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Abstract
The reactivity of the lattice nitrogen in the filled β-Mn structured Co2Mo3N and the η-carbide structured Co3Mo3N and 
Fe3Mo3N has been investigated under 3:1 H2/Ar at temperatures up to 900 °C. The lattice nitrogen in Co3Mo3N was found 
to be reactive, as reported previously, whereas Co2Mo3N was shown to be stable up to 800 °C. Upon H2/Ar treatment at 
900 °C, the Co2Mo3N, Co3Mo3N and Fe3Mo3N phases decomposed. These results suggest that both metal composition and 
phase have an influence on the bulk lattice nitrogen reactivity of the ternary nitrides.
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1  Introduction

Ammonia production is of high importance as it can be used 
as a precursor to form synthetic fertilisers. The industrial 
route for producing ammonia is via the Haber–Bosch pro-
cess and this is stated to sustain around 40% of the world 
population [1]. However, when considering the entirety of 
the process, including the feedstream production, it accounts 
for 1–2% of the world energy demand [2]. One possible way 
to overcome this disadvantage is the development of a pro-
cess that could operate under more moderate conditions and 
facilitate localised and sustainable production. However, this 
would require the development of a more active ammonia 
synthesis catalyst. The η-carbide structured Co3Mo3N has 
a high ammonia synthesis activity, especially when doped 
with a low percentage of Cs+ and is reported to have a higher 
rate than the iron-based catalyst used in the Haber Bosch 
process [2]. One possible explanation for the high activity 
of this nitride has been proposed by a volcano relationship, 
where the combination of Co and Mo gives a material with 
an almost optimal nitrogen binding energy and results in a 
high turnover frequency for ammonia synthesis [3]. In this 

proposal, the lattice nitrogen is suggested to have no active 
role and CoMo is the active phase. The role of the lattice 
nitrogen is stated to be to ensure that the correct structural 
ordering occurs such that the (111) face containing both Co 
and Mo is exposed. One alternative explanation for the activ-
ity of Co3Mo3N is that it proceeds via a Mars-van Krevelen 
mechanism and hence, the lattice nitrogen is reactive. In 
this mechanism, the lattice nitrogen is directly hydrogen-
ated to yield ammonia, generating a transient lattice vacancy, 
which is then replenished by gas-phase nitrogen. This pro-
posed explanation has been supported by experimental work, 
where an investigation into the isostructural Co3Mo3C phase 
showed that the carbide required a higher temperature than 
Co3Mo3N before activity was exhibited and nitridation of 
the lattice carbon occurred during the reaction [4]. Further-
more, nitrogen isotopic exchange studies have shown that a 
substantial percentage of the lattice nitrogen in Co3Mo3N 
can be exchanged, depending on the pre-treatment condi-
tions used [5]. In addition, computational modelling studies 
have suggested that an associative N2 activation pathway 
on Co3Mo3N may occur at nitrogen lattice vacancies [6] 
and that there are significant lattice nitrogen vacancies for 
this nitride at temperatures relevant for ammonia synthesis 
[7]. This mechanism differs significantly from the widely 
proposed view of dinitrogen dissociation being the rate 
determining step in relation to promoted iron-based ammo-
nia synthesis catalysts, although for that system Spencer 
has pointed out that under industrially relevant conditions 
ammonia synthesis cannot be described in terms of a single 
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rate determining step and that hydrogenation of adsorbed 
nitrogen species and ammonia desorption play a more sig-
nificant role [8].

