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Abstract
In recent years, large patches of forest have been destroyed by fires, bringing tragic
consequences for the environment and small settlements established around these
regions. In this context, it is essential that fire fighting teams possess an increased
situational awareness about the fire propagation, in order to promptly act in the
extinguishing process. Recent advances in UAV technology allied with remote sensing
and computer vision techniques show very promising UAVs applicability in forest fires
detection and monitoring. Besides presenting lower operational costs, these vehicles
are able to reach regions that are inaccessible or considered too dangerous for fire
fighting crews operations. This paper describes the application of a real-time forest
fire detection algorithm using aerial images captured by a video camera onboard
an Unmanned Aerial Vehicle (UAV). The forest fire detection algorithm consists of a
rule-based colour model that uses both RGB and YCbCr colour spaces to identify
fire pixels. An intuitive targeting system was also developed, allowing the detection
of multiple fires at the same time. Additionally, a fire geolocation algorithm was
developed in order to estimate the fire location in terms of latitude (φ), longitude
(λ) and altitude (h). The geolocation algorithm consists of applying two coordinates
systems transformations between the body-fixed frame, North-East-Down frame (NED)
and Earth-Centered, Earth Fixed (ECEF) frame. Flight tests were performed during
a controlled burn in order to assess the fire detection algorithm performance. The
algorithm was able to detect the fire with few false positive detections.

Keywords: Aerial fire detection algorithm, Aerial fire monitoring, Forest fire, UAV,
Remote sensing

1. Introduction

In recent years, there has been a significant incidence of forest fires, responsible
for devastating millions of forest hectares [1]. Besides destroying the local flora and
fauna, these fires also destroy several infrastructures and unfortunately cause human
casualties among the fire fighting crews and civilians that might be accidentally sur-
rounded by the fire. Thus, early detection and real-time fire perception are two key
factors that allow the fire fighting crews to act accordingly in order to prevent the
fire from achieving unmanageable proportions [2]. Recent advances in Unmanned
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Aerial Vehicles (UAV) technology allied with Remote Sensing Techniques, show very
promising UAV applications in forest fires detection and monitoring [3]. This technology
can provide a broader and more accurate perception of the fire, even in regions that
are inaccessible or considered too dangerous for fire fighting crews operations [4].
Additionally, the operating cost of UAVs is considerably lower when compared to the
currently used solutions [5].

The current fire detection methods consist of applying image processing techniques
to onboard visual and infrared sensors data [6]. These techniques use characteristic
features such as colour, motion, and geometry to detect the flame or smoke generated
by the fire [1], [7]–[13].

Israeli Aircraft Industries developed a UAV equipped with both visible spectrum and
Forward- looking infrared (FLIR) cameras. Both sensors data were processed to provide
information about the geometric characteristics of the fire [14]. Martínez-de Dios et al.
[15] and Pastor et al. [16] used a rotary-wing UAV also equipped with a visual and infrared
camera. Each camera data are processed individually and then merged using statistical
data fusion techniques.

Several studies are now focused on using a team of UAVs, characterized by increased
autonomy and group cooperative behaviours for accomplishing a common task [17–21].

This paper describes the implementation of a fire segmentation algorithm in order
to perform aerial forest fire detection and monitoring using a small UAV. The fire pixel
segmentation algorithm is based on the work developed by Vipin et al. [12] and consists
of a rule-based colour model. This algorithm requires low computational power allowing
a small UAV, equipped with a visual camera and an onboard computer, to perform
real-time forest fire detection. A commercial off-the-shelf multicopter, the DJI F550
hexacopter, was used as a test platform to assess the fire detection and monitoring
effectiveness. Several flight tests, conducted on a real fire scenario, showed that the
UAV is capable of successfully detecting a forest fire.

2. Fire Detection and Monitoring Algorithm

2.1. Fire Pixel Segmentation

The fire segmentation technique is based on the work developed by Vipin et al. [12]
and consists of applying a set of rules to each pixel of the live video feed captured by
the onboard camera. This algorithm uses both RGB (Red, Green and Blue) and YCbCr
(Luminance, Chrominance blue and Chrominance Red) colour spaces. A colour space is
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an abstract mathematical model that relates numbers to actual colours, allowing several
devices to represent a colour in a digital environment.

