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Abstract

Most of MEMS devices are actuated using electrostatic forces. Parallel or lateral plate
actuators are the types commonly used. Nevertheless, electrostatic actuation has some
limitations due to its non-linear nature. This work presents a methodic overview of the
existing techniques applied to the Micro-Electro-Mechanical Systems (MEMS) electrostatic
actuation modeling and their implications to the dynamic behavior of the electromechanical
system.

1 Introduction

The field of Micro-Electro-Mechanical Systems (MEMS) has undergone a startling revolution in
recent years. It is now possible to produce accelerometers less than one millimeter on a side,
functioning motors that can only be seen with the aid of a microscope, gears smaller than a human
hair, and needles so tiny they can deliver an injection without stimulating nerve cells.

The use of existing integrated circuit technology in the design and production of MEMS devices
allows these devices to be batch-manufactured, what in turn converts them due to their quantity
in almost inexpensive. The first sector to benefit from this revolution has been the automotive
industry, where devices and applications that once could only be dreamed about have suddenly
been made possible and are used everywhere.

The ability to manufacture mechanical parts such as resonators, sensors, gears and levers on
a micron length scale is not however the end of the story. The challenge is also to understand
and control the physical systems behavior on these scales. That is, an understanding of fluid,
electromagnetic, thermal, and mechanical forces on the micron length scale is necessary in order to
understand the operation and function of MEMS devices.

In this framework, the methods of actuation and sensing of this new devices have been a critically
important topic over the years. There is not a perfect method, and the decision usually depends
on the actual device and the specifications of the system.

The main actuation and sensing properties used in MEMS are

• Piezoresistivity: When a piezoresistive material is stressed, it reduces or increases its ability
to transport current. Using this property, movement can be measured as a current difference
between the two extremes of a deformed piezoresistive material.
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Table 1: Comparison between actuation/sensing methods [Kovacs, 1998]
Parameter Local circuits DC response Complex Linearity Issues

Piezoresistive strain NO YES + +++ High temperature dependance
Easy yo integrate

Piezoelectric force NO NO ++ ++ High sensitivity
Fabrication complex

Electrostatic displacement YES YES ++ poor Very simple
Low temperature coefficients

Thermal strain NO YES + poor Cooling problems
Interference with electronics

Magnetic displacement NO YES +++ + Very complex
Post fabrication

Optical displacement NO YES +++ +++ Difficult to implement

• Piezoelectricity: Piezoelectric materials deform under the influence of a voltage bias, or
reciprocally, under deformation generate a polarization between their extremes. Using this
relationship, movement can be controlled or sensed.

• Electrostatics: The polarization between two plates generates an electrostatic force between
them. This fact can be used to actuate the device. On the other hand, relative movement of
two polarized plates generates an induced current that can be sensed, and the movement is
proportional to the current.

• Thermal: Deformation of the materials due to thermal effects can be used to actuate devices,
forcing the increase of temperature in the device. A typical way of achieving the temperature
increase is feeding a high current through a conducting material and using the Joule effect.

• Electromagnetism: Magnetic fields generated by a current flowing through an spiral can be
used to actuate magnetic materials. Similarly, induced current can be used to sense movement
of a magnet.

• Optics: Reflectivity, transparency, ’admissibility’ of the materials can be used to sense and
actuate devices with the help of a light source and a light sensor. The diffraction of the light
in a gap, the light patterns of the light through a device, the reflected light in a mirror can
be used to extract movement or to induce movement to a MEMS device. Usually, the light
source would be a LED or would be carried by an optic fiber.

All of them have their advantages and drawbacks (Table 1 and Figure 1), and they are basically
related to the selected fabrication method. (See a comparison in [Burns et al., 1995])

Piezoresistive sensing is a common method in engineering to measure strain and displacements.
Metal strain gauges are used extensively in engineering. The same principles have been used with
semiconductors, and the case apply to doped-silicon or the different layers of material that can be
deposited in MEMS (SiO2, Al2O3). Piezoresistive sensing is easy to integrate, and many viable
applications exist [Chui et al., 1998], [Tortonese et al., 1993]. However, its temperature dependance
and fabrication stresses calibration reduce its market share [Lee, 1997].

Piezoelectric materials are used for actuation and sensing, but the sensing is limited due to
their lack of a DC response. Their properties are well known, and have been used for decades.
Most of the first sensors used piezoelectric actuation, and it is still used nowadays. However, their
high temperature sensitivity, nonlinear working zones and hysteresis prevent from using them more
often. When using silicon-based sensors, post-processing is needed to deposit the material. ZnO or
PVDF are typical materials used nowadays. Examples of piezoelectric applications could be beam
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Figure 1: Piezoresistive pressure sensor. Piezoelectric micro-positioner. Analog Devices ADXL150’s
electrostatic accelerometer

actuation and sensing [Gaucher et al., 1998] and actuation in microscopy [Itoh et al., 1996], [Minne
et al., 1995].

Thermal actuation and sensing relays on the use of the thermal deformations of the materials
that are used to build the device. The method is easy to implement, and there exist some working
devices using this phenomena [Huang and Lee, 2000], [Robert et al., 2003], [Oz and Fedder, 2003].
However, the difficulty of isolating the temperature changes to a fixed area, and the possible
interferences with control electronics or other thermally dependent elements, prevents from using
this method. [Jonsmann et al., 1999]

Magnetic actuation is a common method in the macroworld, however, it is no easily scaled
to the MEMS devices. The main problem is the reduction of the achievable forces in a factor
of ten thousand when the sizes are reduced by a factor of ten [Niarchos, 2003]. This fact,
combined with the constructive difficulties, leaves magnetic actuation application limited. However,
successful examples of application exist in the literature, as it could be in gyros [Dauwalter and
Ha, 2004], [M Hashimoto and Esashi, 1995] or relays [Tilmans et al., 1999].

Optical actuation and sensing is a desirable method, due to its non-interfering technology.
However, although some working devices exist [Lethbridge et al., 1993], [Zook et al., 1995] there
are considerable challenges for mass fabrication. The necessity of integrating a light source, building
reflecting surfaces and aligning the whole set-up, is time demanding and no batch-fabrication
implementation exist.

All these problems leave electrostatic actuation and sensing as a really desirable method.

Figure 2: Thermal vibromotor [Pai and Tien, 2000]. Optically excited microbeam [Zook et al.,
1995]. Micromachined Cu coils [Niarchos, 2003].
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Building a capacitor, with the existing fabrication methods is straightforward. One must put
together two parallel surfaces and then apply potential difference between the two parts to
obtain a good actuator or sensor. This simplicity has made electrostatic actuation and sensing
ubiquitous. One can find it in the first MEMS designs to build a gate transistor [Newell, 1968].
Nowadays, capacitive effects are used in resonators [Attia et al., 1998], accelerometers [Kuehnel,
1995], [Brosnihan et al., 1995], optical switches [Juneau et al., 2003], [Sane and Yazdi, 2003],
micro-grippers [Chu et al., 1996], micro force gauges [Roessig, 1995], micro-pumps [Teymoori and
Abbaspour-Sani, 2002], gyroscopes [Juneau, 1997], [Kranz et al., 2003], pressure sensors [Gupta
and Senturia, 1997], RF switches [Huang et al., 2003], and microscopy [Blanc et al., 1996], [Shiba
et al., 1998].

