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Abstract
By temolysis of the Zn1−𝑥Cu𝑥(HCOO)(OCH2CH2O)1/2 complexes in one step Zn1−𝑥Cu𝑥O
solid solutions were obtained. Сopper in these materials is a regulator of the
photoactivity and morphology of aggregates. According to TEM, XPS, optical
spectroscopy, and voltammetry, all samples studied contain monovalent copper. It
was shown that the maximum photoactivity in the reactions of photooxidation of As
(III) in UV and blue light has Zn1−𝑥Cu𝑥O (0<x<0.1) solid solutions with tubular particle
morphology. With an increase in concentration up to 10 at.%, сopper manifests itself
as an electron acceptor, which reduces the efficiency of the catalyst in both light ranges.
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The use of ZnO as a photocatalyst for the oxidation of organic substances is due
to its high photosensitivity, chemical stability, relatively low cost, availability and non-
toxicity [1, 2]. All this allows us to consider this oxide as an alternative to existing
commercial catalysts based on TiO2 (Degussa P25) [3]. At the same time, the high
rate of recombination of electron – hole pairs, exceeding the rate of surface red/ox
processes, as well as photoactivity predominantly in the ultraviolet range with a low
quantum yield, impose certain restrictions on the use of ZnO in catalysis [4, 5]. An
increase in the photoactivity of such materials and its shift to the visible spectrum is
possible by doping ZnO with transition metal ions, as well as by changing the size of
the accessible surface and the morphology of the aggregates, and by increasing the
degree of intrinsic defectiveness [5, 6]. Copper as an alloying agent manifests itself as
an effective acceptor impurity, affecting the electronic band structure and its own defec-
tiveness of ZnO, for example, the concentration of oxygen vacancies [7]. The method
of synthesis of materials plays an important role in the formation of the composition,
specific surface area and morphology of the aggregates, its intrinsic imperfection and,
as a result, photocatalytic properties. The most promising way to synthesize doped
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ZnO, in our opinion, is the precursor technology based on the thermolysis of individual
complex zinc compounds with organic ligands. Previously, Zn1−𝑥Cu𝑥O solid solutions
and Zn1−𝑥Cu𝑥O:CuO composite materials with different morphology and microstructure
of aggregates were synthesized using zinc/copper mixed carboxylates as precursors.
All of them showed photocatalytic activity in the oxidation of hydroquinone in blue light.
[8–10]. There is information in the literature regarding the use of ZnO-based catalysts
for the photocatalytic oxidation of As (III) to As (V) when exposed to visible light. [11].
However, there are very few of them. Basically, the photoactivity of such catalysts is
studied by the example of discoloration of colored organic substances.

The aim of the present work was to synthesize and study the photocatalytic properties
of copper-doped quasi-one-dimensional ZnO during the oxidation of As (III) to As (V) in
aqueous solutions.

The precursor for the preparation of Zn1−𝑥Cu𝑥O solid solutions (0≤x≤0.1) was the
mixed formate-glycolate Zn1−𝑥Cu𝑥(HCOO)(OCH2CH2O)1/2, obtained under solvothermal
conditions according to the reaction:

Zn1−𝑥Cu𝑥(HCOO)2.2H2O + ½ HOCH2CH2OH → Zn1−𝑥Cu𝑥(HCOO)(OCH2CH2O)1/2 +½
HOCH2CH2OH + HCOOH↑ (80 – 130∘C) (1)

Zn1−𝑥Cu𝑥(HCOO)2.2H2O was produced by the interaction of formic acid HCOOH
(ultra-high purity grade) with a stoichiometric mixture of ZnO (ultra-high purity grade)
and Cu2(OH)2CO3 (reagent grade) [12]. Ethylene glycol HOCH2CH2OH (reagent grade)
and acetone (high grade) were used for the synthesis of alcoholates and their washing.
Zn1−𝑥Cu𝑥(HCOO)(OCH2CH2O)1/2 (0≤x≤0.1) crystals are formed from the reaction solu-
tion in the form of thin needles prone to longitudinal intergrowth. Precursor crystals
with x> 0.1 are spherical in shape. The chemical formula of the formate glycolate
complex was established using methods IR spectroscopy, TGA/DTA and Powder X-Ray
Diffraction Analysis. Zn1−𝑥Cu𝑥O solid solutions (0≤x≤0.1) were obtained by annealing
Zn1−𝑥Cu𝑥(HCOO)(OCH2CH2O)1/2 in air at 500 ∘ C for 3 hours.

According to SEM data, the thermolysis products of the complexes preserve the mor-
phology of the precursor crystals (Figure 1). According to the XRD data, performed using
a STADI-P X-ray autodiffractometer (STOE) in CuKa1 radiation and a PDF-2 data library
(Release 2009), solid solutions in the homogeneity region have a wurtzite structure
(space group P63m). In addition to the lines of the wurtzite phase of ZnO, the diffraction
pattern of Zn1−𝑥Cu𝑥O samples with x≥ 0.1 contains impurity lines belonging to copper
oxide (Figure 2b). According to TEM data, copper oxides in the impurity phase exist in
two structural modifications — the cubic phase Cu2O (Pn3n) and the monoclinic phase
CuO (C2/c).
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Figure 1: SEM image of Zn1−𝑥Cu𝑥O: x = 0.075 (a); x = 0.12 (b)

The photocatalytic activity of Zn1−𝑥Cu𝑥O solid solutions (x = 0.025; 0.05) with quasi-
one-dimensional particle morphology was tested in the photooxidation of trivalent
arsenic. For experiments on the oxidation of arsenic (III), a 0.001 M solution of sodium
mata arsenate (III) NaAsO2.3H2O was selected. These solid solutions were selected
based on the maximum photoactivity in the oxidation reaction of benzene-1,4-diol
(hydroquinone) when exposed to blue light [12]. The change in the concentration of
As (III) was controlled iodometrically according to the reaction [13]:

