
Architecture across Boundaries
2019 XJTLU International Conference: Architecture across Boundaries
Volume 2019

Conference Paper

Lightweight Semiautomatic City Engine
Systems: A Specific Case of Urban Induction
Theory
Robert Ward
Xian Jiaotong University, Department of Architecture, Suzhou, China

Abstract
Generative urban design is an emerging field which seeks to apply a procedural
algorithm to grow urban forms parametrically. These tools are mainly used for
cityscapes in the entertainment industry. Currently, there is active research to
repurpose them as semantically meaningful tools for urban design. This paper reviews
the two primary approaches to generative urban design: CityEngine and Urban
Induction (UI). After consideration UI was chosen as the preferred approach. This paper
is a commentary on and assumes a background knowledge of UI. A novel synthesis
of UI and Form-Based Codes is proposed as a lightweight method of generation.
This method is then tested on a 3,040 acre site in San Francisco. Results indicate
while the method works conceptually in simple cases it should be expanded into a
comprehensive toolset before it can be considered an open-source replacement for
CityEngine.

Keywords: Urban Design, Parametric Design, GIS, Grasshopper, Urban Induction, City
Engine.

1. Introduction

Generative Design is a computational design process (CDP) in which the architect
instructs a computer to produce design by a set of rules and ‘kit of parts’, the generative
grammar, as described by Alexander in his landmark paper [17]. Generative urban design
is a CDP used to generate a city. Generative urban design is especially helpful in
translating numerical data such as height, density, and Floor Area Ratio (FAR) into 3D
building geometry. This translation of numerical input into geometry is a useful way to
test design proposals, communicate between design disciplines, visualize for clients,
and generate inputs for environmental analyses. At the core of any generative urban
design tool, is a procedural algorithmwhich grows urban forms parametrically from rules.
Typically these rules are defined in L-systems, Shape Grammars, or Sortal Grammars.
Thus far these techniques have been used to make computer generated imagery (CGI)
of cityscapes for films and video games. The result superficially looks like a city but

How to cite this article: Robert Ward, (2019), “Lightweight Semiautomatic City Engine Systems: A Specific Case of Urban Induction Theory” in 2019
XJTLU International Conference: Architecture across Boundaries, KnE Social Sciences, pages 497–509. DOI 10.18502/kss.v3i27.5552 Page 497

Corresponding Author:

Robert Ward

robert.ward17@student.xjtlu

.edu.cn

Received: 15 March 2019

Accepted: 25 May 2019

Published: 20 November 2019

Publishing services provided by

Knowledge E

Robert Ward. This article is

distributed under the terms of

the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Selection and Peer-review under

the responsibility of the

Architecture across Boundaries

Conference Committee.

http://www.knowledgee.com
mailto:robert.ward17@student.xjtlu.edu.cn
mailto:robert.ward17@student.xjtlu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Architecture across Boundaries

lacks the rigorous ontology of a real City Information Model (CIM). Current research is
directed toward generating formal outputs which are compatible with CIM ontologies.
This research addresses the core nature of design problems as open-ended problems
which cannot be ‘solved’ by computation and logic [13], but rather advanced through
iterative, recursive design moves of generation and evaluation of a design proposal.
Algorithms can automate these design moves within a limited scope, but there is a point
of diminishing returns where automation requires very complex algorithms for marginally
useful results. Generally, the more computation is used the less room for creativity in
the design. Considering the diminishing returns principle, the goal of generative urban
design is the optimum efficiency of automation and freedom of creativity.

1.1. Literature Review

A review of the literature shows two primary techniques generative urban design. The
first technique by Yonish & Muller uses parametric L-systems as explained in their
seminal paper [1] at SIGGRAPH 2001. Their research led directly to the creation of
CityEngine software. The second technique is Urban Induction (UI) theory as developed
by Beirão & Duarte [2] in 2012. In addition to these two comprehensive theories are
papers on specific topics. The central theme across reviewed specific topic papers
was a recreation of partial GIS functionality inside Grasshopper, with complex and
necessarily inefficient scripts. The option of simply using GIS itself was not considered
in the critical reflection of the reviewed papers. Among the specific topic papers, Kim
et al. [3] stands out for a novel proposal to create a computational implementation
of New Urbanist Form-Based Code. Form-Based Codes are model planning codes in
which zoning ordinances specifiy a form, not a function. As such, they parametrically
describe a simple relationship between architecture and streetscape.