Related to the reactivity of lattice N, Co3Mo3N is also 
of interest due to its ability to lose half of its lattice nitro-
gen to form Co6Mo6N, where the remaining lattice nitrogen 
relocates from the 16c Wyckoff site to the 8a site [9, 10]. 
The original nitride can then be regenerated from Co6Mo6N 
under either N2/H2 or pure N2 [9, 11]. Therefore, the lattice 
nitrogen in Co3Mo3N has been shown to be highly reactive. 
This is not the case for the filled β-Mn structured Ni2Mo3N, 
where the bulk lattice nitrogen has been shown to be unreac-
tive, even at temperatures of 900 °C under 3:1 H2/Ar [12]. 
Furthermore, the loss of lattice nitrogen from the η-carbide 
structured Fe3Mo3N has been reported to be minimal under 
3:1 H2/Ar up to 800 °C [14, 15]. A comparison with the 
η-carbide structured Ni3Mo3N, which is isostructural with 
both Co3Mo3N and Fe3Mo3N, would be of further interest. 
However, this phase has not yet been successfully prepared 
even though, as documented elsewhere, there have been 
incorrect reports of its existence published in the litera-
ture [15]. Nitridation of a NiMoO4 precursor, Ni3Mo3C or 
Ni6Mo6C instead yields a mixture of Ni metal and Ni2Mo3N 
[12, 13]. The filled β-Mn structured Co2Mo3N is a known 
phase and Adamski et al. have reduced a mixture containing 
both Co2Mo3N and Co3Mo3N phases under pure hydrogen 
at 700 °C. Co3Mo3N was observed to have transformed to 
Co6Mo6N, as would be expected for this phase [9, 10] and 
the lattice nitrogen in Co2Mo3N appeared to be less reactive 
under these conditions.

The basis of the current study is to establish the potential 
role and structure/composition activity dependence of lattice 
nitrogen reactivity in terms of ternary metal nitrides. The 
analysis of the lattice nitrogen reactivity of nitrides through 
the comparison of their ammonia synthesis rates under Ar/
H2 would give an insight into the structure–activity and com-
position-activity relationships. Therefore, an investigation 
of the η-carbide structured Fe3Mo3N has been performed to 
provide a comparison with the isostructural Co3Mo3N. This 
information will give an insight into the role metal compo-
sition has on the lattice nitrogen reactivity and it is hoped 
that a more thorough understanding of this aspect may be 
applied to the further development of novel ammonia syn-
thesis catalysts.

2 � Experimental

2.1 � Preparation of Fe3Mo3N

Iron molybdenum oxide was prepared by a similar proce-
dure as detailed by Bem et al. [17]. 0.25 M aqueous solution 
of 37.1 mL of iron (II) chloride tetrahydrate (FeCl2.4H2O, 

Sigma Aldrich, ReagentPlus, 98%) was added dropwise to 
0.66 M aqueous solution of 14 mL of sodium molybdate 
dihydrate (Na2MoO4.2H2O, Hopkin and Williams, Analar, 
99.0–102.0%). The solid product formed instantly upon the 
mixing of the two solutions. The mixture was left to stir for 
1 h once all the FeCl2.4H2O aqueous solution was added. 
The solid was obtained by vacuum filtration and was washed 
twice with distilled water and once with ethanol. The oxide 
powder was dried overnight in an oven at 150 °C and was 
then calcined under 60 mL/min of nitrogen at 500 °C for 
6 h. Finally, the oxide was cooled down to room temperature 
under nitrogen.

Fe3Mo3N was prepared by ammonolysis of the oxide 
precursor under 94 mL/min NH3 gas (BOC 99.98%). The 
temperature was increased from room temperature to 357 °C 
at a ramp rate of 5.6 °C/min, then to 447 °C at a ramp rate 
of 0.2 °C/min and a final increase of 2.1 °C/min to 785 °C, 
then held at this temperature for 5 h before being cooled to 
room temperature. The system was flushed with nitrogen for 
30 min and then the resultant material was passivated under 
a mixture of 2% O2/Ar and N2 for 1 h.

2.2 � Preparation of Co2Mo3N

Cobalt molybdenum oxide was prepared by using a modified 
form of the Pechini method as described by Bion et al. [18]. 
The necessary amounts of ammonium molybdate tetrahy-
drate ((ΝΗ4)6Μο7Ο24.4Η2Ο, Fluka Analytical, puriss. p.a., 
ACS reagent, ≥ 99.0%) and cobalt (II) nitrate hexahydrate 
(Co(NO3)2.6H2O, Alfa Aesar, ACS, 98.0–102.0%, crystal-
line) were added to a 10% aqueous solution of nitric acid to 
give a 2:3 ratio of Co:Mo. Citric acid monohydrate (C6H8O7.
H2O, Sigma Aldrich, ACS reagent, ≥ 99.0%) was then added 
to the mixture. The mixture was stirred at room temperature, 
until the starting materials had been dissolved. Subsequently, 
the mixture was evaporated off at 70 °C, until a red coloured 
gel had formed. The gel was dried in an oven overnight at 
120 °C and was then calcined in air at 500 °C for 2 h.

