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Abstract
Analysis of patchclamp recordings is often a challenging issue. We give practical guidance how such recordings can be ana-
lyzed using the model-free multiscale idealization methodology JSMURF, JULES, and HILDE. We provide an operational 
manual how to use the accompanying software available as an R-package and as a graphical user interface. This includes 
selection of the right approach and tuning of parameters. We also discuss advantages and disadvantages of model-free 
approaches in comparison to hidden Markov model approaches and explain how they complement each other.

Keywords  Deconvolution · Flickering · Fully automatic · Hidden Markov models · Homogeneous and heterogeneous 
noise · Ion channel recordings · Low-pass filtering · Open-channel noise · PorB · Subconductance states

Introduction

The patchclamp technique has been and still is a fundamen-
tal tool for the quantitative analysis of electrophysiologi-
cal processes of transmembrane proteins, in particular of 
ion channels (Neher and Sakmann 1976; Sakmann and 
Neher 1995). A detailed understanding of the dynamics 
of transmembrane proteins and their manifold interactions 
with their surrounding is of high importance in medicine 
and biochemistry, for instance for the development of new 
drugs (Kass 2005; Overington et al. 2006). However, most 
electrophysiologists will agree that conducting patchclamp 
experiments, but also the analysis of their recordings is a 
challenging issue, and the latter is far from being a routine 
data analysis in general (Sivilotti and Colquhoun 2016). In 

this work, we provide practical guidance on how to analyze 
such recordings. We focus mainly on model-free multiscale 
idealizations (explained below), which we have developed 
over the last decade.

Patchclamp recordings The patchclamp technique 
allows one to measure the conductance of a channel (i.e., 
the recorded current divided by the applied voltage) over 
time. An example is given in Fig. 1. It shows a recording of 
the outer membrane porin PorB from Neisseria meningitidis, 
a pathogenic bacterium in the human nose and throat region 
(Virji 2009). PorB is a trimeric porin and the second most 
abundant protein in the outer membrane of Neisseria men-
ingitidis. The added antibiotic ampicillin blocks the ion flow 
for short periods of time which allows one to draw conclu-
sions about the transport of antibiotics into the cell, which is 
relevant for the understanding of antibiotic resistances. For 
further details, see (Bartsch et al. 2019, 2020). In addition, 
we will also use a PorB dataset without ampicillin (Fig. 6) 
and a Gramicidin A dataset (Fig. 4) throughout this work as 
illustrating examples.1

Idealization Important dynamics such as the number of 
conductance levels, their values, and how long each level 
persists can be examined provided the conductance record-
ings (data points) are properly idealized (Colquhoun 1987; 
Sakmann and Neher 1995), i.e., the conductance trace over 
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time (the underlying signal) is accurately reconstructed (esti-
mated, denoised).

An idealization can either be obtained model free2, i.e., 
without prior assumptions about the gating dynamics, or in a 

model-based way by assuming an underlying statistical (para-
metric) model with a few parameters for the gating dynamics. 
For the latter, most commonly hidden Markov models (HMMs) 
are used, see (Ball and Rice 1992) for an early reference, where 
parameters correspond to states, transition probabilities, and 
noise characteristics.

Filtering The noise before filtering is often assumed to 
be Gaussian white noise. However, low-pass filters are usu-
ally integrated in the hardware of the measurement device to 
stay in the transmission range of the amplifier. Such filtering 

Fig. 1   From seconds to microseconds: patchclamp recording (grey 
points) displayed at the level of seconds (top panel), of milliseconds 
(middle panel), and of microseconds (bottom panels). Data points 
result from a representative conductance recording of PorB wild type 

with 1 mM ampicillin by the patchclamp technique using black lipid 
membranes at 80 mV. Data points are explicitly displayed instead of a 
line plot, which provides an accurate representation at fine resolution 
levels

2  Strictly speaking the terminology ’model-free’ is misleading as 
also model-free approaches require an underlying model to be valid. 
However, we use this terminology mainly for historical reasons. The 
precise (non-parametric) models underlying our methodology are 
reviewed in  “Models”. We only assume that the underlying conduct-
ance is piecewise constant, but make no further assumptions about 
the gating dynamics.
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introduces colored noise and smooths the underlying conduct-
ance, see Fig. 12 in “Review of existing model-free idealization 
approaches”. Ignoring filtering typically results in the detection 
of false positives (additional wrong events). This is illustrated 
in Fig. 2, where we used SMUCE (Frick et al. 2014), a mul-
tiscale method that does not include filtering, but is otherwise 
similar in spirit to our model-free idealization approaches, to 
be explained later. Filtering especially affects short temporal 
scales (at and below the magnitude of the filter length, say) and 

is therefore particularly relevant to the analysis of short events, 
also called flickering.

Flickering and subgating Flickering typically has its own 
dynamics and can result from various molecular processes like 
conformational changes of the protein (Grosse et al. 2014) or 
by the passage of larger molecules blocking the ions’ pathway 
through the protein (Raj Singh et al. 2012). An example for the 
latter is the PorB analysis in Figs. 1 and 3. A second potential 
challenge in the analysis is subconductance states (Fox 1987), 

Fig. 2   Idealization (red) of the observations in Fig.  1 by SMUCE 
(Frick et  al. 2014) displayed on three different temporal scales. In 
the lower panels, we also show the convolution of the idealization 
with the low-pass filter (blue). SMUCE is a multiscale method simi-
lar to our model-free idealization approaches, but does not take into 

account filtering. Hence, local dependencies due to colored noise are 
misinterpreted as events. Moreover, abrupt conductance changes are 
split into multiple steps, since the convolution of the conductance 
with the low-pass filter is ignored. Consequently, SMUCE overesti-
mates massively the number of conductance changes
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meaning that two or more conductance levels are close to each 
other, as illustrated in Figs. 4 and 5.

Model-free idealizations In this paper, we discuss mainly 
our model-free idealization methods JSMURF (Hotz et al. 
2013), JULES (Pein et al. 2018), and HILDE (Pein et al. 
2021), which are primarily designed as versatile tools to ana-
lyze patchclamp recordings in a multiscale fashion, for instance 
to deal well with subconductance states and flickering. Due to 
their multiscale character, they act on various temporal scales 
simultaneously and hence are able to idealize events of differ-
ent lengths well in a single step. Moreover, all parameters, i.e., 
locations of conductance changes and conductance levels, are 

obtained by (local) deconvolution, and hence, they take into 
account low-pass filtering explicitly. Furthermore, all three 
approaches control the overestimation of the number of con-
ductance changes. More precisely, the probability to detect at 
least one false positive is bounded approximately by the error 
level � , a tuning parameter. A more-detailed review of these and 
further model-free idealization approaches is given in  “Review 
of existing model-free idealization approaches”.

All three methods can be used when homogeneous noise is 
assumed (i.e., the error variability does not change over time, 
see “Models” for details), but JSMURF and HILDE in addition 
allow for heterogeneous noise. The latter means that different 

Fig. 3   Idealization (red) of the observations in Fig. 1 by HILDE (Pein et al. 2021) displayed on three different temporal scales. Lower panels: 
convolution of the idealization with the low-pass filter (blue). Events are well idealized down to microseconds
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parts of the data, for instance different states, may have different 
noise levels, as for instance caused by open-channel noise, i.e., 
larger noise on segments with a larger conductance. Moreover, 
JSMURF requires that events are slightly longer, while JULES 
or HILDE are able to deal with flickering (short events) at the 
possible expense of longer computational time. Table 1 sum-
marizes for which datasets which one of them is most suitable 
and  “Choosing the right method” explains those choices in 
full detail.