A review of available tools shows that much of the functionality of City Engine (2007)
can be duplicated in Grasshopper (2014) as both have a visual programming interface
(VPI) to build algorithms. Additionally, CityEngine lacks the technical realism necessary
in urban design and is mostly used for geodesign [15, 16] and CGI applications [4]. For
example, CityEngine is typically used to generate an entire city in greenfield conditions
based on a raster underlay of population density. In practice, this scenario rarely occurs.
It is more typical to develop urban infill in a portion of a city which is driven by context
and connectivity. In professional practice, CityEngine has a smaller user base than
Grasshopper because the barriers to entry are higher in terms of both money and time.
CityEngine is a niche software which only works within the ecosystem of arcMap GIS

DOI 10.18502/kss.v3i27.5552 Page 498



Architecture across Boundaries

and uses a proprietary scripting language called ‘CGA Shape Grammar’. Conversely,
Grasshopper is a free VPI for Rhinocerous3D and uses the popular Python and C#
scripting languages.

Figure 1: Urban Induction.

Figure 2: UIP30 AddingUUnits.

In contrast to CityEngine generating a cityscape with L-systems, UI theory aims
to create semantically meaningful results that are well-matched to the rigorous city
description ontologies developed by Lynch and Alexander [10, 11]. The theoretical,
mathematical, and technical underpinnings of UI are described exhaustively by Beirão
in [5]. UI mirrors the design moves made by urban design professionals as they move
a design proposal from vague to specific. UI proceeds, through recurrent generation-
analysis-generation loops (induction) of Urban Induction Patterns (UIP) as shown in
Figure 1.

In UI theory, a UIP is a stepwise design move in the generation module consisting
of a parametric geometry with attached tabular data, as shown in Figure 2. Each UIP
depends on the preceding UIP for input and conversely becomes the input for the
succeeding UIP. As UIPs layer on top of each other, the complexity of a city emerges
generatively. An analysis of the UI generation module shows UIPs can be classified in
two groups: UIPs upstream of UIP30 used for generation of circulation networks, which
forms the urban grid dividing space, and UIPs downstream of UIP30 used for filling each
grid cell (blocks) with forms (buildings). The moment of filling blocks occurs at UIP30.

Beirão proposes a specific implementation of UIP generation, CIty Maker, and con-
cludes that CIty Maker is best split across GIS, CAD, and VPI [5, 7]. This cross-platform

DOI 10.18502/kss.v3i27.5552 Page 499



Architecture across Boundaries

technique, called ‘dis-integrative,’ is well attested as a superior approach to compu-
tational design [6, 8]. The advantages to a dis-integrative over an integrated work
environment are less scripting and more artistic control, while the disadvantage is more
careful data management.

When a dis-integrative approach is critically applied to CIty Maker a classification by
critical path emerges between UIPs upstream and downstream of UIP30. The layout of
a grid (… - UIP30) is ‘cheap’ when done manually because it is simple geometry to draft
with existing tools, but difficult to generate computationally. Conversely filling the grid
(UIP30 - …) is ‘expensive’ because it is complex geometry that has no existing tool, but it
is a simple algorithm to script. Within the critical path of generation, UIP30 AddingUUnits

occupies a unique position that can only be implemented efficiently by an algorithm by
specific to the project, as discussed in section 3.1 of this paper.

