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Abstract
Generally, displacement fields near voids are determined by the equations of elasticity
theory. Such a description has its disadvantages as it does not take into account the
discrete atomic structure of materials. In this work, we use a new variant of Molecular
Static method for investigation of the atomic structure near nanovoids. In our model
an iterative procedure is employed, in which the atomic structure in the void vicinity
and the parameter determining the displacement of atoms embedded into an
elastic continuum are obtained in a self-consistent manner. Results show that the
displacements are significantly different for varies crystallographic directions.
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1. Introduction

Voids are commonly generated in irradiated metals [1] and also in quenched metals
after ageing. The voids play significant part in the processes of material structure form-
ing, diffusion phase transformations, swelling, etc. Therefore, it is necessary to develop
the methods of determining the voids characteristics. Also, it’s obvious that defect
characteristics are determined by the atomic structure. Atoms surrounding defect shift
from the sites of ideal lattice, e.g. defect atomic structure changes with respect to an
ideal one, that in turn leads to changes in interaction energy of neighbour atoms and
results in modification of defect energy characteristics and other features. Generally,
displacement fields in the vicinity of spherical voids were determined by the solution
of equations from the classical theory of elasticity [2], were displacement field has a
form:

𝑢𝑥𝑖 = 𝐶0𝑥𝑖 + 𝐶1
𝑥𝑖
𝑟3 , 𝐶0 =

1 − 2𝜈
𝐸

2𝛾𝑅2

𝑅3
𝐺 − 𝑅3

, 𝐶1 = −1 + 𝜈
𝐸

𝛾𝑅2𝑅3
𝐺

𝑅3
𝐺 − 𝑅3

, (1)

were r is a distance from a void center, x𝑖 are coordinates, R is a radius of void, R𝐺 is a
radius of district containing the void, ν is the Poisson ratio and E is the Young modulus,
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γ is the surface energy. Such a description has its disadvantages as it doesn’t take into
account the discrete atomic structure of materials. Results of classical elasticity theory
are expected to be valid at distances from a defect that are much larger than the lattice
parameter which is a characteristic feature of discreteness, therefore the quantities of
atom displacements in the vicinity of such defects as vacancies, vacancy complexes
and nanovoids should significantly differ from the predictions of these displacements
obtained by means of theory of elasticity. In our recent works, a new approach was
developed [3-5]. In particular, in this approach an iterative procedurewas used inwhich
the atomic structure in the vicinity of point defect and the parameter determining
the displacement of atoms embedded into an elastic continuum with accordance with
asymptotic solution of equations from the classical theory of elasticity, are obtained
in a self-consistent manner. The vacancy features (including formation volumes and
migration volumes) obtained for a few cubic metals agreed well with experimental
values [4, 5]. We also note that the MD simulation results that are concerned the self-
diffusion in bcc iron under pressure [6], agree within error of MD experiment with the
data of our work [4]. We used our model for simulations of the di-vacancy features
[7] and later for simulations of the vacancy complexes [8]. In this work, we use our
approach for direct investigation of the atomic structure in the vicinity of nanovoids in
bcc iron.

2. Model

Now we describe main points of the approach. Equilibrium positions of atoms in com-
putation cell are simulated by using a variational procedure analogous to the one,
which is usually used in Molecular Static Method [9]. Computation cell is rounded by
atoms embedded in an elastic continuum and displacements of these atoms u con-
cerned with perturbations, which are induced by defect, are calculated using solutions
of static isotropic elastic equation [2]:

(𝜆 + 2𝜇)∇ (∇ ⋅ 𝑢) − 𝜇∇ × (∇ × 𝑢) = 0, (2)

where λ is Lame modulus, μ is share modulus. Solution of this equation can be
expressed in term of spherical harmonics and thus there are an infinite number of
solutions to displacement of each atom u as a function of its position r (i.e. function of
its distance from a defect). We use the first two terms of series for atomic displace-
ments calculation in an elastic matrix. First term has spherical symmetry and can be
written like Eq. 1 and has only second term when R𝐺>> R [2, 9]:

𝑢1 = 𝐶1𝑟/𝑟3. (3)
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Next term of series has cubic symmetry and usually written in the form [9]:

𝑢2 = 𝐶2∇[
1
𝑟5 (

𝑥4 + 𝑦4 + 𝑧4
𝑟4 − 3

5)] , (4)

where C2 is a constant.

