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Abstract
In this article, the possibility of application of simultaneous homogeneous and
heterogeneous doping has been described for the first time. The composite
0.7Ba1.95In2O4.9F0.1⋅0.3Ba2InNbO6 has been obtained by in situ solid-state method.
The scanning electron microscopy and thermogravimetry investigations have been
carried out; the electrical properties have been examined. It has been proved that
simultaneous homogeneous and heterogeneous doping is a prospective method for
obtaining high-conductive proton electrolytes.
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1. Introduction

One of the key positions of modern materials science is the research and development
of solid oxide fuel cells and their components, including electrolytic membrane mate-
rials. It is necessary to find inexpensive and technological solid electrolyte with high
conductivity and stability at high temperature, in oxidizing and reducing atmosphere.
Medium temperatures are the most optimal region in terms of energy costs. Prospec-
tive ionic conductors for this temperature range are proton electrolytes based on the
complex oxides.

The most studied method for modification of their structure and optimization of
physicochemical properties is a homogeneous cationic doping [1–5]. However, the
homogeneous anionic doping is a new promising way for the obtaining of new mate-
rials with improved properties. Earlier, we have reported a new route for increasing
oxygen-ion and proton conductivities by F−-doping of brownmillerite Ba2In2O5 [6]. It
has been proved that small F−-concentrations can improve the oxide-ion (mixed anion
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effect) and the proton conductivities. The other prospective method of improving
transport properties is a heterogeneous doping. The composites based on Ba2In2O5

with chemically inert Ba2InNbO6 oxide phase as a heterogeneous dopant demonstrate
significant increase of conductivity level. The maximum conductivity corresponds to
the ratio of the components 0.7:0.3 [7]. In this work the possibility of application of
simultaneous homogeneous and heterogeneous doping has been described for the
first time. The composite 0.7Ba1.95In2O4.9F0.1⋅0.3Ba2InNbO6 has been chosen for the
investigation.

2. Methods

We used in situ solid-state method for preparing the composite. This method consisted
in simultaneous synthesis of the components from starting materials in the same
reaction mixture:

1.93BaCO3 + 0.85In2O3 + 0.15Nb2O5 + 0.035BaF2
t⟶

0.7Ba1.95In2O4.9F0.1 ⋅ 0.3Ba2InNbO6 + 1.93CO2

(1)

using temperature treatments 800–1300∘C, six stage 24h each.

The X-ray powder diffraction (XRD) measurements were made on a Bruker Advance
D8 diffractometer with Cu K𝛼 radiation. The crystal structure of the sample was deter-
mined through Rietveld refinement using FULLPROF software.

The surface morphology and local chemical composition were studied using a work-
station AURIGA CrossBeam (Carl Zeiss NTS) and JEOL JSM 6390 LA scanning electron
microscope with console JEOL JED-2300. The detection limit at ordinary energies (5–20
kV) was ∼ 0.5 at.%; the concentration measurement error was ± 2%.

Thermogravimetric analysis was carried out on STA (Simultaneous Thermal Ana-
lyzer) 409 PC analyzer (Netzsch) coupled with a quadrupole mass spectrometer QMS
403 C Aëolos (Netzsch). For the preparation of hydrated forms of the specimens, the
powder samples were hydrated at slow cooling from 900 to 200∘C (1∘C/min) under a
flow of wet air (pH2O = 2·10−2 atm). The cooling was performed to a temperature not
lower than 200∘C to avoid the appearance of adsorbed water. The hydrated forms of
the samples were heated at the rate of 10∘C/min in a corundum crucible under a flow
of argon.

The ceramics used for the electrical measurements were prepared by pressing disk-
shaped samples at 250–300 MPa and sintering them at 1300∘C for 24h in dry air. After
polishing, the platinum paste electrodes were applied from both sides of the samples
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by painting and fired at 900∘C for 3h. The ac conductivity of the samples (2-probe
method) was measured using a Z-1000P (Elins) impedance spectrometer within the
frequency range of 1-106 Hz. The conductivity measurements were carried out under
dry and wet air varying the temperature and partial oxygen pressure pO2. The bulk
resistancewas calculated from a complex impedance plot using the Zview software fit-
ting. The ‘wet’ air was obtained by bubbling the gas at room temperature first through
distilled water and then through the saturated solution of KBr (pH2O = 2·10−2 atm).
The ‘dry’ air was produced by flowing the gas through P2O5 (pH2O = 3.5·10−5 atm). The
humidity of gases was measured by H2O-sensor (‘Honeywell’ HIH-3610).

3. Results

According to XRD analysis, the sample contained two phases – cubic perovskite
type Ba2InNbO6 phase (Pm3m space group) and brownmillerite type Ba1.95In2O4.9F0.1
phase (I4cm space group) with partial disordering of oxygen vacancies. The lattice
parameters were a = 4.142 Å for Ba2InNbO6 and a = 5.950(2) Å, c = 16.813(9) Å
for Ba1.95In2O4.9F0.1. They were in a good agreement with previously reported data
[7]. XRD-pattern for 0.7Ba1.95In2O4.9F0.1⋅0.3Ba2InNbO6 refined by Rietveld analysis is
presented in Figure 1.

