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Abstract  

In modern industries, mixed-model-assembly-lines (MMAL) are widely used. There are 
two principal kinds of industrial organization patterns, which called the United States 
Pattern and the Toyota (Japan) Patter. The United States Pattern will be studied in this 
article and the objective of this pattern is minimizing the utility and the idle time. 
Genetic algorithm is been used for solving the problem and more than 5000 examples 
have been designed. From the results, the better parameters for the assembly line and 
the genetic algorithm will be known.  
 
Keywords: Mixed-model-assembly-lines (MMAL), United States Pattern, Utility time,  
                   Idle time 
 
1. Introduction  
 
In many assembly systems, products are mounted on a conveyor belt and operators 
move alongside the belt while working on the product [Scholl, A. 1999]. In the closed 
station assembly systems, the operators should finish their operation within their 
stations; while in the assembly system with open stations, although the operators can do 
their operation out of their stations, it is preferable that the operators finish their work 
within an optimal sequence and do it as quickly as possible. In the case of closed 
stations, if the operators can’t finish their work within their stations, there are two quite 
different alternative approaches for completing the unfinished work; these are the 
United States Pattern and the Japan Pattern, which show the different industrial 
organization patterns in each country. 
 
In the United States Pattern, if the operators can’t finish their work within their stations, 
utility workers are employed on an ad hoc basis to finish work left undone by primary 
line operators [Tsai, Li, 1995], [Bhaba, R. et al 1998], while in Japan the operators push 
a stop button whenever they are unable to finish their work and let the conveyor move 
again when they have finished their work [Zhao, X. B. et al.1997] and [Zhao, X. B. et al. 
2000] 
 
 

* This research is supposed by the project of investigation of the Ministry of Science          
and Technology DPI2004 -03472 ¨Design and Equivalent of Assembly Line with 
Real Condition ¨, Spain. 
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In the assembly line, the work which can’t be finished within the station is called 
overload. Usually, the work overload is dealt with through the use of utility workers who 
either are dispatched to assist the regular workers during peak load situations, or are 
stationed at various points along the assembly line to complete the unfinished operations. 
The other alternative is to increase staff on the assembly line to handle estimated peak 
loads. This is an expensive solution, so a typical “real” solution would involve a 
combination of slight overstaffing and utility work. No matter what the staffing policy is, 
it is clear that minimizing the work overload contributes to reducing the total load cost 
[Yano, C. A. et al 1991].  
 

The mathematical formula for this objective is Min k
n

1 1
ut  

N K

n k= =
∑∑ , where k

nut the total utility 

time (Utility time is the time needed for completing the unfinished work-pieces which 
the normal operator has not completed when he arrives at the border of the station) of 
the conveyor, k and n is are the number of stations and the work-piece models 
respectively; in this article, while minimizing the utility time, the idle time is also 

minimized. The mathematical formula is
1 1

N K
k
n

n k
Min it

= =
∑∑ , where k

nit  is the total idle time (a 

positive difference between the cycle time and the station time is called idle time) of 
the assembly line.  
 
This article will talk about the United States Pattern; the objective of this pattern is 
minimizing the utility and the idle time. Genetic algorithm is been used for solving the 
problem and more than 5000 examples have been designed. The results will show the 
better parameters for the assembly line and the genetic algorithm.  
 
According to the classification of assembly line [Niu, H.  et al 2005],  the United States 
Pattern can be classified as follows: 
 

• The products:  
  
In this article, it is supposed that the type of product corresponds to the mixed-model-
assembly-line; the launching interval discipline is fixed rate launching; and the position 
of the products is also fixed. 
 

• The assembly line: 
 
In this article, it is supposed that the layout of time is serial; the line is paced; the type of 
the station is left-side open (except the first station) and right side closed; the length of 
the line is deterministic; this pattern is the United States Pattern without consideration of 
the set-up time.  
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• The operator: 
 
In this article, it is supposed that the velocity of the operator is considered and can vary 
from operator to operator; both utility and idle time exist; the operation time is 
deterministic; the operator schedules is Later Start and the operator only works at one 
station.  
 

• The objective: 
 
The objective of the pattern is to minimize the utility time and the idle time.  
 
The above considerations can be seen in Fig. 1. 
 
Thompoulos, N. T. [1967] and Macaskill, J. L. C. [1972] developed approximate 
algorithm to minimize the sum of utility work, idle time, deficiency and congestion, their 
paper shows that single-model line balancing techniques are adaptable to mixed-model 
schedules, and also shows that sequencing can be used to increase efficiency on the 
mixed-model assembly line. Okamura, A. et al [1979] presented a heuristic algorithm to 
minimize the risk of conveyor stoppage. Their heuristic approach sought to reduce 
maximum displacement by inserting and interchanging products. Their paper proposes 
one method only for small-scale, mixed-model sequencing problems and uses an 
improved branch and bound method as its application. Yano, C. A. et al [1991] gave a 
mathematical programming formula for the problem of minimizing total utility work at a 
single station and for products with arbitrary processing times.  
 
Although there has been research into this objective of minimizing the utility time and 
idle time, until now there have not been many articles concerning the use of genetic 
algorithm with the added consideration of the velocity of the operator.  
 
The thesis starts with the introduction. The second part aims at explaining the notations 
which used in this article; the third part presents the process of the United States Pattern 
and the calculation part; the fourth part describes program and the genetic algorithm of 
this article; the fifth is the design experiment which has been done in this research and the 
last part is the conclusion of this article.  
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                      Fig.1 the United States Pattern Assembly Line Classification  
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2. Notations and Equations of the United-States Pattern.  
 
2.1. Notations  
 
In this article, the following notation is used: 
 

k
mt            Operation time by worker k for model m (1,…, M) 

 
( )nπ       The nth unit in sequence π = {π (1),…, π (n)} 

 
( )

k
nTπ         Operation time by worker k for nth unit in the sequence 

 
Lk            The length of k work stations (k=1,…K) 
 
Mm          Minimal part set demand for model m (m=1,…, M) 
 

k
np           Starting position from the upstream boundary of work station k for the nth unit  

               in the sequence. 
 

k
nd           Upstream distance of work station k for the nth unit in the sequence 

 
k

nf           Completing position from the upstream boundary of work station k for the nth  
               unit in the sequence 
 

k
nut          Assembly line utility time caused by worker k for the nth units in the sequence 

 
k
nit           Idle time of worker k reaching the upstream boundary of work station after   

               completing the operation for the nth unit in the sequence 
 
UT(π )    Total utility time of the sequence π  
 
IT(π )     Total idle time of  sequence of π  
 
Vc            Velocity of the assembly line 
 
Vo             Velocity of the operator when walking upstream to the left boundary 
 
tc                    Window cycle time or launch interval time 
 
For all the notations above, K, tc, Vc, Vo , M, Lk, ( )nπ , k

nt  are the input variables 
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2.2. Calculation Process of the United States Pattern.  
 
Fig. 2 shows an example of the movement of operators in a left-side open station (except 
the first one) assembly line. In this assembly line, the conveyor has 6 work-pieces, 3 
models and 3 stations.   
 