Even though practically and economically attractive, capacitive actuation has its own trade-offs
and challenges. On-chip amplification is usually needed for capacitive sensing, due to the fempto-
farad measure that must be achieved. Parasitic capacitances can affect the final read-out. And
finally, although large forces can be generated, they can be heavily non-linear.

Consequently, the good understanding of the phenomenons that take place is essential to obtain
a high performance device with electrostatic actuation and sensing. And this is more relevant
given the increasing number of new devices that are continuously designed using these methods of
actuation and sensing.

2 Problem Description

A basic building block of any electrostatically driven or sensed device is a microbeam. It forms
one side of a variable capacity air gap capacitor. Opposite to the microbeam lays the driving or
sensing electrode that completes the capacitor.

If a voltage is applied to the electrode, a force is generated on the beam that deflects under this
action. Alternatively, if the capacitance changes due to a deflection of the microbeam, the charge
redistribution and resulting flow of current can be detected. Examples of the typical configurations
are shown in Figure 3.

(a) (b)

(d)(c)

V

V

V

V

Figure 3: Basic MEMS capacitor configurations (a) Free-end beam. The beam bends under the
action of the force. The gap, and consequently the force, is not uniform. Maximum bending at
the end. (b) Clamped-clamped beam. The beam bends forming a not uniform gap. Force variable
depending on position. Maximum bending in the center. (c) Clamped-clamped beam. A parallel
plate added to maintain the gap uniform. Maximum bending in the center which defines the
capacitor gap. (d) Guided-end beam. Gap and force uniform. Maximum bending at the extreme
of both suspension-beams.
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When the goal is sensing displacement, a DC polarization voltage is applied to the capacitor,
and the generated current is usually detected with a transresistance amplifier [Roessig, 1998]. More
sophisticated sensing schemes can also be used to improve the detection. This includes complex
electronics designs based on impedance, capacitive or source/drain pick-off [Burstein, 1995]. Charge
detection schemes has also been investigated [Seeger and Boser, 2003].

When the goal is driving the beam, an electric load is applied to the microbeam. Depending on
the nature of the device, the electric load is composed of a DC polarization voltage and, sometimes,
an AC component designed to excite harmonic motions.

DC polarization is used to achieve permanent displacements of the beam. Moving optical
switches, adjusting elements, closing gate transistors, moving valves or acting micro-grippers are
typical applications.

However, in most cases, resonant devices are used. In that case, an AC component is added to
the driving voltage to excite the harmonic motions of the beam.

g

w
KB

M +

_

V

Figure 4: Scheme of a parallel plate actuator

Figure 4 shows the simplified lumped mass-spring system model of a MEMS device with a
parallel plate actuator. To understand the phenomena, one can turn to the energy of the electro-
mechanical system

T =
1

2
M ˙̂w2; Uk =

1

2
K ŵ2; Ue = −1

2

ε0 Ac

(g− ŵ)
V 2 (1)

E = T + Uk + Ue (2)

where ŵ is the displacement of the moving plate from its initial equilibrium, T is the kinetic energy
of the plate, Uk is the potential energy stored in the spring, Ue is the potential energy stored in the
parallel plate capacitor, and E the energy of the whole system.

The dynamics of the system is derived as follows, using Lagrange’s formulation,

d

dt

(
∂L

∂ ˙̂w

)
− ∂L

∂ŵ
=

∂W

∂ŵ
(3)

being L = T−Uk−Ue the Lagrangian of the system, and introducing the damping force, Fd = −B ˙̂w
as the only contributing force to the work (W ) of the system

M ¨̂w + K ŵ − 1

2

ε0 Ac

(g− ŵ)2
V 2 = −B ˙̂w (4)

5



This equation is the usual mass-spring-damper equation of dynamics.
From this formulation, the force generated between the parallel plates, using basic electrostatics,

takes the following form

F =
1

2

ε0 Ac

(g− ŵ)2
V 2 (5)

where ε0 is the dielectric constant, g is the initial gap between the plates, Ac is the area of the plates
and V is the applied voltage between the electrodes. As it can be observed, this force is inversely
proportional to the gap between the plates of the actuator. As the gap decreases, the generated
attractive force increases quadratically. The only opposing force to the electrostatic loading is the
mechanical restoring force (K).

If the voltage is increased, the gap decreases generating an incremented force. At some point the
mechanical forces defined by the spring cannot balance this force anymore. Once reached this state,
the electrodes will snap one against the other, and in most cases, the system would be permanently
disabled.

Consequently, the electrostatic loading has an upper limit beyond which the mechanical force
can no longer resist the opposing electrostatic force, thereby leading to the collapse of the structure.
This actuation instability phenomenon is known as pull-in, and the associated critical voltage is
called the Pull-in Voltage.

Several studies have investigated this behavior of microbeams under various loading conditions.
The earliest such study may be found in the pioneering work of Nathanson et al. [Nathanson et al.,
1967] [Newell, 1968]. In their study of a resonant gate transistor they constructed and analyzed
the mass-spring model of electrostatic actuation. They predicted and offered the first theoretical
explanation of the so-called pull-in instability.

Since then, numerous investigators have analyzed mathematical models of electrostatic
actuation in attempts to further understand and control the pull-in instability. Despite more
than three decades of work in the area of electrostatically actuated MEMS, the complete dynamics
of the electrostatic-elastic system is relatively unexplored.

There are a lot of aspects to be clarified. Some studies just center their goal in the immediate
application of the sensor, and a simple mass-spring model can approximate the basic dynamics.
However, these kind of models cannot predict the inherent nonlinearities of the electrostatic force
and the beam deformation ( [Chu et al., 1996], [Castañer and Senturia, 1999]).

Other approaches rely on the partial differential equations linearized around the working
point. Using this formulation, better results are achieved, but the dynamics only apply for small
deflections [Ijntema and Tilmans, 1992].

Other studies analyze the response of a microbeam to a generalized transverse excitation and
with axial force using Rayleigh’s energy method to approximate the fundamental natural frequency
of the straight, undeflected beam [Tilmans and Legtenberg, 1994].

Recently, some authors have used the nonlinear equation representing the idealized electrostatic
structure to analyze the behavior ( [Flores et al., 2003], [Abdel-Rahman et al., 2002]).

However, no unified formulation of the problem has been offered. Questions about where, when,
and how touchdown occurs are still to be answered. And this knowledge is essential to design and
implement the correct control of the new generation of high performance and self-calibrated MEMS
devices.
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3 Model Formulation

In this section, the complete idealized model of an electrostatically actuated beam is presented.
This model englobes the main characteristics that can be found in a large number of MEMS devices
which rely on electrostatic actuation.

The analysis of the different participating terms is presented separately, to address each aspect
of the dynamics. Finally, the complete formulation is presented together.