1.2. Purpose

Based on the literature review, I propose a lightweight semi-automatic implementation
of UIP generation. The purpose is to improve the usefulness and flexibility of CIty Maker.
Here ‘semi-automatic’ means at certain designmoves a UIP is more efficiently generated
by computer and other design moves by a user with project-specific innovations. It is
‘lightweight’ in the sense it only addresses a limited scope of only those UIPs which
lie on the critical path, see table 1. Thus, three levels of automation in UIP generation
become available at each design move: total automation by computer as attempted in
CIty Maker [1, 2], partial automation by computer, and manually by user constrained in
a UIP framework. Ideally, all higher level design is done by the user and all lower level
drafting is done by machine.

2. Methodology

Following the recommendations of [5–7], the lightweight semi-automatic implemen-
tation is dis-integrative requiring manual data transfer between CAD, GIS, and VPI
at specific design moves. The softwares used are Civil3D, Grasshopper, Infraworks,
and optionally arcMap. All UIPs upstream of UIP30 can be generated entirely with
Civil3D because it is a CAD & GIS integrated environment. At the design move of
UIP30 data in Civil3D must be round-tripped through the Grasshopper VPI for UIP
generation. Infraworks is a CIM and visualization environment, which duplicates most
of the functionality in City Engine but is tightly integrated with Civil3D. In particular,

DOI 10.18502/kss.v3i27.5552 Page 500



Architecture across Boundaries

Infraworks transforms a circulation network centerlines from Civil3D into 3D textured
meshes through typical section sweeps and intersection rules. Additionally, it has a
limited ability to apply procedural raster-based facades to building masses as in City

Engine.

Figure 3: Location in San Francisco.

Figure 4: Site inside redline.

These tools were tested on a sparely built 3,040 acre (2,130ha) area of San Francisco.
This site, shown in figures 3-4, is planned to be a LEED-ND development of 150,000 units
to ease the severe housing shortage [14]. It is representative of infill and densification
tasks typical in urban design.

DOI 10.18502/kss.v3i27.5552 Page 501



Architecture across Boundaries

Table 1: Urban Induction Patterns.

UIP Name Description

24 AddBlocktoCells Defines a grid cell as an island

25 AdjustingBlockCells Fixes overlapping

26 ClassifyUUnitCells Creates sets of labels for block classification

27 DefineUUnit Defines blocks by type

28 InititalUUnit Creates initial labels to classify block types

29 AddUUnitByLabel Replaces an island with a block type

30 AddingUUnits Adds typical buildings to blocks by type

2.1. Setting out of Grids

Prior to UIP24 centerlines are generated by a variety of methods in CAD or GIS. At
the design move of UIP24 centerlines are converted to UIP gridlines and grid cells.
Here the blocks are classified using the New Urbanist Form-Based Code transect
schema. The transect describes typical values for the height, setback, and inter-building
spacing, parameters of a Form-Based Code. The transect is organized as seven zones
of increasing urbanization from Natural Zone (T-1) to Urban Core Zone (T-6), see Figure
5 and 6 [9]. Classifying blocks by transect zone combines several UIP parameters
controlling height, density, and typology into a single parameter, called ‘Transect Zone,’
that can be stored in the LAYER property of the block polygons. Using the LAYER
property to encode ‘Transect Zone’ an efficient way to have multiple UIP parameters
displayed both visually and textually in CAD.

Figure 5: Transect Zones.

Option 1 Civil3D: Sites, Parcel, and Alignment Objects to automatically generate the
grid lines, cells, and blocks geometry, see table 2. This geometry is exported as an SDF
file then re-imported back into CAD as line and polygon geometry with attached tables.

DOI 10.18502/kss.v3i27.5552 Page 502



Architecture across Boundaries

Figure 6: Form-Based Code.

These tables and shapes can be modified as needed and then exported as an SQLite
or DXF.

Table 2: Civil3D Grid Generation Commands.