The model sequence is shown on the horizontal while the station and the line length are 
shown on the vertical. The horizontal is labeled as j(m), meaning sequence j of model m 
where j is the index for a model that varies from 1-6, and m is the index for a model that 
varies between A, B and C. The horizontal solid arrows in Fig. 2 show the operators’ 
downstream movements while walking along with the work-piece. The tail and head of 
an arrow indicate the beginning and the end of a task on a work-piece at each station, 
respectively. The starting point k

np of a work-piece n and the processing time k
mt of a 

model m at station k are indicated by the general notation k
np ⋅ ( k

mt ) on each arrow in the 
figure. The diagonally drawn broken lines denote the operators’ upstream movements and 
the operator’s walk starts, in this example, from sequencing model B to C to B and so on 
at each station. In the left-side open station, an operator does not necessarily have to start 
working within his station; he can begin work at a station upstream by crossing his own 
station boundary. The starting point and the stopping point of the operator, the idle time 
and the utility time are also shown in this figure.  
 

 
 

Fig. 2 Left –side open station (Except the 1st one) and the movement of the assembly line 
 

Given the basic information and definitions of the assembly line, a mathematical equation 
can be formulated to relate utility time, idle time, upstream distance, the starting points 
and the completing points. These are as follows.  
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2.2.1. Starting Point and Completing Point 
 
Starting point 
 
When an operator reaches the downstream boundary of his station, no matter whether he 
has finished the work-piece or not, he walks back at a constant speed of Vo  to the starting 
point upstream at distance k

nd . The position of the starting point is: (some of the equations 
in this part are adapted from Bhaba, R. S et al [1998] and some changes have been made 
in the notations) 
 
        1

k
np + = k

np  +Vc ⋅ ( )
k

nTπ - Vc ⋅ k
nut – k

nd                                                                                                            (1) 
 
If the operator starts assembling the work-piece at a position upstream, he is not allowed 
to interfere with the operator who works in the preceding station. Suppose 1

k
np + , is the 

starting point at (n+1)th station for the kth work-piece, then 1
k
np +    must be beyond the end 

of the nth station upstream for the same work-piece. Therefore the constraint of the 
starting point is  
 
        1

( )
k k k
n n c np p V Tπ
+ ≥ + ⋅                                                                                             (2) 

 
The equation above shows that the next starting point of an operator at station n for the 
next work-piece depends on the current starting point of the work and the assembly time 
of scheduled work-piece. The configuration of the starting point is shown in Fig. 3. 
 
Completing Point 
 
Here two cases are considered:  
 

A) If the operator finishes the work-piece before he arrives at the right-side boundary 
of his station there is no utility time and he goes back upstream to work on the 
next work-piece; the completing point is where the operator finishes his work-
piece 

 
B) If the operator arrives at the right-side boundary and doesn’t finish his work, then 

there is utility time; in this situation, the completing point is the left-side boundary. 
The mathematical equation for the completing point is as follows:  

 
         k

nf = k
np +Vc ⋅ ( )

k
nTπ - Vc ⋅ k

nut                                                                                 (3) 
         
Comparing the equations (1) and (3), the completing point can be expressed as:  
 
         1

k
np + = k

nf – k
nd                                                                                                                                                             (4) 

 
The configuration of the completing point is shown in Fig.3. 
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2.2.2. Utility time and Idle Time  
 
Utility Time 
 
In the right-side open station, the operator moves downstream at a speed of Vc from the 
starting point k

np  while assembling the kth work-piece. The total lengths of all preceding 
stations including the current station is L1 + L2 +…Ln . Therefore the distance that the 
operator works on this work-piece is the difference between L1 + L2 +…Ln and the 
starting point, that is: L1 + L2 +…Ln - k

np . The time that is used by the conveyor to move 
through this distance is (L1 + L2 +…Ln - k

np )/ Vc.  When the operator can't finish his work-
piece by the time he reaches the right-side boundary, a utility operator is employed to 
work on the incomplete work-piece offline for a time which is:  
 
         ( )

k
nTπ - (L1 + L2 +…Ln - k

np )/Vc                     
 
Because k

nut ≥0, the mathematical equation of utility time can be expressed as: 
 
         k

nut  = Max { ( )
k

nTπ -(L1 + L2 +…Ln - k
np )/Vc , 0}                                                      (5) 

 
From the equation above, it is clear that the utility time depends on the assembly time of 
the sequenced model, the starting point of the work-piece and the lengths of stations. 
 
Idle Time 
 
Idle time results when an operator is kept waiting for the next work-piece to arrive when 
he has finished the previous work-piece and has gone back upstream. Idle time occurs 
when the time needed for an operator to move upstream to meet the next work-piece is 
longer than the maximum time allowed for this.  
 
Suppose that the time for an operator moving upstream until the starting point 1

k
np +  is 

k
nd /V0 , and the time for the work-piece moving through the distance is tc - k

nd /Vc, then the 
idle time k

nit  for an operator waiting for (k+1)th work-piece to enter his work area is tc -
k
nd /Vc - k

nd /V0 = tc – k
nd (1/Vc+1/V0 ). Since k

nit 0≥ , the mathematical equation of idle time 
can be expressed as: 
 
         k

nit = Max {tc – k
nd (1/Vc+1/ V0 ), 0}                                                                       (6) 

 
From the equation above, one can observe that the idle time depends on the cycle time or 
the launch interval time, the operator’s upstream distance and the speed of the conveyor 
and the worker.  
 
The configuration of the utility time and the idle time are shown in Fig. 3. 
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2.2.3. Upstream Distance   
 
The operator’s upstream distance differs from model to model due to variable assembly 
time, starting point and length of station (Fig.3). There are two cases: 
 

 
Fig. 3 Operator Moving within a Station (Adopted from Bhaba, R. S. et al [1998]) 

 
The operator waits for the work-piece to enter his allowed working area. All stations are 
considered left-side open except the first one. When the operator waits for the next work-
piece to enter the station area, the maximum upstream distance k

nd  is as follows: 
  
         k

nd = 1k
np + - k

np +Vc ⋅ ( )
k

nTπ - Vc ⋅  k
nut                                                                         (7) 

 
The operator starts work within his station 
 
If the next work-piece has entered his station as the operator goes back to the left-side 
boundary, then the new starting point will be within this boundary. For the cycle time or 
the launch interval and the conveyor speed are tc and Vc respectively, the distance 
between any adjacent work-pieces is tc ⋅Vc; the speed of the operator returning upstream 
is V0, the time for the operator to access the work-piece is k

nd /V0. The time for the work-
piece moving downstream to meet the operator is (tc ⋅Vc - k

nd )/Vc, these two times are the 
same, that is:  
            

         
0

k k
n c c n

c

d t V d
V V

⋅ −
=   Or    0

0

( )k c
n c

c

Vd t V
V V

= ⋅ ⋅
+

                                                      (8) 

 
Considering the equations (7) and (8), upstream distance  k

nd  can be expressed as follows: 
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k
nd =Min { 1k

np + - k
np +Vc ⋅ ( ( )

k
nTπ - k

nut ), 0
0

( )c
c

c

Vt V
V V

⋅ ⋅
+

}                                       (9) 

 
3. Program 
 
Considering the complexity of the mixed-model-assembly line, in this article a 
combinatorial optimization program called MMAL is used.  
 
The program include two parts, the first is the calculation part, which calculates the 
starting point, the completing point, utility time, idle time and the upstream distance; the 
second part uses the genetic algorithm to obtain the optimal selection. These two parts 
were carried out in Visual Basic 6.0 on a Pentium 200 MHz computer. The general 
diagram of the program is shown as Fig. 4.  
 
             
                        
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 4 General Diagram of the Program 
 

 
3.1 Calculation Part    
 
The following notation is used: 
 
The processes of the calculation are follows:  
 

 Input the data of K, ct , cv , kv , kL , M and k
nt . 

Read the data 

START

Genetic Algorithm  
 
 

  

END

Show the results 

            G=Max? 
no 

yes 

The calculation part of  The U.S.A Pattern
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 Input the data of ( )nπ . 

