
 

Sustainability and Resilience Conference
Sustainability and Resilience Conference: Mitigating Risks and Emergency Planning
Volume 2018

Conference Paper

Scheduling in Cloud Computing Environment
Amine Mahjoub and Youssef Harrath
College of Information Technology, University of Bahrain

Abstract
In this work, the authors focus on the problem of scheduling in cloud computing
environment. Such environment is characterized by a very strong volatility, in
the sense that the resources can integrate and leave the system in a frequent
and completely random way. The classical scheduling problems consider that the
resources are always available. This hypothesis is not realistic especially in cloud
computing environment. In this article, the authors present an efficient algorithm to
solve the problem of scheduling in a simplified model of a cloud environment where
the resources are subject to deterministic unavailability periods.

Keywords: Parallel machine scheduling, Resource unavailability, List scheduling; LPT.

1. Introduction and Motivation

Cloud computing is a recent and important topic in the Computer Science field. Consid-
erable efforts continue to be produced to develop techniques and efficient solutions
to many emerging problems in this topic. Cloud computing nowadays is an IT-related
service provider that allows to get many possible IT services at one place. The most
common services provided by a cloud are:

1. SaaS or Software as a service: Allow the users to temporarily get profit of avail-
able software without the need of personal license.

2. Utility Computing: This is probably the most important feature of a cloud comput-
ing where the users can access virtual storages, as well as purchase computing
capacities to remotely perform super calculation tasks.

3. Platforms: This is a more advanced feature of cloud computing service where
complete platforms providing whole development environment are made avail-
able for users.

How to cite this article: Amine Mahjoub and Youssef Harrath, (2018), “Scheduling in Cloud Computing Environment” in Sustainability and Resilience
Conference: Mitigating Risks and Emergency Planning, KnE Engineering, pages 29–36. DOI 10.18502/keg.v3i7.3070 Page 29

Corresponding Author:

Amine Mahjoub

amahjoub@uob.edu.bh

Received: 18 September 2018

Accepted: 10 October 2018

Published: 15 October 2018

Publishing services provided by

Knowledge E

Amine Mahjoub and Youssef

Harrath. This article is distributed

under the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source

are credited.

Selection and Peer-review

under the responsibility of the

Sustainability and Resilience

Conference Committee.

http://www.knowledgee.com
mailto:amahjoub@uob.edu.bh
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 

Sustainability and Resilience Conference

In this paper, we are interested in utility computing services of a cloud, where com-
puting resources are available to execute users’ tasks. The main goal is to execute the
customers’ applications as early as possible with the lowest cost. The particularity of
the cloud computing environment is that the resources are not continuously available.
Thus, the execution of an application in the cloud can be seen as a scheduling problem
of independents tasks on parallel machines with unavailability periods.

The proposed research is focused on developing an efficient solution to the schedul-
ing problem on parallel and identical machines subject to unavailability constraints. The
objective is to optimize the completion execution time of the application. Classically,
an application is composed by a set of independent tasks, each has a processing time.
The scheduling problem consists of determining on which processor each task has to
be executed and at what time it starts so that the last executed task terminates as
early as possible. In this paper we propose a new efficient linear program, and will
prove that LPT-based list algorithm based provides performant solutions.

The rest of the paper is organized as follows. Section 2 will be dedicated to present
an overview of the literature. In section 3 an efficient linear program will be proposed.
An experimental study will be shown in section 4. Section 5 concludes the study
proposes some perspectives for future works.

2. Literature Review

The most parallel machine scheduling problem was proved to be NP-complete [2].
However, several heuristics based on different techniques, have been proposed in
the literature. Among these, list schedules are paramount [1]. List schedules can be
adapted to non-continuously available machines (due to unavailability periods or
breakdowns).

A list algorithm, first establishes a priority list. At each time t, if some machines
M𝑖 are available, the first non-scheduled task j of the list is placed on the machine if
it can be executed before the machine becomes unavailable. If j cannot be entirely
executed, the next task of the list is considered, and so on. Hence, contrary to the case
without unavailability, a task with smaller priority can be executed before a task of
larger priority. When the list of task is ordered in decreasing order of processing times,
the obtained algorithm is called LPT algorithm.

For the remaining of this paper, m and n represent respectively the number of
machines and the number of tasks. The scheduling problem of m machines with
unavailability constraints is widely studied under different constraints such as

DOI 10.18502/keg.v3i7.3070 Page 30



 

Sustainability and Resilience Conference

resumable/non-resumable jobs, offline/online scheduling and various objective func-
tions including minimizing the maximum completion time (makespan), total comple-
tion times, etc. ([3], [4], [5], and [6]).

