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Abstract

In this note we obtain, phrased in present day geometric and computational frame-
works, the characteristic numbers of the family Unod of non–degenerate nodal plane
cubics in P3, first obtained by Schubert in his Kalkül der abzählenden Geometrie.
The main geometric contribution is a detailed study of a variety Xnod, which is a
compactification of the family Unod, including the boundary components (degener-
ations) and a generalization to P3 of a formula of Zeuthen for nodal cubics in P2.
The computations have been carried out with the OmegaMath intersection theory
module WIT.

Introduction

Given an irreducible n-dimensional family of plane curves in P3, we are inter-
ested in the number of curves in the family that satisfy n conditions and, in
particular, in its characteristic numbers, namely, the number of curves that go
through i given points, intersect k given lines and are tangent to n − 2i − k
given planes. Concerning the family of nodal cubics in P2, the characteristic
numbers (and many other intersection numbers) were calculated by Maillard
(6), Zeuthen (13) and Schubert (11), and were verified, in different ways, by
Sacchiero (10), Kleiman–Speiser (5), Aluffi (1) and Miret–Xambó (7).

In this paper we study the characteristic numbers of the variety of nodal plane
cubics in P3 given by Schubert. We first construct a compactification Xnod of
the variety Unod of non-degenerate nodal plane cubics of P3 by means of the
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projectivization of a suitable vector bundle. From this we get that the Picard
group Pic(Xnod) is a rank 3 free group generated by the classes µ, b and ν of
the closures in Xnod of the hypersurfaces of Unod determined, respectively, by
the conditions:

- µ, that the plane determined by the nodal cubic go through a point;
- b, that the node be on a plane and
- ν, that the nodal cubic intersect a line.

We show that the boundary Xnod−Unod consists of two irreducible components
of codimension 1 and we prove a formula which express the condition

- ρ, that the nodal cubic be tangent to a plane,

in terms of the two degenerations and the condition µ. This formula is a
generalization to P3 of a degeneration relation given by Zeuthen (13) for nodal
cubics in the projective plane. We compute, on the basis of the intersection
theory of Xnod and using the OmegaMath package WIT (see (12)), the
intersection numbers of the form µiνkρ11−i−k given by Schubert in (11). In
particular, we get the number ν11 of plane nodal cubics that intersect 11 lines
which was used (and verified) by Kleiman–Strømme–Xambó in (4). Finally,
the computation of the characteristic numbers P iνkρ11−2i−k of the family of
nodal plane cubics in P3 follows from the incidence formula P = νµ − 3µ2.

1 The variety Xnod of nodal plane cubics

In the sequel, P3 will denote the projective space associated to a 4–dimensional
vector space over an algebraically closed ground field k of characteristic 0, and
the term variety will be used to mean a quasi-projective k-variety. Moreover,
we will also write z to indicate the degree of a 0–cicle z, if the underlying
variety can be understood from the context.

Let U denote the rank 3 tautological bundle over the grassmannian variety Γ
of planes of P3. Therefore, the projective bundle P(U) is a non singular variety
defined by P(U) = {(π, x) ∈ Γ × P3 | x ∈ π}. Let L be the tautological line
subbundle of the rank 3 bundle U|P(U) over P(U) and let Q be the tautological
quotient bundle. We will denote by a the hyperplane class of P(U) and by µ
the pullback to P(U) of c1(OΓ(1)) under the natural projection P(U) → Γ.

We define Enod as the subbundle of S3U∗|P(U) whose fiber over (π, x) ∈ P(U)
is the linear subspace of forms ϕ ∈ S3U∗ defined over π that have multiplicity
at least 2 at x. In fact, given a point (π, x) ∈ P(U) and taking projective
coordinates x0, x1, x2, x3 so that π = {x3 = 0} and x = [1, 0, 0, 0], we can
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express the elements ϕ of the fiber of Enod over (π, x) as follows:

ϕ = b1x0x
2
1 + b2x0x1x2 + b3x0x

2
2 + a1x

3
1 + a2x

2
1x2 + a3x1x

2
2 + a4x

3
2, (1)

where b1, b2, b3 and ai for i = 1, . . . , 4 are in k. Thus, Enod is a rank 7 subbundle
of S3U∗|P(U).

