
International Journal of Reproductive BioMedicine
Volume 19, Issue no. 1, https://doi.org/10.18502/ijrm.v19i1.8177
Production and Hosting by Knowledge E

Research Article

Underexpression of hsa-miR-449 family and
their promoter hypermethylation in infertile
men: A case-control study
Reza Najafipour1 Ph.D., Abdolmabood Momeni2 M.Sc., Farideh Yousefipour3

Ph.D., Shaghayegh Mousavi4 M.Sc., Sahar Moghbelinejad1 Ph.D.
1Research Institute for Prevention of Non-Communicable Diseases, Cellular and Molecular
Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran.
2Biology Department, School of Basic Science, Arak University, Arak, Iran.
3National Institute of Engineering and Biotechnology, Tehran, Iran.
4Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences,
Qazvin, Iran.

Abstract
Background: Post-transcriptional microRNAs (miRNAs) have a impotrant pattern in the
spermatogenesis process.
Objective: Study of the expression and methylation of hsa-miR-449 family in sperm
samples of infertile men.
Materials and Methods: In this case-control study, we recruited 74 infertile
men (with asthenozoospermia, teratozoospermia, asthenoteratozoospermia, and
oligoasthenoteratozoospermia) and 30 control samles. Methylation-specific PCR (MSP)
method was used for methylation evaluation of hsa-miR-449 a, b, c promoter. By Real
time PCR (qRT-PCR) method,we showed downregulation of hsa-miR-449 a, b, c in the
sperm samples of infertile men and compared it to their fertile counterparts.
Results: There was significant underexperssion, in hsa-miR-449-b in
oligoasthenoteratospermic samples (p = 0.0001, F = 2.9). About the methylation
pattern, infertile men showed high frequency of methylation in the promoter of
hsa-miR-449 a, b, c in comparison to controls (60.8% vs 23.3%), the highest amount of
methylation was observed in oligoasthenoteratospermia samples (81.2%).
Conclusion: In this study, low expression and high methylation of hsa-miR-449-b were
observed in infertile men in compared to control samples, which can be one of the
causes of defective spermatogenesis.
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1. Introduction

On average, it is estimated that infertility occurs
in 10 to 15% of couples and 50% of infertility
cases are due to male factor. The causes of 65-
70% of male infertility cases is unknown and the
correct mechanism has not been defined (1, 2).
Genetic factors can be one of the causes of male
infertility (3). But the role of miRNAs in the process
of spermatogenesis and male infertility is very
important. MiRNAs are non-coding RNAs, and play
an important role in regulating gene expression
(4, 5). MiRNAs regulate gene expression in two
ways: by suppressing transcription and translation
(RNAi) (6) or by activating transcription (RNAa) (7-
9). The expression of miRNAs was shown in some
types of male germ cells (10-14). The hsa-miR-449

was first detected in the fetal brain of mice(15, 16).

The hsa-miR-449 family has three members in
mice and human, namely hsa-miR-449a, hsa-miR-

449b, and hsa-miR-449c. These miRNAs have
conserved sequence among different species and
are located on the second intron of the Cdc20b

gene. While the three hsa-miR-499 (miR-499 a, b,

c) members have the same seed sequences, hsa-
miR-449members play themain role in the control
of cell cycle and differentiation of epidermis (17-19).

In this regard, studies have shown that the hsa-

miR449 family (hsa-miR-449a, hsa-miR449b, and
hsa-miR-449c) and the hsa-miR-34 b, c (hsa-miR-

