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Abstract
A beam or a sucker rod pump is an artificial-lift pumping system using a surface
power source to drive a downhole pump assembly. A beam and crank assembly
creates reciprocating motion in a sucker-rod string that connects to the downhole
pump assembly. The pump contains a plunger and valve assembly to convert the
reciprocating motion to vertical fluid movement. A dynamometer is a diagnostic
device used on sucker rod pumped wells that measures the load on the top rod and
plots this load in relation to the polished rod position as the pumping unit moves
through each stroke cycle. The analysis of the dynamometer card data has valuable
insights on the status of the pump and indicates if future actions are needed. This
study was done using artificial neural networks, a subset area of machine learning,
for categorizing beam pump operating conditions based on dynamometer card data
to provide a planning horizon for future operational and facility actions.

Keywords: Artificial Intelligence, Beam Pump, Big Data, Convolutional Neural
Network, Deep Learning, Sucker Rod

1. Introduction

Oil is a vital asset to the global energy needs. The oil industry has a wide range of
activities including but not limited to exploration, extraction, refining, and marketing.
The extraction of oil is the process by which oil is drawn out from beneath the Earth’s
surface.

When natural drive energy of a reservoir is not sufficiently strong to push oil to
the ground surface, an artificial lift process is used on an oil well to increase reservoir
pressure to draw the oil to the surface.

The oldest and most widely used type of artificial lift is called beam pumping, or the
sucker-rod lift method. The dynamometer card, or pump card, displays the fluid load
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on the pump plunger over a pump cycle. It is a plot of the calculated loads at various
positions of a pump stroke. The size and shape of the card indicate the operating
conditions and performance of the pump.

Identification and diagnosis of beam pumps using the valuable pump card is an
expensive human visual interpretation process. It does not only require a lot of labor
time but also requires deep expertise in the domain. The process, just like any other
process involving human visual interpretation is also prone to errors. In addition, oil
fields are increasingly generating more data from real-time sensors or IoT (internet of
things), making it harder for human experts to handle and interpret this large data.

Therefore, utilizing pattern recognition techniques can significantly help automat-
ing the visual interpretation process, increasing efficiency and reducing maintenance
activities due to missed early diagnosis.

ImageNet Challenge is an annual large scale visual recognition challenge where
research teams evaluate their algorithms on a given dataset, with over 1.2 million
images and 1,000 classes.

Several winning artificial neural network based algorithms have been open-sourced
to the public after the annual competition. These pre-trained algorithms keep proving
their success and astonish the scientific community with their ability to surpass human
capability to perform image classification in domains like autonomous driving, health-
care, retail, and many others.

2. Literature Review

There are a number of studies that have focused on performing pattern recognition
in the domain of dynamometer cards for many years. These methodologies can be
mainly split into three categories:

2.1. Rule-based methods

These methods can, for example, be based on selected descriptors of the dynamome-
ter cards like contour (border) or region (de Lima 2012). Descriptors like centroid, cur-
vature, K-curvature are used. Euclidean distance, or Pearson correlation are used as
mathematical tools for calculating similarity.
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2.2. Machine learning with manual feature extraction

Machine learning is based on algorithms that can learn patterns from data (Tian 2007,
Li 2013). Manual feature engineering is required such as dividing dynamometer cards
using the “four point method” (Li 2013) and then extracting moment invariants for
pattern recognition using a support vector machine (SVM), a popular machine learning
algorithm.

2.3. Deep learning with automatic feature extraction

Deep learning based approaches automatically extract features of dynamometer
cards using state-of-the-art artificial neural networks. Convolutional neural networks
(CNNs), a class of deep, feed-forward artificial neural networks use a variation of
multilayer perceptron designed to require minimal preprocessing. These CNNs have
been studied on the dynamometer card problem with data-based and image-based
methodologies (Hangqi 2017).

Other types of custom feed-forward artificial neural networks have been used (Bez-
erra 2009).

Most of the methods used in category 1- Rule-based methods and category 2 -
Machine Learning, as aforementioned, require extensive human-performed feature
engineering.

Studies conducted in category 3 - Deep learning with automatic feature extraction,
as aforementioned, were a step ahead and improved by automating feature extraction
and showed noticeable improvement in accuracy.

However, the studies conducted using deep learning have mostly used neural net-
works trained from scratch. Some of the work that was performed required over 1,440
epochs/iterations for the neural network to converge (Bezerra 2009).

Transfer learning is a branch of machine learning which relies on utilizing knowledge
gained in solving one problem, and applying it to a different but related problem (Q.
Yang 2009). For example, an artificial neural network can be trained to recognize cats.
The same trained network can be then used to train another classifier to detect dogs,
and can converge much faster than training the network from scratch.

This work adopts a combination of convolutional neural networks based deep learn-
ing and transfer learning based on ImageNet datasets to build classifiers that can
detect and classify beam pump conditions based on images of pump card dynamome-
ter shape.
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Different types of classifiers are used on our dataset and results are compared.
A number of deep learning techniques that significantly help a neural network to
converge and reduce over-fitting are presented. Most of these relatively new tech-
niques are used in research and online data science competitions to achieve world-
class accuracy in image classification problems.