Software JSMURF , JULES , and HILDE are implemented 
as R functions in the package clampSeg (Pein and Aspelmeier 
2020). In “Using our software”, use of those methods is dem-
onstrated. They can be combined with the packages readABF 
(Syekirin and Pein 2020) to load recordings, and lowpassFilter 
(Pein et al. 2020) for certain data processing steps around filter-
ing such as computing the convolution of an idealization with 
the kernel of a low-pass filter.

Alternatively, a graphical user interface, available at https​://
githu​b.com/Flori​anPei​n/clamp​SegGU​I together with detailed 

Fig. 4   From seconds to milliseconds: patchclamp recording (grey 
points) displayed at the level of seconds (top panel and middle panel) 
and of milliseconds (bottom panels). Data points result from a repre-
sentative conductance recording of an acylated gramicidin A deriva-

tive by the patch clamp technique using solvent-free bilayers at 100 
mV. Small conductance changes, which most likely result from sub-
conductance states, occur frequently

https://github.com/FlorianPein/clampSegGUI
https://github.com/FlorianPein/clampSegGUI
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manuals on how to install it and on how to use it, allows access 
without requiring any R or other programming knowledge. The 
idealizations can be visualized in the interface, but also saved as 
csv files and hence postprocessed by any other program.

Interplay between model-free idealizations and hid-
den Markov models There is wide agreement that, except 
in few counterexamples (Fuliński et al. 1998; Mercik and 
Weron 2001; Goychuk et al. 2005; Shelley et al. 2010), the 

Fig. 5   Idealization (red) of the observations in Fig. 4 by JSMURF (Hotz et al. 2013) displayed on three different temporal scales. It idealizes the 
observations well and finds in particular a larger number of gating events with a small conductance change (subconductance states)

Table 1   Selection of the right 
model-free idealization method

For more details, see “Choosing the right method”

Homogeneous noise Heterogeneous noise

No relevant short 
events exist

JSMURF (homogeneous noise) JSMURF (heterogeneous noise)

Relevant short 
events exist

JULES or HILDE (homogeneous noise) HILDE (heterogeneous noise)
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gating dynamics of ion and many other channels are usually 
Markovian. Hence, hidden Markov model (HMM)-based 
approaches are widely used to analyze patchclamp record-
ings. However, assuming an HMM is not only saying that 
the hidden states follow a Markov model, it also fixes a data 
generating process conditioned on the hidden states. From 
our own experience, we stress that this second step is usu-
ally the critical part of the assumption of an HMM. Stand-
ard (homogeneous) HMMs, where observations conditioned 
on the hidden Markov states are modeled as independent 
Gaussian observations with state-dependent expectations 
and variances, are often violated and commonly lead to inva-
lid reconstructions. This is because of artifacts, which are, 
for instance, caused by the electronics, external vibrations, 
or small holes in the membrane, or because of additional 
high-frequency f 2 (violet) and long-tailed 1/f (pink) noise 
components, see for instance (Neher and Sakmann 1976; 
Venkataramanan et al. 1998; Levis and Rae 1993). Hence, 
HMM-based analyses often rely on intensive preprocessing 
or on more complicated models: for instance, (Venkatara-
manan et al. 1998) assumed an HMM that allows additional 
colored noise, and (Diehn et al. 2019) provided modifica-
tions to incorporate inhomogeneous errors. Moreover, 
low-pass filtering often requires further, computationally 
demanding extensions, see for instance (Venkataramanan 
et al. 1998; de Gunst et al. 2001; Diehn 2017; Almanjahie 
et al. 2019).

In contrast, model-free idealizations do not assume a spe-
cific (parametric) model for the gating dynamics and imme-
diately provide an idealization without such an assumption. 
Moreover, they usually act rather locally on the data, i.e., 
at every location, the idealization is not influenced signifi-
cantly by observations far away. Thus, they are typically 
more robust to artifacts and hence require often no or less 
pre-processing. Contrarily, HMM-based approaches have 
(potentially) a finer time resolution and provide more con-
cise results. A more-detailed review of HMM-based analy-
ses, their advantages and disadvantages in comparison to 
model-free approaches, and their interplay is given in “Hid-
den Markov Models”.

Model-free idealizations allow a flexible analysis of the 
number of conductance levels, and their values and which 
transitions are possible. To this end, one has to cluster the 
estimated conductance values, e.g., by fitting a Gaussian 
mixture distribution and assigning each value to the near-
est mean value. The outcome will then have only a small 
number of conductance levels. This can be used to select 
and verify a Markov model and to estimate its parameters, 
which often requires taking into account missing of short 
events. Further details and tools which can be used for those 
steps are described in “Analysis of patchclamp recordings”. 
Finally, model-free idealizations can be used to assist HMM-
based approaches in any of their analysis steps, e.g., they can 

be used to remove artifacts, to select and verify a specific 
Markov model, to provide starting values for iterative pro-
cedures such as the Baum–Welch algorithm, and to verify 
estimated parameters and the provided idealization.

All in all, model-free and HMM approaches have dif-
ferent strengths and weaknesses and hence should less be 
seen as competing approaches, but rather as tools that benefit 
from and complement each other. In fact, as an indication of 
a proper data analysis, it can be checked whether the results 
of model-free and HMM-based analyses are in compliance.

Organization of this work In Model-free idealizations, 
we give detailed instructions how to use our methods to 
obtain model-free idealizations. In “Models”, we provide 
details of the statistical models underlying the presented 
model-free idealization methodology. In Review of tools to 
analyze patchclamp recordings, we review in more detail 
existing approaches for the analysis of patchclamp record-
ings. We start in “Hidden Markov Models” with a review 
of HMM-based methodology, their advantages and disad-
vantages in comparison to model-free approaches, and the 
interplay of model-free idealization with them. Afterwards, 
in “Review of existing model-free idealization approaches”, 
we review some existing model-free idealization methods, 
with a particular focus on our approaches JSMURF , JULES , 
and HILDE . This is complemented by a brief summary 
of simulation results. Finally, in “Analysis of patchclamp 
recordings”, we discuss how (model-free) idealizations can 
be used to analyze patchclamp recordings. The paper con-
cludes with a discussion in Discussion, in which we high-
light open research questions.

Model‑free idealizations

This section provides a comprehensive guide on how to use 
our methods JSMURF , JULES , and HILDE , which have dif-
ferent strengths and weaknesses depending on certain struc-
tural features of the measured data. We explain in detail 
how to use our software (Using our software) and provide 
guidance for which method is preferable in which situations 
(“Choosing the right method”).
Using our software

For this section, we use R code3. A tutorial similar to the one 
in this section is available in the supplement as a zip file. It 
contains R code, resulting figures, and the obtained fits. Hence, 
users are able to test whether they obtain the same results. We 
start by describing how recordings can be loaded, how the low-
pass filter can be specified, and how our methods can be called. 
To this end, we require the R packages readABF (Syekirin and 

3  https​://www.r-proje​ct.org/.

https://www.r-project.org/
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Pein 2020), lowpassFilter (Pein et al. 2020), and clampSeg 
(Pein and Aspelmeier 2020). All three packages are available on 
CRAN4. For users who are not familiar with R, we also provide 
a graphical user interface5, which contains detailed manuals on 
how to install it and on how to use it. The current guide is also 
available in the supplement.

