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Abstract
Underwater robotics is currently a growing field. To be able to autonomously find
and collect objects on the land and in the air is a complicated problem, which is
only compounded within the underwater setting. Different techniques have been
developed over the years to attempt to solve this problem, many of which involve
the use of expensive sensors. This paper explores a method to find the depth of an
object within the underwater setting, using a single camera source and a known object.
Once this known object has been found, information about other unknown objects
surrounding this point can be determined, and therefore the objects can be collected.
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1 Introduction

In the field of robotics, determining where an object is relative to the detecting device,
generally a robot, is not a simple problem. It becomes even more vital when object
collection is considered, as the position of the object needs to be determined before
any work can be done towards collecting it. This task, while still challenging, can be
accomplished on the land and in the air by using a whole range of sensors such as
laser range finders, cameras, ultrasonic sensors etc. In the underwater domain this
issue becomes much harder as the range of sensors available is significantly smaller.
Because of this, a method to localize an object by utilising a single camera has been
investigated.

The reasoning behind using a single camera is this sensor is already present on the
VideoRay Pro 3 robot, the device currently being used for this experiment and the need
to install extra external cameras is removed. Generally, to be able to construct a depth
map by using a camera, two or more devices are required. Robust techniques can then
be used to generate a fairly accuratemap, such as Depth from Stero and Depth fromDe-
focus [1,2]. Due to only one camera being available, these techniques were discounted.
Throughout the literature many different techniques have been trailed, each giving sig-
nificantly different outcomes. A system using a rotating mirror has been investigated
where objects of different depths will be represented by observing the change in pixel
speed of the rotating image [3]. Using predefined information about the scene is often
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required to then train an algorithm by either using associated depth maps [4] or known
information about a structured object, such as hands or feet [5]. Techniques have been
proposed where a light source is added into the environment in the forms of either
points [6] or patterns [7], and by measuring how these light sources are changed, the
depth two the object can then be determined. An application was shown where an
object would use the changes in the pattern of the ground to determine where objects
are relative to themselves, though this method required a predefined knowledge of the
grounds colours and textures [8] as well as having the camera continuously pointed at
the ground. The shapes from shading method can also be used to approximate depth,
but is difficult to apply in situations that do not have a very uniform intensity and tex-
tures [9]. A Marcof filter can also be trained to determine the depths of known image
characteristics, and then applied to segments of the image to get an overall depth map,
though a significant amount of information is required for this training process [10].

Of the researched methods, a simpler approach was determined necessary for the
proposed application. This application is for a swarm of robots to be able to generate
a map of known objects that can easily be shared among the agents in the system,
and therefore be used to determine the location of unknown objects relative to these
points in future applications. The following paper explains the detection method used
to find the depth objects within the image obtained from the camera, and how the
depth and position of these object can be determined.

2 Vision System

The initial challenge was which toolkit was to be used to process the image data being
received from each of the connected robots. To accomplish this task, the open source
toolkit EMGUwas used. This toolkit is a wrapped version of the commonly used opencv
toolkit for .NET applications, and therefore benefited from the large community and
code base that opencv brings. There are other C# vision API that can be used to achieve
the same, or similar results as the one proposed, such as AForge.Net, but EMGU was
decided upon due to opencv being the most popular vision api.

This leads to the proposed problem, this being how to determine the depth of an
object relative to the robot, without knowing any information about the object before-
hand and also without the use of a ranging system, such as sonar. As described in the
introduction, there have been many different approaches proposed to solve this prob-
lem, many of which are not suitable for this application. The proposed method involves
populating the environment with objects of a known size that are significantly differ-
ent to the rest of the environment, in this case tennis balls. In a real world application
objects similar to this, these being uniform objects preferably spheres, can be utilised.
By using the known parameters of these objects, the depth that these objects are at
relative to the robot can be found. Utilising this information, the depth and size of an
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Figure 1: Image before distortion removal.

object in proximity to one of these depth markers can be determined, and used for the
collection of the objects.

2.1 Detection of the Object

The first problem that needed to be overcome is how to detect the depth objects, in this
case a tennis ball, under the water by simply using the camera attached to the robot. In
the end this process was able to be accomplished by simply using the inbuilt functions
that come with the EMGU and the opencv api. Most of the work to separate the ball
from the surrounding environment is accomplished by using the binary thresholding
method. Initially the RGB colour space was trailed to find the object. It was quickly
found, and expected, that by using this colour space too much noise was introduced.
To overcome this issue, the HSV colour space was used. This enabled a mask containing
only the ball to be generated with good repeatability.