In the next proposition we give a resolution of the vector bundle Enod over
P(U). To do this, we consider the natural inclusion map i : Q∗ → U∗, the
product map κ : Q∗ ⊗ S2Q∗ → S3Q∗, and the maps

h : U∗ ⊗ S2Q∗ → S3U∗|P(U) and j : S3Q∗ → S3U∗|P(U)

whose images are clearly contained in Enod.

Proposition 1.1 The sequence

0 −→ Q∗ ⊗ S2Q∗ α−→ (U∗ ⊗ S2Q∗) ⊕ S3Q∗ β−→ Enod −→ 0, (2)

where α =
(

i⊗1
−κ

)
and β = h + j, is an exact sequence of vector bundles over

P(U).

Proof. From the definition of Enod it follows that β is a surjective map and,
since i ⊗ 1 is injective, we get that α is also injective. Moreover, from the
definitions of α and β it follows that βα = 0. Now, to complete the proof it
is enough to see, since Im α ⊆ Ker β, that rank(Im α) = rank(Ker β). But this
can be easily checked by simple computations. �

Let Xnod be the projective bundle P(Enod) over P(U). Then, Xnod is a non
singular variety of dimension 11 whose points are pairs (f, (π, x)) ∈ P(S3U∗)×Γ

P(U) such that the nodal cubic f is contained in the plane π and has a node
at x.

We will denote by b the pullback to Pic(Xnod) of the class a in Pic(P(U)) under
the natural projection Xnod → P(U). Since this projection is flat, b is the class
of the hypersurfaces of Xnod whose points (f, (π, x)) satisfy that x is on a
given plane. Furthermore, the relation ζ = ν − 3µ holds in Pic(Xnod), being ζ
the hyperplane class of Xnod and being ν the class of the hypersurface of Xnod

whose points (f, (π, x)) satisfy that f intersects a given line.

Proposition 1.2 The intersection ring A∗(Xnod) is isomorphic to the quo-
tient of the polynomial ring Z[µ, b, ν] by the ideal

〈µ4, b3 − µb2 + µ2b − µ3, ν7 − 6bν6 + 24b2ν5〉.

In particular, Pic(Xnod) is a rank 3 free group generated by µ, b and ν.
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Proof. Since ζ = ν−3µ, the intersection ring A∗(Xnod) is (see (2), ex. 8.3.4) iso-
morphic to A∗(P (U))[ν]/

∑
π∗ci(Enod ⊗OΓ(−3))ν5−i, where π : Enod → P(U)

is the natural projection. Now, using Proposition 1.1 we get the result taking
into account the intersection ring of P(U). �

Thus, using the projection formula, we have

∫
Xnod

µibjν11−i−j =
∫

P(U)
µiajs5−i−j(Enod ⊗OΓ(−3)), (3)

where the t−th Segre class st(Enod ⊗ OΓ(−3)) can be calculated from the
resolution (2). This allow us to compute all the intersection numbers of Xnod

in the conditions µ, b and ν, that is to say

µ3ν8 = 12, µ2ν9 = 216, µν10 = 2040, ν11 = 12960

µ3bν7 = 6, µ2bν8 = 100, µbν9 = 872, bν10 = 5040

µ3b2ν6 = 1, µ2b2ν7 = 18, µb2ν8 = 160, b2ν9 = 904

µ2b3ν6 = 1, µb3ν7 = 12, b3ν8 = 72

(4)

These numbers have been computed using the intersection theory package
WIT (12) of the symbolic calculator OmegaMath in the following way:

variety(PU,5);

PU(monomial_values_)=

{

{m^3*b^2, 1},

{m^2*b^3, 1}

};

Ud=sheaf(3,[m,m^2,m^3],PU);

Qd=quotient(Ud,o(b));

Qq=quotient(Ud,Qd);

Enod=osum(tensor(Qq,symm(2,Qd)),symm(3,Qd));

Dnod=tensor(dual(Enod),o(3*m));

variety(Nodal,11);

Nodal(monomial_values_)={

{

m^i*b^j*n^(11-i-j),integral(PU,m^i*b^j*segre(5-i-j,Dnod))

} with (i,j) in (0..3,0..min(3,5-i))

};

We denote by ρ the class of the hypersurface of Xnod whose points (f, (π, x))
satisfy that f is tangent to a given plane. Notice that the dual f ∗ of an
irreducible nodal cubic is a quartic curve. Furthermore, the indeterminacy
locus of the map f �→ f ∗ is the 4–codimensional closed set of Xnod consisting
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of points such that f degenerates to a double line and a simple line.

