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Abstract
Due to the many applications in Magnetic Resonance Imaging (MRI), Nuclear Mag-
netic Resonance (NMR), radio interferometry, helium atom scattering etc., the theory
of compressed sensing with Fourier transform measurements has reached a mature
level. However, for binary measurements via the Walsh transform, the theory has long
been merely non-existent, despite the large number of applications such as fluores-
cence microscopy, single pixel cameras, lensless cameras, compressive holography,
laser-based failure-analysis etc. Binary measurements are a mainstay in signal and
image processing and can be modelled by the Walsh transform and Walsh series that
are binary cousins of the respective Fourier counterparts. We help bridging the the-
oretical gap by providing non-uniform recovery guarantees for infinite-dimensional
compressed sensing with Walsh samples and wavelet reconstruction. The theoretical
results demonstrate that compressed sensing with Walsh samples, as long as the sam-
pling strategy is highly structured and follows the structured sparsity of the signal,
is as effective as in the Fourier case. However, there is a fundamental difference in
the asymptotic results when the smoothness and vanishing moments of the wavelet
increase. In the Fourier case, this changes the optimal sampling patterns, whereas this
is not the case in the Walsh setting.
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1 Introduction

Since Shannon’s classical sampling theorem [59,64], sampling theory has been a
widely studied field in signal and image processing. Infinite-dimensional compressed
sensing [7,9,18,43,44,56,57] is part of this rich theory and offers a method that allows
for infinite-dimensional signals to be recovered from undersampled linear measure-
ments. This gives a non-linear alternative to other methods like generalized sampling
[3,4,6,8,39,41,49] and the Parametrized-Background Data-Weak (PBDW)-method
[15,16,27,50–52] that reconstruct infinite-dimensional objects from linear measure-
ment. However, these methods do not allow for subsampling, and hence are dependent
on consecutive samples of, for example, the Fourier transform. Infinite-dimensional
compressed sensing, on the other hand, is similar to generalized sampling and the
PBDW-method but utilises an �1 optimisation problem that allows for subsampling.

Beside the typical flagship of modern compressed sensing, namely MRI [37,48],
there is also a myriad of other applications, like fluorescence microscopy [55,60],
single pixel cameras [33], medical imaging devices like computer tomography [22],
electron microscopy [45], lensless cameras [42], compressive holography [23] and
laser-based failure-analysis [61] among others. The applications divide themselves in
three different groups: those that are modelled by Fourier measurements, like MRI
[48], those that are based on the Radon transform, as in CT imaging [22,58], and those
that are represented by binary measurements, which are named above. For Fourier
measurements there exists a large history of research. However, for Radon measure-
ments, the theoretical results are scarce and for binary measurements results have
only evolved recently. In this paper we consider binary measurements and provide the
first non-uniform recovery guarantees in one dimension for infinite-dimensional com-
pressed sensingwith the reconstructionwith boundary correctedDaubechieswavelets.

The setup of infinite-dimensional compressed sensing is as follows. We consider
an orthonormal basis

{
ϕ j
}
j∈N of a Hilbert space H and an element f ∈ H with its

representation

f =
∑

j∈N
x jϕ j ∈ H, x j ∈ C,

to be recovered from measurements given by linear operators working on f . That
is, we have another orthonormal basis {ωi }i∈N of H and we can access the linear
measurements given by li ( f ) = 〈 f , ωi 〉. Although the Hilbert space can be arbitrary,
we will in applications mostly consider function spaces. Hence, we will often refer
to the object f as well as the basis elements as functions. We call the functions ωi ,
i ∈ N sampling functions and the space spanned by them S = span {ωi : i ∈ N}
sampling space. Accordingly, ϕ j , j ∈ N are called reconstruction functions and
R = span

{
ϕ j : j ∈ N

}
reconstruction space. Generalized sampling [2,6,7] and the

PBDW-method [52] use the change of basis matrixU = {ui, j }i, j∈N ∈ B(�2(N)) with
ui, j = 〈ωi , ϕ j 〉 to find a solution to the problem of reconstructing coefficients in the
reconstruction space from measurements in the sampling space. This is also the case
in infinite-dimensional compressed sensing. In particular, we consider the following
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reconstruction problem. Let � ⊂ {0, 1, . . . , Nr } be the subsampling set, where the
elements are ordered canonically when needed, and let P� the orthogonal projection
onto the elements indexed by� and ||z||2 ≤ δ some additional noise. For a fixed signal
f = ∑

j x jϕ j and the measurements g = P�U f + z the reconstruction problem is
to find a minimiser of

min
ξ∈�1(N)

‖ξ‖1 subject to ‖P�Uξ − g‖2 ≤ δ. (1.1)

2 Preliminaries

2.1 Setting and Definitions

In this section we recall the settings from [9] that are needed to establish the main
results. First, note that we will use a � b to describe that a is smaller b modulo a
constant, i.e. there exists someC > 0 such that a ≤ Cb. Moreover, for a set� ⊂ N the
orthogonal projection corresponding to the elements of the canonical bases of �2(N)

with the indices of � is denoted by P�. Similar, for N ∈ N the orthogonal projection
onto the first N elements of the canonical basis of �2(N) and �1(N) is represented by
PN and the projection on the orthogonal complement by P⊥

N . If we project onto the
sampling space SN this is denoted by PSN and as before the complement by P⊥

SN
.

Finally, Pa
b stands for the orthogonal projection onto the basis vectors related to the

indices {a + 1, . . . , b}.
Note that (1.1) is an infinite-dimensional optimisation problem, however, in practice

(1.1) is replaced by

min
ξ∈�1(N)

‖ξ‖1 subject to ‖P�U PLξ − g‖2 ≤ δ.

As L → ∞ one recovers minimisers of (1.1) (see §4.3. in [7] for details).
X-lets such aswavelets [53], Shearlets [25,26] andCurvelets [19–21] yield a specific

sparsity structure. The construction includes a scaling function which allows to divide
them into several levels. The same levels also dominate the sparsity structure. To
describe this phenomena the notation of (s,M)-sparsity is introduced instead of global
sparsity.

Definition 1 (Def. 3.3 [9]) Let x ∈ �2(N). For r ∈ N letM = (M1, . . . , Mr ) ∈ Nwith
1 ≤ M1 < . . . < Mr and s = (s1, . . . , sr ) ∈ N

r , with sk ≤ Mk − Mk−1, k = 1, . . . , r
where M0 = 0. We say that x is (s,M)-sparse if, for each k = 1, . . . , r ,

�k := supp(x) ∩ {Mk−1 + 1, . . . , Mk} ,

satisfies |�k | ≤ sk . We denote the set of (s,M)- sparse vectors by 	s,M.

Most natural signals are not perfectly sparse. But they can be represented with
a small tail in the X-let bases, or with the according ordering in other sparsifying
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representation systems. Hence, in a large number of applications it is unlikely to ask
for sparsity but compressibility.

Definition 2 (Def. 3.4 [9]) Let f =∑ j∈N x jϕ j , where x = (x j ) j∈N ∈ �2(N). We say
that f is (s,M)- compressible with respect to

{
ϕ j
}
j∈N if σs,M( f ) is small, where

σs,M( f ) = min
η∈	s,M

||x − η||1.

In terms of this more detailed description of the signal instead of classical sparsity
it is possible to adapt the sampling scheme accordingly. Complete random sampling
will be substituted by the setting of multilevel random sampling. This allows us later
to treat the different levels separately. Moreover, this represents sampling schemes
that are used in practice.

Definition 3 (Def 3.2 [9]) Let r ∈ N,N = (N1, . . . , Nr ) ∈ N
r with 1 ≤ N1 < . . . <

Nr ,m = (m1, . . . ,mr ) ∈ N
r , withmk ≤ Nk − Nk−1, k = 1, . . . , r , and suppose that

�k ⊂ {Nk−1 + 1, . . . , Nk} , |�k | = mk, k = 1, . . . , r ,

are chosen uniformly at random without replacement, where N0 = 0. We refer to the
set

� = �N,m = �1 ∪ . . . ∪ �r

as an (N,m)- multilevel sampling scheme.