The RGB is an additive colour space defined by the combination of three colour
planes: red, green and blue. Each component value ranges from 0 to 255. For instance,
the red colour is represented by (R,G,B) = (255,0,0), green by (R,G,B) = (0,255,0) and
blue by (R,G,B) = (0,0,255).

In the YCbCr colour space, the intensity and chrominance are well discriminated,
where Y is the luminance, Cb and Cr are the chrominance blue and red compo-
nents respectively. The luminance (Y component) measures the light intensity while
the chrominance (Cb and Cr components) measures the colour values [22].

The fire pixel segmentation algorithm consists of a set of seven colour-based rules
applied to each frame of the live video feed. All rules must be met in order to categorise
a pixel as fire.

2.1.1. Rule I

Considering that each video frame consists of a rectangular grid of M×N pixels, each
pixel location is given by (x,y), being R(x,y), G(x,y) and B(x,y) the corresponding intensity
values of red, green and blue channels, respectively. Rule I states that in fire regions,
the red channel intensity is higher than the green channel. Moreover, the green channel
intensity is higher than the blue channel. Thus, for a pixel located at (x,y) position to
become a fire pixel, the following condition must be met:

𝑅(𝑥, 𝑦) > 𝐺(𝑥, 𝑦) > 𝐵(𝑥, 𝑦) (1)

2.1.2. Rule II

Rule II specifies the threshold values for each RGB channel from which a pixel can be
considered as fire. Vipin et al. [12] identified this threshold by analysing the histogram
of a large number of fire images. According to their observation, a pixel located at (x,y)
position is considered fire when the following condition is met:

𝑅(𝑥, 𝑦) > 190 ∩ 𝐺(𝑥, 𝑦) > 100 ∩ 𝐵(𝑥, 𝑦) < 140 (2)
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2.1.3. Rule III

Rule III states that a fire pixel exhibits a higher luminance (Y ) value when compared to
the chrominance blue component (Cb), thus:

𝑌 (𝑥, 𝑦) ≥ 𝐶𝑏(𝑥, 𝑦) (3)

Each component value of the YCbCr colour space can be calculated using the following
RGB to YCbCr conversion:

⎡
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⎣
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(4)

2.1.4. Rule IV

Rule IV establishes a comparison between both chrominance values of the YCbCr
colour space. It states that for a fire pixel the chrominance red values prevail over the
chrominance blue values:

𝐶𝑟(𝑥, 𝑦) ≥ 𝐶𝑏(𝑥, 𝑦) (5)

2.1.5. Rule V

Rule V compares each pixel YCbCr channel value with the overall image mean values
of each channel. Vipin et al. [12] observed that for the flame region, the Y component,
in essence the brightness, is more prominent than the mean Y component (Y𝑚𝑒𝑎𝑛) of the
overall image. Similarly, the Cb component is generally smaller than the mean Cb value
of the overall image while the Cr component is higher than the overall image Cr𝑚𝑒𝑎𝑛:

𝑌 (𝑥, 𝑦) ≥ 𝑌𝑚𝑒𝑎𝑛 ∩ 𝐶𝑏(𝑥, 𝑦) ≤ 𝐶𝑏𝑚𝑒𝑎𝑛 ∩ 𝐶𝑟(𝑥, 𝑦) ≥ 𝐶𝑟𝑚𝑒𝑎𝑛 (6)

The mean values of each channel of the YCbCr colour space are calculated as follows:

𝑌𝑚𝑒𝑎𝑛 =
1

𝑀𝑁

𝑀

∑
𝑥=1

𝑁

∑
𝑦=1

𝑌 (𝑥, 𝑦) (7)

𝐶𝑏𝑚𝑒𝑎𝑛 =
1

𝑀𝑁

𝑀

∑
𝑥=1

𝑁

∑
𝑦=1

𝐶𝑏(𝑥, 𝑦) (8)
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𝐶𝑟𝑚𝑒𝑎𝑛 =
1

𝑀𝑁

𝑀

∑
𝑥=1

𝑁

∑
𝑦=1

𝐶𝑟(𝑥, 𝑦) (9)