Prior calculations carried out for vacancy in bcc iron using Johnson’s potential [9]
have shown that atomic displacements calculated with only first spherically symmetric
term of the series, don’t agree with results of variation computations even for suffi-
ciently large systems [4, 5]. This circumstance becomes apparent when the formation
and migration volumes are estimated. Taking into account the second term of series
(Eq. 4) allows us to define atomic displacements in an elastic matrix and, consequently,
equilibrium positions of all atoms in the vicinity of a defect more precisely. Other terms
of series have symmetry, which is differ from atomic structure symmetry in the vicinity
of a defect, or they very fast decrease with r and their contributions in u are negligible
at distances corresponding to atom locations in an elastic continuum. Self-consistent
iteration procedure to calculate the constants C1, C2 and simulate atomic structure in
defect crystal is realized in our model. Stable convergence upon constants C1 and C2
has been received. This procedure and our model in all have been described in detail
[4, 5].

3. Results and discussion

The simulation is done for voids of different sizes. The atoms in the centre of the
computational cell are deleted to create a nanovoid. The void radius, R, was between
8.72 and 20.06 Å. We used N-body potentials developed in [10] for bcc iron.

The results of simulation are presented on Figure 1 and in Table 1. In particular, there
give typical atom displacement dependencies on the distance from the void centre
and the calculation results on the equations for the single isolated void (Eq. 1 and
Eq. 3). Dashed vertical lines indicate the radii of the void and the computational cell
respectively.

The displacement dependences of atoms on the distance from the center of the
voids for pores of other sizes have a similar appearance. The highest values of the atom
displacements near the void surface and values of constant C1 for voids of different
sizes are presented in Table 1.

Results show that the fields of displacements near nanovoids are significantly
more complicated and with much bigger magnitudes of atom displacements than
near vacancies [3-5]. In addition, the displacement significantly different for variant
crystallographic directions. The highest value of the atom displacements near the void
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Figure 1: The atom displacements for variant crystallographic directions in bcc iron for nanovoid (R = 17.46
Å).

Table 1: Atom displacements for variant crystallographic directions in bcc iron for voids of different sizes.

R, Å 8.72 10.49 12.17 15.37 17.46 20.06

U<100>, Å 0.029 0.034 0.05 0.066 0.086 0.091

U<101>, Å -0.021 -0.026 -0.031 -0.04 -0.057 -0.044

U<111>, Å -0.083 -0.081 -0.1 -0.113 -0.166 -0.17

С1, Å3 -1.6 -3.76 -4.25 -8.91 -13.66 -28.63

Simulation

С1, Å3 Theory,
Eq.(1)

-4.84 -7 -9.42 -15.03 -19.4 -25.61

surface increases with increasing void size (Table 1). It should be emphasized that the
positive displacement of the atoms located near the surface in the <100> direction
increase with the size of the voids, instead of decreasing as one would expect. In
addition, it is interesting that the trend is continued, although the void radius value
exceeds 20 Å in the simulation (Table 1). Thus, discreteness of structures plays an
important role in the formation of the atom displacements near the void surface.