V

L

z

y

x

w

h

b

g

Figure 5: Basic scheme of a deflected beam

3.1 Mechanical model

In MEMS devices, we have a basic structure: the beam. This mechanical component, and its
extension, the plate, generate the majority of MEMS sensors and actuators. Consequently, the first
step to analyze the behavior of any device is to understand and model the dynamic characteristics
of a beam.

The deformation of a beam (Figure 5), using the Euler-Bernouilli theory of thin beams [Rao,
1990] is composed of two basic terms [Younis and Nayfeh, 2003], the potential energy generated
due to the deformation of the beam

Udef =
EI

2

∫ L

0

(
∂2ŵ

∂x̂2

)2

dx̂ (6)

that it’s proportional to its curvature, ∂2ŵ
∂x̂2 , and the kinetic energy due to its movement

T =
ρbh

2

∫ L

0

(
∂ŵ

∂t̂

)2

dx̂ (7)

where ŵ is the oscillation amplitude, ρ is the density of the beam, b and h are the width and height
of the section of the beam, L is the longitude of the beam, E is the Young Modulus and I is the
moment of inertia of the cross-section.

Typically in MEMS, a beam can also be externally stretched by an axial force N̂(t̂) (Figure 6).
This force could be generated by different sources: thermal load, fabrication stresses, external beam
tuning, etc. In this case, another energy term appears that englobes the deformation generated by
the external force

UN =
N̂(t̂)

2

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂ (8)

As can be observed, the deformation is proportional to the axial force.
Finally, in the case of large oscillations, the beam movement generates self-stretching forces that

actuate as structural damping. This effect can be accounted assuming that an internal force, P ,
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Input Force

Figure 6: Vibrating beam oscillating under the influence of an axial force

is producing an elongation of the beam. This force would have the following form [Rao and Raju,
2003], [Roessig, 1998]

P =
bhE

4L

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂ (9)

and, substituting this force in (8), we obtain the energy of deformation due to self-stretching [Younis
and Nayfeh, 2003]

Uint =
bhE

8L

[∫ L

0

(
∂ŵ

∂x̂

)2

dx̂

]2

(10)

The dynamic equation of the free deflection of an homogeneous beam undergoing bending can
be obtained using the Lagrange equations, from the Lagrangian

L = T − Udef − UN − Uint (11)

and it is written as follows

E’I
∂4ŵ

∂x̂4
+ ρA

∂2ŵ

∂t̂2
−

[
N̂(t̂) +

E’A

2L

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂

]
∂2ŵ

∂x̂2
= 0 (12)

where A = bh is the area of the section of the beam, and in this case, the extended Young Modulus,
E’ = E/(1 − ν2), is introduced to account for a wide microbeam (plate) where ν is the Poisson
ratio. For a narrow beam E’ = E.

As can be observed, the microbeam dynamics is composed of four terms: the beam resistance to
bending, the inertia due to movement, the beam stiffness due to the externally applied axial load
and mid-plane stretching due to elongation of the beam. The first three components are treated as
linear terms in the equation of motion, whereas the third component is represented by a nonlinear
term in the equation of motion.

For convenience, and uniformity with other formulations, we introduce the following
nondimensional variables

w =
ŵ

g
, x =

x̂

L
, t =

t̂

T
(13)

where T is a time-scale defined as T = (ρbhL4/(E’I))1/2. Writing down the equation in the non-
dimensional variables

∂4w

∂x4
+

∂2w

∂t2
− [α1Γ(w, w) + N ]

∂2w

∂x2
= 0 (14)

The parameters appearing in equation (14) can be defined as follows

α1 = 6
(g

h

)2

, N =
N̂L2

E’I
(15)

and the operator Γ is defined as

Γ(f1(x, t), f2(x, t)) =

∫ 1

0

∂f1

∂x

∂f2

∂x
dx
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being f1 and f2 any two functions of x and t.
Solving of the equations can be done numerically. However, to analyze the oscillation of the

beam, the partial differential formulation is usually simplified. One of the most common approaches
is to break down the partial differential equations into single-degree of freedom ordinary equations,
one for each mode of oscillation. The description of the output is presented as it will be used in
the following sections.

Assuming that beam response is composed of an infinite number of oscillation modes, the
displacement ŵ can be decomposed in

ŵ(x̂, t̂) =
∑

i

q̂i(t̂)φ̂i(x̂) (16)

where q̂i(t̂) is the time-dependent modal displacement for the oscillation mode i and φ̂i(x̂) is the
position-dependent modal shape. Substituting (16) in the equations of the potential energy of the
system and rearranging terms a spring-equivalent equation can be obtained [Roessig, 1998]

Ui = Udef,i + UN,i + Uint,i =[
EI
2

∫ L

0

(
∂2φ̂i

∂x̂2

)2

dx̂ + N̂(t̂)
2

∫ L

0

(
∂φ̂i

∂x̂

)2

dx̂

]
q̂2
i + bhE

8L

[∫ L

0

(
∂φ̂i

∂x̂

)2

dx̂

]2

q̂4
i = (17)

1
2
Keff,i · q̂2

i + 1
4
K3,eff,i · q̂4

i

And the same can be done for the kinetic energy

Ti =
ρbh

2

∫ L

0

φ̂2
i dx̂

∂2q̂i

∂t̂2
=

1

2
Meff,i · ¨̂q2

i (18)

where ( ˙ ) denotes time-derivative. And using the Lagrange formulation, the oscillation of each of
the infinite modes is governed by

Meff,i · ¨̂qi + Keff,i · q̂i + K3,eff,i · q̂3
i = 0 (19)

where

Meff,i = ρbh

∫ L

0

φ̂2
i dx̂ (20)

Keff,i = EI

∫ L

0

(
∂2φ̂i

∂x̂2

)2

dx̂ + N̂(t̂)

∫ L

0

(
∂φ̂i

∂x̂

)2

dx̂ (21)

K3,eff,i =
bhE

2L




∫ L

0

(
∂φ̂i

∂x̂

)2

dx̂




2

(22)

Using this approach, the behavior of the beam, for a given mode of vibration, can be approximated
by a mass-spring model, allowing to use known analysis techniques.

3.2 Electrostatic Actuation

In MEMS, the basic electrostatic system is a parallel-plates capacitor (Figure 7). In this case,
electrostatic forces are generated between two conducting elements separated a distance g by a
dielectric element. In MEMS, the dielectric is usually air. And an usual assumption is that the
distance g is differentially uniform between the two plates.
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Figure 7: Geometry of the idealized capacitor [Pelesko and Triolo, 2001]

Having these assumptions in mind, the electrostatic field φ between the plates of a capacitor
(Figure 7) satisfies

∇2φ = 0, (23)

φ(x̂, ŷ, g) = 0, x̂ε[−L/2, L/2], ŷε[−b/2, b/2] (24)

φ(x̂, ŷ, ŵ) = V · f(ŵ/g), x̂ε[−L/2, L/2], ŷε[−b/2, b/2] (25)

where ∇2 ≡ ∂
∂x̂

+ ∂
∂ŷ

+ ∂
∂ẑ

stands for the Laplacian operator, û is the displacement of each point
of the beam from ẑ = 0 , V is the applied voltage, and the dimensionless function f is used to
represent the fact that the voltage drop between the two plates may depend upon û [Pelesko and
Triolo, 2001]. It is of special importance to remember that û should satisfy equation (12).