 
 The beginning of the program.  

 
 Begin to calculate k

nut  of every station.  
 

 Calculate every station when there is utility time.  
 

 Calculate  k
nf   

 
 Calculate k

np  
 

 Calculate k
nd    

 
 Calculate k

nit  
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           Fig. 5 Calculation Part of the Program of the United States Pattern  
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          n=N? 
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END
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       k-K? 
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  Initialization of stations  

Next Station 
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no 
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nt ,Vc …
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3.2 Genetic Algorithm Part 
 
The diagram of the second part of the program that is the Genetic Algorithm part is 
shown as Fig. 6. 
 
 

 
       
       Fig. 6 Genetic Algorithm Part of the Program of the United States Pattern 

Select the population 

Evaluate the objective function 
 

    Crossover, Pcross 

Recombination 

Mutation, Pmut 

Save the best of all the generations

Generate the first population

Input parameters G, Pcross, Pop, 
Lseq, Pmut 

        G =1 

END

Show the result 

Save the best of current generation

            G=Max? 
no 

Start 

yes
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3.2.1 Initialization  
 
Initialization is the first step of the GA. Normally, a population of chromosomes is 
created, and each chromosome is initialized randomly.  
 
3.2.2 Selection 
 
For the selection process, a roulette wheel with slots sized according to fitness is used. 
The roulette wheel is constructed as follows [Michalewicz, Z. 1999]: 
 
Calculate the fitness value eval (vi) for each chromosome vi (i=1, …, pop_size). 

Find the total fitness of the population F =
_

1
( )pop size

ii
eval v

=∑ . 
 
Calculate the probability of a selection pi for each chromosome vi (i=1,…, pop_size): pi 
=eval(vi)/F. 
 
Calculate a cumulative probability qi for each chromosome vi (i=1,…, pop size): 

               qi = 1

i
jj

p
=∑  

 
The selection process is based on spinning the roulette wheel pop_size times; each time 
select a single chromosome for a new population in the following way: 
 
Generate a random number r from the range [0…1]. 
 
If r < qi then select the first chromosome (vi); otherwise select the i-th chromosome vi 
( 2 _i pop size≤ ≤ ) such that qi <r<qi . 

 
According to the Schema Theorem [Michalewicz, Z. 1999], the best chromosome acquire 
more copies, the average stay even, and the worst die off. So obviously, some 
chromosomes would be selected more than once.  
 
3.2.3 Crossover 
 
For realizing crossover between the solutions, it should be defined that one result would 
be one possible sequence for the assembly line. This means that the model and the 
number of every model of the work-piece should be equal before and after crossover. In 
this chapter, order crossover (OX) is utilized. After the crossover, the number of the 
offspring is equal to their parents. 
 
3.2.4 Mutation 
 
Sometimes, mutation is performed so that a solution or a sequence has an occasional trait 
that is unique from its parents. This is done so that diversity remains in the gene pool, 
where the diversity component contributes to robustness in the solution population. In 
this chapter, the traditional way is used. 
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It is the same as the process of crossover. The result should be defined so that the model 
and the number of every model of the work-piece are equal before and after mutation, the 
number of the offspring is equal to their parents.  
 
4. Design Experiment   
 
For finding the best sequence for the work-pieces with the least idle time and the utility 
time of the conveyor, this section will discuss the problem of how to select the 
parameters of the genetic algorithm according to the different parameters of the assembly 
line (numbers of units, models, stations, and the minimal part set) so that this objective 
can be achieved. 

 
Name Description Range Value 
Unit Total number of the work-piece needed 

to fabricate 
1)Medium 
2)Large 

1) 20 
2) 50 

Model Total kinds of the work-piece needed to 
fabricate 

1)Medium 
2)Large 

1) 6 
2) 12 

Station Total number of the station in the 
conveyor 

1)Medium 
2)Large 

1) 5 
2) 15 

Minimal part 
set 

A smallest possible set of product type 
quantities, to be called the 
multiplicities, in which the numbers of 
assembled products of the various types 
are in the desired ratios. 

1)A/B/C…/N 
A=B=C…N 
2)A/B/C…/N 
A=50% 
B=C…N 

For example: 
20 work-pieces 
5 stations: 
1)3/3/3/3/3/5 
2)10/2/2/2/2/2 

Population 
size 

Number of individuals in each 
generation of the GA 

1)Small 
2)Medium 
3)Large 

1) 25 
2) 50 
3) 70 

Maximum 
generation 

Maximum number of generation 1)Small 
2)Medium 
3)Large 

1) 30 
2) 75 
3) 100 

Crossover 
ratio 

Fraction of selected pairs undergo 
crossover 

1)Small 
2)Medium 
3)Large 

1) 20 
2) 45 
3) 80 

Mutation ratio Percentage of genes in the population 
which are replaced with random values 
each generation. 

1)Small 
2)Medium 
3)Large 

1) 10 
2) 40 
3) 60 

 
Table 1  Parameters Utilized in the Design Experiment 

 
Here, a design experiment will be performed with the parameters of the assembly line 
and the parameters of Genetic Algorithm. The parameters of the assembly line are: 
number of units, number of models, number stations and the minimal part set - the first 
three parameters will be changed randomly between medium and large quantity (the 
small quantity is quite easy and will not be explained here); the minimal part set will be 
changed in two cases: one is where the number of all the models of the work-pieces are 
the same, which is called Case A; the second case is where the number of one model 
represent 50% of the quantity of all the models, the others models  are the same within 
the other 50% of all the quantity of the work-pieces, which is called Case B. The 
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parameters of the Genetic Algorithm are the population size, maximum generation, 
crossover ratio and mutation ratio; they will be changed randomly from small, medium to 
large quantity. Table 1 shows the parameters utilized in the design experiment 
 
4.1 How to Make the Design Experiment 
 
There are 20 parameters in this experiment, 6 of the assembly line, 12 of the genetic 
algorithm and 2 cases of the minimal part set. While one of them is fixed, other 
parameters change, so the numbers of experiments that will be done are 
24 ⋅34=16 ⋅81=1296. The combinations of the parameters are: Table 2. 

 
Unit-model-station Number of every model Number of every model 

20-6-5 A) 3/3/3/3/3/5 B) 10/2/2/2/2/2 
20-6-15 A) 3/3/3/3/3/5 B) 10/2/2/2/2/2 
20-12-5 A) 2/2/2/2/2/2/2/2/1/1/1/1 B) 9/1/1/1/1/1/1/1/1/1/1/1 
20-12-15 A) 2/2/2/2/2/2/2/2/1/1/1/1 B) 9/1/1/1/1/1/1/1/1/1/1/1 
50-6-5 A) 8/8/8/8/9/9 B) 25/5/5/5/5/5 
50-6-15 A) 8/8/8/8/9/9 B) 25/5/5/5/5/5 
50-12-5 A) 4/4/4/4/4/4/4/4/4/4/5/5 B) 25/3/3/3/2/2/2/2/2/2/2/2 
50-12-15 A) 4/4/4/4/4/4/4/4/4/4/5/5 B) 25/3/3/3/2/2/2/2/2/2/2/2 

 
                 Table 2 Combination of the Parameters in the Design Experiment  
 
Because the method of genetic algorithm is quite stochastic, in this experiment, every 
combination will be made four times, so the number of experiments is 1296 ⋅4=5184. The 
processes and the results of the experiments are shown in the figures and tables.  
 