Co2Mo3N was prepared via nitridation of the mixed oxide 
precursor under 3:1 H2/N2 gas mixture at 700 °C for 3 h with 
a flow rate of 60 mL/min. A heating ramp rate of 10 °C/min 
was used to reach 700 °C.

2.3 � Preparation of Co3Mo3N

Cobalt molybdenum oxide (CoMoO4) was prepared by 
the reaction of the necessary amounts of ammonium 
molybdate tetrahydrate ((ΝΗ4)6Μο7Ο24.4Η2Ο, 99.98%, 
SigmaAldrich) with cobalt (II) nitrate hexahydrate 
(Co(NO3)2.6H2O, > 98%, Sigma-Aldrich). The starting 
materials were dissolved separately in either 100 mL or 
150 mL of deionised water, respectively. The solution 
of cobalt was then added dropwise to the molybdenum 
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solution. The resultant mixture was heated to 80 °C until 
a purple solid had formed, then vacuum filtered and the 
purple precipitate was washed twice with deionised water 
and once with ethanol. The oxide powder (CoMoO4.nH2O) 
was dried overnight in an oven at 150 °C and was then 
calcined in air at 600 °C for 3 h.

Co3Mo3N was prepared by nitridation of the oxide 
precursor under 3:1 H2/N2 gas mixture (BOC, 99.98%) 
at either 700 °C, 800 °C or 900 °C for 4 h with a flow 
rate of 60 mL/min. A heating ramp rate of 10 °C/min was 
used. The resultant nitride was cooled to ambient tem-
perature under 3:1 H2/N2. For clarity, the nitride prepared 
at the different temperatures will be referred to as either 
CoMoN700, CoMoN800 and Co3Mo3N900.

2.4 � Lattice Nitrogen Reactivity Testing

Approximately 0.3 g of material was tested at ambient 
pressure under 3:1  H2/Ar (BOC, 99.98%) with a gas flow 
rate of 60 mL/min. The stability and possible lattice nitro-
gen reactivity of the prepared Co2Mo3N and Co3Mo3N 
material was investigated by testing the material under 3:1 
H2/Ar at 700 °C, 800 °C and 900 °C. Fe3Mo3N was also 
examined at 900 °C under 3:1 H2/Ar for its lattice nitrogen 
reactivity. The decrease in conductivity of a 0.00108 M 
200  mL solution of H2SO4,  which the exit stream of 
gas flowed through, was used to determine the produc-
tion of ammonia. At such high reaction temperatures 
(700–900 °C), ammonia is thermodynamically unstable 
with respect to decomposition into N2 and H2.

2.5 � Material Characterisation

Powder XRD patterns were obtained for the materials 
pre- and post-reaction by using a PANalytical X-Pert Pro 
Diffractometer (40 kV, 40 mA) with a monochromatised 
CuKα source (1.5418 Ǻ). The data was collected in the 
range of 5–85° 2θ with a total scan time of 51 min and a 
step size of 0.02°. Phases were identified by comparison 
with the JCPDS database. CHN analysis was undertaken 
by combustion using an Exeter Analytical Inc CE-440 
elemental analyser. SEM images were taken by using a 
Philips XL30 environmental scanning electron micro-
scope. The samples were first covered with a film of gold/
palladium to reduce charging. The microscope was also 
used to acquire Energy-Dispersive X-ray spectroscopy 
(EDX). The BET surface area of the pre-reaction Fe3Mo3N 
was measured using N2 physisorption undertaken using 
a Quantachrome Quadrasorb evo Gas Sorption Surface 
Area and Pore Size Analyzer. Approximately 0.1 g of the 

material was degassed at 110 °C overnight under vacuum 
before the measurement.

