
Corresponding Author: James
Novak; email:
j.novak@griffith.edu.au

Academic Editor: Jennifer Loy

Received: 28 November 2016
Accepted: 4 December 2016
Published: 9 February 2017

Publishing services provided
by Knowledge E

2017 James Novak and
Jennifer Loy This article is
distributed under the terms of
the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that
the original author and source
are credited.

Selection and Peer-review
under the responsibility of the
DesTech Conference
Committee.

DesTech Conference Proceedings
The International Conference on Design and Technology (2017),
Volume 2017

Conference Paper

Recoding Product Design Education: Visual
Coding for Human Machine Interfaces
James Novak*, and Jennifer Loy

Griffith University, Australia

Abstract
This paper evaluates the impact of visual coding on the Industrial Design and 3D Design
disciplines, in particular the role it plays in developing new products and services
that would previously require interdisciplinary teams, or significant training beyond
the scope of these disciplines into text-based coding and electrical engineering. The
professional practice of designers working at the intersection of product design and
coding is discussed, and design education evaluated in relation to the opportunities
of electronics and visual coding. Quantitative research data is provided to support an
argument that visual coding can enable designers to control their designs in new ways
throughout the design and prototyping process.

Keywords: Visual programming language, industrial design, prototyping

1 Introduction to Visual Coding

Design is rapidly evolving with “the coming generation of designers see(ing) code as a
kind of material just as a potter sees clay.” (Sauter, 2011, p. 5) Visual Programming Lan-
guages (VPLs) are becoming increasingly integrated into conventional 3D Computer-
Aided Design (CAD) software, specifically enabling industrial and 3D designers to en-
gage with coding simultaneously with the development of the 3D form of a product
system. This code, just like the 3D modelling environment, is visual and intuitive, ap-
pealing to designers’ innate visual understanding of three-dimensional space and two-
dimensional diagrams.

As a discourse, VPL is a field dating back to the nineteen eighty’s, but is only newly
finding momentum through practical applications as technologies and graphics catch
up to the theory. In a very broad sense, Brad Myers’ 1990 definition of VPL being “any
system that allows the user to specify a program in a two-(or more)-dimensional fash-
ion” (p. 98) still rings true, contrasting traditional text-based coding which is described
as being one-dimensional in nature, and “not utilising the full power of the brain.”
(Myers, 1990, p. 100) To provide a visual comparison, figure 1 shows a basic piece of
code that controls an LED flashing at one second intervals on an ‘Arduino Uno’ micro-
controller which is a popular open-source tool for controlling electronic sensors and
actuators. On the left is the traditional text-based code to control this action using the

How to cite this article: James Novak, and Jennifer Loy, (2017), ”Recoding Product Design Education: Visual Coding for HumanMachine Interfaces,”
in The International Conference on Design and Technology, KEG, pages 227–233. DOI 10.18502/keg.v2i2.620 Page 227



DesTech Conference ProceedingsDesTech Conference Proceedings

Figure 1: Text-based Arduino code for blinking LED on the left versus visual code in Grasshopper on the
right 2015, Screen capture.

native Arduino software, while in the right panel is the same command within a pro-
gram called Grasshopper, which is a plug-in for a CAD program called Rhino that uses a
visual programming language. Both methods perform exactly the same task, however
are visually quite different and engage the brain in different ways.

2 Changing Role of the Designer

The argument in this paper is that VPLs, such as Grasshopper, have developed to the
point that they are forcing a blurring of the boundaries between the traditionally dis-
tinct disciplines of design, programming and electrical engineering, and so significantly
changing practice and design outcomes. A single designer is now able to model, proto-
type, test and even manufacture complex electronics or applications using visual tools
andworkflows potentially within a single piece of software, as in the case of Rhinowith
the Grasshopper add-on. An example of this type of project is ‘MyPen,’ published in
the proceedings of the 2015 Drawing International Brisbane conference (Novak, 2015).
In this project the design of a 3D printable, customised pen is developed in the virtual
environmentwith customisation completed in Rhino using pressure sensors and aweb-
cam in the real world. This weaves together the development of ergonomic, aesthetic
and electronic elements, allowing them to be created simultaneously. The graphical
tools of Grasshopper turn the complex process into logical blocks of code which flow
from one to the next, sharing much in common with the mind maps and flow diagrams
that designers commonly use throughout the design process. The ability of a designer
to learn a tool like Grasshopper is therefore increased, because of the similarities to
practices already employed. Rather than needing to learn a completely new skill - or

DOI 10.18502/keg.v2i2.620 Page 228DOI 10.18502/keg.v2i2.620 Page 228



DesTech Conference ProceedingsDesTech Conference Proceedings

in the case of traditional coding, a completely new language – the designer can draw
parallels with previous experience and discipline knowledge to engagewith electronics
during design development.