Command Description

CreateSite Creates a named topology

CreateParcelFromObjects Creates a Polygon Feature in the topology

CreateAlignmentEntities Creates a Linear Feature in the topology

CreateParcelROW Creates a Buffer of a Linear feature

ExportToSDF Exports CAD topology to GIS topology

MapImport Imports GIS data to CAD geometry with
attached tables

ADEDefData Opens attached table manager (add, edit,
delete columns)

ADEAttachData Attaches attribute tables to CAD geometry

MapExport Exports CAD geometry as GIS geometry

Option 2 Civil3D + GIS: Centerlines are exported as a DXF to GIS where scripts will
process them into geodatabase lines and polygon features then classify them based on
the COLOR and WIDTH properties, and build an attribute tables populated with typical
values by class. By using the Model Builder VPI in arcMap prototype scripts can be
rapidly adjusted to specific projects. The ESRI file geodatabase which stores the results
is then exported to an SQLite or DXF file.

The SQLite database format is preferred as the universal medium for data transfer
because it is common between all three environments, open source, and stores polyline
geometry as true arcs. However using SQLite requires a high level of skill to build and
troubleshoot correctly; therefore, shapefile (loss of true arcs) or DXF (loss of attribute
table) are lightweight alternative formats.

DOI 10.18502/kss.v3i27.5552 Page 503



Architecture across Boundaries

2.2. Filling of Blocks

This design move occurs at UIP30. Whereas the setting out of grids is more efficiently
done manually to achieve unique site-specific results, filling those grid cells with repre-
sentative buildingmasses is most efficiently done by an algorithm. By using VPI scripting
a project-specific algorithm is accessible to most users in a lightweight way.

In this study a singleGrasshopper script describes a single building typology which is
parametrically adjustable to the block polygon, see table 3. In this study, two typologies
were used: a courtyard block of two units, and a highrise with a podium. Following UI
theory the algorithm for the highrise and podiumwas discretized into two scripts, one for
each designmove. The first scriptCityEngHighrise.gph sets out the podium and highrise
footprints. The second script CityEngHighriseExtrude.gph extrudes heights by attractor
system. All scripts employed randomization in the parameters to create a controlled
variation and were constrained by daylighting depths.

Option 1: Transfer block polygon by DXF to Grasshopper. When using this method
it is necessary to perform a basepoint shift, also known as affine transformation. The
coordinate system in Rhinocerouse3D cannot support the large distance from the origin
of georeferenced Civil3D files. The basepoint shift was based on the Lower Left (LL)
corner of the bounding box as an integer number.

Option 2: Use the slingshot! plugin to read SQLite block polygons with attributes
directly into Grasshopper VPI, or write arcpy script components for use in the arcMap

VPI.

Table 3: Scripts.

Script Description Zone

CityEngCourtyardBlock.gph Courtyard block with openings on two longest sides T5

CityEngQuadBlocks.gph Midrise Apartments with parking garage T6-T5

CityEngHighrise.gph Highrise and Podium footprint T6

CityEngHighriseExtrude.gph Highrise extrusion by transit station attractor T6

Following the semi-automatic principle, the blocks were selected manually as input.
This allows the same scripts to be applied block polygons in different transect zones or
different scripts to be applied to block polygons in the same transect zones as needed
by project goals. For example, the CityEngCourtyardBlocks.gph script was used with
two different height range parameter values in transect zones T-5.1 and T-5.2. The
approximate size of algorithm required to manage simple massing is shown in Figure 7.

DOI 10.18502/kss.v3i27.5552 Page 504



Architecture across Boundaries

Following the lightweight principle, the scripts generate two geometries: a mass by
extrusion for use in CAD and the polygons of the mass’s ‘roof’ for use in GIS. When the
elevated ‘roof’ polygons are transferred to GIS, the ELEVATION property is stored as an
attribute of the geometry. Transfer to GIS is done by moving the elevated polygons back
to Civil3D through a reverse basepoint shift. Although Civil3D supports the exchange
of complex mesh geometry, by restricting the exchange format to elevated polygons it
is easier to exchange with arcMap or Infraworks.

Figure 7: CityEngCourtyardBlocks.gph at UIP30.