3. Framework and Research Methodology

This section elaborates more on the dynamometer card classification problem defini-
tion, provides details about the dataset, specifies software and hardware requirements
used in research, and finally briefly discusses different neural networks and deep
learning techniques used.

3.1. Problem definition

A beam and crank assembly creates reciprocating motion in a sucker-rod string that
connects to the downhole pump assembly. The pump contains a plunger and valve
assembly to convert the reciprocating motion to vertical fluid movement. Figure (1)
shows standard sucker-rod artificial lift operation and Figure (2) shows how its move-
ment is represented in a pump card.

There are over twenty (20) different main classifications that describe the operating
conditions of a pump card. These categories are well known by domain experts. They
can be visually differentiated. In some cases, more than one phenomena can co-exist
in the beam pump (a pump may be in two classifications). In deep learning, this can
be introduced as a new classification defined by the shape combining the other two
classifications.

For the purpose of this research, we use a total of eight (8) different commonly
known classification categories (excluding when two classifications may co-exist in a
pump):

1. Normal operation

2. Slight gas interference

3. Severe gas interference

4. Severe fluid pound

5. Standing valve leak
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Figure 1: Sucker-rod standard artificial lift operation.

Figure 2: Pump card upstroke and downstroke (Economides el al., 1994).

6. Worn pump

7. Stuck piston

8. Sand production
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Pump card sample shape for each of the above categories is shown in Figure (3). For
each of the eight (8) shapes shown, the x-axis denotes displacement and the y-axis
denotes load (both axes are not shown in the figure). The area inside the shape is filled
in black for the purpose of image CNN classification.

Figure 3: Examples of different shapes of pump card.

3.2. Data collection and dataset

While most deep learning practitioners use large datasets for training, due to limita-
tions on getting a larger labeled dataset, a relatively small dataset is used for this
research composed of eighty (80) images for training, and sixteen (16) other images
for validation (two per classification). The whole dataset is composed of ninety six
(96) images.

The dataset is split into two main folders (1) training and (2) validation. The training
folder has eight folders representing the eight categories, with each category having
ten pump card shape images. Similarly, validation folder has eight folders with each
having two (2) images to test the deep learning model prediction accuracy.

The data is collected from an Open Platform Communications (OPC) server which
collects pump card data from beam pump sensors in real-time. The pump card data
of load and displacement is stored in files, and then pump card shape is plotted. The
resulting image with black fill is saved as a 256 x 256 pixels PNG image.

3.3. Software and hardware requirements

There are a number of open source deep learning libraries that allow researchers to
experiment with deep learning and transfer learning techniques. Pytorch is an open
source deep learning library for Python, based on Torch. It is primarily developed by
the artificial-intelligence research group at Facebook.
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Pytorch is chosen as the deep learning library used in research as it has many pre-
trained deep learningmodels that can be used for experimentingwith transfer learning
using convolutional neural networks. FasiAI is a high level deep learning framework
that uses Pytorch library with an abstraction from low level programming. It is used as
a convenient interface for Pytorch, providing all Pytorch features in a flexible and easy
to use abstraction.

Jupyter Notebook is an open-source web application that allows data scientists to
program in Python through a web-interface. It is used to interact with FastAI with
Pytorch engine, visualize the pump card images, and evaluate the quality of deep
learning models trained.

For hardware, an AmazonWeb Services (AWS) Elastic Compute Cloud (EC2) p2.xlarge
machine with one (1) GPU is used for building deep learning models as part of this
research.

3.4. Methodology and deep learning models

Three different types of convolutional neural networks (CNNs) are used with the same
number of epochs, learning rate, loss, data augmentations, and test time augmenta-
tions (TTA) for the purpose of this research. All models used are pre-trained on an
ImageNet dataset. Due to the small dataset used, the focus is more on probing the
potential of using CNNs and comparing their performance on the used pipeline rather
than getting the highest accuracy possible or fine-tuning a model to its maximum
performance.

The following briefly sheds a light on the different pre-trained CNNs used for clas-
sification:

3.4.1. VGG16

VGG16 (also called OxfordNet) is a CNN named after the Visual Geomtry Group from
Oxford (Simonyan 2014). The group used it to win the ImageNet competition in 2014.
VGG16 is a very deep network with a lot of convolution layers followed bymax-pooling
that reduces dimensionality. Figure (4) shows VGG16.
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Figure 4: VGG16 Architecture.

3.4.2. ResNet34

ResNet won the first place in ImageNet competition in 2015. A residual neural network
(He, Kaiming et al 2016) helps preserving good results through a very deep neural
network. It uses skip connections to solve vanishing gradient problem. ResNet34 is a
thirty (30) layer residual network. Figure (5) shows a Residual Building Block.

Figure 5: Residual Learning: a building block (He, Kaiming et al 2016).
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3.4.3. ResNeXt50

ResNeXt came at the second place in ImageNet 2016. ResNeXt introduces a new term
called “cardinality” (Xie 2017). In theory, increasing cardinality is able to improve clas-
sification accuracy. Figure (6) shows the difference between a ResNet block and a
ResNeXt block.