34b-3p and hsa-miR-34c-5p) contain an identical
seed sequence and have same sequence with
the another miRNA, hsa-miR-34a-5p (17-21). About
in addition, with respect to the role of hsa-miR-
449 in spermatogenesis and male infertility, it was
shown that the hsa-miR-449 family highly express
in spermatocyte, spermatid, and adult testis. In

one study was reported that, inactivation of
both the hsa-miR34-b,c and hsa-miR-449 causes
low sperm counts, motility and high abnormal
sperm morphology in animal models (22). CpG
methylation of mentioned genes is one possible
reason for the their underexpression (20, 22),
so that, under expression and high methylation
of hsa-miR-449 (a, b, c) (as an important tumor-
suppressor gene) have been shown in various
cancers (23, 24). Besides, methylation of their
promoter region has also been shown to be one of
themechanisms of expression reduction in adition
to playing an important role in carcinogenesis of
these microRNAs. Up to now, the patterns of hsa-
miR-449 family expression and methylation has
not been reported in different groups of infertile
men and all the information in this regard has
been based on animal models (25). Therefore,
in this study we evaluated the expression and
methylation pattern of hsa-miR-449 family in
infertile men.

2. Materials and Methods

2.1. Subject recruitment and sampling

In this case-control study, 74 infertile
men with idiopathic asthenozoospermia
(n = 14), teratozoospermia (n = 16),
asthenoteratozoospermia (n = 28), and
oligoasthenoteratozoospermia (n = 16) were
collected during 2018-2019 from the ACECR
Telemedicine Infertility Center Qazvin, IRAN,
based on the WHO criteria. The condition of
infertile men was as follows: a history of infertility
for at least 1 yr with their wives having a normal
gynecological evaluation. However, infertile men
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conditions such as cystic fibrosis, Klinefelter
syndrome, varicocele, chemotherapy, AZF, and
genes micro deletions were not included in this
study. In addition, 30 fertile healthy men were
recruited as the control group.A questionnaire
was designed to evaluation of the patients and
controls’ information, including medical history,
occupational and environmental condition,
smoking condition (an adult who has smoked
100 cigarettes in his lifetime and who currently
smokes cigarettes)and reproduction status (Table
I). Patients were advised not to have sexual
abstinence for three days before sampling. After
sampling, semen samples were stored at 37°C for
30 min to complete the liquefaction. Then, based
on WHO criteria sperms concentration, motility,
and morphology were evaluated (26).

2.2. RNA extraction and qRT-PCR

After liqufication, we centrifuged the semen
samples for 10 min at 500 g. Then 1 ml FSB
(Merck, Germany) was added to sperms pellet and
somatic cells removed.TRIZOL reagent was used
for isolation of the total RNA from the sperms
based on kit protocols (Invitrogen Life Technology
Co., USA). hsa-miR-449-a (MI0001648), hsa-miR-

449-b (MI0003673), and hsa-449-c (MI0003823)
were studied in this research. hsa-miR30a-5p

(MIMAT0000087) and hsa-miR100-5p (MIMAT
0000102) were used as internal controls. Rotor
gene-Q real-time PCR system (Qiagene, Germany)
was used to quantifing of the RNA expression.
Total amount of master mix was 10 µl and included
1 µl of reverse and forward primers (Exiqon,
Denmark), 5 µl of Ampliqon real Q plus 2×
master mix green (Ampliqone, Denmark), and 4

µl of diluted cDNA. For enzyme activation we
incubated master mix for 15 min at 95°C. Then
reaction was runned in 40 cycle for 20 sec at
95°C and 60 sec at 60°C. Ct values was used for
evaluation of expression rate of studied miRNAs.
hsa-miR30a-5p and hsa-miR100-5p were used as
the endogenous controls. The 2−△Ct method used
for expression rate detection of target genes in
comparision to internal controls.

2.3. DNA extraction and bisulfite
modification

Phenol-chloroform method was used for DNA
extraction. 2-5 µg of extracted DNA was bisulfited
by using of EpiJETTM Bisulfite Conversion kit
(Thermo Fisher Scientific, Inc).

