
Corresponding Author:
Benjamin Champion; email:
benjamin.champion@deakin
.edu.au

Received: 28 November 2016
Accepted: 4 December 2016
Published: 9 February 2017

Publishing services provided
by Knowledge E

2017 Benjamin Champion
et al. This article is distributed
under the terms of the
Creative Commons Attribution
License, which permits
unrestricted use and
redistribution provided that
the original author and source
are credited.

Selection and Peer-review
under the responsibility of the
DesTech Conference
Committee.

DesTech Conference Proceedings
The International Conference on Design and Technology (2017),
Volume 2017

Conference Paper

Detection of Large Bodies of Water for
Heterogeneous Swarm Applications1
Benjamin Champion1*, Patrick Benavidez2, Mo Jamshidi3, and
Matthew Joordens2

1Work was supported, in part, by grant number FA8750-15-2-0116 from Air Force Research
Laboratory and OSD through NCA&T State University
2School of Engineering, Deakin University, Waurn Ponds, VIC, Australia
3Electrical and Computer Engineering Department, College of Engineering, University of Texas
at San Antonio, TX, USA

Abstract
Multiple robot systems are becoming popular, as introducingmore robots into a system
generally means that the system is able to finish a task quickly, as well as making the
system more robust. Generally, these systems are homogenous in nature as they are
easier to build, test and conceptualise. More applications of these types of systems in a
heterogeneous sense is becoming a must, as these robots are acting in more than one
medium such as on land and underwater. In this paper a subsystem of a heterogeneous
swarm is investigated where a land based robot is to drive up to the edge of a pool and
stop autonomously, allowing for the transfer of an object from an underwater robot.
To detect the edge of a pool an Xbox Kinect sensor is used as it was found that by
using the IR feed of the camera the problem becomes significantly simpler.

Keywords: Underwater robotics, single camera depth, underwater object retrieval,
water detection camera

1 Introduction

Cooperation between different robots has become a widely studied area, with many
different tasks being able to be accomplished faster and with more robustness when
multiple robots are used, as opposed to the standard single robot approach. Tradition-
ally, these robots are homogenous in nature, meaning that they are of the same type. In
recent years there has been a need for heterogeneous robotic swarms to be developed
to be able to solve much more complicated tasks in a more diverse environment. This
paper investigates a subsection of one of these systems, this being a heterogeneous
swarm with underwater and land based robots working together for object retrieval.
This paper focusses on how the land based robot is able to find the edge of the water,
in this case a pool, to allow for the object transfer between the two systems to happen.

The proposed solution utilises the IR image from a Kinect sensor to detect the edge
of the pool, as it was found that the IR light was not reflected well from the water

How to cite this article: Benjamin Champion, Patrick Benavidez, Mo Jamshidi, and Matthew Joordens, (2017), ”Detection of Large Bodies of Water
for Heterogeneous Swarm Applications,” in The International Conference on Design and Technology, KEG, pages 150–157. DOI 10.18502/keg.v2i2.609 Page 150



DesTech Conference ProceedingsDesTech Conference Proceedings

when pointed at a slight angle to the surface of the water. It is also known that when
the Kinect is more than 50cm away from the water, it is unable to detect objects below
the water line due to the high water absorption of IR light [1]. Previous work has been
completed to try and detect large bodies of water in autonomous vehicles, such as
using sky reflections for long range water detection [2] and reflection intensity for
short range detection [3]. Methods such as measuring entropy of the water [4] and
looking for predictable effects that a robot can have on the water[5] have also been
explored.

2 Image processing

Initially the RGB image from an Xbox Kinect was trailed to find the water’s edge. It was
determined that this was not an easy problem though. Simple methods for detecting
objects in the RGB space could not be relied upon, such as colour segmentation, as the
colour and the shape of the water could vary significantly. It was then thought that
because water reflects light and becomes “shimmery” that this could be a property to
look for. Unfortunately, water does not always display this ability, particularly in low
light conditions and therefore it cannot be relied upon. In the Kinect IR image stream
(grayscale), it was found that regions with water appeared black (no IR light detected)
in the image as IR light is either absorbed or scattered. As this seemed to work con-
sistently in all tested lighting conditions, it was determined that this would be the best
method to find large bodies of water.

