
PARTICULAR SOLUTIONS OF
THE MANY-BODY PROBLEM
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1. The planar n-body problem.

2. Central configurations. General setting: definition,

properties, motivation and some results.

3. Two particular examples:

Example 1: Planar coreographies. Regular n-gon.

Example 2: the 1 + n-problem.



1. The n-body problem

The ODE of the n-body problem:

mir
′′
i =

n∑
j=1,j �=i

Gmimj
rj − ri

r3
ij

=
∂U

∂ri
i = 1, ..., n

where ri ∈ R2 is the vector position of the punctual

mass mk in an inertial system, rij = ‖ri − rj‖, G is the

gravitational constant and

U =
∑

1≤i<j≤n

Gmimj

rij

Since the center of mass of the system satisfies
∑n

k=1 mkrk

m1 + ... + mn
= at + b

where a and b are constant vectors,

we can consider the motion relative to the center of mass,

i.e. from now on we work in an inertial barycentric system

with the center of mass fixed at the origin:

n∑
k=1

mkrk = 0



Eqs:

mir
′′
i =

∂U

∂ri
i = 1, ..., n, U =

∑
1≤i<j≤n

Gmimj

rij

- First integrals:

the energy h = T − U , T = 1
2

∑
k mkv

2
k and the angular

momentum c =
∑

k mk(rk × vk).

- For n = 2, Kepler problem, well known.

- For n ≥ 3, no general solution.

- No equilibrium points:

∂U

∂ri
= 0

but ∑
i
ri

∂U

∂ri
= −U = 0 absurd.

- Search for other simple solutions: central config-

urations.



Def. Central configuration (cc).

We consider the configuration space

E = {r ∈ R2n :
n∑

i=1
miri = 0, ri �= rj, for i �= j}

and

Mr′′ =
∂U

∂r

where M = diag(m1, m1, ..., mn, mn), r = (r1, ..., rn)

The configuration of n particles given by the vectors

r = r1, ..., rn is a central configuration:

r is a cc ⇐⇒ there exists λ2 > 0 such that

M−1∂U

∂r
= −λ2r



Properties.

1. The set of cc is invariant with respect to homothetic

transformations and rotations in R2.

2. r is a cc iff 1
mi

∂U
∂ri

= −λ2ri iff ∂U
∂ri

+ λ2miri = 0 iff

∂U

∂ri
+ λ2 ∂I

∂ri
= 0

with I = 1
2

∑n
i=1 mi‖ri‖2,

i.e. the cc is a critical point of the potential U restricted to

a constant moment of inertia manifold I = I0 =constant.

3. λ2 = U(r)
2I



Reasons why central configurations are of

interest in celestial mechanics

1. They allow to compute all the homographic solu-

tions:

A homographic solution of the n-body problem is a

solution such that the configuration of the n particles

at the instant t (with respect to an inertial barycentric

system) remains similar to itself as t varies.

Two configurations are similar if we can go from one

to the other by means of a dilatation and/or a rotation.



The first three homographic solutions were found by

Euler in 1767 for the three-body problem. For these so-

lutions the configuration of the three bodies is collinear.

In 1772 Lagrange found two additional homographic

solutions in the 3-body problem. Now, the configuration

formed by the 3 bodies is an equilateral triangle.



The Lagrangian equilateral triangle solutions

Theorem 1 (n = 3). For any values of the masses, there

is one and only one noncollinear central configuration for

the 3-body problem, namely, the three particles are at

the vertices of an equilateral triangle.

The Euler-Moulton collinear solutions

Theorem 2 (n-body). There are exactly n!/2 collinear

central configurations in the n-body problem, one for

each ordering of the masses on the line.



More reasons

2. If the n bodies are going to a simultaneous collision,

then the particles tend to a central configuration.

Sundman (1907), Hagihara (1970), Saari (1980), Chenciner

(1998).

3. If the n bodies are going simultaneously to infinity in

parabolic motion (i.e. the radial velocity of each particle

tends to zero as the particle tends to infinity), then the

particles tend to a central configuration.

Saari and Hilkower (1981).



More reasons

4. Central configurations play a key role when studying

the integral manifolds Ihc, h being the energy and c the

angular momentum. CC are the cause on the change of

topology of these manifolds.

Smale (1970), Marchal, Saari (1975), Chenciner and

Albouy (1993, 1998), McCord, Meyer and Wang (1998).