Remark 1 To avoid pathological examples, we assume as in §4 in [9] that we have
for the total sparsity s = s1 + . . . sr ≥ 3. This results in the fact that log(s) ≥ 1 and
therefore also mk ≥ 1 for all k = 1, . . . , r .

3 Main Results: Non-uniform Recovery for theWalsh-Wavelet Case

In this paper we focus on the reconstruction of one-dimensional signals from binary
measurements, which can be modelled as inner products of the signal with functions
that take only values in {0, 1}. This arises naturally in examples like those mentioned
in the introduction. We focus on the setting of recovering data in L2([0, 1]). However,
the theory from [9] also applies to general results for Hilbert spaces. Linear measure-
ments are typically represented by inner products between sampling functions and
the data of interest. Binary measurements can be represented with functions that take
values in {0, 1}, or, after a well-known and convenient trick of subtracting constant
one measurements, with functions that take values in {−1, 1}. For practical reasons it
is sensible to consider functions for the sampling bases that provide fast transforms.
Additionally, the function system should correspond well to the chosen representation
system of the reconstruction space. For the reconstruction with wavelets, Walsh func-
tions have proven to be a sensible choice, and are discussed in more detail in §3.2.1.
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Sampling frombinarymeasurements has been analysed for linear reconstructionmeth-
ods in [12,40,63] and for non-linear reconstruction methods in [1,54].We extend these
results to the non-uniform recovery guarantees for non-linear methods. The combined
work result in broad knowledge about linear and non-linear reconstruction for two of
the three main measurement systems: Fourier and binary.

In the following we consider for the change of basis matrix

U = {ui, j }i, j∈N ∈ B(�2(N)), ui, j = 〈ωi , ϕ j 〉, (3.1)

where {ω j } j∈N denotes the Walsh functions on [0, 1] as described in §3.2.1, and
{ϕi }i∈N demotes theDaubecies boundarywavelets on [0, 1]of order p ≥ 3described in
§3.2.2. For the sake of readability, we always consider Daubechies boundary corrected
wavelets in the following if we say wavelets.

We are now able to state the recovery guarantees for the Walsh-wavelet case.

Theorem 1 (Main Theorem) Given the notation above, let N = (N0, . . . , Nr ) define
the sampling levels as in (3.8) and M = (M0, . . . , Mr ) represent the levels of the
reconstruction space as in (3.7). Consider U as in (3.1), ε > 0 and let � = �N ,m be
a multilevel sampling scheme such that the following holds:

(1) Let N = Nr , K = maxk=1,...,r

{
Nk−Nk−1

mk

}
, M = Mr , s = s1 + . . . + sr such that

N � M2 · log(4MK
√
s). (3.2)

(2) For each k = 1, . . . , r ,

mk � log(ε−1) log
(
K 3s3/2N

)
· Nk − Nk−1

Nk−1
·
(

r∑

l=1

2−|k−l|/2sl

)

(3.3)

Then with probability exceeding 1 − sε, any minimizer ξ ∈ �2(N) of (1.1) satisfies

‖ξ − x‖2 ≤ c ·
(
δ
√
K (1 + L

√
s) + σs,M ( f )

)
,

for some constant c, where L = c ·
(
1 +

√
log(6ε−1)

log(4KM
√
s)

)
. If mk = Nk − Nk−1 for

1 ≤ k ≤ r then this holds with probability 1.

This result allows one to exploit the asymptotic sparsity structure of most natural
images under the wavelet transform. It was observed in Fig. 3 in [9] that the ratio
of non-zero coefficients per level decreases very fast with increasing level and at the
same time the level size increases. Hence, most images are not that sparse in the first
levels and sampling patterns should adapt to that. However, they are very sparse in the
higher levels. This difference in the sparsity is used in the theorem. The number of
samples per level mk depends mainly on the sparsity in the related level sk . The other
sparsity terms sl with l �= k come in with a scaling of 2−|k−l|. This means that the
impact of levels which are far away decays exponentially.
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The number of samples mk in relation to the level size Nk − Nk−1 also impacts
the probability of an accurate reconstruction. Hence, in case the number of samples is
very small the theorem still holds true but the probability that the algorithm succeeds
becomes very small and the error large. Therefore, it is of high importance to choose the
number of samples according to the desired accuracy and success probability. This is
always a balancing act. The relationship also comes into play for the size of K . For large
levels with very few measurements this value can become larger. Nevertheless, even
if the largest levels are subsampled with only 1% we get that K = 100. Additionally,
the value K only comes into play in a logarithmic term. Therefore, the impact of K
reduces to a reasonable size and the number of necessary samples or the relationship
between N and M stays small.

Remark 2 For awareness of potential extensions of this work to higher dimensions or
other reconstruction and sampling spaces we kept the factor (Nk − Nk−1)/Nk−1 in
(3.3). However, for the Walsh-wavelet case in one dimension this factor reduces to 1.
Hence, the Equation (3.3) can be further simplified to

mk � log(ε−1) log
(
K 3s3/2N

)
·
(

r∑

l=1

2−|k−l|/2sl

)

,

however, in general one needs the factor (Nk − Nk−1)/Nk−1.

Remark 3 We would like to highlight the differences to the Fourier-wavelet case, i.e.
to Theorem 6.2. in [9]. The most striking difference is the squared factor in (3.2).
In the Fourier-wavelet case this is dependent on the smoothness of the wavelet and
shown to be N � M1+1/(2α−1) · (log(4MK

√
s))1/(2α−1), where α denotes the decay

rate under the Fourier transform, i.e. the smoothness of the wavelet. For very smooth
wavelets this can be improved to

N � M · (log(4MK
√
s))1/(4α−2).

Hence, for very smooth wavelets we get the optimal linear relation, beside log terms.
However, for non-smooth wavelets like the Haar wavelet, we get a squared relation
instead of linear. The reason why we do not observe a similar dependence on the
smoothness in terms of the sampling relation is that smoothness of a wavelet does not
relate to a faster decay under the Walsh transform. This is also related to the fact that
for Fourier measurements (3.3) become

mk � log(ε−1) · log(Ñ ) · Nk − Nk−1

Nk−1

·
(
ŝk +

k−2∑

l=1

sl · 2−(α−1/2)Ak,l +
r∑

l=k+2

sl · 2−vBk,l

)
,

(3.4)

where Ak,l and Bk,l are positive numbers, Ñ = (K
√
s)1+1/vN , where v denotes the

number of vanishing moments, and ŝk = max{sk−1, sk, sk+1}. In particular, smooth-
ness and vanishing moments of the wavelet does have an impact in the Fourier case,
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Fig. 1 Absolute values of PNU PN with N = 256, whereU is the infinite matrix from (3.1), with boundary
corrected Daubechies wavelets with different numbers of vanishing moments, and Walsh (upper row) and
Fourier measurements (lower row). In the Fourier case, U becomes more block diagonal as smoothness
and the number of vanishing moments increase. This is not the case in the Walsh setting, suggesting that
the non-dependence of smoothness and order (if higher than p ≥ 3) in the estimate (3.3) is correct

but not in the Walsh case. This is also confirmed in Fig. 1, where we have plotted the
absolute values of sections of U , where U is the infinite matrix from (3.1). As can be
seen in Fig. 1, the matrix U gets more block diagonal in the Fourier case with more
vanishing moments confirming the dependence of α and v in (3.4). Note that for a
completely block diagonal matrix U the mk in (3.4) will only depend on sk and not
any of the sl when l �= k. In contrast this effect is not visible in the Walsh situation
suggesting that the estimate in (3.3) captures the correct behaviour by not depending
on α and v. The reason why is that a function needs to be smooth in the dyadic sense
to have a faster decay rate under the Walsh transform. However, this is not related to
classical smoothness but dyadic smoothness. So far it is not known which wavelets
behave better under the Walsh transform. Therefore, it is possible that the estimate is
not sharp and that we can get faster decay rates for specific wavelet orders.