Lee [7] showed that, if the unavailabilities are at the beginning of the execution
period (that is, machines are not all available at time 0), LPT has a relative bound of
3
2 − 1

2𝑚 . A survey on scheduling problems with machine unavailabilities may be found
in [9], [10] and [8].

In this paper, we consider n independent tasks to be scheduled on m identical
machines. Each task j has a processing time 𝑝𝑗 . The machines are subject to many
unavailability periods each of them has a starting and ending times. We denote by
C𝐿𝑆 the makespan of the schedule obtained by any list algorithm LS. C∗ represents the
optimal makespan. We denote by 𝑃 = 𝑀𝑎𝑥1≤𝑗≤𝑛(𝑝𝑗) the maximum processing time of
tasks.

3. Linear Program

We consider the case of many unavailability periods per machine. This means that
every machine is subject to at least one unavailability period and there exists at least
one machine, which is subject to at least two unavailability periods. For a machine
M𝑖, we denote by s𝑖𝑘 and e𝑖𝑘, respectively the starting and ending times of the k𝑡ℎ

unavailability period, 1 ≤ 𝑘 ≤ 𝑢𝑖 1 ≤ 𝑘 ≤ 𝑢𝑖, where u𝑖 is the number of unavailabilities
in machine M𝑖.

The problem under consideration is equivalent to a multiple knapsack problem with
different capacities. In fact, each machine has a sequence of availability periods reg-
ularly interrupted by random and predefined events. Each availability period can be
seen as a knapsack with a capacity equals to the difference between its ending and
starting times (e𝑖𝑘) and (s𝑖𝑘). The tasks represent the items, where the item size is the
duration of a task. Since the tasks have no priorities, the items will be assigned the
same value.

The objective is to assign themaximumof tasks in themost left knapsacks according
to the time line. Classically, the linear programs proposed to formulate a scheduling
problem, care about assigning tasks tomachines aswell as find the sequencing of tasks
in every machine. To do so, two family of decision variables have to be used. In the
proposed linear program, the machines are not anymore directly considered. Thus, the
order of tasks in every machine is not any more important. As a fact, the complexity of
the developed linear program is extremely reduced. We denote bym𝑘 the total number

DOI 10.18502/keg.v3i7.3070 Page 31



 

Sustainability and Resilience Conference

of knapsacks (availability periods) and K𝑝𝑠 an array of size m𝑘 containing the staring
times of the knapsacks. Similarly, we denote by K𝑝𝑐 an array of size m𝑘 that contains
the capacities of the knapsacks. K𝑝𝑠 and K𝑝𝑐 are parallel arrays. Consider the following
decision variables:

𝑥𝑘𝑗 =
⎧⎪
⎨
⎪⎩

1 if the task 𝑗 is assigned to the knapsack 𝑘

0 otherwise

𝑦𝑘 =
⎧⎪
⎨
⎪⎩

1 if at least on task is assigned to the knapsack 𝑘

0 otherwise

Where 1 ≤ 𝑗 ≤ 𝑛 and 1 ≤ 𝑘 ≤ 𝑚𝑘

The objective function can be summarized as:

𝑀𝑖𝑛 𝑧 = 𝑀𝑎𝑥
1≤𝑘≤𝑚𝑘 (

𝑦𝑘𝐾𝑝𝑠[𝑘] +
𝑛

∑
𝑗=1

𝑥𝑘𝑗𝑝𝑗)
(1)

Subject to the constraints:

𝑦𝑘 ≤ 1 ∀ 1 ≤ 𝑘 ≤ 𝑚𝑘 (2)

𝑦𝑘 ≤
𝑛

∑
𝑗=1

𝑥𝑘𝑗 ∀ 1 ≤ 𝑘 ≤ 𝑚𝑘 (3)

𝑦𝑘 ≥ 𝑥𝑘𝑗 ∀ 1 ≤ 𝑘 ≤ 𝑚𝑘 and 1 ≤ 𝑗 ≤ 𝑛𝑘 (4)

𝑛

∑
𝑗=1

𝑥𝑘𝑗𝑝𝑗 ≤ 𝐾𝑝𝑐[𝑘] ∀ 1 ≤ 𝑘 ≤ 𝑚𝑘 (5)

𝑚𝑘

∑
𝑘=1

𝑥𝑘𝑗 ≤ 1 ∀ 1 ≤ 𝑗 ≤ 𝑛 (6)

The constraints (2), (3) and (4) guarantee that if there is at least one task assigned
to a period k, then the corresponding decision variable 𝑦𝑘 = 1 Otherwise 𝑦𝑘 = 0.