4.2 The Processes and Results of the Experiments  
 

Unit-model station Number of every model Number of every model 
20-6-5 A) 3/3/3/3/3/5 B) 10/2/2/2/2/2 
20-6-15 A) 3/3/3/3/3/5 B) 10/2/2/2/2/2 (Example 1) 
20-12-5 A) 2/2/2/2/2/2/2/2/1/1/1/1 B) 9/1/1/1/1/1/1/1/1/1/1/1 (Example2) 
20-12-15 A) 2/2/2/2/2/2/2/2/1/1/1/1 B) 9/1/1/1/1/1/1/1/1/1/1/1 
50-6-5 A) 8/8/8/8/9/9 (Example 3) B) 25/5/5/5/5/5 
50-6-15 A) 8/8/8/8/9/9 B) 25/5/5/5/5/5 
50-12-5 A) 4/4/4/4/4/4/4/4/4/4/5/5 B) 25/3/3/3/2/2/2/2/2/2/2/2 
50-12-15 A)4/4/4/4/4/4/4/4/4/4/5/5(Example 4) B) 25/3/3/3/2/2/2/2/2/2/2/2 

 
                Table 3 Examples (in Boldface Type) in the Design Experiment 
 
From 5184 times of experiment with the 16 examples (8 examples and every one of them 
includes A and B cases ), four examples of these 16 will be shown (in Table 3, in 
boldface type), they are 20-6-15, when the minimal part set is case B (Example 1); 20-12-
5, when the minimal part set is case B (Example 2); 50-6-5, when the minimal part set is 
case A (Example3); 50-12-15, when the minimal part set is case A (Example 4).  
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Example One, 20-6-15 
 
The first Figure that will be shown is example 1, where the parameters of the assembly 
line are medium size in units and models, large size in stations and the minimal part set is 
case B; that is one model represents 50% of all the numbers of units, while the rest of the 
models are equal in number. In example 1, this means there are 10 work-pieces of one 
model, while for the other five models there are two.  

 
 
 

 
Fig 7 the First Part of Figure A-1 (Time is measured in seconds) 

 
Figure 7 shows one part of Figure A-1. Here the numbers and the letters are all explained 
to help understanding of Fig A-1. 
 
The results of this combination are shown followed:  
 
 
 
 
 
 
 
 
 
 
 
 
 
                                      Table 4 Experiment Result of Example 1 
 

M=10(mutation ratio is 10)    

 P=25(population size 25, first column) P=50(population size 50,second column) P=70(population size 70,the third column) 

G=30(maximum generation is 30)    

C=20(crossover ratio is 20)    

Idle time(in black color) 322(population size 25, idle time 322s ) 6779(population size 50, idle time 6779s) 10303(population size 70, idle time 10303s)
Utility time(in red color) 3( population size 25, utility time 3s) 38(population size 50, utility time 38s) 19(population size 70, utility time 19s) 

    
 
     

 
 
 
 
 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
 Medium     

P 

∗  Large V.G V.G V.G V.G 
 Small     
∗  Medium V.G V.G V.G V.G 

G 

 Large     
∗  Small  V.G V.G V.G 
 Medium     

C 

 Large V.G    
 Small     
 Medium     

M 

∗  Large V.G V.G V.G V.G 
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From the table above, we can conclude that when the parameters of the assembly line are 
within the range of medium size in unit and model, large size in station, and the minimal 
part set is case B, the optimal range of the parameters of the genetic algorithm, 
population size, maximum generation, crossover ration and mutation ratio are large, 
medium, small and large size respectively. 
 
The detail of other 3 examples 20-12-5, 50-6-5 and 50-12-15 are shown in Appendix.  
 
5. Conclusions  
 
In this article, we have looked at the United States Pattern. That is, that if the task can not 
be finished within the work stations of the assembly line, the operator continues to work 
on another work-piece, while a utility worker is employed to complete the unfinished 
work Here the objective is to minimize the utility time and the idle time. 
 
The sequencing problem with the goal of minimizing the total conveyor utility time and 
idle time has been formulated taking into account the walking times of the operators. 
Using genetic algorithm, a program has also been developed which is applicable to 
different scales of assembly lines. From the results it should be said that the program 
based on genetic algorithm works well and the calculation times for getting the results are 
all less than two minutes.  
 
With different combinations of the parameters of the assembly and genetic algorithm, 
more than 5,000 experiments have been done and we have seen the results above. That is 
with the United States Pattern, with a varied range of assembly lines, with the objective 
of minimizing the utility time and idle time, the optimal parameters of the genetic 
algorithm are shown as follows: 
 
For the parameters of the assembly line:  
 

• If the unit is in the medium range (in this article there are 20 units), the optimal 
parameters of the genetic algorithm are:  population size, medium; maximum 
generation, small; crossover ratio, small and mutation ratio, medium, 
respectively.  

 
• If the unit is in the large range (in this article there are 50 units), the optimal 

parameters of the genetic algorithm are: population size, small; maximum 
generation, medium; crossover ratio, large and mutation ratio, small, 
respectively.  

 
• If the model is in the medium range (in this article there are 6 models), the 

optimal parameters of the genetic algorithm are: population size, large; 
maximum generation, medium; crossover ratio, small and mutation ratio, small, 
respectively.  
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• If the model is in the large range (in this article there are 12 models), the 
optimal parameters of the genetic algorithm are all in medium sizes.  

 
• If the station is in the medium range (in this article there are 5 stations), the 

optimal parameters of the genetic algorithm are: population size, medium; 
maximum generation, medium; crossover ratio, small and mutation ratio, small, 
respectively.  

 
• If the station is in the large range (in this article there are 15 stations), the 

optimal parameters of the genetic algorithm are: population size, small; 
maximum generation, small; crossover ratio, medium and mutation ratio, small, 
respectively.  

 
• If the minimal part set is case A (in this article this means that all the models of 

the work-pieces are equal in number), the optimal parameters of the genetic 
algorithm are: population size, medium; maximum generation, small; crossover 
ratio, small and mutation ratio, small, respectively.  

 
• If the minimal part set is case B (in this article this means that one model 

represents 50% of all the work-pieces, and the other models are equal in 
number), the optimal parameters of the genetic algorithm are: population size, 
medium; maximum generation, medium; crossover ratio, small and mutation 
ratio, medium, respectively.  

 
From the resume above, it can be shown that for the United States Pattern most of the 
optimal parameters of the genetic algorithm are in small and medium sizes while cases of 
large sizes are very few. 

 
Since work overloads happen frequently in many mixed-model-assembly-lines, 
minimizing the total conveyor utility time and idle time is vitally important. The methods 
and results of this article will be useful for future research and investigation.  
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Appendix 
 
In this appendix, the detail of the design experiment of the four examples will be 
explained. 
 

1. Example 20-6-15 
 
About the Figure A-1, the explanation is:  
  

1) P means Population size, G means Maximum generation, C means Crossover 
ratio and M means Mutation ration. 

2) The idle time and the utility time are shown in figures respectively.  
3)  All the figures in this example are named Population size because the first, second   
     and the third point of every figure show the corresponding idle time and the utility    
      time when the population size is equal to 25, 50 and 70 respectively. 
4) The first, second and third column of figures are the results of M=10, M=40 and  

             M=60 respectively.  
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5)  The first three figures of the first line are the results of C=20, the second three 
figures of the second line are the results of C=45 and the third three figures of 
third line are the results of C=80. Again, the fourth three figures are the results 
C=20, and so on. 

 
6) The first nine figures are the results of when G=30, the second nine figures are the 

results of when G=75 and the third ones are when G=100. (Fig. A-1). 
 