3 � Results and Discussion

3.1 � Lattice Nitrogen Reactivity of Fe3Mo3N

As the η-carbide structured Co3Mo3N and filled β-Mn struc-
tured Ni2Mo3N have been shown to have different lattice 
nitrogen reactivities, it would be of interest to investigate 
whether the phase or metal composition has the larger 
impact on the reactivity. This could lead to the develop-
ment and design of active nitrides for ammonia synthesis. 
Therefore, the lattice nitrogen reactivity of another η-carbide 
structured nitride, Fe3Mo3N, has been investigated in this 
work. As this nitride has the same crystal structure type as 
Co3Mo3N but a different metal composition, it may prove 
possible to gain an insight into the role of the metal compo-
sition-activity relationship. It has previously been reported 
that the lattice nitrogen of Fe3Mo3N is less reactive than 
in Co3Mo3N. Fe3Mo3N  has been observed to be stable 
under 3:1 H2/Ar up to 800 °C, with a minimal loss of lattice 
nitrogen [13, 14]. Furthermore, neutron diffraction analysis 
revealed that bulk nitrogen was not lost from Fe3Mo3N [14]. 
A higher temperature has been investigated in the present 
study to investigate whether the bulk lattice nitrogen in the 
Fe3Mo3N phase is reactive but requires a higher temperature 
than that observed for Co3Mo3N. The Fe3Mo3N appeared 
from XRD to be phase pure when prepared from ammon-
olysis of an iron molybdenum oxide precursor as evidenced 
in Fig. 1a. The nitrogen analysis (Table 1) showed that the 
nitride had a considerably higher nitrogen content than the 
calculated stoichiometric value for Fe3Mo3N (2.98 wt%). 
However, NHx species on the surface of the material, that 

Fig. 1   XRD patterns of Fe3Mo3N: a pre-reaction and b post-reaction 
with 3:1 H2/Ar at 900 °C. ( ) Fe3Mo3N (PDF ref.: 00–048-1408), ( ) 
Mo (PDF ref.: 01–089-5023) and ( ) ε-Fe3N (PDF ref.: 01–073-2101)
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are a result of the preparation method, could account for this 
difference in values as could the presence of an amorphous 
N containing component. Representative SEM images show 
that Fe3Mo3N consisted of rounded particles (Fig. 2). The 
material was observed to have a surface area of 13 m2/g, 
which is comparable with those reported in the literature for 
this nitride [19, 20]. However, as the nitride was passivated 
prior to exposure to air, as is standard for nitride materials, 
the BET surface area will possibly not be representative of 
the area under the testing conditions. As expected, passiva-
tion of nitrides changes surface composition [21] and can 
lead to changes in surface area [22].

The reactivity of the lattice nitrogen in Fe3Mo3N was 
examined by treating the nitride at 900 °C under 3:1 H2/Ar at 
ambient pressure for 7 h. If the material operated via a Mars-
van Krevelen mechanism for ammonia synthesis, a reduction 
in the nitrogen content might occur and additionally, there 
may be a transformation of the structure as was observed for 
the Co3Mo3N counterpart. The conductivity profile (Online 
Resource Fig. S1) implies that only a minimal amount of 
ammonia was produced under these conditions. A total of 
35 μmol of ammonia was produced over the 7 h of the reac-
tion. However, it must be noted that ammonia is thermody-
namically unstable at this temperature and will decompose 
[23] and, therefore, the loss of lattice nitrogen in the final 
form of N2 will be more favourable. The post-reaction XRD 
pattern shows that the nitride had decomposed to Mo metal 
and an iron nitride phase under these reaction conditions 
(Fig. 1b). It appears that trace amounts of Fe3Mo3N were 
still present in the material as reflections were observed at 
42° and 72° 2θ. The nitrogen analysis confirms the loss of 
lattice nitrogen from this material as there was a significant 

decrease post-reaction (Table 1). The percentage of the 
overall nitrogen that was removed from Fe3Mo3N and was 
converted to ammonia was ca. 6%, with the rest of the nitro-
gen presumably being lost in the form of N2. SEM analysis 
showed that the morphology was retained after the decom-
position of the material compared to pre-reaction (Fig. 2).