5. Other results: Stability of cc (Moeckel (1990)),

n-dimensional cc (Palmore (1980), Cedo and Llibre (1989),

Albouy and llibre (2000)), particular shapes of cc for

a fixed n (Kemplerer (1962), Simó (1978), Elmabsout

(1988), Hall (1988), Salo and Yoder (1988), Xia (1991)...

Last five years: Corbera, Cors, Delgado, Hampton,

Kotsireas and Lazard, Lindstrom, LLibre, Ollé,...



Two obvious questions:

How many central configurations (modulus homothetic

transformations and rotations) are there?

How do they look like?

Wintner’s conjecture (1941): Is the number of

classes of central configurations finite, in the n-body prob-

lem for any choice of the masses m1,...,mn?

This conjecture also appears in the Smale’s list on the

open mathematical problems for the XXI century.

- For n = 3, known.

- For n ≥ 4, open problem.

Remark. From now on we are interested in planar cc

which are not collinear.



Example 1: Planar coreographies. n-gon

The ODE of the n-body problem:

r′′i =
n∑

j=1,j �=i
mj

rj − qi

r3
ij

where qi ∈ R2, rij = ‖qi − qj‖, G = 1 and the center of

mass located at the origin.

For n ≥ 3, a few solutions are known analytically, related

to central configurations: relative equilibrium solutions

(all the bodies rotate around the center of mass, with

constant angular velocity, keeping the mutual distances

constant).

– For n = 3, the simplest case:

– Lagrange equilateral solutions

– they exist for any value of the masses m1, m2, m3

– For n ≥ 4, the regular n-gon with equal masses.



Interesting property of the n-gon:

All bodies move periodically tracing the same curve on

the plane; there is a time shift in the position to pass from

the position of a body to the position of the next one, i.e.,

there exists a solution q(t) such that the position of body

k, k = 1, ..., n is given by:

qk(t) = q(t − kT/n)

Natural question:

Are there other planar solutions of the n-body problem

that move along the same path with a time shift T/n?

Answer: Planar coreographies.



-For n = 3, Figure eight curve: Chenciner and Mont-

gomery (2000). Equal masses.

-For n ≥ 3, Simó (2001). Equal masses.



Open question and motivation for our prob-

lem:

Existence of coreographies with unequal masses and un-

equal time spacings between two bodies.

Chenciner’s open question in HAMSYS2001

(Guanajuato, Mexico):

Is the regular n-gon with equal masses the unique cen-

tral configuration such that

1) all the bodies lie on a circle,

2) the center of mass coincides with the center of the

circle?



OUR AIM

Circular coreographies as central configurations:

Which are the circular central configurations?

n particles located at a circumference of radius one and

center the origin satisfying the cc definition.

Eqs:

Mq′′ = Uq

where M = diag(m1, m1, ..., mn, mn), q = (q1, ..., qn)

and

U(q1, ..., qn) =
∑

1≤i<j≤n

mimj

‖qi − qj‖
Given M , q is a cc ⇐⇒ there exists λ2 > 0 such that

M−1Uq = −λ2q



- For n = 2 : m1 and m2 diametrally opposite =⇒
m1 = m2

- Useful equations for n ≥ 3

Proposition.

cc ⇐⇒ ∑
k �=i,j

mk(i, j, k)


 1

r3
ik

− 1

r3
j,k


 = 0

where

(i, j, k) =

∣∣∣∣∣∣∣∣∣∣∣

xi yi 1

xj yj 1

xk yk 1

∣∣∣∣∣∣∣∣∣∣∣
is the oriented area of the triangle with vertices ri, rj and

rk.

- For n = 3 : m1, m2 and m3 in an equilateral tri-

angle: m1 (1, 0), m2 (−1/2,
√

3/2), m3 (−1/2,−√
3/2)

=⇒ m1 = m2 = m3.