2.4. MSPCR

The hsa-miR-449 methylation status was
evaluated in all studied samples. For the targeted
site, methylation-specific primers were designed.
While the methylated primers were Forward: 5’-
CGTTCGTTAATTTTTTCGTTTTTTGTCGC-3’) and
Reverse: 5’-GTCAAAACCCGAATAAAATTCCCCG
ACG-3’, the unmethylated primers were Forward:
5’-TTGTTTGTTAATTTTTTTGTTTTTTGTTGT-3’
and Reverse: 5’-ATCAAAACCCAAATAAAA
TTCCCCAACA-3’. Methylation-specific PCR
(MSP) was used to evaluation of methylation
status of hsa-miR-449-abc promoter region. 1 µL
of bisulfit converted DNA with methylated and
unmethylated primers was amplifiedin in final
10 µL reaction mixture. “The PCR conditions for
methylation status were: 95°C for 15 min (Hot
start), followed by 35 cycles at 95°C for 20 sec
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(denaturation), 56.5°C for 45 sec (annealing),
and 72°C for 45 sec (extension). PCR condition
for unmethylated-primers was the same as the

methylated condition except for the number
of cycles and annealing temperature (60°C)”
(27).

Table I. Characterization of studied samples

Parameters Fertile Asthenospermia Teratospermia Astheno-
teratospermia

Oligo-astheno-
teratospermia

Age (yr) 31.2 ± 1.8 36.1 ± 2.2 32.2 ± 5.5 34.1 ± 4.4 38.1 ± 4.1

Liquefaction time (min) 24 ± 12.2 22.2 ± 6.6 25 ± 8.9 25 ± 10.3 23.7 ± 8.06

Testicular volume (ml) 22 ± 3.2 21.2 ± 1.8 20.1 ± 1.8 19 ± 2.1 19.8 ± 3.1

Ejaculate volume (ml) 3.2 ± 1.5 2.8 ± 1.9 2.3 ± 1.8 2.9 ± 1.2 3.1 ± 2.2

Viscosity (%%%)

Normal 86.7 88.9 75 78.6 81.3

Somewhat 10 11.1 25 17.9 18.8

Thick 0 0 0 3.6 0

Very thick 3.3 0 0 0 0

Concentration (106/ml) 244.4 ± 13.08 178.8 ± 54.9 219.2 ± 108.3 112.86 ± 87.7 13 ± 6.8

Progressive motility (A+B) (%%%) 34.5 ± 8.05 13.8 ± 4.8 42.8 ± 2.5 8.14 ± 5.9 4.19 ± 5.07

Normal morphology (%%%) 11.8 ± 4.12 5.1 ± 1.5 2.7 ± 0.44 1.7 ± 0.78 1.2 ± 0.68

* Mean ± SD

2.5. Ethical considerations

This case-control study was approved by

the Ethics Committee of Qazvin university

of medical science with dedicated ID

IR.QUMS.REC.1396.294. The recruited patients

gave their informed written consent.

2.6. Statistical analysis

The GraphPad software (GraphPad PRISM

V 5.04) was used for the data analysis. The

analysis of variance test (ANOVA) was used

for the evaluation of the miRNAs expression

levels difference among the different studied

groups. The frequency of promoter methylation

pattern was evaluated by a nonparametric

test (Kruskal-Wallis). The correlation between

the miRNA expression rate, methylation with

different sperm parameters was analyzed

by Spearman’s rank correlation. All P-values

were two-tailed, with p < 0.05 considered as

statistically significant.

3. Results

3.1. Expression of miRNAs in sperm
samples of studied groups

About the expression rate, we saw

significant downregulation of the hsa-

miR-449a expression in infertile group
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(0.24 ± 0.2) in comparison to the control groups

(0.98 ± 0.37) (p = 0.0001). Also, significant

down-egulation of this miRNA was shown in

oligoasthenoterathospermia (0.05 ± 0.02),

asthenospermia (0.24 ± 0.11), terathospermia

(0.28 ± 0.2), and asthenoterathospermia

(0.3 ± 0.11) as compared to the control

group (0.98 ± 0.37) (F = 7.1 p = 0.0001).