Loading the data Patchclamp recordings are typically 
stored as abf files. The readABF package allows one to read 
such files in R. After the data set is loaded by calling readABF, 
we use as.data.frame to transform the data into a data.frame 
with two columns: time and conductance (the current divided 
by the voltage channel). We stress that this call is data set spe-
cific, since common measuring devices have a wide range of 
different formats and offer some freedom which channels are 
recorded. Additionally, users might want to work with the cur-
rent instead of the conductance. Those options are described in 
the help file of as.data.frame.

library(readABF)

# path and filename have to be replaced

data <- readABF("path/filename")

# convert it to a data.frame with two columns:

# time and conductance

# (current divided by voltage)

# note that this call is data set specific

# details are provided in the help file

data <- as.data.frame(data, type = "one",

channels = c(1, 2),

unit = "nS")

time <- data$`Time [s]`

data <- data$`Data [nS]`

Our idealization methods but also any other approach should 
not be used as a black box. We strongly recommend to start 
with an empirical and visual data analysis to gain understand-
ing of the datasets and major features that can be used to direct 
further analysis. In alignment with the underlying multiscale 
philosophy of our methods, we recommend always to plot on 
various temporal scales. See Fig. 1 for an example of such plots 
on three different scales ranging from a minute to milliseconds. 
Moreover, histograms of the raw data (point amplitude histo-
grams), see for instance Fig. 13a and for code the paragraph 
’Interpreting, plotting and verification of the output’ below, are 
helpful visual cues. As detailed below, this can already help to 
decide whether the noise is homogeneous or heterogeneous and 

whether short events occur in the dataset. Moreover, we recom-
mend to identify potential artifacts that might disturb analysis 
and interpretation. However, we have found that model-free 
idealizations are usually quite robust to artifacts. Hence, our 
default suggestion is first to apply the idealization methods on 
the unmodified dataset and to decide later whether artifacts 
require a more careful analysis.

Low-pass filter Our methodology requires to specify cor-
rectly the low-pass filter in the measurement device. The type, 
often a Bessel filter with an even number of poles, should be 
specified in the hardware documentation. The sampling rate 
and cut-off frequency can typically be varied by the user. In 
our example (Fig. 1), the recordings were sampled at 50,000 
Hz and low-pass filtered by a 4-pole Bessel filter with normal-
ized cut-off frequency of 0.1 (5,000 Hz cut-off frequency in 
time domain).

For simplification and since the error is negligible, we trun-
cate the kernel of the low-pass filter after m data points, for 
sufficiently large m. As a working rule, we choose m, such that 
the autocorrelation function of the untruncated analogue low-
pass filter is below 10−3 afterwards, which leads for instance to 
m = 11 in the example above.

This is implemented in the function lowpassFilter in the 
package lowpassFilter (Pein et al. 2020) (currently only Bes-
sel filters are supported). The following code creates the filter 
object.

library(lowpassFilter)

filter <-

lowpassFilter(type = "bessel",

param = list(pole = 4L,

cutoff = 0.1),

sr = 5e4)

We strongly recommend to verify that the filter is correctly 
specified by zooming into single events and checking whether 
the obtained idealization convolved with the low-pass filter 
fits the observations well. This is detailed in paragraph ’Inter-
preting, verification and storing of the output’ below, where 
we discuss in more generality how to assess the quality of an 
obtained idealization. Additionally, one can compare the auto-
correlation resulting from the filter, filter$acf, with the esti-
mated auto-correlation of the recordings. To this end, one can 
either apply standard time-series estimators, as, for instance, 
offered by the acf function in R, to long segments without con-
ductance changes or use the robust difference-based estimators 
of (Tecuapetla-Gómez and Munk 2017) on the raw data, avail-
able in the R-package dbacf6.

6  http://www.stoch​astik​.math.uni-goett​ingen​.de/dbacf​.

4  https​://cran.r-proje​ct.org/.
5  https​://githu​b.com/Flori​anPei​n/clamp​SegGU​I.

http://www.stochastik.math.uni-goettingen.de/dbacf
https://cran.r-project.org/
https://github.com/FlorianPein/clampSegGUI


195European Biophysics Journal (2021) 50:187–209	

1 3

Obtaining an idealization JSMURF , JULES , and 
HILDE are available in the package clampSeg. All three 
functions can be applied when homogeneous noise is 
assumed, but only JSMURF and HILDE allow for heteroge-
neous noise. The following code illustrates how to call those 
functions depending on whether the noise is homogeneous 
or heterogeneous. See “Choosing the right method” for guid-
ance which method and which noise option should be chosen 
to idealize a given measurement.

library(clampSeg)

# JSMURF assuming homogeneous noise

fit1 <- jsmurf(data, filter = filter,

family = "jsmurfPS",

alpha = 0.05, r = 1e4)

# JSMURF allowing heterogeneous noise

fit2 <- jsmurf(data, filter = filter,

family = "hjsmurf",

alpha = 0.05, r = 1e4)

# JULES assuming homogeneous noise

fit3 <- jules(data, filter = filter,

alpha = 0.05, r = 1e4)

# HILDE assuming homogeneous noise

fit4 <- hilde(data, filter = filter,

family = "jsmurfPS",

method = "LR",

alpha1 = 0.01, alpha2 = 0.04,

r = 1e3, lengths = 1:20)

# HILDE allowing heterogeneous noise

fit5 <- hilde(data, filter = filter,

family = "hjsmurf",

method = "2Param",

alpha1 = 0.01, alpha2 = 0.04,

r = 1e3, lengths = 1:65)

The followings paragraphs discuss run time, required 
Monte Carlo simulations, the output of the approaches, and 
how to proceed with it. Furthermore, we explain a poten-
tially occurring warning and how to choose tuning param-
eters, e.g., r and alpha.

Run time and Monte Carlo simulations The run time 
of all approaches depends on the size of the dataset, but 
also on the number of detected events. The primary reason 
are Monte Carlo simulations which are required to obtain 

critical values that balance the probabilities of detection of 
true events and of false positives. Monte–Carlo simulations 
depend on the number of data points and on the low-pass 
filter. Hence, a new Monte Carlo simulation is required 
when new values for those parameters occur or when more 
repetitions are requested. Depending on the number of data 
points and the total number of repetitions r, Monte Carlo 
simulations may take long, even up to several hours. Hence, 
we store and load their results, such that they have to be 
performed only once and the run time will be much smaller 
when an idealization with the same parameter is computed. 
They are fully automatically stored in the workspace and on 
the disk of the local computing machine; for more details, 
see the documentation of the function getCritVal in the pack-
age clampSeg (Pein and Aspelmeier 2020). To keep track of 
the progress of a Monte Carlo simulation, one can set the 
argument messages to a positive integer value m to print a 
message every m repetitions.

While a larger number of repetitions increases the run time 
of the simulations, it also reduces statistical errors in the com-
putation of the critical values. For a final analysis, we recom-
mend to use the default values, 10,000 for JSMURF and JULES 
and 1,000 for HILDE . For a quick analysis, for instance to 
decide whether further measurements or analyses are required, 
few hundreds up to 1,000 repetitions usually suffice.

Additionally, also the main computation of the idealization 
can take some time, usually between few seconds and few min-
utes, depending on the used idealization method, on the size 
of the dataset and on the number of detected events. Usually, 
the run time increases with the complexity of the idealization 
approach, JSMURF is the fastest, and HILDE the slowest. A 
situation which is computationally particularly demanding is 
displayed in Fig. 9 (see below). JSMURF detects almost no 
events. Due to internals in the dynamic programming algo-
rithm, this causes a considerably long-run time, in this example 
of roughly half an hour. We stress that HILDE uses JSMURF 
as an initial step and hence also HILDE is slow in such a situa-
tion, though it detects many events as it is able to resolve events 
on smaller temporal scales at and below the magnitude of the 
filter length.