Figure 6: ResNet (left) and ResNeXt (right) Architecture (Xie 2017).

The following explains the deep learning pipeline used for each of the previously
mentioned CNNs:

1. Load all images and resize to 224 (most convolutional neural networks prefer this
input)

2. Train last layer of classifier on the training data (80 images) and evaluate on
validation (16 images) using gradient descent with 0.01 learning rate for two (2)
epochs.

3. Find an optimal learning rate using Cyclical Learning Rates (Smith, L. N. 2015).

4. Use data augmentation to train last layer (3 epochs with cycle length = 1). Data
augmentation refers to creating more data using augmentation by randomly
changing the images using flipping, zooming and rotations without impacting
their interpretations. This helps prevent the over-fitting of a model. Figure (7)
shows different types of augmentations on the same image. This is just like how
a human can interpret the pump card shape whether the image is rotated or not.
This helps the deep learning model to converge by providing additional data for
training.
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5. Unfreeze all layers (previous steps were training only on last layer)

6. Set earlier layers to 3x-10x lower learning rate than next higher layer.

7. Find best learning rate again and train full network with two (2) cycle multipliers
until over-fitting.

8. Use test-time-augmentation which randomly augments validation data set and
predicts original and augmented images, and then averages predictions from
these images.

Figure 7: Different Types of Augmentations.

4. Research Findings and Discussions

As a first investigation of results, the overall prediction accuracy after step (8) from
section above, TTA, of each CNN model is shown in Table I.

T 1: Deep Learning CNN Models Accuracy.

Model VGG16 ResNet34 ResNeXt50

Accuracy 87.5 100 56.25

Table I shows that the best model is ResNet34. However, that does not mean that
other models may not be able to achieve similar results. VGG16 and ResNeXt50 may
take more time to converge. For the sake of this research, we conclude that ResNet34
performs better since it converges faster than other predictive deep learning models.
A larger dataset may show different results since our dataset is quite small for deep
learning models which are usually used for big data.
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For further investigation, we plot the confusion matrix for each of the three CNNs.
The confusion matrix is a table that allows visualization of the performance of an
algorithm making it easy to see if the deep learning system is confusing two classes.

Figure (8) shows the confusion matrix for VGG16, ResNet34, and ResNeXt50 respec-
tively.

We further explore the performance of different CNN models after performing step
(2), training the last layer of the classifier with a pre-trained model for two (2) epochs.

Table II shows each model’s accuracy at that stage.

T 2: Deep Learning CNN Models Accuracy after 2 Pre-trained epochs on Last Layer.

Model VGG16 ResNet34 ResNeXt50

Accuracy 43.75 68.75 87.5

We can observe that at that early stage of training only the last layer with a pre-
trained model, ResNeXt50 seems to give the best performance, followed by ResNet34,
and then VGG16.

Nevertheless, towards the end of training pipeline after unfreezing early layers, it
seems that ResNeXt50 has some challenges in quick convergence compared to VGG16
and ResNet34. This does not necessarily mean that ResNeXt50may not perform better
than the other two CNNs. It may simply require more time to converge due to the
complexity of its network architecture. It is commonly known that training early layers
takes more time to converge since these layers were pre-trained and finding the right
weights for a deep neural network can take much longer than fine-tuning last layers of
the network. Over-fitting when dealing with a small dataset is also a concern and the
performance of a CNN on a small dataset cannot be guaranteed on a larger dataset.

In a last investigation, we look at the most uncertain prediction of the two best
performing models after training the last layer with a pre-trained model for 2 epochs
(with no augmentation, cyclic learning rate, nor test time augmentations). Figure (9)
shows the most challenging images (or most uncertain predictions) for ResNet34 and
ResNeXt50 respectively.

5. Conclusion

This paper has reviewed and analyzed the potentials of using artificial neural networks,
specifically convolutional neural networks combined with transfer learning, for elimi-
nating the need for manual feature engineering and fast convergence when building a
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Figure 8: Confusion Matrix for VGG16, ResNet34, and ResNeXt50.
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Figure 9: Most Uncertain Predictions for ResNet34 and ResNeXt50 after Last Layer Training with Pre-
trained Model.

system to automatically classify beam pump conditions based on a pump card shape
provided as an image.

Although using a limited dataset, the results show promising potential for further
work. In a typical oil field, there may be hundreds of beam pumps deployed which
require continuous robust diagnosis. Lack of experienced resources, cost, and wrong
interpretations could all be eliminated using an artificial intelligence system that can
proactively monitor the whole fleet of pumps and provide early notifications of prob-
lems.

Further work can explore the performance after increasing the size of the dataset. It
can also explore adding more complex categories for classification. Moreover, future
work can also look at adding different type of sensor data, well test data, or temper-
ature to help building better models. Finally, the same pump card data collected as
time-series can be used to make future predictions of the status of a pump operat-
ing conditions using advanced sequence models like recurrent neural networks and
specifically long-short-term-memory (LSTM) neural networks.
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