4. Experimental study

The objective of this section is to test the performance of the LPT algorithm for the
problem as well as the limitations of the proposed linear program. We have imple-
mented the following LPT rule: Sort the tasks in a decreasing order of their processing

DOI 10.18502/keg.v3i7.3070 Page 32



 

Sustainability and Resilience Conference

times. The first task of the list is assigned to the first available machine. If that task
cannot be executed because of an unavailability period, the next task of the list is
examined. If two machines are simultaneously available, one of them is chosen ran-
domly. In the other hand, we implemented the linear program using ILOG CPLEX 12.7.
To test both the LPT algorithm and the linear program, a wide range of instances of
different sizes were uniformly generated as follows.

1. The processing times of the tasks are in the interval [p, P]. Experimentally, p and
P were respectively set to the values 10 and 20.

2. The durations of the availability periods are in [P, 2P].

3. The durations of the unavailability periods are in [p, 2P].

4. The number of machines is 4 for the small-sized instances where the number of
tasks varies between 20 and 70. However, for the big-sized instances, where the
number of tasks varies between 500 and 1000, the number of machines is fixed
to 10. Based on a deep conducted experimental study, where we have varied the
number of machines m, we remarked that m has no significant effect on the LPT

performance. For this reason, we fixed the number of machines.

5. For both, small and big-sized instances, we have varied the number of unavail-
abilities between 3 and 5.

To compare the LPT solutions and the optimal ones, we define an error ratio 𝑒𝑟 = 𝐶𝐿𝑃𝑇
𝐶∗ .

Table 1 and Table 2 show the different results obtained and the error ratio between LPT

and the optimal solution for big and small size instances.

For both configurations, LPT performs well and has almost similar behavior toward
the optimal solution provided by the linear program. In fact, the completion time C𝐿𝑃𝑇

is very close to the optimal solution. In addition, LPT seems to have slightly better
performance for the big sized-instances. Furthermore, the error ratio slightly increases
when the unavailabilities increase but still small.

The obtained experimental results prove the fact that although the problem is
strongly NP-hard, it can be solved efficiently by a simple and polynomial LPT-based list
algorithm. The experimental study showed also, that the developed linear program is
very efficient. Indeed, for large instances with more than 20 machines and 2000 tasks,
CPLEX returns the solutions in few seconds.

DOI 10.18502/keg.v3i7.3070 Page 33



 

Sustainability and Resilience Conference

T 1: Error ratios for big size instances.

3 Unavailabilities 4 Unavailabilities 5 Unavailabilities

Number of
tasks

LPT Optimal Ratio LPT Optimal Ratio LPT Optimal Ratio

500 780 770 1.3 836 821 1.8 850 835 1.8

520 803 792 1.4 866 852 1.6 869 856 1.5

540 835 823 1.5 901 888 1.5 899 888 1.2

560 862 854 0.9 927 916 1.2 935 921 1.5

580 898 889 1.0 957 948 0.9 968 954 1.5

600 926 916 1.1 990 979 1.1 994 981 1.3

620 957 944 1.4 1018 1004 1.4 1024 1010 1.4

640 992 980 1.2 1050 1033 1.6 1048 1034 1.4

660 1012 1000 1.2 1075 1060 1.4 1084 1072 1.1

680 1036 1026 1.0 1100 1085 1.4 1119 1100 1.7

700 1070 1058 1.1 1127 1111 1.4 1143 1124 1.7

720 1096 1084 1.1 1151 1137 1.2 1170 1155 1.3

740 1130 1121 0.8 1184 1161 2.0 1201 1182 1.6

760 1147 1140 0.6 1210 1195 1.3 1218 1207 0.9

780 1189 1178 0.9 1235 1220 1.2 1261 1246 1.2

800 1222 1211 0.9 1259 1246 1.0 1292 1276 1.3

820 1247 1235 1.0 1296 1280 1.3 1326 1312 1.1

840 1281 1269 0.9 1318 1308 0.8 1356 1341 1.1

860 1297 1286 0.9 1348 1336 0.9 1382 1365 1.2

880 1342 1330 0.9 1368 1357 0.8 1404 1389 1.1

900 1347 1337 0.7 1402 1391 0.8 1433 1416 1.2

920 1397 1385 0.9 1441 1431 0.7 1466 1449 1.2

940 1414 1403 0.8 1473 1464 0.6 1492 1479 0.9

960 1453 1438 1.0 1499 1490 0.6 1530 1514 1.1

980 1486 1475 0.7 1531 1519 0.8 1560 1544 1.0

1000 1502 1494 0.5 1560 1550 0.6 1585 1572 0.8

5. Conclusion

In this paper, we have considered the scheduling problem of independents tasks on
identical parallel machines. The machines are subject to many unavailability periods.
The objective was to minimize the ending time of the last task or themakespan. A new
linear programwas designed and tested to solve variety of instances of different sizes.
This program served for proving that and LPT-based algorithm can solve the problem
in an efficient way. This work is a first part of a global project where the goal consists
of producing efficient algorithms to schedule and manage online parallel applications
in cloud computing environment.