3. Results/discussion

The proposed Lightweight Semi-Automatic generative urban design tool was tested on
an urban infill site in San Francisco. This tool is a specific implementation of the UI
generation module from UIP24 through UIP30 which results in a 3D textured mesh repre-
sentation of urban space inside a CIM environment, following the recommendations of
[5–7] as shown in Figure 8 and 9. This tool innovates upon the CIty Maker UI generation
module by analyzing a critical path of design moves as criteria to divide and distribute
a limited scope of UIPs between GIS, CAD, VPI, and CIM softwares, to optimize for least
scripting size. This dis-integrative implementation of UI allowed for UIP24 throughUIP29 to
be generated efficiently without scripting in Civil3D. Additional optimization was gained
by merging the Form-Based Codes ontology into the UI ontology, which synthesizes
multiple UIP parameters into a single UIP parameter called ‘Transect Zone’ stored in
the LAYER property of block polygon geometry. This innovation renders unnecessary
the plugins and scripting required to move attached data tables with geometry at the
GIS to VPI transfer. Scripting was isolated to only the design move of block filling at
UIP30. Another innovation is the use of a CIM at the final design move, which merges
circulation network (UIP24 - UIP29) and building mass (UIP30) data, and generates a
textured 3D mesh in an integrated visualization environment.

DOI 10.18502/kss.v3i27.5552 Page 505



Architecture across Boundaries

Figure 8: Input.

Figure 9: Output.

3.1. The critical point

The complexity of urban space first emerges at UIP30 when block polygons are packed
with representative building masses. These masses are neither purely symbolic nor a
true mass model but rather occupy a Level of Detail (LOD) in-between. Ideally, these
building masses should be unique but also read en masse as coherent domains of a
particular urban character specific to the project and site.

Generating a successful outcome for the block filling design move (UIP30) is a unique
problem, which can be solved by neither native CAD nor GIS functionality, nor can it
be manually drafted efficiently. This unique combination of importance coupled with
the difficulty in execution makes UIP30 the critical point of generative urban design.
The only way to efficiently complete UIP30 is with scripting shape grammars [6]. By
isolating the use of scripting to only UIP30 and using a VPI the gentlest possible learning
curve is presented to the user, as shown by the blue curve in Figure 10, following the
recommendations of [12]. User accessibility is further enhanced by the synthesis of UI

DOI 10.18502/kss.v3i27.5552 Page 506



Architecture across Boundaries

and Form-Based Code ontologies, which support the use of prototype script types for
each transect zone typology.

During the development of CityEngCourtyardBlocks.gph it was discovered that place-
ment of building masses was most efficiently done using the Right of Way (ROW) line as
input for an inner offset toward the block interior with constraint by daylightingwidth. The
results of this method yielded the most realistic results, in regards to constructability
and code compliance, on irregular block geometry. This is might be because ROW
lines underlie the framing of positive spatial void volumes, described in [10, 11] as the
prerequisite to desirable streetscape design.

The courtyard block typology of CityEngCourtyardBlocks.gph is the simplest case
of generation at UIP30 because the entire perimeter is used; however, in a high-rise or
commercial street situation the complexity increases because a smaller domain of the
total perimeter must be extracted to ensure that the building addresses the street in
the correct orientation. During the development of CityEngHighrise.gph it was realized
using street centerlines or transit stations as attractors in a classic attractor system
was the most efficient method. Experiment showed best results with irregular block
polygon geometry were obtained by the creation of a major axis between block polygon
centroids and attractor points and also perpendicular to ROW lines as shown in Figure
11. This technique had the added benefit of introducing slight variation in shape after
clipping.

3.2. Further development

The results indicate a Lightweight Semi-Automatic generation module of UI is concep-
tually possible, but it requires further research and development as a design tool. The
ontology of UI and CIty Maker present an exciting opportunity to develop an open-
source substitute for CityEngine.

Circulation network generation (UIP24-UIP29) can be improved by using visualLISP
scripts to automate the conversion of SDF to SQLite. The use of the SQLite format as
a medium of exchange needs further examination. In this study, SQLite databases
generated outside of Civil3D failed to import correctly into Civil3D. Also replacing
proprietary GIS arcMap with open-source GIS QuantumGIS should be studied.