Whilst looking at the data coming back from the ball, it was noticed that the image
would warp at the edges of the camera. This was due to the fish eye effect, something
that is quite common in older cameras. To remove this noise, the standard camera
calibration methods used by opencv, and in this case EMGU, were performed. This in-
volves moving either a circular or checkerboard pattern in front of the camera so that
the function can determine how the image is being warped and attempt to remedy
the image. The function is able to accomplish this as it knows what it expects from the
patterns, and can compare this to what it is receiving from the camera data. After this
was preformed, it was found that the very edges of the imagewere still being distorted
a small amount. It was determined that this is caused by the large dome that is placed
infront of the camera in the robot design. To overcome this, the edges of the image
were cropped in, so only the calibrated section of the image is being considered. Crop-
ping the image also allowed for the removal of some corrupted data being received
from the bottom of the video feed, as depicted in figure 1 and corrected in 2.

To be able to access the data a simple blob filter was used which returns the x and y
components of the ball, relative to that of the camera. By analysing the data obtained
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Figure 2: Image after distortion removal.

Figure 3: Unfiltered, information overlaid.

from the blob filter, it was clear that more processing was required. To solve this, the
size of the blobs was filtered. One of the main advantages of using a spherical object
like a ball means that any valid blobs that are of the ball must have a bounding box that
is square in nature from all viewing angles. Therefore, any objects where the length and
width of the bounding box notwithin%30 of each otherwere discounted as noise in the
image. The camera that is attached to the VideoRay Pro 3 is of relatively low definition,
meaning that the width and height of the bounding box were generally small, hence
requiring a relatively large error margin. If a higher resolution camera was used, this
range could be tightened to reduce noise even further using this technique. The size of
the blobswas also limited, as if the blobswere too small they could be considered noise,
as they might only be a couple of pixels in area, and were discarded. Conversely if the
area was too big, it was again removed as the system might be detecting something
like the floor or wall, even though if proper thresholding was conducted this should not
be an issue. Unfortunately this did limit the range of the system, but it was determined
that it was an acceptable loss, as when the tennis ball was only a few pixels on the
screen, accurate calculations of its depth relative to the camera were not able to be
performed.

Finally, as it is known that the edges of the object should be circular no matter the
approach angle if a sphere is used, a hough circle transformwas applied. As it was found
that the hough circle transform is a relatively expensive method to apply to an image,
a mask containing only the remaining blobs after the previous filters were applied was
used. After significant testing it was found that the size and locations of the circles
generated from this function could not be relied upon when the camera was moved
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Figure 4: Filtered image of depth indicator.

around, away-from and towards the depthmarker. It was discovered however that in all
of these cases, the hough transformwas able to detect at least a portion of the ball as a
circular image. This method alsomeant that the entire ball had to be in frame for it to be
detected, something the blob tracking method was lacking. Therefore, it was decided
to combine both the hough circle method and the blob tracking methods together, by
again filtering out any of the blobs that did not also contain a centre point detected by
the hough circle method. After all of these filters have been combined together, the
resulting blobs only contained that of the tennis balls located in the environment. There
are some significant downsides to this method, such as if there was another object in
the environment that appeared to be similar to a tennis ball in both shape and colour, it
could be detected and therefore incorrectly used as a depth marker. It was determined
that was an acceptable complication as when choosing an object to be used as the
depth marker, these other environmental aspects should also be considered. Figure 3
and 4 depict the before and after shots of the image that is generated by the camera.
It can be seen that by using this simple method, the ball can be easily extracted from
the environment. The information depicted above the ball also shows how the depth
of the object can also be determined, which is explained in the next section.