AsO3
3− + J2 + H2O ↔ AsO4

3− + 2J− + 2H+
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Figure 2: X-ray diffraction patterns of Zn1−𝑥Cu𝑥O samples: a - x = 0.05; b - x = 0.2; CuO - (*)
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UV irradiation was carried out in a 50 ml glass photoreactor cell. 30 ml of an As (III)
solution with an initial concentration of 30 mg / L was added to the reactor. Then, 0.25 g
of catalyst was added to a solution with pH ∼ 7. The reactor was placed on a magnetic
stirrer; Irradiation was carried out using a BUF-15 lamp (max. = 253 nm). The suspension
was stirred in the dark for 30 minutes to ensure adsorption equilibrium before lighting.
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Figure 3: Photooxidation of As (III) on Zn1−𝑥Cu𝑥O: x = 0 (1), x = 0.025 (2), x = 0.05(3) when irradiated with
UV light (a); blue light (b)

At certain intervals, samples were taken of the solution for analysis. After completion
of the process, the catalyst was separated from the solution by filtration through an
Advantec membrane filter (0.20 mm thick). Figure 3 shows the kinetic oxidation curves
of As (III) using catalysts Zn1−𝑥Cu𝑥O with different copper contents. From the obtained
data it is seen that the efficiency of the catalyst increases with increasing concentration
of Cu in its composition. Similar dependences were obtained when the photocell was
irradiated with light of the visible spectral range (λmax = 440–460 nm). It should be
noted an increase in reaction time up to 12 hours (Fig.3).

For undoped ZnO, the photocatalytic characteristics are low due to its narrow range
of light absorption and the fast recombination of electron-hole pairs. In Zn1−𝑥Cu𝑥O solid
solutions, copper ions not only create an effective acceptor level in the ZnO band gap,
which hinders the recombination process during photodegradation, but also contribute
to the formation of defects in the ZnO structure. Using the EPR method, we have
established the existence of singly charged oxygen vacancies 𝑉 +

𝑂 that contribute to the
band structure of zinc oxide and thus affect the shift of its optical range [12].

When light acts on the surface of a Zn1−𝑥Cu𝑥O particle, photoinduced electrons
migrate to the conduction band (CB), and photoinduced holes remain in the valence
band (VB). An electron is captured by the acceptor level of the Cu2+ ion, turning it into
Cu+. As a result, the lifetime of photoinduced holes increases, and electron – hole pairs
(e−/h+) are effectively separated [7–10]. Hydroxyl groups from the surface of the catalyst
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particle at turn react with holes in the valence band of Zn1−𝑥Cu𝑥O. This leads to the
formation of reactive hydroxyl radicals (OH), extremely active oxidizing agents. Thus,
the recombination of photogenerated electrons and holes is one of the most important
factors determining the photoactivity of the catalyst upon irradiation in both light ranges.
The photocatalysis process on Zn1−𝑥Cu𝑥O can be represented schematically (Figure 4)
and at the form of a sequence (2)-(10):

ZnO + h𝜈 → e−(CB) + h+(VB) (2)

Cu2+ + e− → Cu+ (3)

Cu+ + O2ad →Cu2+ + O2
− . (4)

OH𝑎𝑑
− + h+ → .OHad (5)

As(III) + .OHad → As(IV) + OH− (6)

As(IV) + .OHad → As(V) + OH− (7)

As(III) + h+𝑉 𝐵 → As(IV) (8)

As(IV) + h+𝑉 𝐵 → As(V) (9)

As(IV) + O2 → As(V) + .O2− (10)

The obtained values of the oxidation rate constants of the As3+/As5+ pair (I order
reaction) depending on the catalysts composition under UV and blue light irradiation
are collected in Table 1. It is seen that the introduction of even small copper amounts
into the ZnO structure increases its photocatalytic efficiency in both light intervals more
than 2 times.
TABLE 1: The hydroquinone oxidation reaction rate constants and half-reaction time on Zn1−𝑥Cu𝑥O catalysts

Sample UV Blue light

k𝑠×105, s−1 τ, h k𝑠×105, s−1 τ, h

ZnO 4.54 4.2 1.58 12.2

Zn0.975Cu0.025O 9.65 2.0 3.88 4.8

Zn0.95Cu0.05O 17.6 1.1 6.3 3.1

Zn0.9Cu0.1O 10.1 2.1 4.2 5.2

It should also be noted that with an increase in copper concentration in the composi-
tion of Zn1-xCuxO to 10 at.% a decrease in its photoactivity is observed (table 1). Copper
in this case plays the role of electronic traps [7–11].
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Figure 4: Schematic representation of processes occurring on a particle Zn1−𝑥Cu𝑥O

1. Conclusion

By thermolysis of Zn1−𝑥Cu𝑥(HCOO)(OCH2CH2O)1/2 complexes Zn1−𝑥Cu𝑥Osolid solutions
with a quasi-one-dimensional structure of aggregates were obtained. It was shown that
the introduction of small amounts of copper ions in ZnO leads to a significant growth
its photoactivity. The expansion of the spectral range of Zn1−𝑥Cu𝑥O can be explained
by the formation of an acceptor level (Cu2+ + 𝑒− → Cu+) in the ZnO band gap. This
increases the separation efficiency of photogenerated e−/h+ pairs. Zn1−𝑥Cu𝑥O (x = 0.025
and x = 0.05) showed maximum photoactivity in the oxidation reactions of As(III). With
increasing concentration to 10 at.% copper manifests itself in the role of an electron
acceptor. It also affects the formation of intrinsic defects, which are additional charge
carrier recombination centers.
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