The next stepwas to figure out how to identify the edge of thewater autonomously.
The first thing that needed to be decided upon was the package that would be used
to process the images. The Robot Operating System (ROS) is used for the robot mid-
dleware, which provides support for both C++ and Python programing languages. It
was decided that the de-facto standard Open Computer Vision Library (OpenCV) would
be used as it had the capabilities that we needed and was compatible with our robot
middleware. OpenCV has support for C++, Python and an expansive set of tutorials.
OpenCV is also compatible with ROS and image streams can be directly interfaced with
ROS applications such as rviz via a ROS API called cv_bridge.

When the IR image was inspected, it was found that the occasional reflection from
the IR source was received, causing the water to “sparkle” a little bit in this view. Due
to this observation, initially a difference image was generated to separate the water
from the other obstacles. This involved taking the previous IR image received from the
camera and finding the differences between this and the current image. Assuming that
nothing else was moving in the image and the camera was pointed at the ground, the
only regions remaining in the image would be the body of water. The biggest drawback
with this method was that if the robot was moving, any other objects that were on the

DOI 10.18502/keg.v2i2.609 Page 151DOI 10.18502/keg.v2i2.609 Page 151



DesTech Conference ProceedingsDesTech Conference Proceedings

ground would also appear in the difference image making it very difficult to separate
the water from the other objects. Therefore, another method had to be devised.

Solving the water detection problem turned out to be relatively simple and could
be solved using mainly OpenCV functions. First, a dilation was applied to the IR image,
as the IR image from a Kinect contains a pattern of IR dots scattered from a diffraction
grating installed in front of the IR laser. To find the solid bodies and the voids in the
image, these dots need to be fused together which is being accomplished by the dilate
command. The standard OpenCV dilate method was used, with the structuring element
size set to 40×40.

If the dilate function is solely used, then the edge of the water within the image
would actually be pushed back out into the real water, meaning that the robot would
think that the water’s edge is father away from the robot than what it really is. To
overcome this issue an erode of the image, using the same size structuring element
(40×40), was used to put the edge of thewater back into its original position asmuch as
possible. As the erode method only effects the edges of the already processed image,
the dots do not re-appear as they have already been fused together into a single blob.

A binary threshold of the image was then taken, with the threshold value set at
115 on an 8-bit scale. This returns a true black and white image so further processing
becomes much easier and simpler. It was also found that at this threshold level, at both
the lab where the algorithm was initially developed and the pool where it was tested,
most of the other noise form things such as the floor, objects on the floor, people’s
shoes, etc. were eliminated. It also left the image with a clearly defined edge of where
the water was, as the water appeared black and the rest of the environment was white
in the image.

After the thresholding, the image was eroded and dilated again to get rid of any
noise that might still present in the image, particularly if any of the “sparkles” men-
tioned previously managed to get through the previous filtering. Again the structuring
element for both the erode and the dilate were the same (30×30) to ensure that a
minimal amount of effect was placed on where the edge of the water was in relation
to the robot.

Two more processes were performed to the image to be able to extract the edge
of the water from the image. Firstly, a Canny filtering of the image was taken to en-
sure that only the edges of the regions remain. Once this has been accomplished, the
contours of the image can then be extracted using the findContours function. This step
essentially found the closed black areas of the image. From this data, the largest con-
tour region is determined which we can assume to be the water in most cases. To
ensure that the water is in fact in view, the area of the contour is checked to ensure
that it is contains more than 15000 square pixels. This again is to ensure that no noise is
picked up and deemed to be the water’s edge. This value was selected as it was found
that this was larger than any of the areas that had not already been filtered out, but still
large enough that the water is not eliminated when it significantly enters the frame.

DOI 10.18502/keg.v2i2.609 Page 152DOI 10.18502/keg.v2i2.609 Page 152



DesTech Conference ProceedingsDesTech Conference Proceedings

3 Distance to the edge of the water

3.1 Extracting the Point

Once the water has been found, the edge of the water needs to be extracted. Again,
this is not a complicated process. Firstly, a new image is created that only contains the
edges of the contour detected and chosen using the process described in Section 2. To
determine a point that the robot needs to reach, the pixel closest to the bottom of the
image is selected. This is accomplished using the findNonZero function, which returns a
list of pixel coordinates that are not black in the referenced image, which in this case
should only be the pixels of the edge of the selected contour. Using this list of pixels,
the closest one can be determined by simply generating a vector from the bottom of
the screen to each pixel, and then sorting by the magnitude of the vectors to find the
smallest one which will correspond to the closest point on the water’s edge.

3.2 Distance to the Point

Extracting the actual distance to this point is a significantly more challenging problem.
When a Kinect is used, a point cloud is generated that can be used to find the depth to
the points associated with the RGB image. Initially, when it was thought that the RGB
image would be the best way to find the water’s edge, it was thought that using the
information from this already processed point cloud would be the best way to find the
edge of the water as distance information was already provided. There are some very
big drawbacks with this process though.