M=10     M=40     M=60     
G=30               
C=20               
       P=25       P=50       P=70         P=25       P=50       P=70         P=25       P=50      P=70  
Idle time 322 6779 10303  5953 6371 8614  6141 158 8923 
Utility time 3 38 19  0 0 0  0 11 0 
 
                
               
               
               
               
               
               
               
 7360 6274 9162  8275 8025 251  2E+08 8044 5758 
 0 0 0  21 22 7  0 0 0 
 
                
               
               
               
               
               
               
               
 5E+10 9934 3E+06  8E+16 19511 2E+18  5E+18 19912 200 
 19 22 0  0 17 0  0 0 7 
 
                
               
               
               
               
               
               
               
 167 19816 1E+07  5848 19927 2E+13  1E+06 18680 231 
 3 0 0  0 12 27  27 0 4 
 
                
 4E+08 18030 5098  1E+12 20047 7855  1E+17 20172 153 
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 30 0 0  0 0 0  0 0 10 
 
                
               
               
               
               
               
               
               
 3E+18 164 6E+09  3E+18 8770 6E+09  119 9181 6E+09 
 0 10 0  0 0 0  19 0 0 
 
                
               
               
               
               
               
               
               
 6833 228 339  6285 6270 8634  7000 7820 8527 
 0 2 5  0 0 0  0 0 0 
 
                
               
               
               
               
               
               
               
 7370 7348 8474  7411 226 8796  2E+06 14010 8893 
 11 0 0  7 4 0  7 26 0 
 
                
               
               
               
               
               
               
               
 4E+16 163 162  1060 9512 9397  113 9209 9427 
 0 9 8  8 25 0  19 0 0 
 
                

Fig. 9 Population Size Diagram of Example1 
 

5.2.1.2 Results Analysis 
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From the figures above, it is shown that:  
 
A: About the idle time: 
 
In all the figures, there are thirteen cases of idle time less than 300 units (some 
explanations about selecting the standard for judging the idle time will be shown in 
5.6.2.2.2). When P=25 there are 3 cases, which represent 23.1% of the thirteen cases, 
when P=50 and P=70, there are 5 cases respectively, which represent 38.5% of all the 
thirteen cases respectively; when G=30, there are 3 cases, which represent 23.1% of the 
thirteen cases, and when G=75 and 100, there are 5 cases respectively, which represent 
38.5% of all the thirteen cases respectively; when C=20 there are 4 cases which represent 
30.8% of the thirteen cases, when C=45 and C=80, there are 3 and 6 cases respectively, 
which represent 23.1% and 46.1% respectively; when M=10, there are 5 cases, which 
represent 38.5% of the thirteen cases, when M=40 and M=60, there are 2 and 6 cases 
respectively which represent 15.4% and 46.1% respectively.  
 

 
Table A-1   Analysis of the Idle Time of Example 1 

 
So, when the idle time is less than 300 units, the optimal parameters of the genetic 
algorithm are P=50 and P=70, which are the medium and large size, G=75 and G=100, 
which are the medium and large size; C=80, which is large size and M=60 which also is 
the large size. The process of analysis can be explained in Table A-1, where ∗  means the 
optimal results.  
 
B: About the utility time:  
 
There are 49 cases in which the utility time equals zero, meaning that there isn’t any 
utility time, which is also what we want. Within these, there are 15 cases when P=25 and 
P=50 respectively, representing 30.6% respectively of all the 49 cases; 19 cases when 
P=70 which represent 38.8% of 49 cases; when G=30, 75 and 100, there are 16, 18 and 
15 cases respectively, which represent 32.7%, 36.7% and 30.6% respectively; when C=20, 
45 and 80, there are 16, 17 and 16 cases respectively, which represent 32.7%, 34.7% and 
32.7% respectively; when M=10, 40 and 60, there are 14, 17 and 18 cases respectively, 
which represent 28.6%, 34.7% and 36.7% respectively.  
 

         Parameters of GA 
Range                         

Population 
size 

Maximum 
generation 

Crossover 
ratio 

Mutation 
ratio 

Small size 3 23.1% 
 

 3 23.1%  4 30.8%  5 38.5%  

Medium size 5 38.5% ∗
 

5 38.5% ∗
 

3 23.1%  2 15.4%  

Large size 5 38.5% ∗
 

5 38.5% ∗
 

6 46.1% ∗
 

6 46.1% ∗
 

Total number  
and percentage 

13 100%  13 100%  13 100%  13 100%  
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So, when utility time equals zero, the optimal parameters of genetic algorithm are P=70, 
G=75, C=45 and M=60, which are large, medium, medium and large size respectively. 
The analysis process can be explained in Table A-2. 
 

         Parameters of GA 
Range                         

Population 
size 

Maximum 
generation 

Crossover 
ratio 

Mutation 
ratio 

Small size 15 30.6% 
 

 16 32.7%  16 32.7%  14 28.6%  

Medium size 15 30.6%  18 36.7% ∗
 

17 34.7% ∗  17 34.7%  

Large size 19 38.8% ∗
 

15 30.6%  16 32.7%  18 36.7% ∗
 

Total number 
and percentage 

49 100%  49 100%  49 100%  49 100%  

 
Table A-2  Analysis of the Utility Time of Example 1 

 
From A and B, that is, with the consideration of both the idle time and the utility time, we 
can make a preliminary experiment conclusion about this part:  
 

Item Best Range First running 
 Small  
 Medium  

P 

∗  Large V.G 
 Small  
∗  Medium V.G 

G 

 Large  
 Small  
 Medium  

C 

∗  Large V.G 
 Small  
 Medium  

M 

∗  Large V.G 

 
                                   Table A-3 Results for the first test of example 1 
 
For the combination example 1, that is for the parameters of the assembly line, medium 
size of unit and model, large size for the station, the optimal genetic algorithm parameters 
are all in large sizes. The results can be shown in Table A-3 (Where: G means good result 
and V.G means very good result, * means the best value). 
 
Because the genetic algorithm is quite stochastic, the test should be repeated in order to 
obtain more exact results.   
 
With the same parameters of the assembly line and genetic algorithm, the experiment is 
repeated another three times as above. Comparing all the figures, these are the following 
results: Table 4 (This table has been explained before).  
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2.  Example Two, 20-12-5 
 
The combination of example 2, which is 20-12-5, that is 20 units, 12 models and 5 
stations, the minimal part set is case B. 
 
2.1 Results Analysis 
 
A: About the idle time:  
 
There are nine cases equal to or less than 100 units (some explanations can be seen 
follows), when P=25, 50 and 70 there are 2, 3 and 4 cases respectively, which represent 
22.2%, 33.3% and 44.5% of the nine cases respectively;  when G=30, 75 and 100, there 
are 3, 2 and 4 cases respectively, which represent 33.3%, 22.2% and 44.5% of nine cases 
respectively; when C=20, 45 and 80, there are 5, 2 and 2 cases respectively, which 
represent 55.6%, 22.2% and 22.2% respectively; when  M=10, 40 and 60,  there are 6, 2 
and 1 cases respectively, which represent 66.7%, 22.2% and 11.1% respectively. 
 
So, when the idle time is less than 100 units, the optimal parameters of the genetic 
algorithm are P=70, which is the large size; G=100, which is the large size; C=20, which 
is small size and M=10 which is also the small size.  
 
The analysis process is explained in Table A-4.  
 