2 Degenerations of Xnod

Let Unod be the subvariety of Xnod whose points are pairs (f, (π, x)) ∈ Xnod

such that f is an irreducible nodal cubic contained in the plane π, with a node
at x. In fact, Xnod is a compactification of Unod whose boundary Xnod − Unod

consists of the following two codimension 1 irreducible components, called
degenerations of first order of Xnod :

• Xncusp, that parameterizes pairs (f, (π, x)) ∈ Xnod such that f is a cuspidal
cubic with cusp x.

• Xconsec parameterizes pairs (f, (π, x)) ∈ Xnod such that f is a cubic consist-
ing of a conic f ′ and a line l which intersects with the conic at two points,
being x one of them.

�

� �

�

Figure 1. A closed point of Xncusp and of Xconsec .

We will denote the classes in Pic(Xnod) of the degenerations Xncusp and Xconsec

by γ and χ, respectively.

2.1 The variety Xncusp

In (3) we introduced a compactification Xcusp of the variety of non–degenerate
cuspidal plane cubics in P3 by means of the projectivization of a suitable
vector bundle constructed over the flag variety F = {(π, x, u) | x ∈ u, u ⊂ π}.
Actually, Xcusp is the 10-dimensional subvariety of P(S3U∗|F) whose points are
pairs (f, (π, x, u)) such that f is a cuspidal cubic contained in the plane π,
that has a cusp at x and u as the cuspidal tangent at x.

Moreover, we denote by µ and c the pullbacks to Pic(Xcusp) of the hyperplane
classes µ = c1(OΓ(1)) and a = c1(OP(U)(1)), respectively, under the natural
projections, so that µ is the class of the hypersurface of Xcusp such that π
goes through a given point and c coincides with the class of the hypersurface
of Xcusp such that x is on a given plane. In addition, let us denote by ν and
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ρ the classes of the hypersurfaces of Xcusp consisting of the pairs (f, (π, x, u))
such that f intersect a given line and, respectively, that f is tangent to a given
plane.

In (8) we verified and completed all the intersection numbers obtained by
Schubert about cuspidal plane cubics in terms of the characteristic conditions
and those relative to the singular triangle. In particular, we got:

µ3 = 24, 60, 114, 168, 168, 114, 60, 24

µ2 = 384, 864, 1488, 2022, 2016, 1524, 924, 468, 192

µ = 3216, 6528, 10200, 12708, 12144, 9156, 5688, 3090, 1488, 624

1 = 17760, 31968, 44304, 49008, 43104, 30960, 18888, 10284, 5088, 2304, 960

µ3c = 12, 42, 96, 168, 186, 132, 72

µ2c = 176, 536, 1082, 1688, 1844, 1496, 956, 512

µc = 1344, 3576, 6388, 8852, 9108, 7264, 4706, 2688, 1392

c = 6592, 14800, 22336, 25560, 22864, 16672, 10380, 5836, 3040, 1504

µ3c2 = 2, 8, 20, 38, 44, 32

µ2c2 = 32, 110, 240, 400, 452, 372, 240

µc2 = 248, 740, 1416, 2076, 2216, 1818, 1200, 696

c2 = 1168, 2896, 4592, 5408, 4952, 3708, 2376, 1392, 768

(5)

where the numbers listed to the right of a given µicj correspond to the inter-
section numbers µicjνkρ10−i−j−k, for k = 10 − i − j, . . . , 0.

Now, we will see that there exists a birational isomorphism between the va-
riety Xcusp and the degeneration Xncusp of Xnod. Notice that the dual of a
(f, (π, x)) ∈ Xncusp, where f is a non–degenerate cuspidal cubic, consists of
the dual cuspidal cubic together with the cusp as a simple focus.