- For n = 4

m3(1, 2, 3)
(

1
r3
13
− 1

r3
23

)
+ m4(1, 2, 4)

(
1

r3
14
− 1

r3
24

)
= 0

m2(1, 3, 2)
(

1
r3
12
− 1

r3
23

)
+ m4(1, 2, 4)

(
1

r3
14
− 1

r3
34

)
= 0

m2(1, 4, 2)
(

1
r3
12
− 1

r3
24

)
+ m3(1, 4, 3)

(
1

r3
13
− 1

r3
34

)
= 0

m1(2, 3, 1)
(

1
r3
12
− 1

r3
13

)
+ m4(2, 3, 4)

(
1

r3
24
− 1

r3
34

)
= 0

m1(2, 4, 1)
(

1
r3
12
− 1

r3
14

)
+ m3(2, 4, 3)

(
1

r3
23
− 1

r3
34

)
= 0

m1(3, 4, 1)
(

1
r3
13
− 1

r3
14

)
+ m2(3, 4, 2)

(
1

r3
23
− 1

r3
24

)
= 0

Let D1 = (2, 3, 4), D2 = (3, 4, 1), D3 = (4, 1, 2), D4 =
(1, 2, 3).

Proposition. (a) Given a triangle T of sides a, b, c in a

circle of radius one, Area(T) = abc
4 .

(b) D1 = r23r24r34
4 , D2 = r13r14r34

4 , D3 = r12r14r24
4 , D4 =

r12r13r23
4

So we have equations

e1 = 0, ...., e6 = 0

only in variables rij and masses.



Proposition. For 4 bodies in a circle (radius 1 and center

at 0), we have

m2r
2
12 + m3r

2
13 + m4r

2
14 = m1r

2
12 + m3r

2
23 + m4r

2
34

n = 4, we assume equal masses

- Let cij = r2
ij, then,

d1 = c13 − c23 + c14 − c24 = 0

d2 = c12 − c13 + c24 − c34 = 0

d3 = c13 + c23 − c14 − c24 = 0

d4 = −c12 − c13 + c24 + c34 = 0

d1+d3 = 2(c13−c24) = 0, d1−d3 = −2(c23−c14) = 0,

d2 − d4 = 2(c12 − c34) = 0 =⇒ r13 = r24, r23 = r14,

r34 = r12, i.e. rectangle.

- 2 remaining variables: r12, r14; r13 =
√
r2
12 + r2

14.

- We impose the 6 remaining equations: e1, ..., e6 = 0,

with a = r12 and x = r14,

e2 = −e5 =
(a − x)

√
a2 + x2(a2 + ax + x2)

2a2x2
= 0 =⇒ a = x

therefore 4-gon.



n = 5, equal masses

Ingredients:

1. Eqs:

e1 = D45(
1

r3
13
− 1

r3
23

) + D35(
1

r3
14
− 1

r3
24

) + D34(
1

r3
15
− 1

r3
25

) = 0

e2 = −D45(
1

r3
12
− 1

r3
23

) + D25(
1

r3
14
− 1

r3
34

) + D24(
1

r3
15
− 1

r3
35

) = 0

e3 = −D35(
1

r3
12
− 1

r3
24

) − D25(
1

r3
13
− 1

r3
34

) + D23(
1

r3
15
− 1

r3
45

) = 0

e4 = −D34(
1

r3
12
− 1

r3
25

) − D24(
1

r3
13
− 1

r3
35

) − D23(
1

r3
14
− 1

r3
45

) = 0

e5 = D45(
1

r3
12
− 1

r3
13

) + D15(
1

r3
24
− 1

r3
34

) + D14(
1

r3
25
− 1

r3
35

) = 0

e6 = D35(
1

r3
12
− 1

r3
14

) − D15(
1

r3
23
− 1

r3
34

) + D13(
1

r3
25
− 1

r3
45

) = 0

e7 = D34(
1

r3
12
− 1

r3
15

) − D14(
1

r3
23
− 1

r3
35

) − D13(
1

r3
24
− 1

r3
45

) = 0

e8 = D25(
1

r3
13
− 1

r3
14

) + D15(
1

r3
23
− 1

r3
24

) + D12(
1

r3
35
− 1

r3
45

) = 0

e9 = D24(
1

r3
13
− 1

r3
15

) + D14(
1

r3
23
− 1

r3
25

) − D12(
1

r3
34
− 1

r3
45

) = 0

e10 = D23(
1

r3
14
− 1

r3
15

) + D13(
1

r3
24
− 1

r3
25

) + D12(
1

r3
34
− 1

r3
35

) = 0

e11 = 10 − r2
12 − r2

13 − r2
14 − r2

15 = 0

e12 = r12

√
1 − r2

12

4
+ r13

√
1 − r2

13

4
± r14

√
1 − r2

14

4
− r15

√
1 − r2

15

4

with D45 = r12r23r13/4, D35 = r12r14r24/4, etc.