Interpreting, plotting, and verification of the output All 
shown idealization methods return an object of the classes step-
block and localDeconvolution. We omit the exact structure of it 
(and refer to the man files of the called functions), but demon-
strate important ways how to proceed with such an object. First 
of all, the idealization can be plotted using standard functions 
in R. Furthermore, the convolution of the idealization with the 
kernel of the low-pass filter can be computed using the func-
tion getConvolution in the package lowpassFilter. The following 
code demonstrates how to do so. It provides the lower left panel 
in Fig. 3.
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fit <- fit4

par(mar = c(4.5, 4.5, 0.5, 0.5))

plot(time, data, pch = 16,

col = "grey30", ylim = c(2.5, 4.2),

xlim = c(0.0460798, 0.0463768),

ylab = "Conductance in nS",

xlab = "Time in s",

cex.lab = 1.8, cex.axis = 1.8)

ind <- seq(0.0460, 0.0464, 1e-6)

convolvedSignal <-

lowpassFilter::getConvolution(ind, fit,

filter)

lines(ind, convolvedSignal,

col = "blue", lwd = 3)

lines(fit, col = "#FF0000", lwd = 3)

In Fig. 3, we found that the convolution fits the recorded 
observations well, which is a confirmation for our idealization, 
but also for a correct specification of the model, in particular of 
the underlying low-pass filter. We always recommend such a 
graphical inspection to evaluate the quality of the idealization. If 
the idealization is not sufficiently good, one might modify tuning 
parameters (see the paragraph below), try a different idealization 
method (see “Choosing the right method”), remove artifacts, or 
seek to improve the quality of the recordings.

Obtaining a model-free idealization is usually only one step 
in a data analysis. In “Analysis of patchclamp recordings”, we 
discuss typical follow-up steps. The idealized conductance 
values and the start and end times of the segments are given 
in fit$values, fit$leftEnd, and fit$rightEnd, respectively. For 
instance, the following code creates histograms of the raw data, 
often called point amplitude histogram, of the idealized conduct-
ance levels, often called event histogram, and of the amplitudes, 
i.e., of the differences between the idealized conductance levels. 
Examples are given in Fig. 13. We use the half sample mode 
(Robertson and Cryer 1974), implemented in the R-package 
modeest, to determine the underlying conductance levels, see 
the paragraph ’Analysis of the conductance levels’ in “Analysis 
of patchclamp recordings” for further discussion.

# point amplitude histogram

# (histogram of the raw data)

hist(data[data >= 2.5 & data <= 4.5],

breaks = seq(2.5, 4.5, 0.05),

main = "", xlab = "Conductance in nS")

abline(v = modeest::mlv(data[data >= 2.5 &

data <= 4.5],

method = "hsm"),

col = "red", lwd = 2)

# event histogram

# (histogram of idealized conductance levels)

indices <- fit$value >= 2.5 & fit$value <= 4.5

hist(fit$value[indices],

breaks = seq(2.5, 4.5, 0.05),

main = "", xlab = "Codunctance in nS")

abline(v = modeest::mlv(fit$value[indices],

method = "hsm"),

col = "red", lwd = 2)

indices <- fit$value >= 2.5 & fit$value <= 3.5

abline(v = modeest::mlv(fit$value[indices],

method = "hsm"),

col = "red", lwd = 2)

# amplitude histogram

# (difference between idealized

# conductance levels)

amp <- diff(fit$value[

fit$right - fit$left <= 20 / filter$sr &

fit$right - fit$left >= 4 / filter$sr])

hist(amp[amp < 2 & amp > 0],

breaks = seq(0, 2, 0.05),

main = "", xlab = "Amplitude in nS")

abline(v = modeest::mlv(amp[amp < 2 &

amp > 0.7],

method = "hsm"),

col = "red", lwd = 2)
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Warning Users may experience a warning saying “at 
least one segment could not be deconvolved since two suc-
cessive short segments occurred”. This is caused by the fact 
that the deconvolution approach incorporated in our methods 
can only deal with single changes or with isolated peaks 
(two changes in quick succession but separated by few more 
observations from other events). Obtaining a deconvolution 
for three or more changes in quick succession is complicated 
and time-consuming, and hence, we decided to ignore such 
events when applying a deconvolution, but to mark them in 
attr(fit, "noDeconvolution"). For a further analysis, we usu-
ally recommend to ignore such events as they might even 
indicate artifacts. This can be done by setting all marked 
values to NA.

indices <- attr(fit, "noDeconvolution")

fit$value[indices] <- NA

fit$rightEnd[indices - 1] <- NA

fit$rightEnd[indices] <- NA

fit$leftEnd[indices] <- NA

if (length(indices) > 0) {

if (indices[length(indices)] ==

length(fit$leftEnd)) {

fit$leftEnd[

indices[-length(indices)] + 1] <- NA

} else {

fit$leftEnd[indices + 1] <- NA

}

}

If too many segments are marked and they appear to be 
important for the given dataset, we cannot recommend to use 
our approaches, in this situation of extreme/high flickering 
a better alternative might be approaches based on conduct-
ance distribution fitting; for further details, see our review 
in “Hidden Markov Models”.

Storing of the output To allow proceeding in a different 
program, one can store the idealization for instance in a csv 
file as demonstrated by the following code. Note that we also 
remove the first and last segment, since their true start and 
end, respectively, cannot be identified by the data.

fit <- data.frame(left = fit$leftEnd[

-c(1, length(fit$leftEnd))],

right = fit$rightEnd[

-c(1, length(fit$rightEnd))],

value = fit$value[

-c(1, length(fit$value))])

write.csv(fit, file = "fit.csv")

Tuning parameters All three methods have multiple 
parameters which can be tuned to adapt to particular needs. 
Nonetheless, it is advisable to leave them unchanged unless 
specific reasons exists. All parameters are described in 
the man files of the called functions and in the referenced 
papers. Hence, in the following, we will only give a brief 
overview about the most important ones. Further details are 
also provided in the review of our idealization approaches 
in “Review of existing model-free idealization approaches”.

The choice of the number of repetitions of the Monte 
Carlo simulations, the argument r, was already discussed 
above in paragraph ’Run time and Monte Carlo simulations’. 
The parameters alpha, alpha1, and alpha2 are error levels 
�, �1, �2 that bound approximately the probability of detect-
ing one or more false positives (under the idealized scenario 
that the observations follow exactly the assumed model). As 
a default choice, we suggest � = 0.05 . Larger values increase 
the chance to detect true events, but also to detect more false 
positives. One may use larger � values to ’screen’ if impor-
tant events are difficult to detect.

For HILDE , the error level � ∶= �1 + �2 is split between 
the multiscale criterion of JSMURF (error level �1 ) and the 
local tests (error level �2 ). As default values, we suggest 
�1 = 0.01 and �2 = 0.04 , since the focus of HILDE is typi-
cally on detecting short events primarily, while events on 
larger scales are often easier to detect. More weight can be 
put on �1 if either short events are of less interest or if long 
events are difficult to detect, as well, e.g., since they have a 
smaller jump size than the short events, for instance because 
of subconductance states. HILDE requires to specify the 
largest scale lmax , this value should be chosen, such that all 
events on larger scales are reliably detected by JSMURF . 
If required, this can be tested by applying JSMURF or by 
Monte Carlo simulations. In our R code, see the example 
code in the paragraph ’Obtaining an idealization’ above, one 
can specify the largest scale by setting lengths = 1 ∶ lmax . 
Note that the R code offers the additional flexibility to omit 
some scales below lmax . This can be used to save run time 
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or to increase slightly the detection power on the remaining 
scales.