Proposition 2.1 The map ψcusp : Xcusp → Xnod that assigns (f, (π, x)) to
(f, (π, x, u)) is a birational isomorphism between Xcusp and Xncusp ⊆ Xnod.
Moreover, we have that ψ∗

cusp(µ) = µ, ψ∗
cusp(b) = c, ψ∗

cusp(ν) = ν and ψ∗
cusp(ρ) =

ρ + c.

Proof. Since u is the tangent line of f at x (f a non–degenerate cuspidal cubic
over π with cusp x), it is clear that ψcusp induced a birational isomorphism.
On the other hand, the relation ψ∗

cusp(ρ) = ρ + c can be proved considering
the commutative diagram:

Xcusp Xnod

P(S3U) ×Γ P(U) P(S4U)

�ψcusp

�

(ϕcusp,p)

�

ϕnod

�κ
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where p is the natural projection, ϕnod and ϕcusp are the birational maps
over Xnod and Xcusp that assign f �→ f ∗, and κ is the map that assigns
((f ∗, π), (π, x)) �→ (f ∗ ·x∗, π), where x∗ is the pencil of planes that go through
x (its focus). From this, we have that

ψ∗
cusp(ρ) = ψ∗

cuspϕ
∗
nod(c1OP(S4U)(1)) = (ϕcusp, p)∗κ∗(c1OP(S4U)(1))

= (ϕcusp, p)∗(c1OP(S3U)(1), c1OP(U)(1)) = ρ + c.

The remaining relations can be proved in a similar way. �

Now, from this proposition and from the intersection numbers (5) of Xcusp, we
can compute the intersection numbers of the degeneration Xncusp in this way:

∫
Xnod

µibjνkρtγ =
∫

Xcusp

µicjνk(ρ + c)t.

Proposition 2.2 In A∗(Xnod) we have:

µ3γ = 24, 72, 200, 480, 960, 1424, 1512, 1200

µ2γ = 384, 1040, 2592, 5600, 10240, 14944, 17440, 16512, 12800

µγ = 3216, 7872, 17600, 34112, 56320, 76896, 87152, 83520, 70032, 52320

γ = 17760, 38560, 75072, 124800, 173952, 203840, 204320, 179712, 142720, 105312, 75520

where the numbers listed to the right of a given µiγ correspond to the inter-
section numbers µiνkρ10−i−kγ, for k = 10 − i, . . . , 0 .

It is worth while to notice that the value we find in the Tabelle von Zahlen
γ, page 154 of (11), for µ2ν3ρ6γ is 14744 instead of 14944. This looks like a
misprint, rather than a mistake, since the remaining numbers do coincide.

Corollary 2.1 The following relation holds in Pic(Xnod):

γ = −4µ + 2ν.

Proof. From Proposition 1.2 we know that γ = α1µ + α2ν + α3b, with αi ∈
Z, holds in Pic(Xnod). By substituting this expression in to the numbers
γµ3ν5b2 = 2, γµ3ν6b = 12 and γµ2ν6b2 = 32 we obtain the desired formula.
�
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2.2 The variety Xconsec

In this section we introduce a birational model of the variety Xconsec ⊆ Xnod.
To do this, we consider the variety G = F ×P(U∗) F consisting of the points
(π, xa, xb, ul) such that (π, xa, ul) ∈ F and (π, xb, ul) ∈ F. The pullback to G

of the classes µ, � of P(U∗) will be denoted by the same notations and so will
do a and b of F.

We will denote by Econsec the rank 4 subbundle of S2U∗|G whose fiber over
a point (π, xa, xb, ul) ∈ G is the linear subspace of forms ϕ ∈ S2U∗ that
vanish at xa and xb. Next statement provides a resolution of Econsec. We use
the following notations:

– Q∗
a, respectively Q∗

b , for the pullback of Q∗ to G under the projection
G → F which assigns (π, xa, ul) to (π, xa, xb, ul), respectively (π, xa, ul) to
(π, xa, xb, ul);

– OG(−1), for the pullback to G of the tautological line subbundle of P(U∗).