If nondimensional variables are introduced as in (13),

ψ =
φ

V
, w =

ŵ

g
, x =

x̂

L
, y =

ŷ

b
, z =

ẑ

g
(26)

and substituted in equations (23)-(25), this yields

ε2

(
∂2ψ

∂x2
+ a2∂2ψ

∂y2

)
+

∂2ψ

∂z2
= 0, (27)

ψ(x, y, 1) = 0, xε[−1/2, 1/2], yε[−1/2, 1/2] (28)

ψ(x, y, w) = f(w), xε[−1/2, 1/2], yε[−1/2, 1/2] (29)

where ε = g
L

is an aspect ratio comparing the gap size to beam length and a = L
b

is an aspect ratio
of the beam design, comparing its length and width. Usually, in most applications the potential
difference, V , is fixed and then f(w) = 1.

Using basic electrostatics equations, the Potential Energy stored between the capacitor plates
is defined as [Jackson, 1962]

Ue(x, y, z) =
εV 2

2

∫

v

|E|2dv (30)

where V is the potential difference between the capacitor plates, ε is the permeativity constant of
the dielectric element between the plates (Free-space permeativity is ε0 = 8.854 · 10−12F/m),

∫
v

stands for the volume integral, | | stands for a 2-norm of a vector and given that the Electrostatic
field E is defined as

E = −∇ψ (31)
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where ∇ is the gradient operator. From equation (30), the force generated by the electrostatic
potential field in vacuum can be calculated as

F = −∇Ue = −ε0V
2

2
|∇ψ|2 (32)

Consequently, the key problem to define the electrostatic force is solving the equation (27) for
the electrostatic potential ψ.

Numerically, the potential can be calculated using finite elements [Pelesko and Triolo, 2001].
However, approximations can be done in order to develop the formulation.

The typical approximation is to consider that the plate width and longitude are considerably
large against the gap between the plates, what implies that the force lines are basically parallel and
the fringing fields are negligible. In this case, ε2 in equation (27) is small, and the terms that are
multiplied by this term can be ignored,

∂2ψ

∂z2
= 0 (33)

Then solving this equation for the potential ψ, it can be found that

ψ =
f(w)(1− z)

(1− w)
(34)

and the differential force generated by this potential is

F (x, y) = − ε0V
2

2g2(1− w)2
(35)

As can be observed, this approximation gives way to the expression of the force mostly used to
calculate the electrostatic force between two parallel plates

F = −1

2

ε0AcV
2

g2(1− w)2
(36)

where Ac is the area of the capacitor plate. This formulation is only valid if the force contribution
by the fringing fields that appear at the ends of the parallel plates can be assumed small compared
to the total force.

This approximation is shown to be valid for the small aspect ratio devices. In [Pelesko and Triolo,
2001] and [Pelesko, 2001a] comparison between both approaches are presented and justifications of
the validity of the approximation stated.

Another option to overcome the fringing fields is presented by [Nishiyama and Nakamura, 1990].
In this case, knowing that the charge distribution is not even and taking into account the effect of
the fringing fields, a normalized capacitance Cn is derived that includes this effects. If in a parallel
plate capacitor, the capacitance C is defined as the proportionality constant between the charge
and the applied voltage

C =
εbL

g
; Q = CV (37)

Then the fringing-field corrected capacitance C̃ is defined as

C̃ = CCn (38)

where

Cn = 1 + 4.246ϑ, 0 ≤ ϑ < 0.005 (39)

Cn = 1 +
√

11.0872ϑ2 + 0.001097, 0.005 ≤ ϑ < 0.05 (40)

Cn = 1 + 1.9861ϑ0.8258, 0.05 ≤ ϑ (41)
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given that ϑ = g/b is the aspect ratio of the gap against the width of the beam. The constants are
derived applying regression analysis to numerically obtained data. The model has been validated to
measured data [Nishiyama and Nakamura, 1990]. Other authors have obtained equivalent results
with different fitting formulas.

Consequently, with this approximation, the force can be computed with

U =
1

2
C̃V 2 =

1

2
CnCV 2 =

1

2
Cn

εbL

g
V 2 (42)

F = −∇U =
1

2
Cn

εAcV
2

g2(1− w)2
(43)

The derived expressions can be extended to non-uniform gap capacitors using sum of elementary
capacitors [Najar et al., 2005].

3.3 Damping in MEMS

In Micro Electro Mechanical Systems, there are two basic sources of damping forces: structural
damping and viscous damping (or aerodynamic damping).

The structural damping is generated by the molecular interaction in the material due to
deformations. It happens in the moving parts and at the anchoring points [Duwel et al., 2003]. The
main contribution has already been introduced in the mechanical model with the term including
internal forces due to stretching. If the amplitude of oscillation of the beam is small, the values of
these forces in materials like the polysilicon are negligible compared to the viscous damping effects.

The viscous damping effects appear due to the fluid that surrounds the MEMS device. The
generated forces can be specially large if the fluid is air. For this reason, most devices are packaged
in vacuum environments.
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Figure 8: (a) Couette flow damping between two plates that move parallel one to the other and its
velocity profile; (b) Squeeze film damping between two plates that move one against the other and
its velocity profile.

Two different types of viscous damping can be usually identified in micromachined moving
structures: couette flow damping and squeeze film damping.
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To analyze the generated forces, one can turn to classical fluid mechanics and use the Navier-
Stokes equations, which are composed of the continuity equation

Dρm

Dt
+ ρm∇U = 0 (44)

and the motion equation

ρm
DU

Dt
= −∇P + ρmg + η∇2U +

η

3
∇(∇ ·U) (45)

where ρm is the mass-density of the fluid, η is the viscosity (assumed to be constant), g is the
acceleration of gravity, P is the pressure of the fluid and U is the velocity of the fluid (bold symbol
denotes that is a vector) [Pelesko and Bernstein, 2003].