The lattice nitrogen in Fe3Mo3N was much more reac-
tive at 900 °C than for the filled β-Mn structured Ni2Mo3N, 
which was shown to be stable at this temperature [12]. 
Therefore, this possibly suggests that metal composition has 
a major impact on the activity.

3.2 � Lattice Nitrogen Reactivity of Co2Mo3N

The ability of the Co3Mo3N phase to lose bulk lattice nitro-
gen at 700 °C under H2/Ar [24], contrasted with Fe3Mo3N 
as discussed above, suggests that this is possibly due to the 
CoMo composition. Therefore, it was of interest to examine 
the filled β-Mn structured Co2Mo3N phase, which has the 
same metal composition but different crystal structure type. 
Comparing the lattice nitrogen reactivity of Co2Mo3N with 
the η-carbide structured Co3Mo3N might provide an insight 
into the crystal structure–activity relationship. To investigate 
this potential relationship, attempts were made to prepare 
the pure phase Co2Mo3N. The modified Pechini method 
was chosen for the synthesis process as it has previously 
been used to synthesis pure phase filled β-Mn structured 
Ni2Mo3N [18]. The filled β-Mn structured Co2Mo3N was 
prepared via nitridation of the oxide precursor at 700 °C for 
three hours under 3:1 H2/N2. This was found to be the opti-
mum preparation temperature and duration to give the high-
est amount of the desired nitride. The preparation of the pure 
phase nitride was unsuccessful, with instead a mixture of 
Co2Mo3N, Co3Mo3N and β-Mo2N0.78 being formed (Fig. 3). 
This material contained 3.82 wt% nitrogen from elemental 
analysis as presented in Table 2 (the expected stoichiomet-
ric nitrogen content of Co2Mo3N is 3.34 wt%). The SEM 
images of the mixed Co2Mo3N show that the material had a 
porous and smooth surface (Fig. 4a). Although the material 

Table 1   Nitrogen analysis pre- and post-reaction for Fe3Mo3N

Material Nitrogen content (wt%)

Fe3Mo3N 4.27
Fe3Mo3N post H2/Ar 900 °C 0.49

Fig. 2   Representative SEM 
images of Fe3Mo3N: a pre-
reaction and b post H2/Ar reac-
tion at 900 °C
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was shown to contain the Co3Mo3N phase, the expected nee-
dle morphology for this phase was not observed.

In order to investigate the lattice nitrogen reactivity of 
the mixed phase Co2Mo3N and Co3Mo3N, the material was 
reduced at 700 °C, 800 °C or 900 °C under 3:1 H2/Ar at 
ambient pressure for 7 h. The conductivity profile data under 
3:1 H2/Ar at 700 °C for the mixed Co2Mo3N and Co3Mo3N 
material is provided (Online Resource Fig. S2). A total of 
37 μmol of ammonia was formed over the 7 h of reaction. 
The conductivity profiles for the 800 °C and 900 °C reac-
tions (Online Resource Figure S2) show that the rates were 
non-steady state and the production of ammonia was mini-
mal. The total amount of ammonia formed was 32 μmol and 
22 μmol over the 7 h at 800 °C and 900 °C, respectively. 
These results agree with the limited stability of ammonia 
under these conditions and therefore, it would be expected 
that most of the lattice nitrogen would be lost in the final 
form of N2. The Co3Mo3N reflections were shown to have 
shifted to higher 2θ angles post 700 °C reaction (Fig. 5a), 
suggesting that there was a decrease in the lattice nitrogen 
content of this phase, which is to be expected when it trans-
forms to the Co6Mo6N phase [13]. Due to the degree of 
overlap between the reflections of Co6Mo6N and Co2Mo3N 
this is somewhat difficult to observe. However, this was most 
clearly noticed when comparing the pre- and post-reaction 
reflection at approximately 35.5° 2θ, where there is no over-
lap of reflections. The shift of Co3Mo3N reflections to higher 