This capacity to streamline the learning process and quickly adopt a VPL like
Grasshopper has been similarly observed by Gabriela Celani and Carlos Vaz (2012), who
compare programming methods used in Architecture and in the education of Architec-
ture students. “The comparison between textual and visual programming languages
showed that the later can lead to better results with novice architecture students. How-
ever, without any textual programming knowledge, applications are restricted to para-
metric explorations” (Celani & Vaz, 2012, p. 135). António Leitão and Luís Santos arrived
at a similar conclusion in a 2011 study, finding that “modern TPLs (Textual Program-
ming Languages) with user-friendly IDEs (Integrated Development Environments) can
be much easier to program and understand than the older ones, and they can surpass
recent VPLs, especially in complex tasks” (Leitão & Santos, 2011, p. 556). Debate around
the effectiveness of VPLs continues, however the MyPen example demonstrates how
VPLs have matured to allow for an enhanced complexity compared to that available
in 2011-2012, evolving like most technologies at a rapid pace and providing designers
with the tools to control multiple elements of the design process.

To further evidence the spread of VPLs and rise in their popularity, Scratch
(https://scratch.mit.edu/) and App Inventor (http://appinventor.mit.edu/), both visual
coding environments, have grown out of research from Massachusetts Institute of
Technology (MIT), to become successful cloud-based products. Scratch provides a pro-
gramming space targeted at children and teenagers to encourage an interest in coding,
although “a sizeable group of adults participates as well,” (Resnick et al., 2009) and
uses visual blocks that resemble puzzle pieces to connect pieces of code together and
build games, interactive stories etc. App Inventor provides a similar workspace for users
to create Android applications. At this time, over sixteen million projects have been
shared on the Scratch website (https://scratch.mit.edu/statistics/) with over twelve
million registered users, indicating that VPLs have moved out of experimental research
into mainstream adoption as genuine programming methods.

It is important to make the distinction between these technological approaches and
text-based coding that text will likely maintain its status as the form most suitable for
managing large interconnected systems of electronics, as described by Celani and Vaz
(2012), or Leitão and Santos (2011) due to its ability to cope with more complex pro-
gramming and problem solving. The creators of Scratch also acknowledge this, stating
that “for some Scratchers, especially those who want to pursue a career in program-
ming or computer science, it is important to move on to other languages” (Resnick et
al., 2009, p. 66). However the significance of VPLs for industrial and 3D designers is
that they empower the simultaneous development of an application, interactive com-
ponent, or electronics with the physical product, whether it is within the same piece
of software like Rhino, or separate from the CAD file in the case of Scratch or App In-

DOI 10.18502/keg.v2i2.620 Page 229DOI 10.18502/keg.v2i2.620 Page 229

https://scratch.mit.edu/
http://appinventor.mit.edu/
https://scratch.mit.edu/statistics/


DesTech Conference ProceedingsDesTech Conference Proceedings

ventor. Designers are not necessarily interested in becoming programmers as their role
is broader, encompassing ergonomics, user experience, aesthetics, form, manufactur-
ing constraints etc. However, VPLs provide designers with workflows akin to those of
other visual practices common to the design process, and thus maintains their free-
dom to remain creative, whilst engaging more fully with the interaction design integral
to their product. Using visual representations of programming allows for rapid design
iteration, testing and prototyping, which may result in everything necessary to man-
ufacture the end-use product, or may then be passed to collaborative programmers
or electrical engineers to finalise for production. This would traditionally occur much
earlier in the design process, with multiple stakeholders working individually on com-
ponents before bringing them together, and can sometimes result in disparities be-
tween elements when the original vision is not properly understood and executed by
all parties. By empowering designers to develop all facets of a product, at least to a pro-
totyping level, it is foreseeable that design problems may be more successfully solved,
or indeed re-imagined through the unique lens of a designer.