It should be noted an important consequence of the results. Usually, the equation of
vacancy diffusion in the presence of stress field has the following form [11]:

−→𝐽 = −𝐷𝑉 [∇𝑐 + 𝑐𝑉𝑅𝑒𝑙𝑘𝑇 ∇ (𝑆𝑝𝜎)] , (5)

were c is the vacancy concentration, σ is a tensor of stress, 𝑉𝑅𝑒𝑙 is a relaxation volume.
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A similar expression we have obtained in the zero approximation in the framework
of the microscopic approach proposed by us to describe the effect of the elastic fields
on the diffusion fluxes of vacancies [12]:

𝐽𝑥 = − 1
Ω [𝐷𝑉

𝜕𝑐
𝜕𝑥 − 𝑐𝐾

𝑉

𝑘𝑇 (𝐷𝑉
𝜕𝑆𝑝𝜀
𝜕𝑥 )] , (6)

where Ω is the volume per lattice site, D𝑉 is the vacancy diffusion coefficient in the
perfect system and 𝜖𝑖𝑗 = (1/2) (𝜕𝑢𝑖/𝜕𝑥𝑗+𝜕𝑢𝑗/𝜕𝑥𝑖) is the strain tensor (i, j = 1,2,3).

𝐾𝑉 = 1
2 ∑𝑠 ∑

𝑘≠𝑠

(𝑥𝑉𝑘𝑠)
2

𝑅𝑉
𝑘𝑠

𝜕𝐸𝑆𝑦𝑠
𝜕𝑅𝑘𝑠 |𝑅𝑉

𝑘𝑠

(7)

x𝑘, y𝑘, z𝑘 are the coordinates of the atom k of a system, E𝑆𝑦𝑠 is the system energy, x𝑘𝑠 =

x𝑘 − x𝑠, y𝑘𝑠 = y𝑘 − y𝑠, z𝑘𝑠 = z𝑘 − z𝑠, k≠s, 𝑅𝑘𝑠 = |r𝑘 − r𝑠| = √𝑥2𝑘𝑠 + 𝑦2𝑘𝑠 + 𝑧2𝑘𝑠 for all atoms,
𝑥𝑉𝑘𝑠, 𝑦𝑉𝑘𝑠, 𝑧𝑉𝑘𝑠, 𝑅𝑉

𝑘𝑠are the coordinate differences between the atoms k and s and spacing’s
between them in system with the vacancy.

It is known that the vacancy flux density on the void surface determines growth
rate of the voids [1]. If we use the solution of equations from the classical theory of
elasticity in the vicinity of the void (1), then:

𝑆𝑝𝜖 = 3𝐶0, ∇ 𝑆𝑝 𝜖 = 0, and −→𝐽 = −𝐷𝑉∇𝑐. (8)

There is no stress influence on flux of vacancies [1, 13].

Obtained results show that ∇ 𝑆𝑝𝜖 ≠ 0, and a kinetics equation for the growth rate
of voids must contain the additional terms conditioned by strains, arising from voids.
Thus, these factors, together with the factors which change the diffusion coefficients
[13], affect the kinetics of pore growth under different conditions. It should be taken
into account that in many cases the growing and dissolving pores pass through the
stage of nanometers.

One more consequence: it is to be expected that the displacement fields around
nano-sized precipitates will also significantly differ from the predictions of the elastic-
ity theory. Therefore, the existing theories and models for nucleation and growth of
pores and phase inclusions need a significant revision, taking into account the results
of the simulation. The above-mentioned consequences are especially relevant for the
swelling models of materials [1] and Frenkel’s effects (Kirkendal of the second kind)
[14, 15] with interdiffusion.

4. Conclusion

1. New model is presented for determining atomic structure near nanovoids. The
main points of the model are the following. First, we allow for displacements of
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atoms embedded in an elastic continuum around computation cell. Second, we
consider the influence of discreteness of the atomic structure in the vicinity of
a defect on the values and directions of atomic displacements in elastic matrix.
The third point is that the atomic structure in the vicinity of the void and the
displacement of atoms in the elastic medium are calculated in a self-consistent
manner using a convergent iterative procedure.

2. The model permits us to find qualitatively new peculiarities of the atomic struc-
ture in the void vicinity that cannot be correctly obtained with the use of the
elasticity theory because it cannot be applied to the atomic scale.

3. In addition, the displacement significantly different for various crystallographic
directions.

4. The obtained atom positions give us the possibility to provide the following more
advanced level simulation of nanovoid growth in materials supersaturated with
vacancies.
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