2.1.6. Rule VI

Vipin et al. [12] observed a significant difference between the Cb and Cr components of
fire pixels. This difference results in Rule VI that states that for a fire pixel, the difference
between the Cb and Cr components must be equal or higher than a given threshold:

|𝐶𝑏 − 𝐶𝑟| ≥ 𝑇ℎ (10)

The threshold value (Th) is determined according to the Receiver Operating Char-
acteristics (ROC) curve exhibited in Figure 1. This curve is created by plotting the True
Positive Rate (TPR) against the False Positive Rate (FPR) at different threshold values.
The True Positive Rate (TPR) is the ratio between true positive fire detections and the
number of test images that actually contained a fire region. The False Positive Rate
(FPR) is the ratio between the number of false positive fire detections and the number
of test images containing no fire. According to Figure 1, point C exhibits the best balance
between high true positives (>95%) and low false positives (<30%) with a corresponding
threshold value of Th = 70.

2.1.7. Rule VII

Rule VII applies the same principle as Rule II. It specifies the threshold values for bothCb
andCr channels fromwhich a pixel can be considered as fire. The luminance component
(Y ) is not considered because it is highly dependent on illumination conditions. Rule VII
states that a pixel located at (x,y) position is considered fire when the following condition
is met:

𝐶𝑏(𝑥, 𝑦) ≤ 120 ∩ 𝐶𝑟(𝑥, 𝑦) ≥ 150 (11)

Figure 2 exhibits the resulting binary image after applying the aforementioned rules to
an aerial image of a real fire.

Besides performing an effective fire detection, the binary image is not suitable for a
real operational scenario. In the present work, a more intuitive mean of fire identification,
consisting of a targeting system, was developed to assess this necessity. Additionally,
due to the possibility of having multiple ongoing fires in the camera Field of View
(FOV), the rectangular pixels grid was divided into multiple rectangular sectors, each
one comprising an independent targeting system.

DOI 10.18502/keg.v5i6.7038 Page 246



 
ICEUBI2019

Figure 1: Receiver Operating Characteristics (ROC) curve Source: [13]

Figure 2: Non-processed fire aerial image (left) and binary image (right) after applying the fire pixel
segmentation rules (Source: Author).

Figure 3 displays the targeting system overlayed on the live video feed captured by
the onboard camera. This system consists of a blue diamond-shaped symbol and a
green square.

The blue diamond-shaped symbol represents the centroid of the fire pixel cluster.
The centroid, C(x,y), is calculated in each frame of the video feed, and it is given by:

𝐶(𝑥, 𝑦) =
(
∑𝑇

𝑖=1 𝑥𝑖
𝑇 ,

∑𝑇
𝑖=1 𝑦𝑖
𝑇 )

(12)
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Figure 3: Fire detection and monitoring targeting system (Source: Author).

where T is the total number of fire pixels detected in each video frame, x𝑖 and y𝑖 are
the coordinates of each fire pixel on the M×N rectangular pixels grid.

Due to the flickeringmotion of the flames, the position of the fire pixels centroid keeps
continually changing at the same framerate as the video feed, causing some difficulties
when tracking the blue diamond-shaped symbol. Therefore, a Kalman filter [23] was
applied, providing a smoother and more intuitive way of tracking the fire position. The
green square represents the current Kalman filter estimate using the previous frames
centroids as inputs.

2.2. Fire Geolocation

The fire geolocation must be precisely known by fire fighting crews in order to promptly
and effectively act during the extinction process.

The fire geolocation can be estimated by knowing the UAV position and attitude, and
the distance between the UAV and the fire itself.

The UAV position in terms of latitude (φ), longitude (λ) and altitude (h), is given by
the autopilot NAZA-M V2, based on the Global Positioning System (GPS) signal. The
autopilot also provides the three Euler angles, pitch (θ), roll (𝜙,) and yaw (ψ), required to
define the UAV attitude.