Improvements at the critical point of UIP30and downstream should include a com-
parison of Grasshopper versus Dynamo as the VPI. Using Dynamo as VPI would
produce representative masses as BIM objects in Revit. When UIP30 is generated in
a BIM environment a higher LOD beyond simple massing might be easier to automate.

DOI 10.18502/kss.v3i27.5552 Page 507



Architecture across Boundaries

Figure 10: learning curves of scripting.

Figure 11: major axis generation.

Regardless of the VPI used, obtaining a higher LOD on the representative masses is
a priority for improvement. This increase in LOD requires the parallel development of
an efficient method to transfer 3D mesh from VPI back to GIS or CIM. The addition
of a simple UI evaluation module using the Single Objective Optimization (SOO) or
Multi-Objective Optimization (MOO) tools in Grasshopper could also be useful in higher
creating LOD representative masses.

Acknowledgment

Thank you To Christiane Herr. Also thanks to all the reviewers who gave their valuable
inputs to the manuscript and helped in completing the paper.

References

[1] Parish, Y. & Muller, P. (2001). Procedural Modeling of Cities, in SIGGRAPH. Los
Angeles, CA: ACM.

[2] Duarte, J., Beirão, J., Montenegro, N., et al. (2012). City Induction: A Model
for Formulating, Generating, and Evaluating Urban Designs Communications in

DOI 10.18502/kss.v3i27.5552 Page 508



Architecture across Boundaries

Computer and Information Science, pp. 79-104.

[3] Kim, J., Clayton, M., Yan, W. (2013), Parameterize Urban Design Codes with BIM and
Object-Oriented Programming

[4] Schneider, C., Koltsova, A., Schmitt, G. (2011). Components for Parametric Urban
Design in
Grasshopper—From Street Network to Building Geometry.

[5] Beirão, J. (2012). CIty Maker—Designing Grammars for Urban Design, Architecture
and the Built Environment. Vol.5, pp. 1-272.

[6] Derix, C. (2209). In-Between Architecture Computation, International Journal of
Architectural Computing.

[7] Beirão, J., Arrobas, P., Duarte, J. (2012). Parametric UrbanDesign: Joiningmorphology
and urban indicators in a single interactive model, City Modelling Vol. 1, pp. 167-176.

[8] Wortmannm, T., Tuncer, B. (2017). Differentiating parametric design: Digital workflows
in contemporary architecture and construction, Design Studies Vol. 52. pp. 173-197.

[9] Duany Plater-Zyberk & Company. (2009). SmartCode Version 9.2 Gaithersburg, MD:
The Town Paper Publisher.

[10] Lynch, K. (1960). Image of the City Cambridge, MA: MIT Press.

[11] Alexander, C., Ishikawa, S., Silverstein, M. (1977). A Pattern Language New York, NY:
Oxford University Press.

[12] Woodbury, R. (1977). Elements of Parametric Design New York, NY: Routledge.

[13] Horst, R., Webber, M. (1973). Dilemmas in a General Theory of Planning, Policy
Sciences Vol. 4, pp. 155-169.

[14] Ferenstein, G. (2015). Here’s What San Francisco Looks Like as an Affordable City,
Medium, December, 11th.

[15] Tulloch, D. (2016). Working Toward a Taxonomy of Geodesign, Transactions in GIS,

Vol. 21,28 pp. 635-646.

[16] Yanwen, L., Jiang H., Yuting, H., (2016). A Rule-based City Modeling Method For
Supporting District Protective Planning, Sustainable Cities and Society, Vol. 28, pp.
277-286.

[17] Alexander, A. (1968). Systems Generating System, Architectural Design. Vol. 7, pp.
90-91

DOI 10.18502/kss.v3i27.5552 Page 509


	Introduction
	Literature Review 
	Purpose

	Methodology
	Setting out of Grids
	Filling of Blocks

	Results/discussion
	The critical point
	Further development

	Acknowledgment
	References