Finally, wewant to highlight that this unknown relationship also leads to the squared
factor in the relationship of N and M in (3.2). However, numerical examples in §5
suggest that this relation is not sharp. The experiments show that coefficients up to N
can be reconstructed, hence it is possible to reconstruct images with a reduced relation
between the maximal sample and the maximal reconstructed coefficient.
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3.1 Connection to RelatedWorks

Reconstruction methods are mainly divided in two major classes of linear and non-
linearmethods. For the linearmethodsgeneralized sampling [6] and thePBDW-method
[52] are prominent examples.

Generalized sampling has evolved over time. The first closely related method is
the finite section methods introduced and analysed in [17,36,38,47]. This was further
extended to consistent sampling investigated by Aldroubi et al. [11,29–32,65]. Finally
generalized sampling has been studied by Adcock et al. in [3,4,6,8,39,41,49]. This
works includes estimates for the general case of arbitrary sampling and reconstruction
basis as well as more application focussed analysis.

The PBDW-method evolved from the work of Maday et al. in [51] first under the
name generalized empirical interpolation method. This was then further analysed and
extended to the PBDW-method by Binev et al. [15,16,27,50,52].

Bothmethods have in common that the relationship between the number of samples
and reconstructed coefficients, the so called stable sampling rate (SSR), controls the
numerical stability and accuracy. The SSR has to be analysed for different application
with their related sampling and reconstruction bases. It was shown that the SSR is
linear for the Fourier-wavelet [5], Fourier-shearlet [49] and Walsh-wavelet case [40].
However, this is not always the case as for the Fourier-polynomial situation [41].

In the non-linear setting the most prominent reconstruction technique is infinite-
dimensional compressed sensing [18] with its extension to structured CS as introduced
in [9]. Here, the analysis relies on the properties of the change of basis matrix and the
sparsity of the signal. Early results have promoted random samples which have later
been shown to be not as efficient for signals with a structured sparsity.

Similar to the linear methods the analysis for general sampling and reconstruction
bases has been extended to the special applications. The Fourier case for different
reconstruction systems has been analysed by Adcock et al. [7,9,44,56,57]. Closely
related to the recovery guarantees in this paper the following guarantees have been
provided. For the Fourier wavelet case we know uniform recovery guarantees [46] and
non-uniform recovery guarantees [9,10]. ForWalsh measurements we have coherence
estimates by Antun [12], uniform recovery guarantees from Adcock et al.[1] and an
analysis for variable and multilevel density sampling strategies for the Walsh-Haar
case and finite-dimensional signals by Moshtaghpour et al. [54]. In this paper we
present the non-uniform results for the Walsh-wavelet case as has been studied for the
Fourier case in [9,10].

3.2 Sampling and Reconstruction Space

3.2.1 Sampling Space

We start with the sampling space. To model binary measurements Walsh functions
have proven to be a good choice. They behave similar to Fourier measurements with
the difference that they work in the dyadic rather than the decimal analysis. They also
have an increasing number of zero crossing. This leads to the fact that the change of
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(A) (B) (C)

Fig. 2 Different orderings of first 32 Walsh functions

basismatrixU gets a block diagonal structure, as can be seen in Fig. 1.Moreover, it can
be observed that U is asymptotic incoherent. The incoherence of the matrix together
with the asymptotic sparsity can be exploited in the reconstruction part. However, the
fact that sampling functions are defined in the dyadic analysis leads to some difficulties
and specialities in the proof.

Let us now define the Walsh functions, which form the kernel of the Hadamard
matrix.Thenweproceedwith their properties and thedefinitionof theWalsh transform.

Definition 4 (§9.2 [35]) Let z =∑i∈Z zi2i−1 with ni ∈ {0, 1} be the dyadic expansion
of z ∈ R+. Analogously, let x =∑i∈Z xi2i−1 with the dyadic expansion xi ∈ {0, 1}.
The generalized Walsh functions in L2([0, 1]) are given by

Wal(z, x) = (−1)
∑

i∈Z(zi+zi+1)x−i−1 .

This definition can also be extended to negative inputs byWal(−z, x) = Wal(z,−x) =
−Wal(z, x). Walsh functions are one-periodic in the second input if the first one is an
integer. The first input z is commonly denoted as parameter or sequency because of
its relation to the number of zero crossings. For a fixed z the function is then treated
like a one-dimensional function with its input x which could be interpreted as time as
in the Fourier case.

The definition is extended to arbitrary inputs z ∈ R instead of the more classical
definition for z ∈ N. We would like to make the reader aware of different orderings
of the Walsh functions. The one presented here is the Walsh-Kaczmarz ordering in
Fig. 2a. It is ordered in terms of increasing number of zero crossings. This has the
advantage that it relates nicely to the scaling of wavelets. Two other possible orderings
are presented in [35]. We have Walsh-Paley in Fig. 2b with

WalPal(z, x) = (−1)
∑

i∈Z zi x−i

and Walsh-Kronecker in Fig. 2c with

WalKron(z, d, x) = (−1)
∑d

i=1 zd−i x−i .

Both have the drawback that the number of zero crossings is not increasing. This is
the reason why we are not able to get the block diagonal structure in the change of
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basis matrix and hence do not get as much structure to exploit. The Walsh-Kronecker
ordering has another disadvantage and is not often used in practice. The definition
of the function includes knowledge about the length d of the maximum sequence
zmax ≤ 2d we are interested in. Depending on this value the function change also
for smaller inputs z ≤ zmax, i.e. there is a third input d which also leads to changes.
Hence, in case onewants to change the number of samples and also increase the largest
value for the samples all functions and measurements have to be recomputed, which
is undesirable in practice, where measurements are expensive and time consuming.

For the sampling patternwe divide the sequency parameter z into blocks of doubling
size. This is a natural division for two reasons. First, the size of the smallest constant
interval decreases after every block. Second and more importantly, these blocks relate
nicely into the level structure of the wavelets, discussed in the following chapter. We
can see in Fig. 1 that the blocks relate nicely to the visible block structure of the change
of basis matrix U .

After the small excursion on orderings we now define the sampling space in one
dimension by

S = span {Wal(n, ·), n ∈ N} ,

where span denotes the closure of the set of linear combinations of the elements. In
general, it is not possible to acquire or save an infinite number of samples. Therefore,
we restrict ourselves to the sampling space according to �N ,m or {1, . . . , N }, i.e.

S�N ,m = span
{
Wal(n, ·), n ∈ �N ,m

}
or SN = span {Wal(n, ·), n ≤ N } .

The Walsh functions obey some interesting properties which have been shown in
§2.2. in [40]: the scaling property, i.e. Wal(2 j z, x) = Wal(z, 2 j x) for all j ∈ N and
n, x ∈ R and the multiplicative identity, i.e. Wal(z, x)Wal(z, y) = Wal(z, x ⊕ y),
where ⊕ is the dyadic addition. With the Walsh functions we are able to define the
continuous Walsh transform as a mapping from L1([0, 1]) �→ L1([0, 1]) by

f̂ W (z) = 〈 f (·),Wal(z, ·)〉 =
∫

[0,1]
f (x)Wal(z, x)dx, n ∈ R.

Wewill also use the notationW for theWalsh transform, similar to the Fourier operator
F , with

W { f (x)} (z) =
∫

[0,1]
f (x)Wal(z, x)dx .

The properties from the Walsh functions are easily transferred to the Walsh trans-
form. We state now some more statements about the Walsh functions and the Walsh
transform, which are necessary for the main proof.