3 Re-coding Designers

As the digital revolution increasingly impacts on industrial practices and production
systems around the world, there is a growing imperative for industrial and product de-
sign students to be educated in digital technologies and their disruptive influence. On
a practical level, this means extending their portfolio of skills to include technologies
such as design for digital fabrication, the generation of data using scanning technolo-
gies and its manipulation in preparation for product development, and, as discussed in
this paper, the integration of an understanding of the development of electronics and
applications during the design process. However, preparing students for professional
practice post digital revolution involves more than adding to their skills base and their
understanding of designing for digital technologies; it involves helping students rethink
the traditional roles of the designer and explore the changing digital landscape. This is
not only a challenge for the students, but for faculty, who require professional devel-
opment in both skills and the changing paradigm around product and industrial design
education.

The re-coding of designers begins with changes to the curriculum. Whilst faculty
may need to be encouraged to re-skill in this area, millennium students (born at the
turn of the century), appear to be embracing the accessibility that digital technologies
provide. The rise in the maker society, described by Chris Anderson (2014), has been
echoed in the reconnection of design students with making, based on computer nu-
merically controlled (CNC) technology. First year students are now able to laser cut, CNC
router and 3D print prototypes, to complement traditional model making. This has led
to a renewed enthusiasm for workshop practice (Loy, 2014) based on digital technolo-

DOI 10.18502/keg.v2i2.620 Page 230DOI 10.18502/keg.v2i2.620 Page 230



DesTech Conference ProceedingsDesTech Conference Proceedings

gies. This shift provides a good basis for changes to thinking and practices necessary
for the adoption of VPL by designers. This adoption should increase the integration of
electronics into design process, and should make the changes to the curriculum more
easily accepted and help faculty to further the development of digitally enabled design
practice.

A study of the introduction of visual programming language (VPL) into the design
curriculum was conducted by Celani and Vaz (2012). They discovered that VPLs were
well-received by Architecture students who were unfamiliar with traditional coding.
Navarro-Prieto and Cañas also found that “spreadsheet programmers develop a data
flow mental representation even in the easiest tasks, while C programmers seemed to
have more problems acquiring and using this information” (2001, p. 822). Whilst there
are many contradictory arguments about the usefulness and scalability of VPLs, there
appears to be a general consensus that they are adopted and understood far quicker
than text-based languages amongst new learners of programming, and in particular
learners in visual disciplines, such as Architecture and Design.

This was demonstrated in research based in a new course studied at Griffith Uni-
versity in 2015, called Human Machine Interfaces. This course was core for Industrial
Design students. The research was on providing a small group pilot study for the via-
bility of the adoption of VPL by Industrial Design students to inform future curriculum
planning. During this twelve-week course, students were introduced to both a text
based programming language (Arduino), and a visual based programming language
(Grasshopper for Rhino with Firefly). Both methods were taught side-by-side, as il-
lustrated in figure 1, for the first three weeks of the course. Students were asked to
build Arduino circuits of increasing complexity through this time, and walked through
the coding process step-by-step for both methods. Students were given opportunities
to experiment along the way and encouraged to push the boundaries of what they
could do with the technology as the projects evolved. At the end of the three-week
period, an anonymous survey was completed by the students to gain an insight into
their experiences of both methods.

The results in figure 2 highlight that students considered the VPL of Grasshopper sig-
nificantly easier and more intuitive to learn compared with the Arduino IDE. These are
averages for the twelve students who participated in the small group survey, and some
students identified as having previously worked on Arduino coding in other classes,
which could impact the scores. This is a pilot study only, and more comprehensive data
would be needed to for conclusive data. However, it is interesting to look at the final
survey question that asked:

Imagine you are designing a new product that will be used to measure the distance

to an object. Your design needs to give a numeric value of the distance, as well

as use LED’s that flash faster as an object gets closer. Your prototype might look

something like [image of an Arduino prototype]. Given your current skills, which

software would you choose to develop the working prototype?

DOI 10.18502/keg.v2i2.620 Page 231DOI 10.18502/keg.v2i2.620 Page 231



DesTech Conference ProceedingsDesTech Conference Proceedings

 
Figure 2: Programming Arduino Using the Arduino IDE Versus Grasshopper Survey Results – Human Ma-
chine Interfaces students 2015, Table.