 
Table A-4  Analysis of the Idle Time of Example 2 

 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
 Medium     

P 

∗  Large V.G V.G V.G V.G 
 Small     
∗  Medium V.G V.G V.G V.G 

G 

 Large     
∗  Small  V.G V.G V.G 
 Medium     

C 

 Large V.G    
 Small     
 Medium     

M 

∗  Large V.G V.G V.G V.G 

        Parameters of GA 
Range                         

Population 
size 

Maximum 
generation 

Crossover 
ratio 

Mutation 
ratio 

Small size 2 22.2% 
 

 3 33.3%  5 55.6% ∗  6 66.7% ∗  

Medium size 3 33.3% 
 

 2 22.2%  2 22.2%  2 22.2%  

Large size 4 44.5% ∗
 

4 44.5% ∗  2 22.2%  1 11.1%  

Total number 
and percentage 

9 100%  9 100%  9 100%  9 100%  
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Here two things should be noted: 
 

1) The standard for judging the idle time is different within the two examples above; 
for example 1 this is less than 300 units while for example 2 it is less than 100 
units, because of the different combinations of the parameters of the assembly 
line, and also of the genetic algorithm. Therefore, with the change in the actual 
idle time, the benchmark should be changed accordingly.  

 
2) In these experiments, the judging standard is decided by the results of idle time 

and utility time, and the number of the cases which are within the standard is 
variable with different combinations. Another method for deciding is that no 
matter the combination, the benchmark is always the best 10% or 20% of all the 
results of the idle time and utility time. This method can be used in later research.  

 
B: About the utility time:  
 
There are 19 cases where the utility time is equal to zero. Within them, when P= 25, 50 
and 70 respectively, there are 2, 12 and 5 cases respectively, which represent 10.5%, 
63.2% and 26.3% respectively; when G=30, 75 and 100, there are 7, 6 and 6 cases 
respectively, which represent 36.8%, 31.6% and 31.6% respectively; when C=20, 45 and 
80, there are 5, 6 and 8 cases, which represent 26.3%, 31.6% and 42.1% respectively; 
when M=10, 40 and 60, there are 4, 8 and 7 cases respectively, which represent 21.1%, 
42.1% and 36.8% respectively.  
 
So, when utility time equals zero, the optimal parameters of genetic algorithm are P=50, 
G=30, C=80 and M=40, which are medium, small, large and medium size respectively. 
The analysis process is explained in Table A-5. 
 
 

 
                 Table A-5  Analysis of the Idle Time of Example 2 
 
From A and B, a preliminary experiment conclusion about this part can be made as 
follows:  
For example 2, that is for the parameters of the assembly line which are medium size in 
units and station and large size in models, the optimal parameters of genetic algorithm are 
when population size is in medium size, maximum generations in small size, crossover 
ratio in large size, and mutation ratio in medium sizes.  

      Parameters of GA 
Range                         

Population 
size 

Maximum 
generation 

Crossover 
ratio 

Mutation 
ratio 

Small size 2 10.5% 
 

 7 36.8% ∗
 

5 26.3%  4 21.1%  

Medium size 12 63.2% 
 

∗
 

6 31.6%  6 31.6%  8 42.1% ∗
 

Large size 5 26.3%  6 31.6%  8 42.1% ∗
 

7 36.8%  

Total number 
and percentage 

19 100%  19 100%  19 100%  19 100%  
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With the same parameters of the assembly line and genetic algorithm, the experiment is 
repeated another three times as above. Comparing all the figures, the results are as 
follows: Table A-6.  
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
∗  Medium V.G V.G V.G V.G 

P 

 Large     
 Small   G G 
∗  Medium V.G  G G 

G 

 Large  V.G G G 
∗  Small V.G V.G V.G V.G 

 Medium     
C 

 Large     
 Small  G G G 
∗  Medium V.G G G G 

M 

 Large     

                              
Table A-6 Experiment Result of Example 2 

 
From this table, we can conclude that when the parameters of assembly line, number of 
units and stations are medium size, and the number of models is large size, the optimal 
range of the parameters of the genetic algorithm, population size, maximum generation, 
crossover ration and mutation ratio are medium, medium, small and medium size 
respectively.  
 
3.  Example Three, 50-6-5 
 
The combination of 50-6-5, which the units is 50 (large size), the number of model is 6 
(medium size) and the number of the station is 5 (media size), the minimal part set is case 
A. 
 
3.1 Results Analysis 
 
A: About the idle time:  
 
There are nineteen cases less than 50 units, when P=25, 50 and 70 there are 6, 7 and 6 
cases respectively, which represent 31.6%, 36.8% and 31.6% of the nineteen cases 
respectively; when G=30, 75 and 100, there are also 6, 7 and 6 cases respectively; when 
C=20, 45 and 80, there are 7, 4 and 8 cases respectively, which represent 36.8%, 21.1% 
and 42.1% respectively; when  M=10, 40 and 60,  there are 9, 4 and 6 cases respectively, 
which represent 47.4%, 21.1% and 31.6% respectively. 
 
So, when the idle time is less than 50 units, the optimal parameters of the genetic 
algorithm are P=50, which is the medium size; G=75, which also is the medium, C=80, 
which is the large size and M=10 which is the small size.  
 
The analysis process is explained in Table A-7.  
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   Parameters of GA 
Range                        

Population 
size 

Maximum 
generation 

Crossover 
ratio 

Mutation 
ratio 

Small size 6 31.6% 
 

 6 31.6%  7 36.8%  9 47.4% ∗
 

Medium size 7 36.8% 
 

∗
 

7 36.8% ∗
 

4 21.1%  4 21.1%  

Large size 6 31.6%  6 31.6%  8 42.1% ∗
 

6 31.6%  

Total number 
and percentage 

19 100%  19 100%  19 100%  19 100%  

 
              Table A-7   Analysis of the Idle Time of Example 3 

 
B: About the utility time:  
 
There are 34 cases where the utility time is equal to zero. Within them, when P= 25, 50 
and 70 respectively, there are 11, 10 and 13 cases respectively, which represent 32.4%, 
29.4% and 38.2% respectively; when G=30, 75 and 100, there are 6, 14 and 14 cases 
respectively, which represent 17.6%, 41.2% and 41.2% respectively; when C=20, 45 and 
80, there are also 6, 14 and 14 cases; when M=10, 40 and 60, there are 10, 13 and 11 
cases respectively, which represent 29.4%, 38.2% and 32.4% respectively.  
 
So, when utility time equals zero, the optimal parameters of genetic algorithm are P=70, 
G=75 or 100, C=45 or 80 and M=40, which are large, medium or large, medium or large 
and medium size respectively. The analysis process is explained in Table A-8. 
 

                  
Table A-8   Analysis of the Idle Time of Example 3 

 
From A and B, a preliminary experiment conclusion about this part can be made:  
 
For example 3, that is for the parameters of the assembly line which are medium size in 
model and station, and large size in units, the optimal parameters of genetic algorithm are 
when population size is in large size, maximum generations in medium size, crossover 
ratio in large size, and mutation ratio in small sizes.  
 

Parameters of GA 
Range                        

Population 
size 

Maximum 
generation 

Crossover 
ratio 

Mutation 
ratio 

Small size 11 32.4% 
 

 6 17.6%  6 17.6%  10 29.4%  

Medium size 10 29.4% 
 

 14 41.2% ∗
 

14 41.2% ∗
 

13 38.2% ∗
 

Large size 13 38.2% ∗
 

14 41.2% ∗
 

14 41.2% ∗
 

11 32.4%  

Total number 
and percentage 

34 100%  34 100%  34 100%  34 100%  
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With the same parameters of the assembly line and genetic algorithm, the experiment is 
repeated another three times as above. Comparing all the figures, the results are as 
follows: Table A-9.  
 
