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In order to expand the possibilities of soil-cover remote monitoring and improve
prognostic models of active-layer depth dynamics in connection with global climatic
changes, the verification of correspondence between plant and soil components of
subarctic landscapes is necessary. This is most relevant for the forest-tundra zone,
where the variety and mosaicity of soils and vegetation is great due to its ecotonic
position. The purpose of this work was to study the relationship of vegetation with the
characteristics of cryogenic soils and the dynamics of the active layer in forest-tundra
landscapes. Data were obtained during monitoring studies at key sites in diverse
landscapes of forest-tundra in the vicinity of Labytnangi. It was revealed that the
thickness of the organogenic horizons, as well as the value of the moss phytomass,
determine the active-layer thickness. A close connection with relief and soils allows
the use of vegetation as an indicator of the soil texture and the depth of active-layer
occurrence and features.

plant communities, cryogenic soils, active layer, landscape, forest-tundra,
Western Siberia

Vegetation is a physiognomic element of the landscape. The potential for a more
accurate assessment of hidden landscape component states, in particular soils, over
vast spaces using vegetation is increasing with the development and improvement
of satellite surveillance systems. As a result of numerous studies [1-6], a close rela-
tionship between vegetation and the topography, soils and active layer thickness was
established. This allows us to use vegetation as an informative indicator of edaphic
factors, depth and the peculiarities of the active layer in permafrost distribution. This
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is important for the forest-tundra zone for two reasons: the great variety and mosaic
of both soils and vegetation and the zone’s particular vulnerability to climate changes.

The purpose of our research is to study the relationship of vegetation with the
characteristics of cryogenic soils and the dynamics of the seasonal layer in various
forest-tundra landscapes of Western Siberia. Research objectives: i - to identify the
relationship between vegetation and soils in different landscapes of the forest-tundra
ecotone; ii - to verify the indicative potential of vegetation for assessing the status and
depth of the cryogenic soil active layer. Verification of the correspondence between
plant and soil components of forest-tundra landscapes can, on one hand, contribute to
the expansion of soil cover remote monitoring possibilities: on the other hand, it can
improve the prognostic models of the dynamics of exogenous processes occurring in
subarctic landscapes, including in connection with global climate changes [7].

2.1. Studied area

The objects of research were the vegetation and soils of the western part of the West
Siberian plain on the left bank of the Ob River in the Labytnangi area (Yamalo-Nenets
Autonomous District, 66°3925” N; 66°25’'05” E). According to climatic division, the key
sites are within the Atlantic-Arctic moderately cold humid area [8]. The average annual
temperature of the territory is -7.1°C, the sum of the temperatures more than 10°C is
equal to 80oo°C and the annual precipitation is near 400 mm. The studied area belongs
to the forest-tundra zone. The relief is a flat-sloping, hilly ridge with deep river valleys.
Soil-forming rocks are sandy, clay and largely rocky. The zonal vegetation is typical for
forest-tundra: a combination of dwarf birch moss-lichen (lichen-moss) and grass-moss
tundras and bogs, often with individual larches and open forests of larch, spruce or
spruce-larch dwarf birch. Tundra vegetation is confined to the plains and gentle slopes,
while open forests and thickets of dwarf birch with willows are limited to depressions
and the valleys of streams and rivers. Lichen tundra is typical to well-drained areas
with little snow in winter.

2.2. Sites and plots

Three key sites each equal to 1 km? were studied so that they can be deciphered by
remote methods according to the type of vegetation (Figure 1). The key sites were
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selected in accordance with the three main types of vegetation (tundra, peatbog and
forest) and different parent rock textures (sand (sandy loam) and clay (loam)). The
altitude above sea level of all key areas varies slightly (from 9o to 110 m). The sites
are located on a line from the northwest to the southeast. The key site vegetation
cover was mapped at a scale of 1:10 ooo.