Lemma 1 (Cor. 4.3 [40]) Let t ∈ N and x ∈ [0, 1), then the following holds:

W { f (x + t)} (s) = W { f (x)} (s)Wal(t, s).
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Remark that this only holds because x and t do not have non-zero elements in their
dyadic representation at the same spot and therefore the dyadic addition equals the
decimal addition. Next, we consider Walsh polynomials and see how we can relate
the sum of squares of the polynomial to the sum of squares of its coefficients.

Lemma 2 (Lem. 4.6 [40]) Let A, B ∈ Z such that A ≤ B and consider the Walsh
polynomial �(z) = ∑B

j=A α j Wal( j, z) for z ∈ R+. If L = 2n, n ∈ N such that
2L ≥ B − A + 1, then

2L−1∑

j=0

1

2L

∣∣∣∣�(
j

2L
)

∣∣∣∣

2

=
B∑

j=A

|α j |2.

In the proof of Lemma 4we analyse the inner product of thewavelets with theWalsh
function. For this we will combine the shifts in the wavelet into a Walsh polynomial.
With this lemma at hand this is then easily bounded.

3.2.2 Reconstruction Space

Next, we define the reconstruction space. As we are mainly interested in the recon-
struction of natural signals in one dimension, we use Daubechies wavelets [53] and
their boundary corrected versions [24]. They provide good smoothness and support
properties. Moreover, they obey the Multi-resolution analysis (MRA). This results in
the fact that the coefficients of natural signals obey a special sparsity structure with a
lot of coefficients in the first part and fewer non-zero elements in the later coefficients.

We start with the definition of classical Daubechies wavelet and then discuss the
restriction to boundary corrected ones. The wavelet space is described by the wavelet
ψ at different levels and shifts ψ j,m(x) = 2 j/2ψ(2 j x −m) for j,m ∈ N, i.e. we have
the wavelet space at level j

W j := span
{
ψ j,m,m ∈ N

}
.

They build a representation system for L2(R), i.e.
⋃

j∈NWj = L2(R). For the MRA
we also define the scaling function φ and the according scaling space

Vj = span
{
φ j,m,m ∈ N

}
,

where φ j,m(x) = 2 j/2φ(2 j x − m). We then have that Vj = Vj−1 ⊕ Wj−1 and

L2(R) = closure
{
VJ ⊕⋃ j≥J W j

}
. The Daubechies scaling function and wavelet

have the same smoothness properties. Therefore, they also have the same decay rate
under the Walsh transform. The decay rate is of high importance for the analysis of
the properties of the change of basis matrix.

The classical definition ofDaubechieswavelets has a large drawback for our setting.
Normally, they are defined on thewhole lineR. Due to the fact thatWalsh functions are
defined on [0, 1] it is necessary to restrict the wavelets also to [0, 1]. Otherwise there
will be elements in the reconstruction space which are not in the sampling space and



14 Page 12 of 44 Journal of Fourier Analysis and Applications (2021) 27 :14

therefore the solution could not be unique. Hence, we are using boundary corrected
wavelets (§4 [24]).

For the definition of boundary wavelets, we have to correct those that intersect
with the boundary. We start with the definition of the scaling space and continue with
the wavelet space. For the discussion we consider for now the adaptation for the left
boundary zero. If we remove all scaling functions which intersect with zero, the new
function set does not even represent polynomial functions. Therefore, we have added
the following functions.

φ̃left
n (x) =

2p−2∑

l=0

(
l

n

)
φ(x + l − p + 1).

These functions together with the translates of the scaling function with support on
the positive line span all polynomials with degree smaller or equal to p−1 on [0,∞),
where p is the order of the scaling function. Next, we do the analogue for the right
boundary. For this sake we first construct the functions for (−∞, 0] simply by mir-
roring the φ̃left

n (x). To have the discussion on [0, 1] we shift the function to the right,
such that we get

φ̃
right
n (x) = φ̃left−1−n(−x).

Now, consider the lowest level J0 such that the scaling functions do only intersect
with one boundary 0 or 1, i.e. 2J0 ≥ 2p − 1. Then the interior scaling functions
together with the the newly defined functions span L2([0, 1]). However, they are not
orthogonal. Therefore, we apply the Gram-Schmidt procedure and obtain the function
φright and φleft. The new functions have staggered support and a maximal support size
of 2p−1 and hence still have the desired property of a small support. The new function
system contains at every level 2 j + 2 functions. However, in most applications it is
desirable to only have 2 j many. Therefore, we remove the two outermost inner scaling
functions. The new scaling space at level j is given by:

V b
j = span

{
φb
j,n : n = 0, . . . 2 j − 1

}
,

where

φb
j,n(x) =

⎧
⎪⎨

⎪⎩

2 j/2φleft
n (2 j x) n = 0, . . . p − 1

2 j/2φn(2 j x) n = p, . . . 2 j − p − 1

2 j/2φ
right
2 j−n−1

(2 j (x − 1)) n = 2 j − p, . . . 2 j − 1.

The new system still obeys theMRA.Hence, the boundarywavelets can be deduced
from the boundary corrected scaling functions as

Wb
j = V b

j+1 ∩ (V b
j )

⊥.
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Fortunately, we only need the smoothness properties of thewavelet, especially only the
knowledge if the function is Lipschitz continuous, for the decay rate under the Walsh
transform in Lemma 3. This is preserved also after the modification to the boundary
corrected wavelets. The boundary wavelet will be denoted by ψb and ψb

j,m(x) =
2 j/2ψb(2 j x − m). Because we will use in the analysis the MRA property and hence
replace the elements from the reconstruction space by the scaling function, as presented
in the next paragraph, we do not need the details about the construction of the wavelet.
The interested reader should seek out for [24] for a detailed analysis.

We now want to consider the reconstruction space. Let R ∈ N and M = 2R than
we have that the reconstruction space of size M is given by

RM = V b
J0 ⊕ Wb

J0 ⊕ . . . ⊕ Wb
R−1 = V b

R (3.5)

This representation with the scaling function and wavelet suggests the ordering in
different level according to the index j in the next Sect. 3.2.3.

It was proved in [24] that VR can be spanned by the scaling function, its translates
and the reflected version φ#(x) = φ(−x + 1), i.e.

VR = span
{
φR,m,m = 0, . . . , 2 j − p − 1, φ#

R,m,m = 2 j − p, . . . , 2 j − 1
}

.(3.6)

With this representation of the reconstruction space we are able to present ϕ ∈ RM

with ||ϕ||2 = 1 as

ϕ =
2R−p−1∑

n=0

αkφR,n +
2R−1∑

n=2R−p

βkφ
#
R,n with

2R−p−1∑

n=0

|αn|2 +
2R−1∑

n=2R−p

|βn|2 = 1.

Remark 4 We consider here only the case of Daubechies wavelets of order p ≥ 3 and
p = 1, i.e. the Haar wavelet. The theory also holds for the case for order p = 2.
Nevertheless, we get unpleasant exponents α depending on the wavelet and different
cases to consider. The results do not improve with more smoothness for the higher
order wavelets. In contrast for the Haar wavelet, we can get even better estimates due
to the perfect block structure of the change of basis matrix in that case. A detailed
analysis of the relation between Haar wavelets and Walsh functions can be found in
[63] and we discuss the recovery guarantees for this special case in §4.4.

For the evaluation of the change of basis matrix we investigate its elements, i.e. the
inner product between theWalsh function andwavelet or scaling function, respectively.
To ease this analysis we use the reconstruction space representation as in (3.6). This
reduces the analysis to the scaling function. However, to avoid a lot of different cases
we aim to take the shifts out of the inner product. To do this wewill introduce Corollary
1. However, in the assumptions we have that t ∈ N and x ∈ (0, 1]. And because we
also transfer the scaling factor 2R out of the scaling function. The scaling function in
level 0 has that its support is larger than [0, 1]. Therefore, Lemma 1 could not be used,
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i.e.

