 

9.96 

10.56 

14.06 

12.06 

13.26 

15.20 

23.59 

29.02 

37.81 

60 

2.36 

2.59 

3.03 

3.07 

3.21 

3.54 

15.97 

23.83 

38.32 

20 

15.70 

16.76 

23.76 

21.09 

23.48 

25.14 

34.20 

42.75 

50.65 

80 

8.72 

9.28 

11.55 

11.41 

11.89 

12.73 

34.89 

42.11 

49.43 

30 

34.52 

39.45 

56.50 

49.14 

56.61 

58.98 

50.00 

59.20 

62.10 

100 

31.79 

34.64 

49.66 

42.02 

47.98 

52.04 

46.03 

53.24 

58.61 

 

Table 5. Experiment 2 (generated data set without assigning costs). Solving times by n and m (final 
condition for GVNS2 includes a maximum solving time of 50) 
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Solving times by n
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Figure 7. Experiment 2 (generated data set without assigning costs). Solving times by n 

 

 

Solving times by m
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Figure 8. Experiment 2 (generated data set without assigning costs). Solving times by m 
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Finally, Tables 6 and 7 and Figure 9 summarise the main results of Experiment 3 regarding the 
objective function and solving times. Again, the GVNS algorithm gives better results than the 
HYBRID method in comparable solving times. 

 

Final condition 
GVNS 

% instances G better 
than H 

% instances H better 
than G 

% improvement 

G (average)* 

% improvement H 
(average)** 

GVNS1 62.96 37.04 5.99 1.03 

GVNS2 62.96 37.03 7.09 0.77 

Table 6. Results of experiment 3 (generated data set with assigning costs)  
* ( ) /% Improvement G (only if  ) 100 H GG H Hf ff f f−< = ⋅  

** ( ) /% Improvement H (only if  ) 100 G HH G Gf ff f f−< = ⋅  

 

 

 Solving times (min, average, max) 

n HYBRID GVNS1 GVNS2 

20 

0.01 

0.01 

0.03 

0.03 

0.04 

0.06 

0.15 

0.20 

0.33 

40 

0.29 

0.32 

0.41 

0.41 

0.47 

0.60 

3.10 

4.27 

8.03 

60 

2.32 

2.53 

3.10 

3.14 

3.29 

3.77 

17.14 

26.60 

41.37 

Table 7. Solving times of experiment 3 (generated data set with assigning costs) 
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Solving times by n

0

5

10

15

20

25

30

20 25 30 35 40 45 50 55 60

number of tasks

A
ve

ra
g

e 
so

lv
in

g
 t

im
e

tmed Chen tmed GVNS1 tmed GVNS2

Figure 9. Experiment 3 (generated data set with assigning costs). Solving times by n 

 

 

Conclusions 

 

The Constrained Task Allocation Problem (CTAP), which has been shown to be NP-hard, consists in 
assigning a set of tasks to a set of processors so that the overall cost is minimised. This cost includes a 
fixed cost of using a processor, a task assigning cost (which may depend on the task and processor) 
and a communication cost between tasks that are assigned to different processors. 

 

In this paper, a Variable Neighbourhood Search algorithm for dealing with the CTAP is proposed. 
Three new neighbourhoods are added to the neighbourhoods traditionally used (reallocating a task and 
exchanging two tasks): (1) reallocating a cluster of tasks from one processor to another; (2) 
reallocating a cluster of tasks from different processors to another processor; and (3) emptying a 
processor by reallocating its assigned tasks to other processors. Three clustering algorithms, which 
include assigning and communication costs, were designed to find the three new neighbourhoods. 

 

An extensive computational experiment showed that the VNS algorithm outperforms the existing 
algorithms both in terms of quality solution and computing times. 
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