MirRNA expression ratio had not significant

difference among the four infertile groups,

(p = 0.21) (Figure 1A). The expression of hsa-

miR-449b was downregulated significantly

among the oligoasthenoterathospermia

groups (0.022 ± 0.01) in comparison to the

asthenospermia (0.04 ± 0.02), terathospermia

(0.04 ± 0.032), asthenoterasthospermia

(0.03 ± 0.02), and the control group

(0.12 ± 0.09) (p = 0.0001, F = 2.9)

(Figure 1B). However, in the case of hsa-

miR-449c, oligoasthenoterathospermia

patients showed significant downregulation

of this miRNA (0.04 ± 0.03), also we

observed this downregulation among the

asthenospermia (0.15 ± 0.14), terathospermia

(0.15 ± 0.14), and asthenoterasthospermia

(0.1 ± 0.09) groups in compared to the

control group (0.37 ± 0.01) (F = 5.04,

p = 0.001) (Figure 1C). The average of the

expression of the three studied miRNAs

in fertile men showed that hsa-miR-449a

had the highest levels of expression in

these individuals (0.98 ± 0.3), followed

by hsa-miR-449c (0.37 ± 0.01) and hsa-

miR-449b (0.12 ± 0.09) (Figure 2). As

displayed in Figure 2, among the three

studied miRNAs, hsa-miR-449b had the

lowest expression ratio in infertile men

especially in oligoasthenotaratospermic men

(0.022 ± 0.01).

3.2. Investigating the relationship
between miRNAs expressions and
parameters of sperm

In all studied samples, we observed significant

correlation between the expression of hsa-

miR-449a and the sperm progressive motility

(r = 0.44, p = 0.0001), sperm count (r = 0.2,

p = 0.03), and normal morphology (r = 0.46,

p = 0.0001). The pearson test results showed,

significant correlation between the expression of

hsa-miR-449b miRNA and the spem progressive

motility (r = 0.55, p = 0.0001), sperm count

(r = 0.59, p = 0.0001), and normal morphology

(r = 0.58, p = 0.0001). Also, there was significant

correlation between the sperm count (r = 0.38,

p = 0.0001), progressive motility (r = 0.22,

p = 0.0322), and normal morphology (r = 0.32,

p = 0.0001) with hsa-miR-449c experssion

among all studied samples (Figure 3 A-

I).

3.3. The methylation patterns of the
promoter region of the hsa-miR-
449a,b,c

MSP results showed that, 60.8% and of

the patients and 23.3% of the controls had

https://doi.org/10.18502/ijrm.v19i1.8177 Page 27



International Journal of Reproductive BioMedicine Najafipour et al.

methylated allele (p = 0.0001). The unmethylated

allele was detected in all patients and

controls. Oligoasthenoteratospermic (81.2%) and

asthenothratospermic (61.2%) patients showed

the highest frequency of methylation (Table

II) (Figure 4 A, B). There was not significant

correlation between hsa-hsa-miR-449abc

promoter methylation with the liquefaction

time (r = 0.022, p = 0.065) and viscosity

(r = 0.969, p = 0.65). However, we observed

a significant negative correlation between

sperm count (r = -0.235, p = 0.003), progressive

motility (r = -0.375, p = 0.0001), and normal

morphology of sperms (r = -0.356, p = 0.0001)

with methylation pattern of hsa-miR-449abc

promoter. Also, there was significant negative

correlation between methylation of hsa-miR-

449abc promoter region and hsa-miR-449a

(r = -0.110, p = 0.02), hsa-miR-449b (r = -0.245,

p = 0.01), and hsa-miR-449c (r = -0.348, p = 0.005)

expression ratio (Table III). The results of the

effect of smoking on methylation status of mir-

449-abc promoter showed the high frequency

of methylation in men who smoked (87.7%) in

comparison to men who did not (75.2%, χ2 = 4.2,

p = 0.003).