As described earlier, the water makes the IR image sparkle. As the depth for the
point cloud is based off the intensity of the IR image, the sparkling that was observed
with the IR image became a significantly large problem resulting in a point cloud with
significant errors. This sparkling was present, and seemed to be amplified within the
point cloud. Therefore, the depth values from this point cloud around the water were
to inaccurate to be of any use in their current form.

Once it was determined that the IR image would be used to find the edge of the
water, not the RGB image, it was then thought that by filtering out the random values
and taking an average of the reaming surrounding depth points, the point cloud could
still be used to get a very good idea of where the edge of the water would be. Un-
fortunately, when this was tested it was found that using the IR image meant that the
point cloud could not be accessed (due to a hardware limitations), therefore making
this method much more difficult. To overcome this, the image_proc library in ROS was
used to try and re-create the same point cloud while still being able to access the IR
image. It was found that even with this point cloud, there was still too much noise, with
the points being separated by too far a margin for it to be a viable method.

DOI 10.18502/keg.v2i2.609 Page 153DOI 10.18502/keg.v2i2.609 Page 153



DesTech Conference ProceedingsDesTech Conference Proceedings

Figure 1: KINECT VIEW.

To overcome all of these obstacles, the method that was finally relied upon was to
map out field of view of the camera and then calculate the point where the pixel should
be in the real world based off these values. This method assumes that the environment
that the robot will be operating on is flat, and that the point that you are detecting will
be on this flat plane not on a raised surface or an incline. As we have already declared
that the environment will be free of large objects that are close enough to the camera
that they will show up as voids, and therefore the robot could possible mistake them as
the water source, and water will always level out, it is safe to make these assumptions
for this environment. It is also very computationally inexpensive compared to other
methods of finding depth with a single camera [6–10] and an unknown reference point
which is what the problem has turned into as the methods used to generate a point
cloud unfortunately can no longer be relied upon.

The first issue that needs be overcome is that the field of view of the Kinect IR
stream is not a square, but instead a skewed rectangle that narrows from top to bottom
like the letter V, as depicted in Figure 1. Marking out the field of view like this also allows
for the measurements of the X and Y widths relatively accurately. For the y-coordinate
measurements the V shape is not an issue, as they can be treated the same as a normal
camera as there is no dilation in this axis. Therefore, as the camera was set to a fixed
distance and angle due to it being permanently mounted to the robot, the height of
the y frame can be measured which in this case was 54.5cm. Since the IR frame is 480
pixels high, we can then say that the distance in the y direction that the point is away
from the robot (in metres) will be:

y =
Hm

Hp
ypixelCoord + y0

Where Hmis the height in metres of the viewing area and Hp height of the viewing area
in pixels. y0 is the distance, in metres, that the bottom of the frame is away from the
robot, which in in this case was 28cm. It needs to be noted that the Kinect camera
was positioned upside down for this application due to mounting constraints. If this
was not the case, to make the distance measured from the bottom of the frame, the
y-coordinate would need to be taken from the height of the camera frame in pixels. For
the x distance, this proves to be amore challenging problem as this is where the dilation
is. It was noticed that the dilation was very linear, and therefore an equation to directly

DOI 10.18502/keg.v2i2.609 Page 154DOI 10.18502/keg.v2i2.609 Page 154



DesTech Conference ProceedingsDesTech Conference Proceedings

Figure 2:  

map the x-coordinate width to the y-coordinate could be used. To find this relationship
three measurements were taken: one at the bottom (y = 28cm) (x = 43cm), one in the
middle (y = 54.2cm) (x = 58.6cm) and one at the top (y = 82.5cm) (x = 76.5cm) and the
individual x ratio for these points found. Therefore, by using a simple linear relationship
the xratio can be found at any corresponding y coordinate, which for this case turn into:

xratio = (9.891 × 10−4) × (y − y0) + (6.563 × 10−4)

Once this is known, then the distance in the x direction is found by using:

x = (
Wp

2
− xcoord)xratio

Where Wp is the width of the image in pixels and is done to ensure that the x distance
is from the centre of the frame, not the far edge, and xcoord is the coordinate of the
desired point in pixels. Finally, this point can then be inserted into the global frame
by rotating the points about the yaw of the robot and then adding these points to
the robot’s current x and y position. This will allow the robot to remember where the
detected water is, and therefore be able to drive back to it much easier.