In the couette flow case, the damping force appears between two plates that move parallel
one to the other and are separated by a Newtonian fluid (Figure 8a) [Cho et al., 1994]. As the
distance between the plates is considered constant, the working regime is under incompressible
flow, meaning that the rate of change of density Dρm

Dt
is negligible. Under this circumstances, the

continuity equation (44) becomes
∇U = 0 (46)

and the Navier-Stokes equation of motion (45) reduces to

ρm
DU

Dt
= −∇P + ρmg + η∇2U (47)

for incompressible flow. The pressure and gravity terms can be combined introducing the position
vector r, and defining

P ∗ = P − ρmgr

Using this definition, the Navier-Stokes equation reduces to the following steady-flow equation

ρm
DU

Dt
= η∇2U−∇P ∗ (48)

From Figure 8a, it can be seen that the flow becomes perfectly one-dimensional away from the edges.
This aspect linked to condition (46) delimits that the velocity profile is composed of streamlines

U = Ux(y)ix (49)

and consequently,
∂U

∂t
= U · ∇U =

DU

Dt
= 0 (50)

Under these assumptions, and considering that no pressure gradient is generated by the moving
plate, the Navier-Stokes equation reduces to

∂2Ux

∂y2
= 0 (51)

giving a linear velocity profile as a solution.
If the fluid is liquid or gas, and the structures are relatively large (see [Veijola and Turowski,

2001] for correction in case of gas rarefication), one can apply the usual no-slip boundary condition,
to the profile in Figure 8a. Then the velocity is

Ux =
y

g
U (52)
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and the shear stress, using the Newtonian fluid condition, on the moving plate is

τ = −η
∂Ux

∂y
|y=g = −η

U

g
ix (53)

Finally, the couette damping force of the whole structure can be calculated as

Fcou = −η
Aov

g
U = ccouU (54)

where the force is directly proportional to the velocity of the structure. Aov is the area of overlapping
between the structures.

However, in MEMS actuated with parallel plate capacitors, the main source of damping is the
Squeeze film force. In this case, a moving plate move downwards and upwards from a fixed plate
(Figure 8b). In this movement, when the plates approach each other the pressure in the trapped
fluid increases, and the fluid is squeezed out through the edges of the plates. When the plates
separate, a sucking drag is generated due to the fluid filling back the gap.

To solve this case, we must return to the Navier-Stokes equation (45), but this time we need
the full compressible fluid equation. Consequently, to handle the analytical derivation, several
assumptions must be done in our system:

• The aspect ratio is large, meaning that the gap is smaller than the plates extent.

• The motion is slow, meaning that the inertial term can be neglected in front of the viscous
one, and the fluid works under Stokes flow.

• The pressure between the plates is homogeneous.

• The fluid flow at the edges of the plates follows a parabolic profile, defined by a Pousille-like
equation (Figure 8b).

• The gas behaves under the ideal gas law.

• The system is isothermal.

Under these assumptions, the behavior of the fluid is governed by the Reynolds equation [Hamrock,
1994]

12ηeff
∂Pd

∂t
= ∇[d3P∇P ] (55)

where P (x, y, t) is the pressure between the plates, d(x, y, t) is the distance between the parallel
plates, and ηeff is the corrected viscosity of the fluid, accounting for the rarefication effects due to
low pressure [Veijola et al., 1995]

ηeff =
η

1 + 9.638K1.159
n

(56)

where Kn = λ/g is the Knudsen number, which compares the mean free path of a fluid molecule
(λ) against the gap distance. The constants are experimentally obtained. In a typical MEMS
example, where λ is approximately 0.1 microns, the air is at atmospheric pressure and the gap is
of 2 microns, the value of Kn would be 0.05. The mean free path is inversely proportional to fluid
pressure.

Solution of equation (55) on P will lead to derivation of the squeeze film forces.

Fsq = (P − Pa) · Ac (57)
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where Pa is the static pressure force. As can be observed, the squeeze forces calculation is coupled
to the mechanical deflection of the beam [Nayfeh and Younis, 2004].

To approximate the damping forces, one must linearize equation (55) assuming small amplitude
motions. This way the gap distance and the pressure of the gap can be expressed as follows

d(x, y, t) = g− w(x, y, t) ; P (x, y, t) = Pa + P̄ (x, y, t) (58)

where w is the gap reduction and P̄ the pressure variations from the static pressure. Substitution
in (55) leads to

12ηeff

Pag3

(
g
∂P̄

∂t
− Pa

∂w

∂t

)
= ∇2P̄ =

∂2P̄

∂x2
+

∂2P̄

∂y2
(59)

From this equation [Nayfeh and Younis, 2004] has shown that numerical coupled perturbation
methods can predict experimental damping forces accurately.

If we add the assumption that the capacitor plates are long and narrow (a beam), the equation
can be much reduced due to the fact that the fluid movement is only in one direction (y-direction
in our device)

∂P̄

∂t
=

Pag
2

12ηeff

∂2P̄

∂y2
+

Pa

g

∂w

∂t
(60)

From this equation, one can solve for P̄ , obtaining the following force on the capacitors [Senturia,
2001], using Laplace transform

Fsq(s) =

[
96ηeffLb3

π4g3

∑

nodd

1

n4

1

1 + s
αn

]
sz(s) (61)

where

αn =
g2Pan

2π2

12ηeffb2
(62)

given that z(s) is the input displacement. As we are assuming small amplitudes, the first term of
the expansion is a good approximation of the force

Fsq(s) =

[
96ηeffLb3

π4g3

1

1 + s
ωc

]
sz(s) (63)

From this derivation two important parameters arise, the cut-off frequency, ωc

ωc =
π2g2Pa

12ηeffb2
(64)

and the squeeze number, σd,

σd =
π2ω

ωc

=
12ηeffb

2

g2Pa

ω (65)

The squeeze number allow to analyze the behavior of the squeeze film damping forces. When the
squeeze number decreases, due to low pressure or low frequencies of oscillation, the fluid force
becomes a pure damping force. However, at high frequencies or high squeeze number, a spring
force component appears and becomes dominant with the damping force still present. Example of
the contributions of each force can be found in [Senturia, 2001]. Similar analysis and discussions
are shown by [Andrews et al., 1993] and [Veijola et al., 1995] using the force decomposition derived
in [Blech, 1983].
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Consequently, squeeze film damping force can be reduced to

Fsq = csq(w, σd)
∂w

∂t
(66)

with damping and spring effects depending on σd [Wang et al., 2004].
Finally, the fluid damping effects in the model are the combination of squeeze film and couette

film damping, giving a final force

Fd = Fsq + Fcou = −η
Aov

g
U + (P − Pa) · Ac (67)

that can be generalized as

Fd = (csq + ccou)
∂w

∂t
= ĉd

∂w

∂t
(68)

3.4 Lumped system

The complete set of equations defining the behavior of the system can be obtained linking the
different energies and non-conservative forces acting in the system.