Table II. Frequencies of miR-449-a,b,c methylation statues in different studied groups

Unmethylated (%) Methylated/unmethylated (%) P-value

Fertile 76.7 23.3

Infertile 39.2 60.8 0.0001

Asthenospermia 29.8 70.2 0.0001

Teratospermia 41.8 58.2 0.0001

Asthenoteratospermia 38.8 61.2 0.0001

Oligoasthenotheratospermia 18.8 81.2 0.0001

P-value indicate significant difference in the frequency of methylated allele between each group of infertile men in compared
to the fertile ones. Nonparametric test (Kruskal-Wallis)

Table III. Correlation between miR-449-a,b,c methylation statues with different semen parameters and miR-44-a, miR-449-b, miR-
449-c expression rate

Liquefaction Viscosity Count Motility
(A+B)

Normal
Morph

miR-449-a
2−▴▴▴ct

miR-449-b
2−▴▴▴ct

miR-449-c
2−▴▴▴ct

miR-449-
a,b,c

0.011
(0.0863) 1. 03 (0.15) -0.348

(0.000)
-0.378
(0.000)

-0.356
(0.000) -0.51 (0.011) -0.428

(0.003)
-0.276
(0.001)

*Spearman′s rank correlation test
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Figure 1. The expression ratio (2−ΔΔct) of hsa-miR-449-a, b, c in the sperm samples of fertile controls and idiopathic
infertile males. (A) The expression ratio of has-miR-449-a in asthenospermia, teratospermia, asthenotheratospermia and
oligoasthenoteratospermia compared to the control fertile men. (B) The expression pattern of hsa-miR-449-b in asthenospermia,
teratospermia, asthenotheratospermia, oligoasthenoteratospermia compared to the control fertile men. (C) The expression ratio
of hsa-miR-449-c in asthenospermia, teratospermia, asthenotheratospermia, oligoasthenoteratospermia compared to the control
fertile men. Data are presented as Tukey’s box plots showing the median and mean (+) values.

Figure 2. The expression pattern of miR-449-a,b,c in all studied groups: Fertile (n = 30) and infertile (n = 74) groups. Values are
presented as Mean ± SD.
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Figure 3.Correlation between the hsa-miR-449-a expression ratio with (A) count (r = 0.2, p= 0.039), (B) progressivemotility (r = 0.44,
p = 0.000), and (C) normal morphology (r = 0.45, p = 0.0001). Correlation between the hsa-miR-449-b expression ratio with (D) count
(r = 0.386, p = 0.0001), (E) progressive motility (r = 0.556, p = 0.0001), and (F) normal morphology (r = 0.55, p = 0.0001). Correlation
between the hsa-miR-449-c expression ratio with (G) count (r = 0. 662, p = 0.012), (H) progressive motility (count = 0.52, p = 0.001),
and (I) normal morphology (count r = 0. 63, p = 0.0001).
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Figure 4. DNA methylation status of the promoter of hsa-miR-34bc sperm samples of fertile and infertile patients. (A) Sperm
DNA from fertile control samples. In most samples only the unmethylated allele was amplified, however, as can be seen
in the figure, some samples showed both methylated and unmethylated alleles. (B) In this image, samples of patients with
asthenoteratospermia, oligoasteniteratospermia is presented, in all samples there are unmethylated/methylated bands. As seen,
the severity of methylated bands is very high.

4. Discussion

In our project, significant downregulation of the
hsa-miR-449abc was seen in the sperm samples
of infertile men. Briefly, miRNAs have the main
role in incidence of male infertility through the
gene expersion regulation (22). The miR-449
family have three members in mice and humans,
hsa-miR-449a, hsa-miR-449b, and hsa-miR-449c.
Three hsa-miR-499 (miR-499a, b, c) members are
transcribed simultaneously and have the same
seed sequence (17, 20).