Lemma 2.1 The sequence

0 → OG(−2) → OG(−1)⊗Q∗
a⊗Q∗

b → (U∗ ⊗OG(−1)) ⊕ (Q∗
a ⊗ Q∗

b) → Econsec → 0

is an exact sequence of vector bundles over G.

Proof. It is similar to the proof given in Proposition 1.1. �

Thus, P(Econsec) is the 10-dimensional subvariety of P(S2U∗|G) whose points
are pairs (f ′, (π, xa, xb, ul)) such that f ′ is a conic contained in the plane π
that goes through the points xa and xb.

Furthermore, we denote by µ, a, b and � the pullbacks to Pic(P(Econsec)) of
the homonymous classes of Pic(G) under the natural projections. In addition,
let us denote by ν ′ the class of the hypersurface of P(Econsec) consisting of the
pairs (f ′, (π, xa, xb, ul)) such that the conic f ′ intersect a given line.

Using again the projection formula, we have

∫
P(Econsec)

µiajbk�hν ′10−i−j−k−h
=

∫
G

µiajbk�hs7−i−j−k−h(Econsec ⊗OΓ(−3)),

where st(Econsec ⊗ OΓ(−3)) can be calculated from the resolution given in
Lemma 2.1. This allows us to compute all the intersection numbers of P(Econsec)
in the conditions µ, a b, � and ν ′. In particular, we have:
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µ3a�ν′5 = 2, µ2a�ν′6 = 16, µa�ν′7 = 68, a�ν′8 = 184

µ3�2ν′5 = 2, µ2�2ν′6 = 16, µ�2ν′7 = 68, �2ν′8 = 184

µ3a2�ν′4 = 1, µ2a2�ν′5 = 8, µa2�ν′6 = 34, a2�ν′8 = 92

µ3a�2ν′4 = 1, µ2a�2ν′5 = 10, µa�2ν′6 = 50, a�2ν′8 = 160

µ2�3ν′5 = 4, µ�3ν′6 = 32, �3ν′7 = 136

µ2a3�ν′4 = 1, µa3�ν′5 = 6, a3�ν′6 = 18

µ2a2�2ν′4 = 2, µa2�2ν′5 = 14, a2�2ν′6 = 52

µ2a�3ν′4 = 2, µa�3ν′5 = 16, a�3ν′6 = 68

µ�4ν′5 = 4, �4ν′6 = 32

µa3�2ν′4 = 1 a3�2ν′5 = 6

µa2�3ν′4 = 2 a2�3ν′5 = 12

µa�4ν′4 = 2 a�4ν′5 = 12

Finally, in order to compute intersection numbers involving the ρ condition, we
will consider P(Econsec), the closure of the graph in P(Econsec) ×G P(S2U|G) of
the rational map ψ : P(Econsec) −→ P(S2U|F) that assigns the conic of tangents
to a given conic of rank ≥ 2. Notice that the points of P(Econsec) consist of
triples (f ′, f ′∗, (π, xa, xb, ul)) where f ′∗ is the dual conic of f ′ over π, so that
ψ is undefined precisely at a closed set D of codimension 2 of P(Econsec) which
has two irreducible components:

– D1 consisting of pairs (f ′, (π, xa, xb, ul)) such that f ′ is a double line which
coincides with the line ul;

– D2 consisting of pairs (f ′, (π, xa, xb, ul)) such that xb = xa and f ′ is a double
line that goes through the point xa.

Then, the projection map h : P(Econsec) → P(Econsec) is just the blow–up of
P(Econsec) along D. The geometric description of the two irreducible compo-
nents of the exceptional divisor E = h−1(D) is given below (see figure 2):

– E1 parameterizes triples (f ′, f ′∗, (π, xa, xb, ul)) such that f ′ is a double line
which coincides with ul and the dual conic f ′∗ consists of two pencils whose
foci lie on ul;

– E2 parameterizes triples (f ′, f ′∗, (π, xa, xb, ul)) such that xb = xa, f ′ is a
double line over π that goes through xa and the dual conic f ′∗ consists of a
pair of pencils whose foci lie on this double line.