2.
d1 = r2

13 − r2
23 + r2

14 − r2
24 + r2

15 − r2
25 = 0

d2 = r2
24 − r2

34 + r2
25 − r2

35 + r2
12 − r2

13 = 0
d3 = r2

35 − r2
45 + r2

13 − r2
14 + r2

23 − r2
24 = 0

d4 = r2
14 − r2

15 + r2
24 − r2

25 + r2
34 − r2

35 = 0
d5 = 0, ..., d10 = 0

3. Ptolomeo’s theorem.

p1 = r12r34 + r14r23 − r24r13 = 0
p2 = r12r35 + r15r23 − r25r13 = 0
p3 = r12r45 + r15r24 − r25r14 = 0
p4 = r13r45 + r34r15 − r14r35 = 0
p5 = r23r45 + r34r25 − r24r35 = 0



r2
13r

2
14r

3
15r

2
23r

2
24 + r2

13r
3
14r

2
15r

2
23r

2
25 + r3

13r
2
14r

2
15r

2
24r

2
25

−r2
14r

2
15r

3
23r

2
24r

2
25 − r2

13r
2
15r

2
23r

3
24r

2
25 − r3

12r
2
14r

2
15r

2
34r

2
35 = 0

we have 10 eqs, just 5 variables.



Two approaches:

(i) Analytical: (?).

(ii) Numerical.

(ii) Numerical.

- 12 eqs in variables x2, x3, x4 since 1 + x2 + x3 + x4 +

x5 = 0) with some restrictions: fixed x2 ∈ (−1, 1),

- Two cases:

Case 1: y2 > 0, y3 < 0, y4 < 0, y5 < 0,

−1 ≤ x2 < 1, −1 ≤ x3 < x4 < x5 < 1,

Case 2: y2 > 0, y3 > 0, y4 < 0, y5 < 0,

−1 ≤ x3 < x2 < 1, −1 ≤ x4 < x5 < 1



Example 2:

cc of the planar 1 + n-problem with infinitesimal masses.

J. M. Cors, J. Llibre, M. Ollé, Cel. mech. and dynam.

astron. 89(4), 319–342 (2004)

We consider N = 1 + n,

q(ε) = (q0(ε), q1(ε), . . . , qn(ε)) ∈ C̃ be a central configu-

ration of the planar 1 + n body problem with m0 = 1,

mi = ε, i = 1, ..., n.

Def. q = (q0, q1, ..., qN) is a central configuration of the

planar 1+n body problem if there exists limε→0 q(ε) and

this limit is equal to q.

Proposition All central configurations of the planar 1+

n body problem lie on a circle centered at q0 = 0.



Proposition Let q = (q0, ..., qn) be a non–collision cen-

tral configuration of the planar 1 + n body problem. De-

noting by αi the angle defined by the position of the i–th

infinitesimal mass on a circle centered at q0 = 0, we have

for i = 1, ..., n

n∑
j=1,j �=i

sin(αj − αi)


1 − 1

2
√

2
√
(1 − cos(αj − αi))3


 = 0,

(1)

We assume that the circle has radius 1 and that α1 = 0.

We take as coordinates the angles

θi = αi+1 − αi, i = 1, ..., n − 1.

and

θn = 2π − n−1∑
i=1

θi



Let

f(θ) = sin θ


1 − 1

2
√

2
√
(1 − cos θ)3


 .

Central configurations iff

f(θ1) + f(θ1 + θ2) + · · · + f(θ1 + ... + θn−1) = 0,

f(θ2) + f(θ2 + θ3) + · · · + f(θ2 + ... + θn) = 0,

f(θ3) + f(θ3 + θ4) + · · · + f(θ3 + ... + θn + θ1) = 0,

· · ·
f(θn−1) + f(θn−1 + θn) + · · · +
+f(θn−1 + θn + θ1 + · · · + θn−3) = 0,

θ1 + · · · + θn = 2π.

Proposition The regular n-gon is always a central con

figuration of the 1 + n problem.



– Conjecture: for 9 ≤ n, only one cc .

Conjecture proved for n large enough: there exists only

one cc (the regular n-gon) if n ≈ exp(73) (Casasayas,

Llibre, Nunes, ’94).

– Conjecture: All the central configurations of the

1 + n body problem are symmetric with respect to a

straight line.

– Analytical results for small n:

n = 2, Euler and Lagrange

n = 3, Hall (unpublished paper)

n = 4, Cors, LLibre and Ollé (2004)