The roles of hsa-miR-449 family in human
reproduction, so far it has only been based
on the results of animal models studeis (21).
These studies report that hsa-miR-449 family is
one of the most upregulated testicular miRNA
and have major role in the initiation of meiotic
phase in the adult testes. Also, this group

showed that “hsa-miR-449 is predominantly
and exclusively expressed in spermatocytes
and spermatids in the adult testes” (21). Liu
and colleague showed a presence of hsa-

miR-449 family in spermatozoa, but their
absence in oocytes (28). In the line of above
study, our results showed expression of these
miRNAs was shown in sperm,s s of the control
(fertile) group, and hsa-miR-449a had the
highest levels of expression. We also saw a
significant downregulation of these miRNAs
in the sperm samples of infertile patients,
and hsa-miR-449b had the highest reduction.
Another study reported abnormal different sperm
parameters in hsa-miR-34bc/449 knock-out
mice with oligoteratoasthenospermia. They
reported that deficient mice had spermatozoa
maturation stages problme, but hsa-miR-449

or hsa-miR-34 cluster Knockout (KO) mice

https://doi.org/10.18502/ijrm.v19i1.8177 Page 31



International Journal of Reproductive BioMedicine Najafipour et al.

showed no explained phenotype (22). This
is because hsa-miR-449 and hsa-miR-34b/c

have the same “seed sequence,” which maps
between the second and seventh nucleotides;
this core element is necessary for base pairing
with target mRNAs, and can target the same
set of mRNAs. On the other hand, hsa-

miR-449 and hsa-miR-34b/c have the same
expression profiles within testicular formation,
and they are located to the precise identical
spermatogenic cell types, such as spermatocytes
and spermatids. In this regard, it is better in
future studies that the expression pattern of
hsa-miR-449 family and hsa-miR-34b/c be
evaluated simultaneously. Interestingly, along
with Comazzetto and colleague’s 2014 study,
the highest downregulation of hsa-miR-449

family in oligoteratoasthenospermic men was
observed, also we saw significant correlation
between expression of this gene family and
sperm progressive motility, count, and normal
morphology (29).

Methylation is one of the mechanisms
in expression regulation of miRNAs (30).
Expression and methylation of the hsa-miR-

449a,b,c as the tumor suppressor genes has
been reported in different cancers such as
prostate (31), hepatocellular carcinoma (32), and
osteosarcoma (18). Also, the role of methylation
in regulating the expression of miRNAs involved
in spermatogenesis and infertility has also been
demonstrated (33). To the best of our knowledge,
there is no clinical data on the methylation status
of hsa-miR-449a, b, c promoter in human sperm.
In the study of hsa-miR-449family methylation, our
results showed that, there was high frequency of
methylation in infertile men (60.8%) specially

in the oligoasthenoteratospermia patients.
Interestingly, oligoasthenoteratospermia patients
had the highest gene expression reduction.
Also, in this research we observed a negative
correlation between underexperssion and
hypermethylation of hsa-miR-449a, b, c. This
suggests that hypermethylation can be one of
the downregulation mechanisms of these gene
family. Further, we observed hypermethylation
of promoter region among the 87.7% of smokers.
Smoking and obesity have the major effect on
the quantity of sperm miRNA (34). Recently, in
the sperm samples of men exposed to lifestyle
stress Dickson et al. reported under expression
and hyper methylation of hsa-miR-449 and hsa-

miR-34 (35). Acording to what was said, it is better
to study the effect of other environmental factors
on the rate of the hsa-miR-449a, b, c methylation.

5. Conclusion

Results of this research showed under-
experssion and hypermethylation of the hsa-

miR-449 a,b,c in sperm samples of infertile men.
According to the results of this study, it can be
said that one of the possible causes of defective
spermatogenesis in infertile people can be
reduced expression and increased methylation of
these miRNAs family.
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