The kinetic energy is defined in (7)

T =
ρbh

2

∫ L

0

(
∂ŵ

∂t̂

)2

dx̂ (69)

The potential energy is composed of mechanical (6),(8),(10) and electrostatic terms (30)

U =
EI

2

∫ L

0

(
∂2ŵ

∂x̂2

)2

dx̂ +
N̂(t̂)

2

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂ +
bhE

8L

[∫ L

0

(
∂ŵ

∂x̂

)2

dx̂

]2

+
εV 2

2

∫

v

|∇ψ|2dv (70)

The fluid damping is the only non-conservative force (67)

Fd = −η
Aov

g
U + (P − Pa) · Ac (71)

Consequently, using Lagrange formulation and non-dimensional variables, the dynamics of the
system is as follows:

∂4w

∂x4
+

∂2w

∂t2
− [α1Γ(w, w) + N ]

∂2w

∂x2
= γV 2|∇ψ|2 − 12L4

E’ h3T

[
−η

Aov

g
U + (P − Pa) · Ac

]
(72)

given that the electrostatic potential and the fluid pressure satisfy the following conditions

ε2

(
∂2ψ

∂x2
+ a2∂2ψ

∂y2

)
+

∂2ψ

∂z2
= 0 (73)

12ηeff
∂Pd

∂t
= ∇[d3P∇P ] (74)

Linking the different formulations previously derived , the dynamics of the system can be reduced
to [Abdel-Rahman et al., 2003]:

∂2w

∂t2
+ c

∂w

∂t
+

∂4w

∂x4
− [α1Γ(w, w) + N ]

∂2w

∂x2
= γV 2|∇ψ|2 (75)
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w(0, t) = w(1, t) = 0, w′(0, t) = w′(1, t) = 0

And the parameters appearing in equation (75) can be defined as follows

c =
ĉd L4

E’ I T
, N = N̂L2

E’I

α1 = 6
(g

h

)2

, γ = 6ε0L4

E’ h3g
(76)

Equation (75) translates to the following formulation once the electrostatic force is approximated

∂2w

∂t2
+ c

∂w

∂t
+

∂4w

∂x4
− [α1Γ(w, w) + N ]

∂2w

∂x2
= κ

V 2

(1− w)2
(77)

where κ = 6Cnε0L4

E’ h3g3 using fringing fields correction.

4 Model solution

Once the model has been derived, one can analyze the behavior of the system.
In this section the different approaches to understand the system are presented and formulated.

With each approach the advantages and problems are presented, as well as, the implications to the
stability of the system.

4.1 Static solution

In the case of searching for the static solution of the system, the time-derivatives of the system
must be set to zero. Under these premises, only potential energy terms remain in our system and
the static solutions correspond to the equilibrium positions of the potential energy of the system,
that is

dU

dŵ
= 0 (78)

Consequently, the static deformation ws of the beam, under the action of a electrostatic forcing Vp

can be calculated from equation (75), if the time-derivatives are set to zero.
This way, the remaining terms are only position-dependant, and the partial differential equations

disappear:

d4ws

dx4
− [α1 Γ(ws, ws) + N ]

d2ws

dx2
= γV 2

p |∇ψ|2 (79)

ws = 0 and
dws

dx
= 0 at x = 0 and x = 1 (80)

Unfortunately, equation (79) do not generate a closed-form solution, due to its implicit nature. For
this reason, numerical methods must be used to solve the problem.

A possibility is shooting methods combined with nonlinear boundary-value problem solution
as in [Abdel-Rahman et al., 2003]. They apply the method to this model without fringing-fields
correction (Cn = 1).

d4ws

dx4
− [α1 Γ(ws, ws) + N ]

d2ws

dx2
= κ

V 2

(1− w)2
(81)

They show good agreement to experimental results, and argue that the inclusion of internal
stretching is essential to predict real displacements. This approach allows to numerically calculate
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the exact Static Pull-in Voltage using the same numerical method. Their analysis shows that
neglecting the nonlinear effects leads to underestimating the stability limits of the system. The
travel range taking into account the nonlinearities can be doubled.

Another option is to ignore the internal stretching, what reduces the model complexity, and use
a method as the backward Euler algorithm to solve for the static displacement as in [Ijntema and
Tilmans, 1992]:

d4ws

dx4
−N

d2ws

dx2
= κ

V 2

(1− w)2
(82)

[Tilmans and Legtenberg, 1994] solved the same static problem using the Rayleigh-Ritz method
assuming a combination of trial functions. They used this formulation to generate an analytical
expression for the pull-in voltage, based on energy methods. Even with the needed approximations
to solve the equations, the calculated values of the pull-in voltage were in good agreement with the
results of experiments they conducted on resonators of various lengths. The system approximation
generates good results while large amplitudes are not taken into account.

In [Zhou and Yang, 2003] numerical solutions are shown using the equation (82) and finite
elements analysis. General numerical solutions using finite elements with reduced-order energy
equations are presented in [Elata et al., 2003] using relaxation techniques. FEM solutions allow to
handle the complete deformation of the device, without focusing on the maximum amplitude, but
large computational time is needed.
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Figure 9: The Potential Energy levels of the a parallel-plate actuator system depend on the position
relative to the gap. Energy of the system versus normalized displacement for different applied
voltages are displayed for an example, including the Static Pull-in Voltage (60.34 V) and the
Dynamic Pull-in Voltage (55.43 V). The stable equilibrium corresponds with the static displacement
of the device.

Some elaborated solutions and behavior analysis are derived in [Bernstein et al., 2000] and
[Pelesko, 2001a] directly form the differential equations. To arrive to the solutions, a simplified
membrane model is used where the plate inertial and bending effects are neglected. However,
numerical implicit formula solution is also needed to evaluate the static solution.

d2u

dx2
=

β

(1 + u)2
(83)
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This analysis allows to define stability conditions based on implicit eigenvalue equations.
Most authors work with the mass-spring-damper model, as in Figure 4. This model losses insight

on the complete behavior of the system, but allow to analyze the system analytically, producing
important information for the design process. The behavior of the beam can be approximated
to that of a non-linear spring for a given deformation mode, as it has been shown in (19), and
approximations can also be obtained for the electrostatic force and damping, giving way to the
following formulation

Meff,i · ¨̂qi + Ceff,i · ˙̂qi + Keff,i · q̂i + K3,eff,i · q̂3
i = Fe (84)

In the static case, (84) simplifies to

Keff,i · q̂i + K3,eff,i · q̂3
i = Fe (85)

being a non-linear mass-spring equation. This model characterizes the beam stiffening due to large
deformations, that reduces the effective travel range of the beam [Roessig, 1998].

However, in most cases small amplitude of oscillation is considered [Vinokur, 2002], [Gretillat
et al., 1997] , allowing to use the linear formulation

K · q̂i = −1

2

ε0AcV
2

g2(1− w)2
(86)

With this model, the classical Static Pull-in Voltage (SPV ) equation is obtained (Figure 9),

SPV =

√
8

27

K g3
0

ε0 A
; ypin =

g0

3
(87)

which indicates the maximum voltage that can be applied without getting snapping. Substitution
of the voltage in the dynamics equation gives the maximum travel range in the static case, which
is one-third of the initial gap [Senturia, 2001].

4.2 Dynamic solution

If we want to analyze the transient response of the microbeam when a variable voltage load V (t)
is applied, the complete evolution of the energy of the system has to be taken into account. To
obtain solutions, the full set of equations (75) must be used.

Typical cases where the transient is of interest include micro-switches or mirror positioning,
where the time response is of great interest. In this cases, the voltage is usually applied as a
step-function or a ramp-function.

The use of numerical simulation to obtain the behavior of the system is mandatory if the
complete set of equations is used. MEMS exhibit non-linearities even when the displacements are
small, and the complete equations are needed to capture all the behavioral aspects.