Choosing the right method

A guide which method to use is given in Table 1. The two 
main criteria are whether the noise is homogeneous or heter-
ogeneous and whether short events are present and relevant. 
Recall that JSMURF , JULES , and HILDE are all suitable 
when one assumes homogeneous noise, but only JULES and 

HILDE allow for heterogeneous noise. Moreover, JULES 
and HILDE are designed to deal with short events, while 
JSMURF requires that events are slightly longer. Because of 
run time and precision, we generally recommend to use the 
simplest approach that is suitable for a dataset. Unless the 
dataset demands otherwise, we recommend JSMURF over 
JULES over HILDE and a homogeneous over a heterogene-
ous noise setting.

Visual inspection Homogeneous noise means that 
the noise distribution is the same at all times and for all 

Fig. 6   From seconds to microseconds: patchclamp recording (grey 
points) displayed at the level of seconds (top panel), of milliseconds 
(middle panel), and of microseconds (bottom panels). Data points 
result from a representative conductance recording of PorB by the 

patch clamp technique using solvent-free bilayers at 20 mV. The 
observations in the open state have visibly a larger noise level than 
the ones in closed state
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conductance levels; otherwise, the noise is called heteroge-
neous. Heterogeneous noise is often clearly visible by naked 
eye, as in Fig. 6 where the noise level is higher for the higher 
conductance level, whence one should use either JSMURF 
or HILDE with heterogeneous noise setting. In most cases, 
if heterogeneous noise is not clearly visible, approaches that 
assume homogeneous noise are suitable.

A short event is defined by two conductance changes in 
quick succession, e.g., a channel opening only very briefly 
before closing again. JSMURF should be used if it is not 
expected to miss relevant short events. Which events are 
too short depends not only on the absolute length, but also 
on the magnitude of the conductance change, noise levels, 
filtering, and tuning parameters. At least, events shorter 
than filter length will certainly be missed by JSMURF . Fig-
ure 1 shows such an example, whence one should use either 
JULES or HILDE.

Empirical comparison If visual inspection is not suf-
ficient, we suggest the following empirical procedure. The 
user should apply all potentially suitable methods to a small 
excerpt of the data and decide which leads to the best ideali-
zation. In general, if the idealizations are similar, the simpler 
approach should be preferred.

To illustrate the procedure for short events, consider 
Fig. 3 where we see that HILDE detects a large number of 
short events. In comparison, we see in Fig. 9 that JSMURF 
is not able to detect those events and hence is unsuitable for 
this dataset. In this case, HILDE appears to be more suitable. 
Contrarily, Fig. 5 demonstrates that JSMURF is very suita-
ble to idealize the Gramicidin dataset, where no short events 
occur, but events with small conductance changes, while 
JULES struggles to detect all of them, as seen in Fig. 10, 
since it also searches for short events and hence has slightly 
less power on larger temporal scales.

To illustrate the procedure for heterogeneous noise, we 
idealized the observations in Fig. 6, which have visibly het-
erogeneous noise, with HILDE , which is designed to deal 
with heterogeneous noise. Results are displayed in Fig. 7. 
For comparison, an idealization by JULES , assuming homo-
geneous noise, is displayed in Fig. 8. We see that JULES 
detects many additional events in the open state, which has 
higher noise level, and while it is able to detect the short 
events, the fit is visibly worse than the fit by HILDE.

To decide whether the noise is heterogeneous, we recom-
mend to more advanced users also the following systematic 
approach: if longer segments without gating events are pre-
sent, one can use them to estimate the noise level. Alterna-
tively, one can idealize the data with JSMURF or HILDE 
with heterogeneous noise setting and use the idealization to 
determine noise levels as detailed in (Pein et al. 2021, Sec-
tion VI-C).

Finally, if homogeneous noise is assumed and short 
events are relevant, we usually recommend to use JULES 

instead of HILDE as it is simpler and faster. Only if events 
are very short, such as in Fig. 3, HILDE should be used as it 
detects such events more likely.

Models

In this section, we explain the statistical models underlying 
our methodology. For more details, see (Hotz et al. 2013; 
Pein et al. 2018, 2021).

We assume that the recorded data Y1,… , Yn (the meas-
ured conductance at time points ti = i∕f

s
, i = 1,… , n , 

equidistantly sampled at rate f
s
 ) result from a conductance 

f perturbed by a centered Gaussian white noise process � . 
The noise is scaled by the noise level � . Furthermore, con-
ductance and noise are convolved with an analogue low-pass 
filter, with (truncated) kernel Fm . Hence, after digitization at 
sampling rate f

s
= n∕�end , we obtain:

with ∗ the convolution operator. Here, n denotes the total 
number of data points (typically several hundred thousands 
up to few millions). Hence, the resulting errors �1,… , �n are 
Gaussian and centered, but correlated (colored noise).

The conductance f is assumed to be piecewise constant 
with potentially many different (unknown) segments of 
(unknown) length and size. The noise can either be homo-
geneous, i.e., the noise level � does not vary over time, or 
heterogeneous. In the latter case, we assume the noise level � 
to be an unknown piecewise constant function with potential 
jumps at the locations where the conductance changes, since 
changes of the noise level also depend on gating events7. 
More precisely, we model the conductance f and the noise 
level � by:

where t denotes physical time. The (unknown) conductance 
levels are denoted as c0,… , cK , the (unknown) noise levels 

(1)

Yi =
(

Fm ∗ (f + ��)
)(

i∕f
s

)

= (Fm ∗ f )(i∕f
s
) + �i,

i = 1,… , n,

(2)

f (t) =

K
∑

j=0

cj 𝟙[�j,�j+1)(t) and � ≡ �0 ∈ ℝ,

if homogeneous noise is assumed,

f (t) =

K
∑

j=0

cj 𝟙[�j,�j+1)(t) and �(t) =

K
∑

k=0

sk 𝟙[�k ,�k+1)(t),

if heterogeneous noise is assumed,

7  Strictly speaking, this models only heteroscedasticity, one special 
form of heterogeneous noise that is, for instance, caused by open-
channel noise. However, we expect our methods also to be robust to 
other forms of heterogeneous noise, confer the simulation results in 
Pein et al. (2021).
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as s0,… , sK > 0 , the (unknown) number of gating event 
as K, and the (unknown) locations of the gating events as 
−∞ =∶ 𝜏0 < 𝜏1 < ⋯ < 𝜏K < 𝜏K+1 ∶= 𝜏end . We stress that 
the class of signals in (2) is very flexible as potentially any 
arbitrary number of gating events at arbitrary conductance 
levels and arbitrary noise levels can be imposed, see Fig. 3 
for an example.