We will also write µ, a, b, � and ν ′ to denote the pullbacks to Pic(P(Econsec)) of
their homonymous classes in Pic(P(Econsec)) under the blow–up h : P(Econsec) →
P(Econsec). Then, µ, a, b, � and ν ′ are the classes of the hypersurfaces of
P(Econsec) whose points (f ′, f ′∗, (π, xa, xb, ul)) satisfy that π goes through a
given point, xa is on a given plane, xb is on a given plane, ul intersects a line
and f ′ intersects a line, respectively. Let ρ′ be the class of the hypersurface
of P(Econsec) whose points (f ′, f ′∗, (π, xa, xb, ul)) satisfy that π ∩ π′ ∈ f ′∗ for a
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Figure 2. A closed point of the component E1 and E2 .

given plane π′ (that is, f ′ is tangent to a given plane).

Lemma 2.2 The following relation holds in Pic(P(Econsec)):

ρ′ = 2ν ′ − 2µ − 2ε1 − 4ε2.

Proof. Due to the properties of the blow–up, there exists a morphism ψ :
P(Econsec) → P(S2U|G) which makes the following diagram commutative :

P(Econsec)

P(Econsec) P(S2U|G),
�

h

�
�

�
�

���

ψ

�ψ

that is, ψ coincides, as a rational map, with ψ ◦ h. Thus, as we know that
ψ is univocally given by sections of the invertible sheaf OP(Econsec)(2) over
P(Econsec), we can conclude, see (9), that

ψ
∗
(OP(S2U|F)(1)) = h∗(OP(Econsec)(2)) ⊗O

P(Econsec)
(−E).

Taking Chern classes, we get c1(ψ
∗
(OP(S2U|G)(1))) = c1(h

∗(OP(Econsec)(2))) −
(2ε1 + 4ε2). Finally, we know c1(h

∗(OP(Econsec)(1))) = ν ′ − 2µ, and, by duality,

c1(ψ
∗
(OP(S2U|F)(1))) = ρ′ − 2µ, so the formula follows. �

Now, in order to calculate the intersection numbers µiajbk�hν ′sρ′t with t = 10−
i−j−k−h−s, and since the intersection numbers µiajbk�hν ′9−i−j−k−h are easily
calculated using the resolution of Econic given in Lemma 2.1, we only need to
compute numbers over P(Econsec) which involve any of the two components of
the exceptional divisor, that is, numbers of the form µiajbk�hν ′sρ′9−i−j−k−h−sε1

or µiajbk�hν ′sρ′9−i−j−k−h−sε2, and then proceed down recursively by induction
on the order of the ρ condition.

Proposition 2.3 The map ψconsec : P(Econsec) −→ Xnod that assigns to each
(f ′, f ′∗, (π, xa, xb, ul)) the pair (f ′ · ul, (π, xb)) is a birational isomorphism be-
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tween P(Econsec) and Xconsec ⊆ Xnod. Moreover, we have that ψ∗
consec(µ) = µ,

ψ∗
consec(b) = b, ψ∗

consec(ν) = ν ′ + � and ψ∗
consec(ρ) = ρ′ + 2a.

Proof. Notice that if we take a system of projective coordinates {x0, x1, x2, x3}
of P3 such that x = [1, 0, 0, 0] and π = {x3 = 0} then ∂f/∂x0 is the tangent
cone of f at x over π. From this it is easy to see that ψconsec induced a
birational isomorphism. On the other hand, all the relations of the proposition
can be proved in the same way and so we we will show how to prove that
ψ∗

consec(ν) = ν ′ + �. It is enough to consider the commutative diagram:

P(Econsec) Xnod

P(S2U∗) ×Γ P(U∗) P(S3U∗)

�ψconsec

�
(p2,p1)

�

p3

�q

where p1, p2 and p3 are the natural projections and q is the map that assings
(f ′, ul, π) �→ (f ′ · ul, π). From this, we have that

ψ∗
consec(ν) = ψ∗

consecp
∗
3(c1OP(S3U∗)(1)) = (p2, p1)

∗q∗(c1OP(S2U∗)(1))

= (p2, p1)
∗(c1OP(S2U∗)(1), c1OP(U∗)(1)) = ν ′ + �.