The elementary chorological unit is a plant unit, conjugated on the area with a
characteristic element of mesorelief. After the analysis of the geobotanical maps of
the key sites, the most representative typical vegetation was chosen in each of them:
stationary monitoring plots (SMP) were selected with exact geographical coordinates.
In key site N2 2, two stationary monitoring plots were established. Thus, all four SMPs
were placed in typical forest-tundra landscapes, differing in terms of the location in
the relief, soil-forming rocks, soil and vegetation type and type of tundra [9]. SMP size
was 10x10 m in tundra (without forest stand) and 20x20 m in open forests.

ekhard

Figure 1: Location of standard monitoring plots (SMP).

2.3. Vegetation

The species composition and structure of vegetation were studied in all SMPs by the
traditional method of geobotanical description during the maximum development of
the grass and shrub layer. Plant associations were determined, the stocks and struc-
ture of the aboveground phytomass were studied and the state of vegetation and
soils was characterized. The stock of the aboveground phytomass was determined by
the method of bevels from the accounting areas 25x25 cm in length in a 16-25-fold
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repetition in each association. The aboveground phytomass was cut at the level of the
boundary between living (green) and dead (brown) mosses. During the disassembly
of bevels, fractions were isolated: cereals and sedges, forbs, shrubs, dwarf shrubs,
lichens and mosses. The weighing of the fractions was carried out in an air-dry state
with an accuracy of 0.1 g. The obtained numerical data were processed statistically
using the program Statistics: stocks are given in the text in g/m?.

2.4. Soils and active layer

At each key site, 5-8 soil sections were dug near the SMP in order to obtain the
soil morphological characteristics and sampling necessary for soil diagnostics. The
soils were classified in accordance with the World Reference Base [10]. Temperature
and moisture sensors were installed in the soil near each SMPs. Measurements were
performed throughout the period of field research. Automatic sensors, produced by
Decagon Devices, were installed in one wall of the vertical soil section at depths of
2-10-20-50-100 cm when possible, and to the permafrost table when it was not. The
depth of the STS in the SMP was measured with a probe with an accuracy of 1 ¢cm on
the same SMP area of 10x10 m in steps of 1 m at the same time in mid-August. A total
of 121 measurements were made per year on each SMP.

The variability of soil and vegetation cover at the key sites is caused by the diversity
of their position in the relief and by the rocks (Table 1).

TaBLE 1: Characteristics of key sites and stationary monitoring plots.

Characteristic Key site
1 2 3

Position in mesorelief  Flat-sloping Slightly inclined watershed area  Flat watershed
valley side of the area
bottom

Stationary monitoring  SMP1 SMP2.1 SMP2.2 SMP3

plot, N2

Rock texture Sand Sandy-loam Silt-loam Clay

Vegetation Open Mottled- Hilly tundra Flat-knob bog
birch-spruce- medallion tundra ledum-dwarf dwarf
larch-forest dwarf dwarf shrub- birch-dwarf birch-ledum-
shrub-moss- moss-lichen shrub-lichen and cloudberry-
lichen moss sphagnum
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Characteristic

Synfolium edificators

Phytomass stocks

(excluding trees, g/m?):

Shrubs
Dwarf shrubs
Grasses
Mosses
Lycens

Total

Soil type

Soil horizons

Organogenic horizon
(0, H) thickness, cm

Ecology and Geography of Plants and Plant Communities

1

Larix sibirica,
Betula tortuosa,
Ledum palustre,
Vaccinium
uliginosum, V.
vitis-idaea,
Empetrum nigrum,
Carex globularis,
Hylocomium
splendens,
Polytrichum
spp.,Cladonia
gracilis, Cetraria
laevigata,
Stereocaulon
glareosum,
Cladina

0.7 £ 01
1722 £ 9.2
3.7%03
941 44
86.2 6.3
356.9 +10.2
Albic Podzol

Key site

Betula nang,
Ledum
decumbens,
Vaccinium
uliginosum,
Empetrum
hermaphroditum,
Carex arctisibirica,
Cladonia
rangifering, C.
arbuscula, C.
gracilis,
Polytrichum ssp.,
Dicranum ssp

51.7 + 6.6
755%3.6
2.9+0.4
32.4 £1.7
107.6 £ 4.5
2701+ 9.8

Albic Podzols
Gelic

2

Betula nana,
Ledum palustre,
Vaccinium
uliginosum, V.
vitis-idaea,
Empetrum nigrum,
Carex tripartita

183.8 + 11.04
106.3 = 2.5
22314
238.8 £+ 5.4
164.8 + 10.0

716.0 * 15.0

Histic Turbic
Cryosol
Reductaquic

3

Betula nana,
Ledum
decumbens, Rubus
chamaemorus, V.
vitis-idaea,
Eriophorum
medium, Carex
globularis.