2−R(n+p)∫

2−R(n−p+1)

2R/2φ(2Rx − n)Wal(k, x)dx = 2−R/2

p∫

−p+1

φ(x)Wal(k, 2−R(x + n))dx

�= 2−R/2

p∫

−p+1

φ(x)Wal(k, 2−R(x ⊕ n))dx .

Therefore, we have to separate the scaling function into parts which have support
in [0, 1]. Remark that this is not a contradiction to the construction of the boundary
wavelets. They are indeed supported in [0, 1]. However, only from the beginning of the
scaling J0 and not the scaling function at level 0. Therefore, we use the representation
of the scaling function at level 0 from [40] as

φ(x) =
p∑

i=−p+2

φi (x − i + 1) with φi (x) = φ(x + i − 1)X[0,1](x)

and

φR,n = 2R/2
p∑

i=−p+2

φi (2
Rx − i + 1 − n).

This can also be done accordingly for the reflected function φ#. More detailed infor-
mation about this problem can be found in [40].

3.2.3 Ordering

Weare now discussing the ordering of the sampling and reconstruction basis functions.
We order the reconstruction functions according to the levels, as in (3.5). With this we
get the multilevel subsampling scheme with the level structure. For this sake, we bring
the scaling function at level J0 and the wavelet at level J0 together into one block of
size 2J0+1. The next level constitutes of the wavelets of order J0 + 1 of size 2J0+1 and
so forth. Therefore, we define

M = (M0, M1, . . . , Mr ) = (0, 2J0+1, 2J0+2, . . . , 2J0+r ) (3.7)

to represent the level structure of the reconstruction space. For the sampling space we
use the same partition. We only allow by the choice of q ≥ 0 oversampling. Let

N = (N0, N1, . . . , Nr−1, Nr ) = (0, 2J0+1, 2J0+2, . . . , 2J0+r−1, 2J0+r+q). (3.8)
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Fig. 3 Blocks for the ordering of Walsh functions in blue and wavelets in red (Color figure online)

We then get for the reconstruction matrixU in (3.1) with ui, j = 〈ωi , ϕ j 〉 thatω j (x) =
Wal( j, x) and for the first block we have

ϕi = φJ0,i for i = 0, . . . , 2J0 − p − 1 and

ϕi = φ#
J0,i for i = 2J0 − p, . . . , 2J0 − 1.

For the next levels, i.e. for i ≥ 2J0 we get for l with 2l ≤ i < 2l+1 and m = i − 2l

that ϕi = ψb
l,m .

The proof of the main theorem relies mainly on the analysis of the change of basis
matrix. Numerical examples and rigour mathematics [63] show that it is perfectly
block diagonal for the Walsh-Haar case. And it is also close to block diagonality for
other Daubechies wavelets, which can be seen in Fig. 1. We highlight the different
parts of the change of basis matrix with respect to the ordering in Fig. 3.

An intuition about this phenomena is given in Fig. 4. We plotted Haar wavelets at
different scales with Walsh functions at different sequencies. In Fig. 4a the scaling of
the Haar wavelet is higher than the sequency of the Walsh function. Therefore, the
Walsh function does not change the wavelet on its support and hence it integrates to
zero. The next one Fig. 4b shows a wavelet and Walsh function at similar scale and
sequencywhich relates to parts of the change of basis function in the inner block. Here,
the two functions multiply nicely to get a non-zero inner product. Last, we have in
Fig. 4c that the Walsh functions oscillate faster than the wavelet and hence the Walsh
function is not disturbed by the wavelet and can integrate to zero.

Remark 5 The main theorem only holds for the case of one dimensional signals. One
reason why it is difficult to extend the results to higher dimensions is the choice of the
ordering. It is possible to use tensor products of the one dimensional basis functions
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(A) (B) (C)

Fig. 4 Intuition for block diagonal structure of the change of basis matrix with Haar wavelet ψ j,m (red,
dashed line) and Walsh functions of order n (blue) (Color figure online)

to get a basis in higher dimensions. However, this includes that we have to tensor
faster oscillating functions with slower oscillating ones. As a consequence one has an
exponentially increasing number of non-zero or slow decaying coefficients to consider.
This makes the analysis very cumbersome and probably also results in the curse of
dimensionality in terms of the relationship of samples and reconstructed coefficients.

4 Proof of theMain Result

The proof of the main theorem relies on the investigation of the change of basis matrix
as well as the relative sparsity of signals. With this analysis it is possible to use the
results from [9] to prove the non-uniform recovery guarantees.

The section is structured as follows:We start with the definition of the analysis tools
for the change of basis matrix and the signal. Then, we are able to present Theorem
5.3 from [9]. In section “key estimates” we evaluate the necessary analysis values for
theWalsh-wavelet case, i.e. the local coherence, relative sparsity and strong balancing
property. For the local coherencewe use estimates from [1]. The analysis of the relative
sparsity is related to the Fourier-Haar case in [10] and the proof techniques of Lemma
4 are similar to the ones in the main proof of [40]. For the final analysis of the relative
sparsity also the previous estimate on the local coherence come into play. This is also
the case for the estimate of M̃ . Finally, the proof of the strong balancing property
follows fast with the results from §4.2.2. In §4.3 these results are combined to get the
main result.

Haar wavelets play a special role in the setting of Walsh functions, as they are
structurally very similar. This is the reason why the main theorem can be shortened in
this application. This is presented in the final subsection of this section.

4.1 Preliminaries

In this section we introduce Theorem 5.3 from [9]. To do so we first introduce the
definitions of the different elements therein.
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We start with the balancing property. To be able to solve (1.1) it is important
that the uneven finite section of the change of basis matrix is close to an isometry.
The balancing property controls the relation between the number of samples and
reconstructed coefficients, such that the matrix PNU PM is close to an isometry.

Definition 5 (Def. 5.1 [7]) LetU ∈ B(�2(N)) be an isometry. Then N ∈ N and K ≥ 1
satisfy the strong balancing property with respect to U , M ∈ N and s ∈ N if

||PMU∗PNU PM − PM ||�∞→�∞ ≤ 1

8

(
log1/2(4

√
sKM)

)−1
,

||P⊥
MU∗PNU PM ||�∞→�∞ ≤ 1

8
,

where || · ||�∞→�∞ is the norm on B(�∞(N)).

This topic not only arises for the non-linear reconstruction but also for the linear
reconstruction. In the finite-dimensional setting this is assured by the SSR. The SSR
has been analysed for different applications, like Walsh-wavelet [40], Fourier-wavelet
[5,34] and Fourier-shearlet [49].

Next, we use the notation as in [9]. Let

M̃ = min

{
i ∈ N : max

k≥i
||PNUek ||2 ≤ 1

32K
√
s

}
.

In the rest of the analysis we are interested in the number of samples needed for
stable and accurate recovery. This value depends besides known values on the local
coherence and the relative sparsity which are defined next. We start with the (global)
coherence.

Definition 6 (Def. 2.1 [9]) Let U = (ui, j )Ni, j=1 ∈ C
N×N be an isometry. The coher-

ence of U is

μ(U ) = max
i, j=1,...,N

|ui, j |2

With this it is possible to define the local coherence for every level band.