DOI 10.18502/keg.v3i7.3070 Page 34



 

Sustainability and Resilience Conference

T 2: Error ratios for small size instances.

3 Unavailabilities 4 Unavailabilities 5 Unavailabilities

Number of
tasks

LPT Optimal Ratio LPT Optimal Ratio LPT Optimal Ratio

19 132 114 15.8 130 130 0.0 127 116 9.5

21 142 125 13.6 146 138 5.8 129 121 6.6

23 165 124 33.1 157 155 1.3 170 147 15.6

25 173 162 6.8 163 154 5.8 174 157 10.8

27 209 193 8.3 191 180 6.1 201 170 18.2

29 206 196 5.1 203 183 10.9 191 181 5.5

31 201 195 3.1 224 195 14.9 230 191 20.4

33 215 198 8.6 233 216 7.9 232 212 9.4

35 222 209 6.2 242 223 8.5 250 232 7.8

37 229 220 4.1 235 225 4.4 259 242 7.0

39 226 221 2.3 247 230 7.4 282 263 7.2

41 236 225 4.9 253 235 7.7 296 275 7.6

43 232 226 2.7 254 244 4.1 308 286 7.7

45 249 238 4.6 272 253 7.5 315 298 5.7

47 263 250 5.2 277 262 5.7 320 302 6.0

49 273 263 3.8 291 272 7.0 331 313 5.8

51 270 256 5.5 284 268 6.0 337 324 4.0

53 266 256 3.9 299 282 6.0 349 329 6.1

55 275 264 4.2 303 294 3.1 350 329 6.4

57 285 272 4.8 321 306 4.9 356 337 5.6

59 284 276 2.9 329 314 4.8 362 346 4.6

61 294 282 4.3 329 318 3.5 364 348 4.6

63 299 292 2.4 337 316 6.6 360 350 2.9

65 326 314 3.8 332 317 4.7 382 368 3.8

67 320 315 1.6 345 333 3.6 390 375 4.0

69 328 319 2.8 347 336 3.3 403 380 6.1

References

[1] R.L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal of Applied

Mathematics, Vol. 17, No. 2, pp. 416-429, 1969.

[2] M.R. Carey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman publisher, San Francisco, CA, 1979.

[3] A. Berrichi, F. Yalaoui, L. Amodeo, M. Mezghiche, Bi-Objective Ant Colony Optimiza-
tion approach to optimize production and maintenance scheduling, Computers and

Operations Research, Vol. 37, pp. 1584-1596, 2010.

DOI 10.18502/keg.v3i7.3070 Page 35



 

Sustainability and Resilience Conference

[4] Bin Fu, Yumei Huo, Hairong Zhao, Approximation schemes for parallel machine
scheduling with availability constraints, Discrete Applied Mathematics, Vol. 159, pp.
1555-1565, 2011.

[5] Ming Liu, Feifeng Zheng, Chengbin Chu, Yinfeng Xu, Optimal algorithms for online
scheduling on parallel machines to minimize the makespan with a periodic
availability constraint, Theoretical Computer Science, Vol. 42, pp. 5225-5231, 2011.

[6] Zhiyi, Parallel machines scheduling with machine maintenance for minsum criteria,
European Journal of Operational Research, Vol. 212, pp. 287-292, 2011.

[7] Chung-Yee Lee, Parallel machines scheduling with nonsimultaneous machine
available time, Discrete Applied Mathematics, V. 30, pp. 53-61, 1991.

[8] J. Kaabi, Y. Harrath, A Survey of Parallel Machine Scheduling under Availability
Constraints, International Journal of Computer and Information Technology, Vol. 3, No
2, pp. 238-245, 2014

[9] Y. Ma, C. Chu, C. Zuo, A survey of scheduling with deterministic machine availability
constraints, Computers and Industrial Engineering, Vol. 58, No. 2, pp. 199-211, 2010.

[10] E. Sanlaville, G. Schmidt, Machine scheduling with availability constraints, Acta

Informatica, Vol. 35, pp. 795-811, 1998.

DOI 10.18502/keg.v3i7.3070 Page 36


	Introduction and Motivation
	Literature Review 
	Linear Program
	Experimental study
	Conclusion
	References