Review of tools to analyze patchclamp 
recordings

In this section, we give a review about methods for the anal-
ysis of patchclamp recordings. We start in Hidden Markov 
Models with a HMM-based analysis and discuss also their 
interplay with model-free idealizations as well as their 
advantages and disadvantages in comparison to model-free 
approaches. The analysis by and the interplay between the 
different approaches is also illustrated in Fig. 11. Second, we 
review existing model-free idealization methods in Review 

Fig. 7   Idealization (red) of the observations in Fig. 6 by HILDE (Pein et al. 2021) displayed on three different temporal scales. Lower panels: 
convolution of the idealization with the low-pass filter (blue). Events are well idealized down to very short temporal resolutions
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of existing model-free idealization approaches. Finally, we 
discuss in Analysis of patchclamp recordings how idealiza-
tions can be used to analyze patchclamp recordings. Given 
the large amount of different methodology, we are by far 
not able to give a full review. The following only intends to 
summarize major ideas to help the reader to put JSMURF , 
JULES , and HILDE in the right context.

Hidden Markov models

HMM-based analysis We limit our discussion mostly to 
homogeneous HMMs, which means that the parameters, 
which describe state transition properties and noise distri-
bution, are constant in time. Inhomogeneous HMMs, see, 
for instance, (Diehn et al. 2019), are rarely used, as they are 
computationally more challenging and theoretical guaran-
tees for parameter estimates are much harder to prove. As 

Fig. 8   Idealization (red) of the observations in Fig. 6 by JULES (Pein 
et al. 2018) displayed on three different temporal scales. Lower pan-
els: convolution of the idealization with the low-pass filter (blue). 
JULES detects short events, but finds many small events, which are 
most likely false positives, at areas of high conductance and high var-

iance (see, for instance, the idealization of the observations around 
0.36 nS in the middle panel). These detections prevent JULES from 
performing a deconvolution at those positions (see, for instance, the 
lower left panel) and make the idealization unreliable
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already discussed in the introduction, the assumption of a 
homogeneous Markov chain underlying the gating dynamics 
is almost always appropriate, but the assumption of a homo-
geneous error distribution to obtain a homogeneous HMM is 
more critical, since, e.g., because of artifacts, often intensive 
data cleaning or more complicated models are required. We 
stress that the quality of an HMM-based analysis crucially 
depends on the stringent modeling assumption given by a 
HMM.

Obtaining an idealization by an HMM proceeds in several 
steps (illustrated in the right-hand side of Fig. 11): First, a 
specific hidden Markov model has to be selected and ideally 

verified. This includes to find a Markov model for the gating 
dynamics, e.g., to fix the number of states and which transi-
tions are possible. Note, that often multiple Markov states 
are required for one conductance level, e.g., to accommodate 
different noise levels or dwell times. Though data-driven 
model-selection tools are available, see, e.g., (Gassiat and 
Keribin 2000; Gassiat and Boucheron 2003; Celeux and 
Durand 2008; Chambaz et al. 2009; Lehéricy 2019) and the 
references therein, this is often done manually by an empiri-
cal data analysis or by repeating the steps below until results 
are satisfying, which can be time-consuming and introduces 
subjectivity.

Fig. 9   Idealization (red) of the observations in Fig. 6 by JSMURF (Hotz et al. 2013) displayed on three different temporal scales. Almost no 
events are detected, since all events are around or below the magnitude of the filter length



203European Biophysics Journal (2021) 50:187–209	

1 3

As soon as a specific HMM is selected, parameters of the 
Markov model can either be estimated by the Baum–Welch 
algorithm, see (Venkataramanan et  al. 2000; Qin et  al. 
2000), by Bayesian approaches, in particular MCMC sam-
pling, see (de Gunst et al. 2001; Siekmann et al. 2011), or by 
approaches based on the conductance (current) distribution, 
see (Yellen 1984; Heinemann and Sigworth 1991; Schroeder 
2015) and the references therein.

Finally, an idealization can be obtained by the Viterbi 
algorithm (Viterbi 1967) or by Bayesian methods, in par-
ticular particle filtering, see (Fearnhead and Künsch 2018) 

and the references therein. Recently, a deep neural network 
approach has been proposed (Celik et al. 2020), which skips 
the parameter estimation step and directly obtains an ide-
alization. This approach can be seen as a hybrid method 
in between parametric and model-free approaches. It does 
not require a specific HMM to obtain an idealization, but 
training in advance is required, which was done by assum-
ing classes of hidden Markov models with hyperparameters.

Once an idealization is obtained, it can be used in reverse 
to estimate the parameters of the Markov model. We post-
pone details to Analysis of patchclamp recordings, since 

Fig. 10   Idealization (red) of the observations in Fig.  4 by JULES 
(Pein et  al. 2018) displayed on three different temporal scales. It 
misses many of the small conductance changes, since the fact that it 

also looks for very short events (which are not present in this data-
set) slightly decreases detection power for long events compared to 
JSMURF
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one proceeds as for model-free idealization. Using a lay-
ered HMM on simulated filtered signals (Pein et al. 2021, 
Sect. IV–D) as well as in real data applications (Pein et al. 
2021, Sect. V) (Bartsch et al. 2019), we observed that the 
thus estimated parameters were significantly better than the 
parameters obtained directly by a Baum–Welch algorithm, 
most likely because of the applied missed event correction.

Interplay As we will demonstrate in Analysis of patch-
clamp recordings, model-free idealizations allow a stan-
dalone analysis of patchclamp recordings. Moreover, 
they can assist an HMM-based analysis in various forms 
(illustrated in Fig. 11): model-free idealization can help to 
identify and remove artifacts, we used for instance JULES 
in (Bartsch et al. 2019) to assists an HMM-based analysis 
in that way. They can be used to determine the number of 
conductance levels (paragraph ’Analysis of the conduct-
ance levels’ in Analysis of patchclamp recordings) and 
help select and verify a specific Markov model (paragraph 
’Selection and verification of a Markov model’ in Analysis 
of patchclamp recordings). Furthermore, most HMM-based 
parameter estimation approaches are iterative procedures 
which require starting values. Those are particularly cru-
cial when the procedure converges to a local optimum only. 
Such starting values can be provided by previously obtained 
values using model-free idealizations. Finally, model-free 
idealizations and the resulting parameter estimates using a 
missed event correction can be used to verify HMM-based 
idealization and parameter estimates, and vice versa. This 
is particularly valuable as they have different strengths and 
weaknesses as outlined in the following paragraph.

We also note that the local deconvolution approach 
used in our model-free idealization methods, see (Pein 

et al. 2018), can be used to improve HMM-based idealiza-
tions, obtained, for instance, by a Viterbi algorithm, as our 
approach not only takes into account explicitly the filtering, 
but is also time-continuous. It only relies on a prior fit that 
fixes the number of conductance changes and their rough 
locations. It can be called by the function deconvolveLocally 
in the package clampSeg.

HMM versus model-free idealization: compared and 
contrasted In general, HMM-based approaches achieve 
a higher temporal resolution of gating dynamics because 
of their stronger assumptions. Hence, parameter estimates 
might be more accurate as they rely on more detected events. 
Moreover, HMMs allow for immediate parameter estimation 
and interpretation, which is often the main goal of an analy-
sis. And since the HMM state space is fixed in advance, the 
idealization immediately assigns every time point to one of 
the states. In contrast, model-free idealizations often have 
to be postprocessed, (e.g., by clustering or thresholding) 
to identify discrete states, because conductance levels are 
determined freely.