Definition 7 (Def. 4.2 [9]) LetU ∈ B(�2(N)) be an isometry. The (k, l)th local coher-
ence of U with respect toM,N is given by

μN,M(k, l) =
√

μ(PNk−1
Nk

U PMl−1
Ml

) · μ(PNk−1
Nk

U ), k, l = 1, . . . , r . (4.1)

We also define

μN,M(k,∞) =
√

μ(PNk−1
Nk

U P⊥
Mr−1

) · μ(PNk−1
Nk

U ). (4.2)

The local coherence will be evaluated for the Walsh-wavelet case in Corollary 2
and Corollary 3.
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Definition 8 (Def. 4.3 [9]) Let U ∈ B(�2(N)) be an isometry and s = (s1, . . . , sr ) ∈
N
r and 1 ≤ k ≤ r the kth relative sparsity is given by

Sk = Sk(N,M, s) = max
η∈�

||PNk−1
Nk

Uη||2,

with

� =
{
η : ||η||∞ ≤ 1, | supp(PMl−1

Ml
η)| = sl , l = 1, . . . r

}
.

We devote §4.2.2 to the analysis of the relative sparsity for our application type.
The estimate can be found in Corollary 4.

After clarifying the notation and settings we are now able to state the main theorem
from [9].

Theorem 2 (Theo. 5.3 [9]) Let U ∈ B(�2(N)) be an isometry and x ∈ �1(N). Suppose
that � = �N ,m is a multilevel sampling scheme, where N = (N1, . . . , Nr ) ∈ N

r and
m = (m1, . . . ,mr ) ∈ N

r . Let (s,M), where M = (M1, . . . , Mr ) ∈ N
r , M1 < . . . <

Mr and s = (s1, . . . , sr ) ∈ N
r , be any pair such that the following holds:

(1) The parameters

N = Nr , K = max
k=1,...,r

{
Nk − Nk−1

mk

}
,

satisfy the strong balancing property with respect to U , M := Mr and s :=
s1 + . . . + sr ;

(2) For ε ∈ (0, e−1] and 1 ≤ k ≤ r ,

1 � Nk − Nk−1

mk
· log(ε−1)

(
r∑

l=1

μN,M(k, l)sl

)

· log(K M̃
√
s), (4.3)

(with μN,M(k, r) replaced by μN,M(k,∞)) and mk � m̂k log(ε−1) log(K M̃
√
s),

where m̂k is such that

1 �
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· μN,M(k, l)s̃k, (4.4)

for all l = 1, . . . , r and all s̃1, . . . , s̃r ∈ (0,∞) satisfying

s̃1 + . . . + s̃r = s1 + . . . + sr , s̃k ≤ Sk(N,N, s).

Suppose that ξ ∈ �1(N) is a minimizer of (1.1). Then, with probability exceeding
1 − sε,

||ξ − x ||2 ≤ c ·
(
δ · √

K · (1 + L · √
s) + σs,M ( f )

)
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for some constant c and L = c ·
(
1 +

√
log(6ε−1)

log(4KM
√
s)

)
. If mk = Nk −Nk−1 for 1 ≤ k ≤ r

then this holds with probability 1.

It is a mathematical justification to use structured sampling schemes as discussed
in [9] in contrast to the first compressed sensing results which promoted the use of
random sampling masks [18,28]. In the next section we will transfer this result to the
Walsh-wavelet case. For this sake we investigate the previously defined values for this
case.

4.2 Key Estimates

In this chapter we discuss the important estimates that are needed for the proof of
Theorem 1. They are also interesting for themselves and allow a deeper understanding
of the relation between Walsh functions and wavelets.

4.2.1 Local Coherence Estimate

For the local coherence we are interested in the largest value of section of U . For this
investigation we need to gain insight into the value of |〈ϕ,Wal(k, ·)〉| for ϕ being a
Daubechies wavelet and k ∈ N. Therefore, we start with restating the results about
the decay rate of functions under the Walsh transform.

Lemma 3 (Lem. 4.7 [40]) Let φ be the mother scaling function of order p ≥ 3 and φ#

be its reflected version. Moreover, let ψ be the corresponding mother wavelet. Then
we have that Cϕ = supt∈R |ϕ′(t)| exist and

|φ̂i
W

(z)| ≤ Cφ

z
, |φ̂#

i

W
(z)| ≤ Cφ#

z
and |ψ̂W (z)| ≤ Cψ

z
.

We denote by Cφ,ψ the maximum of
{
Cφ,Cφ# ,Cψ,

}
.

Remark that Lemma 4.7 is stated only for inputs of the type j
L +m, where L = 2R

for some R ∈ N and j = 0, . . . , L − 1. However, the proof lines follow equivalently
for general inputs z ∈ R. Moreover, the constant Cϕ can be easily reduced from the
proof lines.

This Lemma is not explicitly used in the analysis of the local coherence. However,
the next Theorem also relies on this knowledge. Moreover, we will use Lemma 3 for
the relative sparsity.

Now, we recall Proposition 4.5 from [1] about the local coherence. Note that the
local coherence has a different definition in [9] and [1]. We will continue to use the
one from [9] and adapt the results from [1] accordingly.

Theorem 3 (Prop. 4.5 [1]) LetU be the change of basis matrix forWalsh functions and
boundary wavelets of order p ≥ 3 and minimal wavelet decomposition J0. Moreover,
letM and N as in (3.7) and (3.8). Then we have that

μ(PNk−1
Nk

U PMl−1
Ml

) ≤ Cμ2
−J0−k2−|l−k|
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for the constant Cμ > 0 independent of k, l.

Remark 6 The definition of the constant Cμ is not given in detail in [1]. However,
following the discussion inLemma6.5. therein togetherwith the estimate fromLemma
3 we get that

Cμ = (2p Cφ,ψ

)2
.

Beside of bounding the first factor in the local coherenc estimate. This theorem
can also be used to bound the second factor of the local coherence. Afterwards we
combine both results to the estimate of the local coherences in Corollary 2 and 3.

Corollary 1 LetU be the change of basis matrix for the boundary Daubechies wavelets
and Walsh functions. Moreover, let M and N be defined by (3.7) and (3.8). Then we
have that

μ(PNk−1
Nk

U ) ≤ Cμ2
−(J0+k−1)

Proof Recall that

μ(PNk−1
Nk

U PMl−1
Ml

) = max
i=Nk−1+1,...,Nk

max
j=Ml−1+1,...,Ml

|ui, j |2.

Hence, we get that

μ(PNk−1
Nk

U ) = max
l=1,...,r

μ(PNk−1
Nk

U PMl−1
Ml

).

Next, we use Theorem 3 to obtain

max
l=1,...,r

μ(PNk−1
Nk

U PMl−1
Ml

) ≤ max
l=1,...,r

{
Cμ2

−J0−k2−|l−k|}

= Cμ2
−(J0+k−1).

��
With these two theorems at hand we can now give an estimate for the local coher-

ence.

Corollary 2 Let μN,M(k, l) be as in (4.1). Then,

μN,M(k, l) ≤ Cμ2
−1/22−(J0+k−1)2−|k−l|/2.

Proof Combining the estimate from Theorem 3, the result in Corollary 1 and the
definition of the local coherence in 7 we get

μN,M(k, l) =
√

μ(PNk−1
Nk

U PMl−1
Ml

) · μ(PNk−1
Nk

U )
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≤
(
Cμ2

−J0−k2−|l−k|)1/2 (Cμ2
−(J0+k−1)

)1/2

= Cμ2
−1/22−(J0+k−1)2−|k−l|/2.

��
Because of the infinite-dimensional setting we also have to estimate μN,M(k,∞)

from (4.2). This is done in the following Corollary.

Corollary 3 Let μN,M(k,∞) as in (4.2). Then,

μN,M(k,∞) ≤ Cμ2
−(J0+k−1)2−(r−k)/2.

Proof We have that

μN,M(k,∞) =
√

μ(PNk−1
Nk

U P⊥
Mr−1

) · μ(PNk−1
Nk

U ).

We know from Corollary 1 that μ(PNk−1
Nk

U ) ≤ Cμ2−(J0+k−1). Remark that k < r .
Hence, we have with Theorem 3 and the independence of the oversampling parameter
q that

μ(PNk−1
Nk

U P⊥
Mr−1

) = sup
q∈R

μ(PNk−1
Nk

U PMr−1
Mr

)

≤ Cμ2
−J0−k2−|r−k| = Cμ · 2−(J0+r−1).