2.2 Calculating the Objects Position

Once the object has been foundwithin the image the depth to the object, relative to the
camera, can be obtained. In this case the advantage is that all of the information about
the object is already known, such as the size of the object and colour of the object.
Using this information, it is then possible to find where the object is in space relative
to that of the camera. Firstly, the size of the object needs to made relative to that of
the blob in the camera. This is a very simple process, after all of the aforementioned
processing has been achieved, and can be accomplished outside of the water making
it significantly easier to undertake. The depth object is placed a known distance away
from the camera, preferably in the centre of the image. The average of the blob’s side
lengths is taken, and the distance away from the camera the ball currently is at is also
found. Therefore, the distance that the ball is away from the camera can be found, at
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any point in the view, by using the following equation:

depth = Cd
2Ch

Bw + Bh
Where Cd is the distance used to calibrate the height of the ball, Ch is the height in
pixels of the calibrated ball and Bw and Bh are the width and height of the detected
blob respectively.

2.3 Finding the Depth Object in the local Frame

Once the depth of the ball has been determined in the global frame, the coordinates of
the ball, in mm, needs to also be found in the local frame. Fortunately, assuming that
the camera has been calibrated correctly, it can be assumed that each of the pixels will
be a predefined width and height in mm. As the size of the blob will reduce the further
away from the camera the object is, the information calculated in equation 1 does not
need to be considered at this point, as only the centre point of the object needs to be
found. As the blob detection method only provides the top right hand corner of the
blob’s bounding box, it needs to be shifted into the centre of the blob. This is achieved
in the y axis using the following equation:

ycoord =
H(2By − Fr)

2Bw
+

H
2

Where H is the actual height of the ball, By is the y coordinate of the ball, Fr is the
amount of rows the frame contains, also the frame’s height in pixels and Bh is the
height of the bounding box. Similarly, the x coordinate of the can be obtained in mm
by using the following equation:

xcoord =
W (2Bx − Fc)

2Bw
+

W
2

Where W is the width of the ball, which should be about the same as the height of the
ball if the object is spherical, Bx is the x coordinate of the bounding box and Fc is the
amount of columns in the image, also known as the image width in pixels.

After the positional information of the object in the camera’s frame of reference has
been collected, a simple transformation matrix can be used to get this information into
the global frame so that other robots within the swarmwill be able to relate any objects
that they detect to the calculated position of the depth indicator. This will also allow
for a very basic depth map of the entire area to be quickly generated, as each robot
contributes its own findings to this global depth map, negating the robots having to
search over area that has been previously explored by other robots within the swarm.
The only point of note that should be taken out of this is that the coordinate axis also
changes, as when the camera is considered, the z axis is pointing away from the robot
when it is sitting on a flat plane, and the y axis points up. This is in contrast to the
global map, where generally the Y axis pointing away from the robot, and the z axis is
indicating the depth/height of the robot.
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3 Conclusion and Future Work

This paper has presented a method to both detect and an object that can be used by a
robot for depth calculation, as well as how the position of this object can be calculated
with the frame of reference of the camera. The position of these objects can then be
transferred onto a global map so that multiple robots within the swarm can utilize this
information to collect objects within a proximity to these markers.

Future work can be completed upon using this method. It has been found that when
processing vision data under the surface of the water, in this case a pool, that the light
source is diffused enough that adaptive thresholding has not been required. Unfortu-
nately, in some scenarios this will not be the case, therefore a method of adaptive
thresholding should be included to enable the algorithm to function in a more diverse
lighting environment, such as caves or popular shipping channels.

Currently the range in which the objects can be detected is relatively short. It was
found that the main reasoning behind this was that the resolution of the camera was
such that the far away objects would simply become a couple of pixels and therefore
indistinguishable from the noise in the environment. If a higher resolution camera was
employed it would be possible to find the objects at a significantly longer distance.

This work will be expanded to allow the robots within the swarm to use this depth
information to be able to collect objects on the same level as the depth markers. The
depth markers are required as these objects will be ones such that their shapes are
not uniform or constant, and therefore the distance away the robots are from these
objects cannot be easily determined, unless objects of a known size are within their
vicinity.

Finally, a filter, such as an extended kalman filter could be applied to the detected
objects to remove any variation of the objects position, particularly their depth, that
might be introduced by drift or other inaccuracies that is obtained by the detecting
robots ability to localize itself within the environment, or introduced by the robots other
sensors, such as their own depth sensor. This could also help if two or more robots
detect a single depth marker, and place it in slightly different positions, potentially
causing conflict.

1Work was supported, in part, by grant number FA8750-15-2-0116 from Air Force Re-
search Laboratory and OSD through NCS&T State University.
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