�

Then, ∫
Xnod

µibjνkρtχ =
∫

P(Econsec)
µibj(ν ′ + �)k(ρ′ + 2a)t,

and so we have the following table:

Proposition 2.4 In A∗(Xnod) we have:

µ3χ = 42, 114, 260, 480, 588, 422, 144, 0

µ2χ = 672, 1652, 3424, 5840, 7264, 6452, 3952, 1344, 0

µχ = 5640, 12568, 23632, 36864, 44040, 39820, 26968, 13452, 4224, 0

χ = 31320, 62160, 103328, 141792, 153984, 130960, 86560, 44088, 16072, 3984, 0

where the numbers listed to the right of a given µiχ correspond to the inter-
section numbers µiνkρ10−i−kχ, for k = 10 − i, . . . , 0 .

Corollary 2.2 The following relation holds in Pic(Xnod):

χ = 3µ − 3b + 5ν.

Proof. We obtain the expression of χ in terms of the basis {µ, b, ν} of Pic(Xnod)
from table (4) and the former one, proceeding as in Corollary 2.1. �
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3 Characteristic numbers of Xnod

In this section we express the condition ρ ∈ Pic(Xnod), that the nodal cubic
(f, (π, x)) is tangent to a given plane, in terms of the µ condition and the γ
and χ degenerations, generalizing to P3 the degeneration formula for ρ given
by Zeuthen in (13).

Proposition 3.1 The following relation holds in Pic(Xnod):

3ρ = 4µ + γ + 2χ.

Proof. From Proposition 1.2 and corollaries 2.1 and 2.2 we know that there
exist rational numbers si such that ρ = s0µ + s1γ + s2χ holds in Pic(Xnod).
Taking into account the degeneration formula of Zeuthen verified by Kleiman-
Speiser (5) we know that s1 = 1

3
and s2 = 2

3
. In order to determine s0

we compute the intersection number µ2ν7ρb in two different ways. First, we
have µ3ν7ρ = 1

3
µ3ν7γ + 2

3
µ3ν7χ = 36. Now, from Corollary 2.1, we get

µ2bν7ρ = 2µ3bν6ρ + 1
2
µ2bν6ργ = 2 · 22 + 1

2
· 568 = 328. Finally, by substi-

tuting the expression of ρ in the relation µ2bν7ρ = 328, we obtain s0 = 4
3
. �

This proposition implies that the intersection numbers µiνkρ11−i−k in Xnod

can be obtained as µiνkρ11−i−k = 1
3
(µiνkρ10−i−k(4µ + γ + 2χ)), because the

unique degenerations of the 1–dimensional systems µiνkρ10−i−k are the ones
consisting of a cuspidal cubic or a degenerated conic with a secant line. Thus,
from Proposition 2.2 and Proposition 2.4, we are now able to compute all the
non–zero intersection numbers of the form µiνkρ11−i−k in Xnod.

Proposition 3.2 In A∗(Xnod) we have:

µ3 = 12, 36, 100, 240, 480, 712, 756, 600, 400

µ2 = 216, 592, 1496, 3280, 6080, 8896, 10232, 9456, 7200, 4800

µ = 2040, 5120, 11792, 23616, 40320, 56240, 64040, 60672, 49416, 35760, 23840

∗ = 12960, 29520, 61120, 109632, 167616, 214400, 230240, 211200, 170192, 124176, 85440, 56960

where the numbers listed to the right of a given µi (∗ for µ0) correspond to
the intersection numbers µiνkρ11−i−k, for k = 11 − i, . . . , 0 .

Finally, from the formula P = µν − 3µ2 given by Schubert (see (3)), where
P is the class of the subvariety of Xnod consisting of pairs (f, (π, x)) such
that f goes through a given point, and from the table of Proposition 3.2, we
get the characteristic numbers of nodal plane cubics in P3 that involve the
P condition. Our results confirms the characteristic numbers computed by
Schubert and listed in page 159 of (11).
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Theorem 3.1 The following results hold in A∗(Xnod) :

P 2 = 144, 376, 896, 1840, 3200, 4624, 5696, 5856

P = 1392, 3344, 7304, 13776, 22080, 29552, 33344, 32304, 27816, 21360

where the numbers listed to the right of a given P i correspond to the charac-
teristic numbers P iνkρ11−2i−k, for k = 11 − 2i, . . . , 0.
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