We get

μN,M(k,∞) =
√

μ(PNk−1
Nk

U P⊥
Mr−1

) · μ(PNk−1
Nk

U )

=
√

μ(PNk−1
Nk

U P⊥
Mr−1

) ·
√

μ(PNk−1
Nk

U )

≤ C1/2
μ · 2−(J0+r−1)/2C1/2

μ 2−(J0+k−1)/2

= Cμ2
−(J0+k−1)2−(r−k)/2.

��
Note that the same local coherence estimate was found for the Fourier-Haar case

in [10].

4.2.2 Relative Sparsity Estimate

Now, we want to estimate the relative sparsity of the change of basis matrix U in the
Walsh-wavelet case. This is important to bound the local sparsity terms s̃k in Equation
(4.4) in Theorem 2. To do so we recall from Definition 8 that

√
Sk = max

η∈�
||PNk−1

Nk
Uη||2.
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With the estimate from [10] in §4.3. we get

max
η∈�

||PNk−1
Nk

Uη||2 ≤ max
η∈�

r∑

l=1

||PNk−1
Nk

U PMl−1
Ml

||2||PMl−1
Ml

η||2

≤
r∑

l=1

||PNk−1
Nk

U PMl−1
Ml

||2√sl , (4.5)

where we use that

||PMl−1
Ml

η||2 ≤
√

||PMl−1
Ml

η||0 = √
sl .

Hence, we need to bound ||PNk−1
Nk

U PMl−1
Ml

||2. For this sakewe first bound ||P⊥
N U PM ||2

and ||PNk−1
Nk

U PMl−1
Ml

||2 in a second step in Lemma 5. That is then finally used to bound
the relative sparsity in Corollary 4.

Lemma 4 LetU be the change of basis matrix for theWalsh measurements and bound-
ary wavelets of order p ≥ 3. Let the number of samples N be larger than the number
of reconstructed coefficients M. Then we have that

||P⊥
N U PM ||22 ≤ Crs ·

(
M

N

)
,

where Crs = (16p − 8)2 max
{
C2

φ,C2
φ#

}
is dependent on the wavelet.

Proof We start with bounding ||P⊥
N U PM ||2. We rewrite it as follows

||P⊥
N U PM ||2 = sup

ϕ∈RM

||P⊥
SN

ϕ||2.

This value gets smaller if N grows in relation to M . However, from a practical per-
spective it is desirable to take as few samples N with in contrast a large number M .
For the further analysis we define the fraction of these two by S = M

N .
We include for completeness the intermediate steps, which are similar to the proof

of the main theorem in [40]. However, we believe that this allows us to give a deeper
understanding. Especially, the constantCrs is interesting to understand and to see what
impacts its size.

We first use the MRA property to rewrite ϕ ∈ RM as the sum of the elements in
the related scaling space. Take in mind at this point that we only consider values of
M = 2R . Hence, we only jump from level to level. We have from (4.6) for ϕ ∈ RM

with ||ϕ||2 = 1

ϕ =
2R−p−1∑

l=0

αlφR,n +
2R−1∑

l=2R−p

βlφ
#
R,n with

2R−p−1∑

l=0

|αn|2 +
2R−1∑

l=2R−p

|βn|2 = 1.

(4.6)
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This reduces the problem of the sum of the inner products for the orthogonal projection
from a lot of different wavelets to shifted scaling function at the same level. We have

P⊥
SN

ϕ =
∑

k>N

〈Wal(k, ·), ϕ〉

=
∑

k>N

〈Wal(k, ·),
2R−p−1∑

l=0

αlφR,n +
2R−1∑

l=2R−p

βlφ
#
R,n〉

=
∑

k>N

2R−p−1∑

l=0

αl〈Wal(k, ·), φR,n〉 +
∑

k>N

2R−1∑

l=2R−p

βl〈Wal(k, ·), φ#
R,n〉.

Hence, we start with controlling the inner product 〈Wal(k, ·), φR,n〉 and analogously
〈Wal(k, ·), φ#

R,n〉. Our aim is to remove the scaling and the shift from the wavelet and
get instead the product between the Walsh transform of the original mother wavelet
and a Walsh polynomial. For this we follow the ideas in [40]. Remember first, from
the discussion in §3.2.2 that the mother scaling function is divided into the sum of

functions that are supported in [0, 1], i.e. φ(x) =
p∑

i=−p+2
φi (x − i + 1) with φi (x) =

φ(x + i − 1)X[0,1](x) and hence

〈Wal(k, ·), φR,n〉 =
p∑

i=−p+2

〈Wal(k, ·), φi,R,n〉.

This allows us to only deal with 〈Wal(k, ·), φi,R,n〉. We get with a variable change

〈Wal(k, ·), φi,R,n〉 = 2−R/2

2−R(n+i)∫

2−R(n+i−1)

φi (2
Rx − n − i + 1)Wal(k, x)dx

= 2−R/2

1∫

0

φi (x)Wal(k, 2−R(x + n + i − 1))dx .

Next, we use Lemma 1 to get the shift out of the integral. We then only deal with
the integral between the mother wavelet and the Walsh function independent on the
summation factor n. For this we have to make sure that the second input is positive.We
define pR : Z → N to map z to the the smallest integer with pR(z)2R + z > 0. This
allows us to use Lemma 1 because x ∈ [0, 1] and n + i − 1+ 2R pR(n + i − 1) ∈ N.
We get

2−R/2

1∫

0

φi (x)Wal(k, 2−R(x + n + i − 1))dx
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= 2−R/2 Wal(k, 2−R(n + i − 1 + 2R pR(i − 1)))

1∫

0

φi (x)Wal(k, 2−Rx)dx

= 2−R/2 Wal(n + i − 1 + 2R pR(i − 1),
k

2R
)φ̂i

W
(
k

2R
).

With this we are able to represent the inner product of every shifted version of φi,R,n

with the Walsh function as product of the Walsh transform of φi and a Walsh function
which contains the shift information. In the following we want to rewrite the inner
products such that we are left with a Walsh polynomial and the Walsh transform of
the mother scaling function. For this define

�i (z) =
2R−p−1∑

n=0

αn Wal(n + i − 1 + 2R pR(i − 1), z) and

�#
i (z) =

2R−1∑

n=2R−p

βn Wal(n + i − 1 + 2R pR(i − 1), z).

We get

2R−p−1∑

n=0

αn〈φi,R,n,Wal(k, ·)〉 = 2−R/2φ̂i
W
(

k

2R

)
�i

(
k

2R

)

and

2R−1∑

n=2R−p

βn〈φ#
i,R,n,Wal(k, x)〉 = 2−R/2φ̂#

i

W
(

k

2R

)
�#

i

(
k

2R

)
.