Fig. 3   XRD pattern of prepared Co2Mo3N. ( ) Co2Mo3N (PDF 
ref.: 01–072-6570), ( ) Co3Mo3N (PDF ref.: 01–089-7953) and ( ) 
β-Mo2N0.78 (PDF ref.: 03–065-6236)

Table 2   Nitrogen analysis pre- and post-reaction for the prepared 
“Co2Mo3N” samples

Material Nitrogen 
content 
(wt%)

“Co2Mo3N” 3.82
“Co2Mo3N” post H2/Ar 700 °C 2.07
“Co2Mo3N” post H2/Ar 800 °C 0.72
“Co2Mo3N” post H2/Ar 900 °C 0.48

Fig. 4   Representative SEM 
images of the prepared 
Co2Mo3N: a pre-reaction, b 
post  H2/Ar reaction at 700 °C, 
c post H2/Ar reaction at 800 °C 
and d post H2/Ar reaction at 
900 °C
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2θ values was also observed post 800 °C reaction (Fig. 5b). 
The lattice nitrogen in Co2Mo3N appears to be unreactive 
at 700 °C and 800 °C under  H2/Ar as there was no shift in 
the peak positions for this phase compared to pre-reaction 
(Fig. 5a, b) as clearly seen by the peak at approximately 
45° 2θ. These results agree with the previously published 
work of Adamski et al. who noticed that under pure hydro-
gen at 700 °C Co3Mo3N transitioned to Co6Mo6N, while 
Co2Mo3N remained stable [16]. β-Mo2N0.78 was believed to 
have been reduced to molybdenum metal during the reaction 
at both 700 °C and 800 °C (Fig. 5a, b). As there are not any 
unique reflections for Mo, the presence of this phase cannot 
be completely established. However, it has been previously 
reported that molybdenum nitride is reduced to Mo under 
3:1 H2/Ar at 700 °C [14] and therefore, it would be expected 
to occur.

The lack of reactivity of the lattice nitrogen in the filled 
β-Mn structured Co2Mo3N under H2/Ar up to a tempera-
ture of 800 °C has also been observed for the isostructural 
Ni2Mo3N and, as discussed above, η-carbide structured 
Fe3Mo3N [12, 14]. Although Fe3Mo3N and Co3Mo3N have 
the same crystal structure type, the lattice nitrogen reactiv-
ity is different between these two nitrides under  H2/Ar at 
700 °C and 800 °C, suggesting that metal composition is 
more important than the structure type. However, Co3Mo3N 
and Co2Mo3N, have different stabilities suggesting that the 
phase also has an impact. Therefore, there appears to be a 
complex relationship between metal composition and phase 
which controls the lattice nitrogen reactivity of the ternary 
nitrides. In both the filled β-Mn structure and η-carbide 
structure, the local nitrogen environment is similar with the 
lattice nitrogen being coordinated to six Mo species in each 

structure. When Co3Mo3N transforms into Co6Mo6N, the 
residual lattice nitrogen relocates from the 16c site to the 8a 
site, an apparently less reactive site from which it is not lost. 
The XRD pattern of the “Co2Mo3N” material post 900 °C 
reaction shows it has decomposed to α-Co, Co0.08Mo0.92 and 
either a cobalt nitride phase or a cobalt molybdenum alloy 
(Fig. 5c). Fe3Mo3N was shown to have a similar decomposi-
tion as Co2Mo3N and Co3Mo3N under these conditions. This 
is again in contrast to the filled β-Mn structured Ni2Mo3N, 
which was stable at 900 °C [12]. As expected, the nitrogen 
analysis showed that the nitrogen content decreased signifi-
cantly post  H2/Ar reaction for all three temperatures com-
pared to pre-reaction as seen in Table 2. As the post 700 °C 
reaction material consisted of Co2Mo3N, Co6Mo6N and Mo, 
the stoichiometric percentage in this material is expected to 
be 1.92 wt% nitrogen, if it is assumed that the phases have 
a 1:1:1 ratio. The obtained value of 2.07 wt% agrees quite 
well with this value. For the post 800 °C reaction material, 
based upon the XRD pattern, it would be expected that the 
loss of nitrogen from this material is predominantly from 
the Co3Mo3N and β-Mo2N0.78 phases. The significant loss 
of nitrogen from the post 900 °C material agrees with the 
observed decomposition during the reaction. The percentage 
of the overall nitrogen that was removed from the material 
and was converted to ammonia was ca. 25%, 24% and 13% 
for the 700 °C, 800 °C and 900 °C reactions, respectively. 
The SEM images in Fig. 4 show that the morphology for 
all three post  H2/Ar reaction materials were similar to the 
pre-reaction material. Therefore, the decomposition of the 
material during the 900 °C reaction did not have a major 
effect on the morphology. However, the material appeared 
to be more porous following 900 °C reaction. Other materi-
als have been reported to have a porous nature post-reaction 
when they decomposed under 3:1 H2/Ar [25].