On the other hand, there are several disadvantages, some 
of which are closely entangled with the advantages. As dis-
cussed above, the need for often extensive preprocessing 
adds subjectivity and also more potential sources of data 
analysis errors. In contrast, in such situations, model-free 
methods may right away provide a reasonable idealization 
as they can potentially handle inhomogeneity in a more flex-
ible way, in particular those which act locally on the dataset. 
The state space and a model for the noise must be fixed 
in advance, thereby strongly limiting the possible results. 
Model selection always has a subjective component and can 
lead to a flawed idealization, for example by inadvertently 

Fig. 11   Illustration of the 
interplay between HMM and 
model-free approaches
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modeling two states with similar but subtly different con-
ductance or noise levels as only one state, or by prescribing 
an unsuitable noise model which can lead to detection of 
spurious state changes. Within an HMM framework, one can 
only incompletely determine whether the data are compat-
ible with the underlying model assumptions. Hence, despite 
the above described advantages, at least in simulations 
and real data examples in Pein et al. (2021); Bartsch et al. 
(2019), we observed that parameter estimates based on an 

idealization (either obtained by model-free approaches or by 
the Viterbi algorithm) appear to be more accurate than direct 
estimates by the Baum–Welch algorithm. Gating dynamics 
are time-continuous processes, but for simplification, many 
HMM approaches underlie a time-discrete Markov chain 
as an approximation. A time-discrete approximation is also 
implied by most model-free approaches as they allow gating 
events only at the sampling points. An exception is the local 
deconvolution approach used in Pein et al. (2018, 2021).

Fig. 12   Signals (black line) containing a single gating event, a short 
peak, and a longer peak and their convolutions (blue line) with a four-
pole low-pass Bessel filter with normalized cut-off frequency of 0.1 

and sampling rate 104 . Vertical red lines indicate the event time plus 
the filter length m∕f

s

Fig. 13   Histograms of the PorB measurement with ampicillin in 
Fig. 1. Histograms are based on the visualized and on ten additional 
traces. Code to obtain such histograms was explained in the para-
graph ’Interpreting, plotting and verification of the output’ in Using 
our software. In the point amplitude histogram, we found one domi-
nant conductance level of 3.9664 nS (estimated by the half sample 
mode). Smaller conductance levels are not visual, since they are too 
short and smoothed by the low-pass filter (in total, 2,476 data points 
are between 2.5 nS and 3.5 nS). The event histogram confirms this 
conductance level. Note that the peak is much narrower in the event 
than in the point amplitude histogram. This is usually the case and 

improves identification of conductance levels. Moreover, because of 
the deconvolution step in our idealization and since dwell times are 
not represented in the event histogram, we were also able to identify 
a second conductance level of 2.7956 nS, i.e., the amplitude (differ-
ence, blockage effect of the ampicillin) is 1.1708 nS. The amplitude 
histogram confirms this finding with a pronounced mode at 1.1662 
nS. A simple mean is roughly the same with 1.1546 nS. The ampli-
tude histogram but also the event histogram shows further events. 
Those events could be matched to processes unrelated to the inter-
action of ProB and ampicillin, and hence should be ignored for the 
ampicillin influence, confer (Bartsch et al. 2019)
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Some of the subjectivity and other problems in HMM 
modeling can be mitigated by conducting a model-free ide-
alization to inform preprocessing and model selection. In 
summary, HMM-based and model-free approaches can (and 
should) be used to complement each other to verify each 
other’s results. Artifacts and missed events might be reasons 
for some differences, but otherwise results should be similar.

Review of existing model‑free idealization 
approaches

Many analyses are still performed by visual inspection, often 
with manually chosen event times or in a semi-automatic 
way, for instance by amplitude thresholding (Colquhoun 
1987; Sakmann and Neher 1995), as e.g., offered by 
pCLAMP 10 software (Molecular Devices), or by the semi-
automatic SCAN software (Colquhoun and Sigworth 1995) 
which allows time-course fitting. Hence, those approaches 
are typically time-consuming and subjective. Moreover, 
approaches which are based on additional filtering (often by 
low-pass Gauss filters) aggravate detection of small events. 
A first approach for a fully automatic idealization was slope 
thresholding (Basseville and Benveniste 1983); for instance, 
TRANSIT (VanDongen 1996). Recently, Gnanasambandam 
et al. (2017) proposed idealizations based on the minimal 
description length ( MDL ). All of them (except the semi-
automatic SCAN software) ignore low-pass filtering and 
hence may have difficulties to idealize events correctly on 
small temporal scales. Furthermore, if events are present on 
multiple scales (recall Figs. 1, 4, 6), uniscale thresholding 
procedures will usually fail.

As mentioned in the introduction, JSMURF (Hotz et al. 
2013), JULES (Pein et al. 2018), and HILDE (Pein et al. 
2021) are multiscale procedures combined with local 
deconvolution and hence take into account both issues. 
Consequently, they provide usually more accurate results 
as demonstrated in simulations and real data applications. 
As described in the following, they mostly differ in how 
they take into account the filter when detecting events and 
hence whether they are suitable to detect short events, but 
also whether they incorporate the possibility to allow for 
heterogeneous noise. To understand the methodology bet-
ter, it is illustrative to plot the convolution of a single gating 
event and single peaks with the kernel of a low-pass filter, 
see Fig. 12. We stress that for the short event displayed in 
Fig. 12b, the filtered signal does not reach the lower con-
ductance level of the original signal. This is generally the 
case for peaks shorter than the filter length m∕f

s
 . Hence, if 

such short events are present, deconvolution techniques are 
indispensable to idealize those conductance levels correctly.

JSMURF The Jump-Segmentation by MUltiResolu-
tion Filter, JSMURF , from Hotz et al. (2013), combines a 
multiscale criterion with rigorous error control to reliably 

detect events on various temporal scales simultaneously. 
More precisely, it takes into account all scales above the 
filter length, and for each of those intervals, it ignores the 
first m data-points. As illustrated in Fig. 12 only during these 
m point long transitions, the convolution is not matching the 
conductance f. It provides the following strict error control. 
The probability that the idealization contains at least one 
false-positive event (an event that is not contained in the true 
conductance f) is bounded by the error level � . The original 
work (Hotz et al. 2013) assumed homogeneous noise, and 
(Pein et al. 2021) proposed an extension to heterogeneous 
noise.

JULES The JUmp Local dEconvolution Segmentation 
filter, JULES , from Pein et al. (2018), applies a multiscale 
criterion to all temporal scales and combines it with a post-
filter step to remove incremental steps as, for instance, 
occurring in Fig. 2. Finally, a local deconvolution approach 
is proposed to idealize short events well. The error level � 
bounds the probability of detecting a false positive approxi-
mately. All in all, JULES is particularly designed for homo-
geneous noise and short events.

HILDE Heterogeneous Idealization by Local testing and 
DEconvolution (Pein et al. 2021) obtains idealizations in 
three steps: It applies JSMURF to detect events on large tem-
poral scales; afterwards, it tests locally for additional short 
events. Those tests explicitly take filtering into account. The 
final idealization is once again obtained by local deconvolu-
tion. Local tests are performed on scales up to length lmax . 
The error level � ∶= �1 + �2 is split between the multiscale 
criterion of JSMURF (error level �1 ) and the local tests 
(error level �2 ). False positives occur again only with prob-
ability approximately �.

Simulation results In the following, we give a brief qual-
itative summary about the simulation results in (Hotz et al. 
2013; Pein 2017; Pein et al. 2018, 2021). Generally speak-
ing, such computer simulations are a systematic but also 
computation intensive way to determine precisely how long 
an event has to be such that an idealization method is able 
to reliably detect it. However, we stress that all quantitative 
results depend on the signal-to-noise ratio, the filter, and on 
tuning parameters.