The main dynamic nonlinear effects that will be detected on parallel-plate actuated MEMS are
the following [Rand, 2003]:

• Spring stiffening: The effect appears due to large amplitudes of oscillation. The deformation
of the beam cannot be considered linear anymore, and increases the beam resistance to
deformation (19). The resulting non-linear equation corresponds to the Duffing equation
(Figure 10a).
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• Spring softening: The electrostatic force function (36) can be approximated using Taylor
series. In that case, if only the first and second term are used, a negative spring term appears
in the system equations. This fact is usually detected as a natural frequency reduction while
increasing the voltage bias. This fact is used in some cases to adjust and trim the frequency
of MEMS resonators [Painter and Shkel, 2003].

• Parametric excitation: The spring softening generated by the electrostatic force can derive
to parametric excitation when an oscillatory force is used. In that case, the system behavior
is governed by a Mathieu equation [Butikov, 2004]. Particular analysis can be carried out to
analyze the parametric resonances and instabilities (Figure 10b).

• Hysteresis: Associated to the Duffing nonlinearity (Figure 10a), the system can derive to have
bifurcation points that generate hysteresis regions in the behavior of the system [Gui et al.,
1998], [Kaajakari et al., 2005].

• Chaos regions: Some works have analyzed the nonlinear behavior of parallel-plate actuated
MEMS detecting existence of chaotic regions that could restrict the stable range of actuation
of the devices [Liu et al., 2004] [Bienstman et al., 1998] [Wang et al., 1998].

(b)(a)

Figure 10: (a) Characteristic non-linear Duffing equation behavior of the frequency response of a
parallel plate oscillator. As the amplitude increases, a hysteresis appears [Gui et al., 1998] ; (b)
Characteristic profile of exponential growth during parametric excitation [Napoli et al., 2004]

A complete simulation of the system is presented in [Nayfeh and Younis, 2004], where the
modeling and simulation under the effect of squeeze-film damping is analyzed. They use the
compressible Reynolds equation coupled with the equation governing the plate deflection (72-74).
The model accounts for the electrostatic forcing of the capacitor air-gap, the restoring force of the
microplate and the applied in-plane loads. Perturbation methods are used to derive an analytical
expression for the pressure distribution. This expression is then substituted into the plate equation,
which is solved in turn using a finite-element method for the structural mode shapes, the pressure
distributions, the natural frequencies and the quality factors.

Without taking the damping into account, some works analyze the electro-mechanical behavior.
Analysis of the equations is carried out in [Xie et al., 2003] using a nonlinear modal analysis
approach based on the invariant manifold method. Using Galerkin method, the nonlinear partial
differential governing equation is decoupled into a set of nonlinear ordinary differential equations.
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Then the invariant manifold method is used to obtain the associated nonlinear modal shapes, and
modal motion governing equations. The model allows to examine the nonlinearities and the pull-
in phenomena. Similar results using shooting methods combined with nonlinear boundary-value
problem where presented in [Abdel-Rahman et al., 2002].

Using a simplified plate model (83), in [Flores et al., 2003] they obtain solutions of the system
operated in viscous regime. This simplified mathematical model allows to study a parabolic
equation of reaction-diffusion type. A central result of the paper is that when the applied voltage
is beyond the critical voltage where steady-state solutions cease to exist, the solution touches down
in finite time. Bounds on the touchdown time are computed and the structure of solutions near
touchdown are investigated.
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Figure 11: (a) Evolution of system’s energy of an example when a 30 V step-function is applied.
The Quality Factor in the example is 30. The initial energy corresponds to the potential energy
(mechanical and electrostatic). When the motion begins, the potential energy is converted to kinetic
energy and dissipation due to damping forces. The system’s energy descends until reaching the
stable equilibrium position; (b) Evolution of the pull-in voltage as a function of the Quality Factor
in a example. For high-Q environments, the pull-in voltage corresponds to the Dynamic Pull-in
Voltage. For low-Q environments, the pull-in voltage corresponds to the Static Pull-in Voltage.
The calculation were done with a linear mass-spring-damper model.

The equations can be reduced to mass-spring-damper formulation as in [Krylov et al., 2005]
and [Krylov and Maimon, 2004] in order to highlight leading dynamical phenomena through analysis
of simplified expressions. They develop a model using the Galerkin procedure with normal modes
as a basis. It accounts for the distributed nonlinear electrostatic forces, nonlinear squeezed film
damping, and rotational inertia of a mass carried by the beam. Special attention is paid to the
dynamics of the beam near instability points. The results generated by the model, and confirmed
experimentally, show that nonlinear damping leads to shrinkage of the spatial region where stable
motion is realizable. The model is useful to generate conclusions about the stability using the
simplest model of a parametrically excited system described by Mathieu and Hills equations.

Energy methods are used in [Ligterink et al., 2005] to analyze the transient behavior between
pull-in and release states. The concept of dynamic pull-in is addressed as well as hysteresis
phenomena. No evolution analysis are performed.

Using mass-spring-damper models, linked to FEM analysis, interesting results can also be
obtained. In [Han et al., 2005], model order reduction techniques are used to reduce the transient
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analysis time. To do this, an open-source software performs model order reductions via the block
Arnoldi algorithm directly to ANSYS finite element models.

On the other hand, direct analysis over the linear model can be useful in several applications
(Figure 11a). The nonlinear behavior of the system with a simple mass-spring-damper model is
analyzed in [ZHAO et al., 2005], [Castañer et al., 1999], [Minami et al., 1999]. In [Gupta and
Senturia, 1997], they used the system analysis to predict pull-in times and derive the Dynamic
Pull-in Voltage (DPV)

yuns =
g0

2
; DPV =

√
1

4

K g3
0

ε0 A
(88)

which indicates the maximum voltage that can be applied as a step-function to the system without
producing snapping in vacuum environment. A extended discussion on energy-dependence of the
Dynamic Pull-in Voltage (Figure 11b) can be found in [Varghese et al., 1997] and [Fargas-Marques,
2001].

4.3 Oscillatory solution

In multiple applications in MEMS sensors and actuators, the system is oscillated at a fixed
frequency. An alternating voltage is applied to the system to maintain the oscillation. The case of
oscillatory load is, then, a sub-case of the dynamic solution.

To analyze the oscillatory case, the transient response is neglected and the efforts are
concentrated on the stationary oscillation.