3.3 � Co3Mo3N Prepared by Nitridation with N2/H2

The η-carbide structured Co3Mo3N is traditionally prepared 
in a pure form by temperature programmed ammonolysis of 
a CoMoO4 precursor [13, 24, 26]. However, the formation of 
nitrides via temperature programmed ammonolysis has sev-
eral disadvantages, including reduction in efficiency in the 
process due to large amounts of heat transfer and problems 
arising due to using ammonia at a large scale [27]. There-
fore, although the bulk lattice nitrogen in Ni2Mo3N appears 
to be relatively unreactive, this nitride has an advantage in 
that it is able to be prepared under N2/H2 at 700 °C [18]. 
Co3Mo3N appears to be uniquely active with regards to its 
lattice nitrogen reactivity which could have interesting appli-
cations as a nitrogen transfer material. It would therefore be 
of interest to prepare Co3Mo3N under N2/H2. In this work, 
attempts were made to prepare Co3Mo3N directly by nitrida-
tion of the oxide with N2/H2 at 700 °C, 800 °C or 900 °C. 

Fig. 5   XRD patterns of mixed Co2Mo3N and Co3Mo3N: a post-
reaction 3:1 H2/Ar at 700 °C b post-reaction 3:1 H2/Ar at 800 °C c 
post-reaction 3:1 H2/Ar at 900 °C ( ) Co2Mo3N (PDF ref.: 01–072-
6570), ( ) Co6Mo6N (data from [29]), ( ) Mo (PDF ref.: 01–071-
4645), ( ) Co0.08Mo0.92 (PDF ref.: 01–071-7326), ( ) α-Co (PDF ref.: 
01–089-4307), ( ) Co2N (PDF ref.: 01–074-8393) and ( ) Co7Mo6 
(PDF ref.: 00–029-0489)



1027Topics in Catalysis (2021) 64:1021–1029	

1 3

The direct N2/H2 nitridation process at 700 °C resulted in a 
mixed phased material of Co2Mo3N with minor amounts of 
Co3Mo3N and β-Mo2N0.78 as can be observed in Fig. 6(a). 
As stoichiometric amounts of cobalt and molybdenum were 
used in the preparation, it appears that there is unidenti-
fied Co present in the material. Cobalt metal may be pre-
sent but undetected due to peak overlap at 44° 2θ, as previ-
ously suggested by Adamski et al. [16]. The preparation at 
800 °C results in a mixture of Co3Mo3N and Co2Mo3N, with 
Co3Mo3N being the majority phase (Fig. 6b). A small reflec-
tion at 44° 2θ is observed, suggesting that the excess cobalt 
is present in its elemental form. Preparation at the highest 
temperature of 900 °C produces the pure phase highly crys-
talline Co3Mo3N (Fig. 6c). Adamski et al. have proposed that 
the oxide precursor is first transformed to Co2Mo3N and a 
molybdenum nitride phase, before forming the Co3Mo3N 
phase [28]. Therefore, this may be an explanation for why 
the pure phased Co3Mo3N is only formed at high tempera-
tures under N2/H2. This result shows promise for forming 
Co3Mo3N under nitridation conditions. It appears that there 