The distance between the UAV and the fire, from now on referred as detection
distance (L𝑑𝑒𝑡), is measured by a Light Detection and Ranging (LIDAR) sensor. The LIDAR
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beam, as well as the onboard visual camera, are assumed to be positioned at the
UAV centre of mass, aligned with the vertical body axis (z𝐵), as shown in Figure 4.
Consequently, the fire location, F𝐵 , in the UAV body-fixed frame is (0,0,L𝑑𝑒𝑡).

Figure 4: UAV body-fixed frame (Source: Author).

In order to estimate the fire geodetic coordinates (latitude, longitude and height), a
series of transformations between different coordinate systems are required [24].

The first step consists of transforming the fire location from the UAV body-fixed frame
to the North-East-Down frame (NED). The NED system has its origin on the surface of
the geoid below the aircraft’s centre of mass, being the x-axis oriented to north, the
y-axis oriented to east and the z-axis oriented down. This transformation uses the three
Euler angles (θ, 𝜙, ψ) and is performed through the rotation matrix (R𝐵_𝑁𝐸𝐷), as follows:

𝐹𝑁𝐸𝐷 = 𝑅𝐵_𝑁𝐸𝐷 ⋅ 𝐹𝐵 (13)
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⎥
⎥
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⎢
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⎢
⎣

𝑥𝐵

𝑦𝐵

𝑧𝐵

⎤
⎥
⎥
⎥
⎥
⎥
⎦
(14)

Figure 5: NED (green) and ECEF (blue) coordinates systems (Source: [25]).

The next step results from the transformation of the fire location in the NED frame
to the Earth-Centered, Earth Fixed (ECEF) frame. The ECEF is a cartesian coordinate
system with the origin fixed at the Earth’s centre of mass. The x-axis points towards the
intersection of Earth’s equatorial plane and the Greenwich Meridian, the y-axis points 90
degrees to the east of the x-axis in the equatorial plane, and the z-axis points northward
along the Earth’s rotation axis [25]. Figure 5 exhibits a graphical representation of both
the NED and ECEF coordinate systems.

The transformation from NED to ECEF coordinates systems is given by:

𝐹𝐸𝐶𝐸𝐹 = 𝑅𝑁𝐸𝐷_𝐸𝐶𝐸𝐹 ⋅ 𝐹𝑁𝐸𝐷 + 𝑃𝑟𝑒𝑓_𝐸𝐶𝐸𝐹 (15)
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where, P𝑟𝑒𝑓_𝐸𝐶𝐸𝐹 is the UAV position in the ECEF coordinates system, and the rotation
matrix (R𝑁𝐸𝐷_𝐸𝐶𝐸𝐹 ) is given by:

𝑅𝑁𝐸𝐷_𝐸𝐶𝐸𝐹 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− sin𝜓 cos 𝜆 − sin 𝜆 − cos𝜓 cos 𝜆

− sin𝜓 sin 𝜆 cos 𝜆 − cos𝜓 sin 𝜆

cos𝜓 0 − sin𝜓

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(16)

The UAV position is provided by the autopilot in geodetic coordinates (latitude,
longitude, height), so it first must be converted to ECEF coordinates (x𝐸𝐶𝐸𝐹 , y𝐸𝐶𝐸𝐹 ,
z𝐸𝐶𝐸𝐹 ) according to theWorld Geodetic System, WGS-84, using the following equations:

𝑥𝐸𝐶𝐸𝐹 = (𝑁(𝜓) + ℎ) cos𝜓 cos 𝜆 (17)

𝑦𝐸𝐶𝐸𝐹 = (𝑁(𝜓) + ℎ) cos𝜓 sin 𝜆 (18)

𝑧𝐸𝐶𝐸𝐹 = (
𝑏2
𝑎2𝑁(𝜓) + ℎ) cos𝜓 sin 𝜆 (19)

where, a = 6378137 m is the earth equatorial radius, b = 6356752.3142 m is the polar
radius, and N(φ) is the prime vertical radius of curvature given by:

𝑁(𝜓) = 𝑎2

√𝑎2 cos2 𝜓 + 𝑏2 sin2 𝜓
(20)

The last step consists of transforming the fire location in ECEF coordinates (F𝐸𝐶𝐸𝐹 )
to geodetic coordinates. This transformation was achieved using the analytical method
developed by Vermeille et al. [26].