The microbeam deformation under an electrostatic excitation (V (t) = V p + v(t)) is composed
of a static component (ws(x)) and a dynamic component (u(x, t)), due to the AC forcing voltage:

w(x, t) = ws(x) + u(x, t) (89)

To solve the oscillatory case, we substitute (89) in the dynamic equation of the system (75) and
obtain

∂2(ws(x)+u(x,t))
∂t2

+ c∂(ws(x)+u(x,t))
∂t

+ ∂4(ws(x)+u(x,t))
∂x4

− [α1Γ((ws(x) + u(x, t)), (ws(x) + u(x, t))) + N ] ∂2(ws(x)+u(x,t))
∂x2

= γ(Vp + v(t))2|∇ψ|2 (90)

The equation can be simplified eliminating the expressions with null terms, and it turns to

∂2u
∂t2

+ c∂u
∂t

+ ∂4ws

∂x4 + ∂4u
∂x4

− [α1(Γ(ws, ws) + 2Γ(ws, u) + Γ(u, u)) + N ] (∂2ws

∂x2 + ∂2u
∂x2 )

= γ(Vp + v(t))2|∇ψ|2 (91)

Once in this point, to develop the equation further, a possibility is to approximate the
electrostatic force, assuming no fringing fields, using equation (32). This way the oscillation is
defined by

∂2u
∂t2

+ c∂u
∂t

+ ∂4ws

∂x4 + ∂4u
∂x4

− [α1(Γ(ws, ws) + 2Γ(ws, u) + Γ(u, u)) + N ] (∂2ws

∂x2 + ∂2u
∂x2 )

= α2
(Vp+v(t))2

(1−(ws+u))2
(92)

where now α2 = γ/g2 = 6ε0L4

E’ h3g3 .
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The formulation can be much reduced if the electrostatic force is expanded in Taylor series
around the equilibrium position

∂2u
∂t2

+ c∂u
∂t

+ ∂4ws

∂x4 + ∂4u
∂x4

− [α1(Γ(ws, ws) + 2Γ(ws, u) + Γ(u, u)) + N ] (∂2ws

∂x2 + ∂2u
∂x2 )

= α2(V
2
p + 2Vpv(t) + v(t)2)

(
1
β2 + 2

β3 u + 3
β4 u

2 + 4
β5 u

3 + O(u4)
)

(93)

and then, rearranging terms, the static solution (79) can be eliminated and only the oscillating
solution is conserved, simplifying the equation to

∂2u
∂t2

+ c∂u
∂t

+ ∂4u
∂x4

−α1 [2Γ(ws, u) + Γ(u, u)] ∂2ws

∂x2

− [α1(Γ(ws, ws) + 2Γ(ws, u) + Γ(u, u)) + N ] ∂2u
∂x2

= α2V
2
p

(
2
β3 u + 3

β4 u
2 + 4

β5 u
3 + O(u4)

)

+2α2Vpv(t)
(

1
β2 + 2

β3 u + 3
β4 u

2 + 4
β5 u

3 + O(u4)
)

+α2v(t)2
(

1
β2 + 2

β3 u + 3
β4 u

2 + 4
β5 u

3 + O(u4)
)

(94)

Depending on the driving voltages and the accepted error, the final equation can be selected.
However, numerical simulation will be needed to obtain evolution results.

Complete simulations based on the theoretical framework exist in the literature. In [Abdel-
Rahman et al., 2003], shooting methods combined with nonlinear boundary-value problem are
used to solve the existing eigenvalue problem. The vibrations around the deflected position of the
microbeam are solved numerically for various parameters to obtain the natural frequencies and
mode shapes. The results are compared with experimental results available in the literature with
good agreement. In [Nayfeh and Younis, 2004], perturbation methods are used to obtain the mode
shapes and frequencies including the coupled effects of the squeeze-film damping that were just
approximated in the previous analysis.

Following the same study, in [Younis et al., 2004] they present a methodology to simulate the
transient and steady-state dynamics of microbeams undergoing small or large motions actuated by
combined DC and AC loads. They use the model to produce results showing the effect of varying
the DC bias, the damping, and the AC excitation amplitude on the frequency-response curves. In
their analysis they detect the existence of dynamic effects that can produce pull-in with electric
loads much lower than that predicted based on static analysis.

In [Ijntema and Tilmans, 1992], the dynamic behavior is modeled using energy methods to
obtain a spring-mass-damper model. The fundamental frequency is approximated using Rayleigh’s
energy method where the microbeam motion is linearized around the deflected shape obtained as
a solution of the static problem. The work is extended in [Tilmans and Legtenberg, 1994] where
the fundamental natural frequency obtained from Rayleigh’s energy method is compared to the
experimentally obtained fundamental natural frequency. They found out that the results obtained
from the expression were only valid for small dc polarization voltages away from the pull-in voltage.
Their method takes into account the axial load and large amplitude effects.

The mass-spring-damper formulation obtained via Galerkin procedure in [Krylov et al., 2005]
allows to study the parametric resonance behavior of the system. They show that parametric
stabilization can be obtained. The model summarizes the main nonlinearities for a given frequency.
Similar analysis are carried out with a parametric model in [Napoli et al., 2004] They show that the
underlying linearized dynamics of the system are those of a periodic system described by a Mathieu
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Figure 12: The potential energy curves bound the system oscillation. In (a) a stable oscillation
is obtained for the example system with 19 VDC bias voltage and a 7 VAC amplitude while in (b)
the oscillation is unstable with 20 VDC and 7 VAC . Beginning from the static initial position, the
amplitude of oscillation increases until it reaches the unstable equilibrium point at VDC + VAC ,
resulting in snapping.

equation. Experimental results confirm the validity of the model, and in particular, illustrate that
parametric resonance phenomena occur in capacitively actuated micro-cantilevers.

Finite element approaches are also valid to obtain the behavior of the system [Gretillat et al.,
1997]. However computation times can be quite demanding in the case of non-linear coupling.

In [Hung, 1997], it is shown that a way of solving the simulation of the system is rewriting
the solution as a sum of orthogonal basis functions, that correspond to the oscillation modes.
They show the feasibility using an initial model with internal tension and damping. The obtained
low-order models are quicker for numerical modeling.

Multiple authors have modeled a microbeam under electrostatic actuation as a single-degree-of-
freedom spring-mass-damper system. The model assumes a linear spring, thus neglects midplane
stretching effects. They use this model to generate an analytical expression for the fundamental
natural frequency as a function of the dc polarization voltage. Both this expression and the
experiments they carry on a resonator show that increasing the dc polarization voltage decreases
the fundamental natural frequency [Vinokur, 2002], [Seeger, 1997], [Sung et al., 2003].

Using a spring-mass-damper model and energy methods, the AC Pull-in Voltage is presented
and analyzed in [Fargas-Marques, 2001] as the combination of VDC and VAC that can lead the
system to snapping (Figure 12). Numerical and experimental results are presented to validate
the concept. Similar results are presented in [Seeger and Boser, 2002] for double-sided actuated
oscillators near the mechanical resonant frequency and amplitudes comparable to the actuator gap.
They show that at resonance, the structure can move beyond the well-known pull-in-limit but is
instead limited to 56% of the gap by resonant pull-in. Above the resonant frequency, the structure
is not limited by pull-in and can theoretically oscillate across the entire gap.
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5 Final Conclusions

Correct modeling of parallel-plate electrostatic actuation of MEMS is an important step to design
better MEMS devices. It has been shown that different approaches can be taken to try to capture
the behavior of the devices, but lots of issues are yet to be solved.

This work has tried to compile the main approaches in the literature in order to analyze the
advantages of each one. The main conclusion achieved is that depending on the goal while designing
MEMS actuators, the complexity of the model has to be evaluated. Complete models involved time-
consuming calculations while reduced models imply reduced accuracy.

Table 2 shows a summarized classification of the different approaches in the literature and the
addressed phenomena.

Future work should address an uniformed way of analyzing Pull-in given a generalized and its
implications on control of oscillatory MEMS.
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