 
 
 
   
                                       
 
 

 
 
 
 
 
 

 
Table A-9  Experiment result of Example 3 

 
From the table above, a conclusion can be made that when the parameters of assembly 
line, number of units and stations are the medium size, the number of model is the large 
size, and the minimal part set is case A, the optimal range of the parameters of the genetic 
algorithm, population size, maximum generation, crossover ration and mutation ratio are 
large, medium, large and small size respectively.  
 
4.  Example Four, 50-12-15 
 
The example in this part is 50-12-15, where the number of units is 50 (large size), the 
number of models is 12 (large size) and the number of stations is 15 (large size); the 
minimal part set is case A. 
 
4.1 Results Analysis 
 
A: About the idle time:  
 
There are 10 cases equal to 136,000 units, when P=25, 50 and 70, there are 5, 3 and 2 
cases respectively, which represent 50%, 30% and 20%  of 10 cases respectively; when 
G=30, 75 and 100, there are 3, 6 and 1 cases respectively, which represent 30%, 60% 
and10% respectively; when C=20, 45 and 80, there are 3, 4 and 3 cases respectively, 
which represent 30%, 40% and 30% of the 10 cases respectively; when M=10, 40 and 60, 
there are 6, 2, and 2 cases respectively, which represent 60%, 20% and 20% of the 10 
cases respectively.  
 
So, when the idle time is less than 136,000 units, the optimal parameters of the genetic 
algorithm are P=25, which is the small size; G=75, which is the medium size; C=45, 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
 Medium   V.G  

P 

∗  Large V.G V.G  V.G 
 Small     
∗  Medium V.G V.G V.G V.G 

G 

 Large     
 Small     
 Medium     

C 

∗  Large V.G V.G V.G V.G 

∗  Small V.G V.G V.G V.G 
 Medium     

M 

 Large     
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which is medium size and M=10 which is the small size. The analysis process is 
explained in Table A-10 
 
   Parameters of GA 
Range                         

Population size Maximum 
generation 

Crossover ratio Mutation 
ratio 

Small size 5 50% 
 

∗
 

3 30%  3 30%  6 60% ∗
 

Medium size 3 30% 
 

 6 60% ∗
 

4 40% ∗
 

2 20%  

Large size 2 20%  1 10%  3 30%  2 20%  
Total number 

and percentage 
10 100

% 
 10 100

% 
 10 100

% 
 10 100

% 
 

 
Table A-10   Analysis of the Idle Time of Example 4 

 
B: About the utility time:  
 
There are 52 cases when the utility time is equal to zero, within them, when P=25, 50 and 
70, there are 12, 16 and 24 cases respectively, which represent 23.1%, 30.8% and 46.1% 
respectively; when G=30, 75 and 100, there are  18, 18 and 16 cases respectively, which 
represent 34.6%, 34.6% and 30.8% respectively; when C=20, 45 and 80, there are 19, 17 
and 16 cases respectively, which represent 36.5%, 32.7% and 30.8% respectively of 52; 
when M=10, 40 and 60, there are 17, 16 and 19 cases respectively, which represent 
32.7%, 30.8% and 36.5% respectively of all the 52 cases 
 
So, when the utility time equals to zero, the optimal parameters of the genetic algorithm 
are P=70, which is the large size; G=30 or 75, which is the small or medium size; C=20, 
which is small size and M=60 which is the large size. The analysis process is explained in 
Table A-11.  
 

   Parameters of GA 
Range                         

Population 
size 

Maximum 
generation 

Crossover 
ratio 

Mutation 
ratio 

Small size 12 23.1% 
 

 18 34.6% ∗
 

19 36.5% ∗
 

17 32.7%  

Medium size 16 30.8% 
 

 18 34.6% ∗
 

17 32.7%  16 30.8%  

Large size 24 46.1% ∗
 

16 30.8%  16 30.8%  19 36.5% ∗
 

Total number 
and percentage 

52 100%  52 100%  52 100%  52 100%  

 
Table A-11 Analysis of the Idle Time of Example 4 

 
With the consideration of A and B, a preliminary experiment conclusion about this part 
can be made:  
 
For example 4, that is when the parameters of the assembly line are all in large size, the 
optimal parameters of genetic algorithm are when population size are small and large size, 
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maximum generations is medium size, crossover ratio is medium size and mutation ratio 
is  small size.  
 
With the same parameters of the assembly line and genetic algorithm, the experiment is 
repeated three times as above. Comparing all the figures, the results are shown in Table 
A-12. 
 
From the table, we can conclude that in example 4, that is, under the condition of large 
size of all the parameters of the assembly line, the optimal parameters for the genetic 
algorithm are small population size and mutation ratio respectively, medium size for 
maximum generation and crossover ratio respectively.  
 
 
 
 
 
 
 
 
  

 
 
 
 

Table A-12 Experiment result of Example 4 
 

5.  Resume  
 
With different combinations of the parameters of the assembly line and genetic algorithm, 
more than 5,000 tests have been done. From these experiments, the following tables and 
conclusions can be made: 
 

• Table A-13, 20-6-5 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
∗  Medium V.G V.G V.G V.G 

P 

 Large     
 Small     
 Medium     

G 

∗  Large V.G V.G V.G V.G 

∗  Small V.G V.G V.G V.G 
 Medium     

C 

 Large     
∗  Small V.G V.G V.G V.G 
 Medium     

M 

 Large     

 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small V.G   G 
 Medium   V.G  

P 

 Large  V.G  G 
 Small     
∗  Medium V.G G V.G V.G 

G 

 Large  G   
 Small  V.G   
∗  Medium V.G  V.G V.G 

C 

 Large     
∗  Small  V.G V.G V.G 
 Medium     

M 

 Large V.G    
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From the table above, the conclusion of example 20-6-5, that is, under the conditions of 
small sizes of all the parameters of the assembly line, the optimal parameters for the 
genetic algorithm are medium size for population size, large size for maximum 
generation, small size for crossover ratio and mutation ratio respectively. 
 

• Table A-14, 20-6-5 in case B 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
 Medium     

P 

∗  Large V.G V.G V.G V.G 
 Small     
∗  Medium V.G V.G V.G V.G 

G 

 Large     
∗  Small V.G V.G  V.G 
 Medium     

C 

 Large   V.G  
 Small     
∗  Medium V.G V.G V.G V.G 

M 

 Large     
 
 
From the table above, when the parameters of the assembly line are all in medium size 
and the minimal part set is case B, the optimal parameters of the genetic algorithm are 
large population size, medium size maximum generation, small size crossover ratio, and 
medium size mutation ratio respectively.  
 

• Table A-15, 20-6-15 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small V.G    
∗  Medium  V.G  V.G 

P 

 Large   V.G  
∗  Small  V.G V.G  

 Medium V.G   V.G 
G 

 Large     
∗  Small V.G V.G  V.G 

 Medium     
C 

 Large   V.G  
 Small G G  G 
 Medium G G V.G G 

M 

∗  Large    G 

 
 
From the table above, when the parameters of the assembly line are medium size in units, 
medium size in models and large size in stations respectively, and the minimal part set is 
case A, the optimal parameters of the genetic algorithm are medium size population size, 
small size maximum generation and crossover ratio respectively, and medium size 
mutation ratio. 
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• Table 20-6-15 in case B (example 1) 

 
Item Best Range First 

running 
Second 
running 

Third 
running 

Fourth 
running 

 Small     
 Medium     

P 

∗  Large V.G V.G V.G V.G 
 Small     
∗  Medium G V.G V.G V.G 

G 

 Large G    
∗  Small  V.G V.G V.G 

 Medium     
C 

 Large V.G    
 Small     
 Medium     

M 

∗  Large V.G V.G V.G V.G 

 
This table has been explained in before 

 
• Table A-16, 20-12-5 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
∗  Medium V.G V.G V.G V.G 