We found that JSMURF reliably idealizes events of 
medium or large length (usually, an event has to be at least 
few times the filter length) even when the conductance 
change is small, confer (Hotz et al. 2013). This is essen-
tial to idealize subgating events. In comparison, JULES and 
HILDE are able to reliably idealize much shorter peaks, if 
they are isolated. Isolated means that two events have to be 
separated by at least three times the filter length if homoge-
neous noise is assumed but at least five times the filter length 
if heterogeneous noise is assumed (for a filter truncated after 
m = 11 sampling points). Moreover, for a good idealization, 
events have to be usually only few sampling points long, 
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but can be shorter than the filter length. Hence, those two 
approaches are suitable to idealize flickering. HILDE allows 
events to be a bit shorter than JULES.

JSMURF is usually the fastest of our three approaches 
and an idealization of several hundred thousands up to a few 
million data points take often only seconds (when Monte 
Carlo simulations have already been performed). In com-
parison, an idealization of the same dataset with JULES 
may last around a minute and with HILDE few minutes. All 
run times are measured on a standard laptop and increase 
typically linearly in the number of data points. A notable 
exception are situations in which JSMURF detects almost no 
change-points, and then, the run time increases quadratically 
in the number of observations. For instance, the idealiza-
tion in Fig. 9 took roughly half an hour. Since HILDE uses 
JSMURF as a first step, its run time is similarly slow.

Analysis of patchclamp recordings

In this section, we provide a step-by-step guide on how to 
analyze patchclamp recordings using model-free idealiza-
tions. In addition, we describe their interplay with Markov 
model-based analyses, see also the introduction and in par-
ticular Fig. 11 for an illustration. Of course, any analysis 
depends on the specific datasets and its goals. Hence, the 
following steps should be seen as more of general guidance 
that has to be interpreted flexibly. We also stress that it con-
tains time-consuming verification steps which might not be 
necessary in every analysis.

Analysis of the conductance levels For this step, we 
assume that the underlying protein attains only a finite num-
ber of conformations and hence that only a finite number of 
conductance levels occur. We aim to determine this number, 
the values of the conductance levels, and possible transitions 
between those levels. This can be done in various ways and 
we will only sketch important ideas. Event histograms (his-
tograms of the idealized conductance levels) and amplitude 
histograms (histogram of the differences between consecu-
tive segments in the idealization) should be used as a visu-
alization of the underlying conductance levels, see Fig. 13.

The idealized conductance levels form a mixture distribu-
tion, typically a Gaussian mixture, around the true conduct-
ance levels, where randomness results from measurement 
and idealization errors (and hence the peaks are narrower if 
those are better performed). Modes correspond to the true 
conductance levels. An example can be found in Fig. 13. One 
can use simple approaches based on a Gaussian assumption 
to estimate modes. We obtained good results using the half 
sample mode (Robertson and Cryer 1974), because it is quite 
robust against outliers. In more difficult cases, where peaks 
cannot be identified that clearly, more involved statistical 
methodology to estimate the components of a mixture distri-
bution has to be used; for an overview, see (McLachlan and 

Peel 2004) and the references therein, or the accuracy of the 
measurement or idealization has to be increased.

Subsequently, one often aims map idealized conductance 
levels to their corresponding mixture components. This can, 
for instance, be done by defining non-overlapping intervals 
around each estimated conductance level (mixture compo-
nent) and assigning all events whose estimated idealized 
conductance level lies within an interval to the correspond-
ing mixture component’s conductance level. It is often a 
good idea to remove segments that are far from any esti-
mated conductance level from the subsequent analysis, i.e., 
assigning such idealized conductance level to no interval, 
since they typically result from artifacts. Note that idealiza-
tion methods are often sensitive enough to detect baseline 
fluctuations and fluctuations due to pink noise as events. As 
a result, often several consecutive events are within the same 
interval and should be interpreted as one segment only. In 
other words, this process can also merge segments and thus 
remove spurious events.

Selection and verification of a Markov model As dis-
cussed before, a time-continuous Markov model is a com-
mon assumption to analyze patchclamp recordings. Since 
model-free idealizations are obtained without any prior 
assumption on the gating dynamics, they can be used to 
determine and verify a Markov model. To avoid statisti-
cal dependency, a careful analysis involves splitting the 
measurements and using the first part to select a Markov 
model and the second part to verify the model. Recall that 
a Markov model has two key properties: dwell times (how 
long a channel stays in one Markov state) are independent 
of each other and are exponentially distributed. Since it is 
often simpler, one might aim to verify uncorrelated, instead 
of independent, dwell times, though lack of correlation does 
not imply independence. When checking whether dwell 
times follow a Markov model, one has to take into account 
that short events might be missed. Nonetheless, at least in 
simple Markov models with only few states, one readily can 
check for uncorrelated and exponentially distributed dwell 
times; for an example, see (Bartsch et al. 2019, Fig. S4 in 
the supplement).

Parameter estimation Once a specific Markov model 
is assumed, one has to estimate its parameters. To this end, 
it is essential to take into account missed events. Missing 
events shorter than a certain resolution limit are widely dis-
cussed in the literature. The exact distribution is calculated 
by Hawkes et al. (1990), an estimator called MIL of the 
Q-matrix is suggested by Qin et al. (1996) and integrated 
in the QuB software package (Nicolai and Sachs 2013), 
the exact maximum-likelihood estimator for the Q-matrix 
for two conductance levels is obtained by Colquhoun et al. 
(1996), and recently, a Bayesian approach was proposed by 
Epstein et al. (2016). In Pein et al. (2018, (2021); Bartsch 
et al. (2019, (2020), we applied simpler approximations, 
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which worked well, since the measurements could be mod-
eled well by Markov models with only two or three states.

Verification using hidden Markov approaches This 
step was already discussed in Hidden Markov Models. The 
previous analysis using model-free idealizations can be an 
essential help to perform an analysis using HMM-based 
approaches. HMM-based approaches are, however, poten-
tially able to achieve better temporal resolution. Hence, both 
approaches should be used to verify each other’s results, 
both in terms of parameter estimation and of idealizations.

Discussion

We gave detailed guidance on how to obtain model-free ideali-
zations using JSMURF , JULES , and HILDE , and on how to 
use those idealizations together with HMM-based approaches 
to analyze patchclamp recordings. We believe that this provides 
a rather comprehensive toolkit for the analysis of many patch-
clamp recordings.

A notable exception are experiments with varying conduct-
ance. Such experiments are interesting, since not only the pre-
sent value of voltage affects the channel, some channels are also 
affected by the present rate of voltage change. This includes 
channels that show no gating when the voltage is constant, but 
can be activated by a varying voltage. For other channels, dif-
ferent dynamics are observed when the voltage changes. One 
example is the protein channel Tim23 which tends to close 
when larger voltage levels are applied constantly (Denkert et al. 
2017). Moreover, experiments with a constant voltage only 
allow to examine the gating dynamics at few voltage levels (or 
require large experimental effort), while with varying voltage, 
the dynamics can be analyzed for a whole range of voltages by 
a single experiment. Brief ideas were discussed in (Pein 2017, 
Sect. 6. Using our software) and (Diehn et al. 2019).

Though model-free approaches are in general more robust 
to artifacts than HMM-based approaches, confer (Pein et al. 
2018, 2021) who demonstrated for JULES and HILDE cer-
tain robustness to model violations, there is need for improved 
methodology (either model-free or HMM-based) with a larger 
focus on robustness.
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