Figure 1: XRD patterns of 0.7Ba1.95In2O4.9F0.1⋅0.3Ba2InNbO6. At the bottom of the figure – the difference
between the experimental data and the calculated ones after refinement. Vertical bars show the Bragg
angle positions.
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The morphology of the samples was studied by scanning electron microscopy
(SEM) (Figure 2). It can be seen for individual phases Ba1.95In2O4.9F0.1 (Figure 2(a))
and Ba2InNbO6 (Figure 2(b)) and for composite system (Figure 2(c)) that the grain size
was approximately 5–10 μm and the grain boundaries were clean. The microelement
analysis showed the presence of all main elements in the samples.

(a)  (b)  

(c)  

Figure 2: SEM image of individual phases Ba1.95In2O4.9F0.1(a), Ba2InNbO6 (b), and composite system
0.7Ba1.95In2O4.9F0.1⋅0.3Ba2InNbO6 (c).

Thermal analysis of the composite system showed that the composite changed
mass at temperatures 300–500∘C in wet atmosphere (pH2O = 2⋅10−2atm), which cor-
responded to the processes of removing water molecules (Figure 3). The maxi-
mal water uptake for composite system is proportional to the content of the phase
Ba1.95In2O4.9F0.1 with incompletion in the oxygen sublattice and is 0.60 mole H2O per
formula 0.7Ba1.95In2O4.9F0.1⋅0.3 Ba2InNbO6. The Ba2InNbO6 phase is nominally complete
in the oxygen sublattice and is capable of absorbing only small amounts ofwater due to
an insignificant change in stoichiometry during the synthesis. Thus, the main amounts
of proton defects are concentrated in the grains of the phase Ba1.95In2O4.9F0.1.

The conductivity measurements were carried out under dry (pH2O = 3.5·10−5 atm)
and wet (pH2O = 2·10−2 atm) air by varying the temperature (250–1000∘C) (Figure
4). The conductivity values of composite system 0.7Ba1.95In2O4.9F0.1⋅0.3 Ba2InNbO6 are
significantly higher than those for both undoped Ba2In2O5 composition and F-doped

DOI 10.18502/kms.v4i2.3029 Page 4



 

KnE Materials Science ASRTU Conference on Alternative Energy

Figure 3: Thermogravimetry and mass-spectra data for hydrated sample 0.7Ba1.95In2O4.9F0.1⋅0.3Ba2InNbO6.

Ba1.95In2O4.9F0.1 one in the whole temperature range. The increasing in conductivity
under wet air for the composite proves the ability of the sample to the proton transfer.

Figure 4: Electric conductivity of Ba2In2O5 [6], Ba1.95In2O4.9F0.1 [6] and composite system
0.7Ba1.95In2O4.9F0.1⋅0.3Ba2InNbO6.
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4. Conclusion

In this article, the possibility of application of simultaneous homogeneous and hetero-
geneous doping has been described for the first time. The composite 0.7Ba1.95In2O4.9

F0.1⋅0.3Ba2InNbO6 has been obtained by in situ solid-state method. It has been proved
that composite sample is capable for water uptake and for proton transfer. The increas-
ing in the conductivity values for the composite sample comparing with conductiv-
ity for the individual phases allows concluding that simultaneous homogeneous and
heterogeneous doping is prospective method for obtaining high-conductive proton
electrolytes.

Funding

This work was supported in parts by the Ministry of Education and Science of the
Russian Federation (State Task 4.2288.2017) and by Act 211 Government of the Russian
Federation, agreement 02.A03.21.0006. The equipment of the Ural Center for Shared
Use ‘Modern nanotechnology’ SNSM UrFU was used.

References

[1] Yao, T., Uchimoto, Y., Kinuhata, M., et al. (2000). Crystal structure of Ga-doped
Ba2In2O5 and its oxide ion conductivity. Solid State Ionics, vol. 132, pp. 189–198.

[2] Kakinuma, K., Yamamura, H., Haneda, H., et al. (2001). Oxide-ion conductivity of
(Ba1−𝑥La𝑥)2In2O5+𝑥 system based on brownmillerite structure. Solid State Ionics, vol.
140, pp. 301–306.

[3] Mitome, M., Okamoto, M., and Bando, Y. (2001). Structure analysis of Ba2In2O5 and
related compounds by electron microscopy. Journal of Vacuum Science & Technology

B, vol. 19, pp. 2284–2288.

[4] Quarez, E., Noirault, S., Caldes, T., et al. (2010). Water incorporation and proton
conductivity in titanium substituted barium indate. Journal of Power Sources, vol.
195, pp. 1136–1141.

[5] Jarry, A., Quarez, E., and Joubert, O. (2014). Tailoring conductivity properties of
chemically stable BaIn1−𝑥−𝑦Ti𝑥Zr𝑦O2.5+(𝑥+𝑦)/2−𝑛(OH)2𝑛 electrolytes for proton conduct-
ing fuel cells. Solid State Ionics, vol. 256, pp. 76–82.

[6] Animitsa, I., Tarasova, N., and Filinkova, Ya. (2012). Electrical properties of the
fluorine-doped Ba2In2O5. Solid State Ionics, vol. 207, pp. 29–37.

DOI 10.18502/kms.v4i2.3029 Page 6



 

KnE Materials Science ASRTU Conference on Alternative Energy

[7] Alyabysheva, I. V., Kochetova, N. A., Matveev, E. S., et al. (2017). Stabilizing a
disordered structural modification of barium indate by means of heterogenous
doping. Bulletin of the Russian Academy of Sciences: Physics, vol. 81: pp. 384–386.

DOI 10.18502/kms.v4i2.3029 Page 7


	Introduction
	Methods
	Results
	Conclusion
	Funding
	References