138.0 + 8.2
24.7 £1.3
73.6 £ 4.4
4331 %77
28.3+1.8
697.7 £14.6

Histic Cryosol

0-E-Bhs-Bg-B(g

4.3%2.0

Active layer depth, cm > 300

(20122017 yy.)

Source: Authors’” own work.

0-E-Bhs-Br

3.7 %24

115-190

H1-H2-Bg-Br-BCg
18.7 £ 8.9

56-93

H1-H2-H3-Cg

33.0 £ 71

3345

The data show that as the position in the relief changes from the valley side to
the depression and/or the soil texture changes from sandy to clay, the active layer
depth decreases. This is connected with the drainage weakening and the occurrence
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of moisture stagnation in this row. The rapid runoff of moisture in well drained soils
intensifies the initially higher thermal conductivity of the solid phase of sandy soils
compared to clayey soils [11], as a result of which the thermal regime of sandy, well-
drained soils contrasts more than do clay soils (Figure 2(a)).

Sandy soils warm up in the summer faster than clay soils: under the cryolithozone
forest-tundra conditions, this leads to a deeper active layer. Under such conditions,
mainly open forests with a predominance of Larix sibirica are formed. In contrast, with
poor drainage and moisture stagnation slight thawing occurs, and plant communities
are formed with the predominance of Betula nana, Ledum decumbens, Ledum palustre,
Rubus chamaemorus and Eriophorum medium, accumulating peat horizons of consid-
erable thickness in the soils. The latter, in turn, strengthens moisture stagnation and
serves as a thermal insulator (Figure 2(b)), further increasing the contrast between the
thermal conductivity of the studied soils. Living phytomass also serves as an effective
thermal insulator.

Thus, the composition of vegetation is quite clearly determined by the conditions of
drainage. Woody (mainly larch) communities are confined to sandy soils and dissected
reliefs with a good drain base. Mottled-medallion tundra is formed on sandy soils,
while less dissected relief, mottled-medallion tundra is formed on the same elements
of the relief, but on clay soils. Peat communities prefer depressions of the relief on clay

rocks.
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Figure 2: Temperature profile of the standard monitoring site soils (average values for July 2017 at 1 pm)
and the relationship of active layer depth with soil organic horizon thickness. Source: Authors’ own work.

Stable links between types of plant communities and edaphic factors have been estab-
lished for the forest-tundra of the western part of the West Siberian plain. The edaphic
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components of the forest-tundra are extremely diverse in the landscapes under study,
which is expressed in a variety of soil types and in the depth of the active layer: this
is primarily due to the mesorelief and the texture of the soil-forming rocks. These
factors determine the value of the territory’s drainability, and, as a consequence, the
vegetation community. In turn, vegetation through feedbacks largely determines the
depth of the active layer due to the thickness of the organogenic horizons (peat) and
the amount of phytomass, primarily mosses. For the purposes of remote permafrost
monitoring and predicting its condition, the existing landscape diversity can be sim-
plified to the four most typical and easily identifiable vegetation types (larch open
forests, mottled-medallion lichen tundra, hilly tundra dwarf shrub-moss tundra and
flat-knob bogs) contrasting in terms of the latent edaphic components.

This work was supported by the Ministry of Education and Science of the Russian Fed-
eration within the framework of the state assignment No. 6.7696.2017/8.9 (field work
and data analysis of Radchenko TA, Valdayskikh VV) and (data analysis of Morozova
LM), as well as by RFBR research project No. 18-04-00714 (data analysis of Nekrasova
OA).
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