is a significant difference in morphology between the cobalt 
molybdenum nitrides as observed in Fig. 7. The material 
prepared at 700 °C (CoMoN700) consists of small solid par-
ticles. The morphology of the material prepared at 900 °C 
(Co3Mo3N900) was similar to the expected needle structure 
for Co3Mo3N that is observed when it is prepared under 
ammonolysis [4, 29]. The nitrogen analysis (Table 3) mainly 
agrees with the assignment for the nitrides prepared at the 
different temperatures. CoMoN700 has the highest nitrogen 
content. The nitrogen content of the material prepared at 
800 °C (CoMoN800) is below that expected for stoichiomet-
ric Co3Mo3N and the material was found from XRD to com-
prise Co2Mo3N, Co3Mo3N and Co. The nitrogen content of 
Co3Mo3N900 is in very close agreement with the expected 
stoichiometric nitrogen weight percentage for Co3Mo3N 
(2.93 wt%), further confirming the successful synthesis of 
the pure phase Co3Mo3N.

4 � Conclusions

The bulk lattice nitrogen reactivity of the η-carbide struc-
tured Fe3Mo3N and Co3Mo3N and filled β-Mn structured 
Co2Mo3N has been investigated by testing the materials 
under Ar/H2. The metal composition-activity relationship 
was examined by comparison of the isostructural Fe3Mo3N 
and Co3Mo3N. Fe3Mo3N was shown to decompose to Mo 
and an iron nitride phase under 3:1 H2/Ar at 900 °C. In the 
literature, the bulk lattice nitrogen of Fe3Mo3N has been 
reported to be unreactive up to a temperature of 800 °C [13, 

Fig. 6   XRD pattern of prepared Co3Mo3N: a CoMoN700 b 
CoMoN800 c Co3Mo3N900. ( ) Co3Mo3N (PDF ref.: 01–089-7953), 
( ) Co2Mo3N (PDF ref.: 01–072-6570) and ( ) β-Mo2N0.78 (PDF 
ref.: 03–065-6236)

Fig. 7   Representative SEM 
images of prepared Co3Mo3N: a 
CoMoN700 and b Co3Mo3N900

Table 3   Nitrogen analysis for 
the prepared Co3Mo3N samples 
at different temperatures

Material Nitrogen 
content 
(wt%)

CoMoN700 3.99
CoMoN800 2.58
Co3Mo3N900 2.88
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14]. Therefore, it appears that the Fe3Mo3N phase has a dif-
ferent reactivity to Co3Mo3N, even at high temperatures, 
possibly suggesting that metal composition is the dominant 
influence on the bulk lattice nitrogen reactivity. Addition-
ally, with this in mind, an investigation of the filled β-Mn 
structured Co2Mo3N and the η-carbide structured Co3Mo3N 
has also been performed to provide an insight into a pos-
sible structure–activity relationship. The filled β-Mn struc-
tured Co2Mo3N could not be synthesised in the pure form, 
with instead the material being a mixture of Co2Mo3N and 
Co3Mo3N. The mixed phase Co2Mo3N and Co3Mo3N were 
examined for their lattice nitrogen reactivities between 
700 °C and 900 °C under 3:1 H2/Ar. At 700 °C and 800 °C, 
the filled β-Mn structured Co2Mo3N was shown to be stable 
and η-carbide structured Co3Mo3N was observed to be more 
reactive by losing the majority of its lattice nitrogen. When 
reacted at 900 °C, the material decomposed to its metal 
constituents and the majority of the lattice nitrogen was 
removed, as was observed for Fe3Mo3N. It has previously 
been observed that the filled β-Mn structured Ni2Mo3N was 
stable at this temperature [12]. Overall, the lattice nitro-
gen reactivity of the ternary nitrides has been found to be 
complex. Additionally, pure phase η-carbide structured 
Co3Mo3N with needle morphology was synthesised under 
3:1 H2/N2 at 900 °C.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11244-​021-​01432-1.
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