In response, one hundred percent of the class chose to use Grasshopper. This indi-
cates that even for students coming into the course with some previous experience of
a textual coding interface, the VPL was preferred for solving problems and making a
prototype in this scenario. The outcomes of this pilot exercise align with the results of
Celani and Vaz’s case study where “the use of the visual programming language was
more successful in terms of students’ enthusiasm, the complexity of the designs devel-
oped, and the understanding of computational design concepts,” (2012, p. 133) Similar
to the students of Architecture in Celani and Vaz’s research (2012), the outcomes for the
pilot study with Industrial Design students suggests that VPLs could suit the inherent
visual skills of Industrial Designers over a text based interfaces. Based on the observa-
tions of students’ HumanMachine Interface practical projects, VPLs allow these type of
students to more independently problem solve and generate more complex electronic
and interface solutions for their prototypes more quickly.

4 Conclusion

Visual Programming Languages continue to advance at a rapid pace. There is a need
for research in this growing field in order to understand the opportunities and limita-
tions of evolved VPLs in relation to text-based programming. VPLs have the potential to
support creative freedom in newways and the capability of the programs is now allow-
ing for more complex physical products enabled by electronic and parametric systems.
Text based coding may continue to suit the creation of advanced software or electronic
systems, but for designers, VPLs are arguably extending their ability to develop mul-
tiple facets of a project before handing control over to collaborators, adding value to
the contribution of the designer and potentially changing the nature of the outcomes

DOI 10.18502/keg.v2i2.620 Page 232DOI 10.18502/keg.v2i2.620 Page 232



DesTech Conference ProceedingsDesTech Conference Proceedings

created. It is a research area that has the potential to provide insight into the changing
role of the designer post digital revolution.

References
C. Anderson, Makers: The new Industrial Revolution, Crown Business, New York, US, (2014).
G. Celani, and C. Vaz, CAD Scripting And Visual Programming Languages For Implementing Computa-

tional Design Concepts: A Comparison From A Pedagogical Point Of View, International Journal of Ar-
chitectural Computing, 10, no. 1, 121–138, (2012), 10.1260/1478-0771.10.1.121.

A. Leitão, and L. Santos, Programming Languages for Generative Design - Visual or Textual? Paper pre-
sented at the Respecting Fragile Places, 29th eCAADe Conference, University of Ljubljana, Slovenia,
(2011).

J. Loy, eLearning and eMaking: 3D Printing Blurring the Digital and the Physical, Education Sciences, 4,
108–121, (2014), 10.3390/educsci4010108.

B. A. Myers, Taxonomies of visual programming and program visualization, Journal of Visual Languages &
Computing, 1, no. 1, 97–123, (1990), 10.1016/S1045-926X(05)80036-9.

R. Navarro-Prieto, and J. J. Canas, Are visual programming languages better? The role of imagery in pro-
gram comprehension, International Journal of Human-Computer Studies, 54, no. 6, 799–829, (2001),
10.1006/ijhc.2000.0465.

J. Novak, Drawing the Pen: From Physical to Digital and Back Again. Paper presented
at the Drawing International Brisbane, Brisbane, Australia. http://static1.squares-
pace.com/static/55779bbce4b004acf1e1479d/t/56aef970b6aa60cdf1c253d6/1454307702608/JAMES+NO-
VAK_DRAWING+THE+PEN_DIB2015.pdf, (2015).

M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk, E. Eastmond, K. Brennan, and Y. Kafai, Scratch:
programming for all, Communications of the ACM, 52, 60–67, (2009), 10.1145/1592761.1592779.

J. Sauter, Preface - A Touch..., in A Touch of Code - Interactive Installations and Experiences, Gestalten,
Berlin, 5–7, (2011).

DOI 10.18502/keg.v2i2.620 Page 233DOI 10.18502/keg.v2i2.620 Page 233

http://static1.squarespace.com/static/55779bbce4b004acf1e1479d/t/56aef970b6aa60cdf1c253d6/1454307702608/JAMES+NOVAK_DRAWING+THE+PEN_DIB2015.pdf
http://static1.squarespace.com/static/55779bbce4b004acf1e1479d/t/56aef970b6aa60cdf1c253d6/1454307702608/JAMES+NOVAK_DRAWING+THE+PEN_DIB2015.pdf
http://static1.squarespace.com/static/55779bbce4b004acf1e1479d/t/56aef970b6aa60cdf1c253d6/1454307702608/JAMES+NOVAK_DRAWING+THE+PEN_DIB2015.pdf

	Introduction to Visual Coding
	Changing Role of the Designer
	Re-coding Designers
	Conclusion