P 

 Large     
∗  Small G G V.G V.G 

 Medium G G   
G 

 Large     
∗  Small V.G  V.G V.G 

 Medium  G   
C 

 Large  G   
∗  Small V.G V.G V.G V.G 

 Medium     
M 

 Large     

 
From the table above, when the parameters of the assembly line are medium size in units, 
large size in models and medium size in stations respectively, and the minimal part set is 
case A, the optimal parameters of the genetic algorithm are medium in population size, 
and small size in maximum generation, in crossover ratio and in mutation ratio 
respectively 
 

• Table 20-12-5 in case B (example 2) 
 
 

 
 
 
 
 
 
 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
∗  Medium V.G V.G V.G V.G 

P 

 Large     
 Small   G G 
∗  Medium V.G  G G 

G 
 

 Large  V.G G G 
∗  Small V.G V.G V.G V.G 
 Medium     

C 

 Large     
M  Small  G G G 

∗  Medium V.G G G G  
 Large     



 36

This table has been explained in before 
 

• Table A-17, 20-12-15 in case A 
 

 
Item Best Range First 

running 
Second 
running 

Third 
running 

Fourth 
running 

∗  Small V.G  V.G V.G 
 Medium  V.G   

P 

 Large     
∗  Small V.G V.G V.G V.G 
 Medium     

G 

 Large     
 Small   G  
 Medium     

C 

∗  Large V.G V.G G V.G 
 Small  V.G   
 Medium     

M 

∗  Large V.G  V.G V.G 

 
From the table above, when the parameters of the assembly line are medium size in units, 
large size in models and stations respectively, and the minimal part set is case A, the 
optimal parameters of the genetic algorithm are small size in population size and in 
maximum generation respectively, large size in crossover ratio, and in mutation ratio 
respectively 
 

• Table A-18, 20-12-15 in case B 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
From the table above, when the parameters of the assembly line are medium size unites, 
large size models and stations respectively, and the minimal part size in case B, the 
optimal parameters of the genetic algorithm are small size in population size, maximum 
generation and in crossover ratio respectively, large size in mutation ratio. 

 
 
 
 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small V.G V.G V.G V.G 
 Medium     

P 

 Large     
∗  Small V.G V.G  V.G 
 Medium   V.G  

G 

 Large     
∗  Small V.G V.G V.G V.G 

 Medium     

C 

 Large     
 Small     
 Medium     

M 

∗  Large V.G V.G V.G V.G 
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• Table 50-6-5 in case A (example 3) 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
 Medium   G G 

P 

∗  Large V.G V.G G G 
 Small     
∗  Medium V.G V.G V.G V.G 

G 

 Large     
 Small     
 Medium     

C 

∗  Large V.G V.G V.G V.G 

∗  Small V.G V.G V.G V.G 
 Medium     

M 

 Large     

 
This table has been explained in before 
 

• Table A-19,  50-6-5 in case B 
 
 
 

 
 
 
 
 
 
 
 
 
From the table above, when the parameters of the assembly line are large size in units, 
medium size in models and stations respectively, and the minimal part set is case B, the 
optimal parameters of the genetic algorithm are large size in population size, maximum 
generation and in mutation ratio respectively,  small size in crossover ratio. 
 

• Table A-20, 50-6-15 in case A 
 

 
 
 
 
 
 
 
 
 
 
 

Item Bes
t 

Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
 Medium     

P 

∗  Large V.G V.G V.G V.G 
 Small V.G    
 Medium  G G  

G 

∗  Large  G G V.G 

∗  Small V.G V.G V.G V.G 
 Medium     

C 

 Large     
 Small G G G  
 Medium    G 

M 

∗  Large G G G G 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
∗  Medium   V.G V.G 

P 

 Large V.G V.G   
∗  Small  V.G V.G V.G 
 Medium V.G    

G 

 Large     
 Small     
∗  Medium V.G V.G V.G V.G 

C 

 Large     
∗  Small V.G V.G V.G V.G 
 Medium     

M 

 Large     
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From the table above, when the parameters of the assembly line are large size in units, 
medium size in models, large size in stations respectively, and the minimal part set is 
case A, the optimal parameters of the genetic algorithm are medium size in population 
size and crossover ratio respectively, small size in maximum generation and in mutation 
ratio respectively 
 

• Table  A-21, 50-6-15 in case B 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small  V.G V.G V.G 
 Medium     

P 

 Large V.G    
 Small     
 Medium     

G 

∗  Large V.G V.G V.G V.G 
 Small     
∗  Medium V.G V.G V.G V.G 

C 

 Large     
∗  Small G V.G G V.G 
 Medium     

M 

 Large G  G  

 
 

From the table above, when the parameters of the assembly line are medium size in units, 
large size in models and medium size in stations respectively, and the minimal part set is 
case B, the optimal parameters of the genetic algorithm are small size in population size 
and mutation ratio respectively, large size in maximum generation, medium size in 
crossover ratio. 
 

• Table A-22,  50-12-5 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small V.G V.G V.G V.G 
 Medium     

P 

 Large     
∗  Small V.G V.G V.G V.G 
 Medium     

G 

 Large     

∗  Small G V.G V.G V.G 
 Medium     

C 

 Large G    
∗  Small V.G V.G V.G V.G 
 Medium     

M 

 Large     

 
 
From the table above, when the parameters of the assembly line are large sizes in units 
and models, and medium size in stations respectively and the minimal part set is case A, 
the optimal parameters of the genetic algorithm are all in small sizes. 
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• Table A-23, 50-12-5 in case B 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small  V.G   
∗  Medium V.G  V.G V.G 

P 

 Large     
 Small     
 Medium     

G 

∗  Large V.G V.G V.G V.G 
 Small     
∗  Medium V.G V.G V.G V.G 

C 

 Large     
∗  Small V.G V.G V.G V.G 
 Medium     

M 

 Large     

 
From the table above, when the parameters of the assembly line are large sizes in units 
and models and medium size in stations respectively, and the minimal part set is case B, 
the optimal parameters of the genetic algorithm are medium size in population size and 
crossover ratio, large size in maximum generation size and small size in mutation ratio.  
 

• Table 50-12-15 in case A (example 4) 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small V.G   V.G 
 Medium   V.G  

P 

 Large  V.G   
 Small     
∗  Medium V.G G V.G V.G 

G 

 Large  G   
 Small  V.G   
∗  Medium V.G  V.G V.G 

C 

 Large     
∗  Small  V.G V.G V.G 
 Medium     

M 

 Large V.G    

 
This table has been explained in before. 

 
• Table A-24,  50-12-15 in case B 

 
Item Best Range First 

running 
Second 
running 

Third 
running 

Fourth 
running 

 Small G   V.G 
∗  Medium G V.G V.G  

P 

 Large G    
∗  Small G V.G V.G V.G 
 Medium G    

G 

 Large     
 Small V.G   G 
∗  Medium  V.G V.G G 

C 

 Large    G 

 Small     
∗  Medium V.G V.G V.G V.G 

M 

 Large     



 40

From the table above, when the parameters of the assembly line are all in large size, and 
the minimal part set is case B, the optimal parameters of the genetic algorithm are all in 
medium size. 
 
In future research, investigation and practical application, the genetic algorithm above 
can be used if the industrial organization pattern is just like that of the United States 
Pattern, and the objective of the assembly line is to minimize idle time and utility time., 
This article has identified the optimal parameters corresponding to the genetic algorithm 
to be selected according to the scale of the assembly line. 
 