3. UAV Sensors Package

The DJI F550 is a commercial off-the-shelf multicopter equipped with the NAZA-M V2
autopilot system. The autopilot comprises an internal 3-axis gyro and accelerometer,
and an external GPS/compass module [27]. Figure 6 displays a simplified architecture
of the avionics system.

All components placed inside the blue box are related to the Multicopter Control Sys-
tem. It comprises the autopilot board (NAZA-M V2), the Radio Control (RC) receiver, and
the Controller Area Network (CAN) hub that establishes the communication between
the autopilot board and other peripheric systems such as the GPS/Compass module,
the 2-axis First Person View (FPV) camera stabiliser and the iOSD. The iOSD is an
Onscreen Display module responsible for overlaying the flight data on the video signal
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captured by the FPV camera. The FPV video is then transmitted to a Ground Control
Station (GCS), allowing the pilot to control the UAV.

The orange box encompasses all the components related to the Fire Detection and
Monitoring System. It includes a CAN transceiver, two Teensy 3.2 microcontrollers, a
LIDAR, a Raspberry Pi 3B computer, and an 8-megapixel camera module. The Teensy
microcontroller board 1, is connected through a CAN transceiver to the CAN hub of the
Multicopter Control System. Its primary function is to decode the autopilot CAN mes-
sages that contain information about the UAV position (𝜑, 𝜆, h) and attitude (𝜙, 𝜃, 𝜓 ), and
send it over the serial port to the Teensy microcontroller board 2. The LIDAR measures
the detecting distance (L𝑑𝑒𝑡) and sends this information via Pulse-Width Modulation
(PWM) to the Teensy microcontroller board 2. The computation of the fire geolocation
is performed by the Teensy microcontroller board 2. This board gathers all data about
UAV position, attitude and fire detection distance, in order to compute the fire location
and send it to the Raspberry Pi via I2C communication. The Raspberry Pi computer
hosts the Fire Pixel Segmentation algorithm. It processes the video signal from the
8-megapixel camera and stores the processed video signal in a miniSD flash memory
card.

Figure 6: Avionics System simplified architecture (Source: Author).
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4. UAV Flight Test and results

The flight tests were carried out during a controlled burn at 10:00 AM (UTC) of 15 March
2019, following the safety regulations issued by the civil aviation authority and civil
protection agency. The test site is located at 40°14’39.0”N 7°24’01.8”W.

The UAV was manually flown in a creeping line search pattern at different heights
above the fire location (Figure 7). Figure 8 displays two frames of the onboard processed
video at two different flight altitudes.

The Fire Detection and Monitoring algorithm proved to be able to correctly identify
the fire regions. As expected, there were a few false positive detections that occurred
mainly due to the presence of man-made objects within the same fire colour range,
such as the orange terracotta roof tiles of a nearby building.

Due to the limited processing power of the onboard computer (Raspberry PI 3 B), the
input video had to be downsized by a factor of 2, resulting in a total resolution of 4 MP.
In these conditions, the Raspberry was able to process the input video at a framerate
of approximately 6 fps.

Figure 7: Flight testing during a controlled burn (Source: Author).

Figure 8: Fire Detection and Monitoring algorithm onboard processed outputs (Source: Author).
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5. Conclusion

The results obtained with the present work showed that the Fire Detection and Moni-
toring algorithm is able to perform a real-time fire detection and monitoring using the
UAV onboard footage.

Due to the limited processing power of the onboard computer, the maximum achiev-
able output framerate was approximately 6 fps. The output framerate can be increased
by downsizing the video input resolution at the expense of a lower detection range.
A lower video resolution would compromise the ability to detect small fires at long
distances.

Further flight tests shall be conducted in order to validate the Fire Geolocation algo-
rithm and to quantify the effectiveness of the Fire Detection and Monitoring algorithm
in terms of fire detection range.
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