4 Results and Future Work

It can be seen in Figure 2 and Figure 3 that the edge of thewaterwas able to be detected
fairly accurately. The images in these figures shows where the robot was in relation to
the water as well as the data the robot is currently processing. Both figures show the
raw IR image on the left and the processed image on the right, with the green dot on
the processed image indicating where the closest point that the robot needs to drive
to is located. The robot was tested and found to be able to drive up the edge of the
pool and stop, without falling into the water, consistently. In Figure 3, the image on the
far right also shows that the filtering of the image is also successful, as the noise and
detected contours, these being the red lines, are successfully removed and only the
water is left when determining where to send the robot, this being indicated by the
green dot.

Some improvements could be made to this system to make it more versatile. As can
be seen in Figure 2 intense reflections off the water, in this case a skylight at the pool
on a very sunny day in Texas, can cause the robot to think that this area is not a water

DOI 10.18502/keg.v2i2.609 Page 155DOI 10.18502/keg.v2i2.609 Page 155



DesTech Conference ProceedingsDesTech Conference Proceedings

Figure 3:  

but an object or the ground. This is most likely caused by the IR light being reflected
from the sun, as it is of such a high intensity that it can be picked up by the Kinect
sensor. To overcome this issue, incorporating the RGB camera into the system could
prove beneficial. The RGB camera would be able to detect these really high intensity
objects, and remove them from the corresponding position in the IR image. Another
issue with this system is that if an object gets too close to the IR sensor, it will black
out part of the image and therefor show up as a black region. This again could be
solved by incorporating the RGB camera as it could view all of the regions of the IR
image that are black and decide whether they are actually some other object based
off other attributes, such as their shape, colour, intensity, etc.

1Work was supported, in part, by grant number FA8750-15-2-0116 from Air Force Re-
search Laboratory and OSD through NCA&T State University

References
[1] A. Dancu, M. Fourgeaud, Z. Franjcic, and R. Avetisyan, Underwater reconstruction using depth sen-

sors, in SIGGRAPH Asia 2014 Technical Briefs, 2014, p. 2.
[2] A. L. Rankin, L. H. Matthies, and P. Bellutta, Daytime water detection based on sky reflections, in

Robotics and Automation (ICRA), 2011 IEEE International Conference on, 2011, pp. 5329–5336.
[3] A. Rankin, and L. Matthies, Daytime water detection based on color variation, in Intelligent Robots

and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010, pp. 215–221, (2010).
[4] P. Santana, R. Mendon, and J. Barata, Water detection with segmentation guided dynamic texture

recognition, in Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on, 2012, pp.
1836–1841.

[5] R. Pombeiro, R. Mendon, P. Rodrigues, F. Marques, A. Louren, and E. Pinto, et al., Water detection
from downwash-induced optical flow for a multirotor UAV, in OCEANS 2015 - MTS/IEEE Washington,
2015, pp. 1–6.

[6] J. Song, S. Na, K. Hong-Gab, H. Kim, and L. Chun-shin, A depth measurement system associated
with a mono-camera and a rotating mirror, in Pacific-Rim Conference on Multimedia, 2002, pp.
1145–1152.

[7] J. Michels, A. Saxena, and A. Y. Ng, High speed obstacle avoidance using monocular vision and re-
inforcement learning, in Proceedings of the 22nd international conference on Machine learning,
2005, pp. 593–600.

[8] T. Nagai, T. Naruse, M. Ikehara, and A. Kurematsu, Hmm-based surface reconstruction from single
images, in Image Processing. 2002. Proceedings. 2002 International Conference on, 2002, pp. II-561-
II-564 vol. 2.

DOI 10.18502/keg.v2i2.609 Page 156DOI 10.18502/keg.v2i2.609 Page 156



DesTech Conference ProceedingsDesTech Conference Proceedings

[9] D. An, A. Woodward, P. Delmas, G. Gimelfarb, and J. Morris, Comparison of active structure lighting
mono and stereo camera systems: Application to 3d face acquisition, in 2006 Seventh Mexican
International Conference on Computer Science, 2006, pp. 135–141.

[10] G. C. Gini, and A. Marchi, Indoor robot navigation with single camera vision, in PRIS, 2002, pp.
67–76.

DOI 10.18502/keg.v2i2.609 Page 157DOI 10.18502/keg.v2i2.609 Page 157


	Introduction
	Image processing
	Distance to the edge of the water
	Extracting the Point
	Distance to the Point

	Results and Future Work