After this evaluation we can go back to estimate the norm of ||P⊥
N U PM ||2. We have

||P⊥
N U PM ||2 = sup

ϕ∈RM

||P⊥
SN

ϕ||

=
∥∥∥∥∥∥
P⊥
SN

⎛

⎝
2R−p−1∑

n=0

αn

p∑

i=−p+2

φi,R,n +
2R−1∑

n=2R−p

βn

p∑

i=−p+2

φ#
i,R,n

⎞

⎠

∥∥∥∥∥∥
2

≤
p∑

i=−p+2

∥∥∥∥∥∥
P⊥
SN

⎛

⎝
2R−p−1∑

n=0

αnφi,R,n +
2R−1∑

n=2R−p

βnφ
#
i,R,n

⎞

⎠

∥∥∥∥∥∥
2

=
p∑

i=−p+2

√√√√
∑

k>N

2−R

∥∥∥∥φ̂i
W

(
k

2R
)�i (

k

2R
) + φ̂#

i

W
(
k

2R
)�#

i (
k

2R
)

∥∥∥∥

2

,
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where we used the presentation of ϕ from (4.6) and the Cauchy-Schwarz inequality
in the third line. After multiplying out the brackets we are left with

∑

k>N

2−R
∣∣∣∣φ̂i

W
(
k

2R
)�i (

k

2R
)

∣∣∣∣

2

,
∑

k>N

2−R
∣∣∣∣φ̂

#
i

W
(
k

2R
)�#

i (
k

2R
)

∣∣∣∣

2

and

∑

k>N

2−R+1
∣∣∣∣φ̂i

W
(
k

2R
)�i (

k

2R
)φ̂#

i

W
(
k

2R
)�#

i (
k

2R
)

∣∣∣∣ (4.7)

Because φ and φ# share the same decay rate, it is sufficient to only deal with (4.7)
and deduce the rest from it. To estimate these values, we use the one-periodicity of
the Walsh functions. For this sake let M = 2R . We always reconstruct a full level as
we do not know in which part of the level the information is located.

It can be observed that we divide k in both functions by 2R . We want to separate the
input k/2R into its integer and rational part. This allows us to use the one-periodicity
of the Walsh function and to work for the decay rate of the wavelet under the Walsh
function only with the major integer part. For this we replace k = mM + j , where
j = 0, . . . , M − 1 and m ≥ S = N/M . This leads to

∑

k≥N

2−R
∣∣∣∣φ̂i

W
(
k

2R
)�i (

k

2R
)

∣∣∣∣

2

≤
M−1∑

j=0

1

M

∣∣∣∣�i (
j

M
)

∣∣∣∣

2 ∑

m≥S

∣∣∣∣φ̂i
W
(

j

M
+ m

)∣∣∣∣

2

.

We estimate with Lemma 3 and the integral bound for series

∑

m≥S

∣∣∣∣φ̂i
W
(

j

M
+ m

)∣∣∣∣

2

≤
∑

m≥S

C2
φ

m2 ≤ C2
φ

⎛

⎝ 1

S2
+

∞∫

S

1

x2
dx

⎞

⎠

≤ C2
φ

(
1

S2
+ 1

S

)
≤ 2C2

φ

S
. (4.8)

Here Cφ depends on the choice of the wavelet. In contrast to the Fourier case there is
no known relationship between the smoothness of the wavelet and the decay rate or
the behaviour of Cφ , as discussed in Remark 3.

To estimate the sum over the Walsh polynomials we use Lemma 2 and (4.6). We
get similar to computations in [40], that

�i (z) =
2R−p∑

n=0

αn Wal(n + i − 1 + 2R pR(i − 1), z)

=
2R−p+i−1+2R pR(i−1)∑

n=i−1+2R pR(i−1)

αn−i+1−2R pR(i−1) Wal(n, z)
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and hence

M−1∑

j=0

1

M

∣∣∣∣�i (
j

M
)

∣∣∣∣

2

=
2R−p+i−1+2R pR(i−1)∑

n=i−1+2R pR(i−1)

|αn−i+1−2R pR(i−1)|2 =
2R−p∑

n=0

|αn|2 ≤ 1.

The analogue holds true for the φ# part. We again replace k = mM + j and obtain

∑

k≥N

2−R
∣∣∣∣φ̂

#
i

W
(
k

2R
)�i (

k

2R
)

∣∣∣∣

2

≤
M−1∑

j=0

1

M

∣∣∣∣�
#
i (

j

M
)

∣∣∣∣

2 ∑

m≥S

∣∣∣∣φ̂
#
i

W
(

j

M
+ m

)∣∣∣∣

2

.

With the same reasoning as in (4.8) we get

∑

m≥S

∣∣∣∣φ̂
#
i

W
(

j

M
+ m

)∣∣∣∣

2

≤ 2C2
φ

S
.

Finally, for the Walsh polynomial we have

M−1∑

j=0

1

M

∣∣∣∣�
#
i (

j

M
)

∣∣∣∣

2

=
2R−1+i−1+2R pR(i−1)∑

n=2R−p+i−1+2R pR(i−1)

|βn−i+1−2R pR(i−1)|2 =
2R−1∑

n=2R−p

|βn|2 ≤ 1.

We get together

||P⊥
N U PM ||2 ≤

p∑

i=−p+2

⎛

⎝
∑

k≥M

2−R
∣∣∣∣φ̂i

W
(
k

2R
)�i (

k

2R
)

∣∣∣∣
2

+
∑

k≥M

2−R
∣∣∣∣φ̂

#
i

W
(
k

2R
)�#

i (
k

2R
)

∣∣∣∣
2

+2

⎛

⎝
∑

k≥M

2−R
∣∣∣∣φ̂i

W
(
k

2R
)�i (

k

2R
)

∣∣∣∣
2
⎞

⎠

1/2⎛

⎝
∑

k≥M

2−R
∣∣∣∣φ̂

#
i

W
(
k

2R
)�#

i (
k

2R
)

∣∣∣∣
2
⎞

⎠

1/2
⎞

⎟
⎠

1/2

.

≤
p∑

i=−p+2

(
2C2

φ

S
+

2Cφ#
2

S
+ 4

CφCφ#

S

)1/2

≤ 8

S1/2
(2p − 1)max

{
C2

φ,Cφ#
2
}1/2

.

When we now replace S = N/M and set Crs = (16p − 8)2 max
{
C2

φ,Cφ#
2
}
we get

||P⊥
N U PM ||22 ≤ Crs

M

N
. ��

In the next Lemma we estimate ||PNk−1
Nk

U PMl−1
Ml

||22 using the previous result.
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Lemma 5 Let U be the change of basis matrix given by the Walsh measurements and
boundary wavelets of order p ≥ 3. Then we have that

||PNk−1
Nk

U PMl−1
Ml

||22 ≤ Cmax · 2−|l−k|+1,

where Cmax = max
{
Cμ,Crs

}
.

Proof We use similar estimates as in Corollary 2. We know from Lemma 4 that
||P⊥

N U PM ||22 ≤ Crs · (MN
)
, whenever N ≥ M . With this we get for k > l:

||PNk−1
Nk

U PMl−1
Ml

||22 ≤ ||P⊥
Nk−1

U PMl ||22 ≤ Crs

(
Ml

Nk−1

)

= Crs

(
2(J0+l) · 2−(J0+k−1)

)
= Crs · 2(l−k)+1 = Crs · 2−|l−k|+1,

where the first inequality enlarges the section of the matrix and with it the norm. This
allows to use Lemma 4. The rest follows from the definition of Ml and Nk−1 in §3.2.3.
For l ≥ k we get from Theorem 3

max
i=Nk−1+1,...,Nk

max
j=Ml−1+1,...,Ml

|ui, j |2 = μ(PNk−1
Nk

U PMl−1
Ml

) ≤ Cμ2
−(J0+l−1).

With this we conclude

||PNk−1
Nk

U PMl−1
Ml

||22 = sup
z∈C2(J0+l−1)

,||z||2=1

Nk∑

i=Nk−1+1

Ml∑

j=Ml−1+1

|ui, j z j |2

≤ sup
z∈C2(J0+l−1)

,||z||2=1

max
i=Nk−1+1,...,Nk

max
j=Ml−1+1,...,Ml

|ui, j |2

Nk∑

i=Nk−1+1

Ml∑

j=Ml−1+1

|z j |2

≤ sup
z∈C2(J0+l−1)

,||z||2=1

Cμ · 2−(J0+l−1) 2J0+k
Ml∑

j=Ml−1+1

|z j |2

≤ Cμ2
(J0+k)−(J0+l−1) = Cμ2

(k−l)+1 = Cμ2
−|k−l|+1.

Both equations combined lead to the desired estimate with Cmax = max
{
Cμ,Crs

}
. ��

With this Lemma at hand we can now bound the relative sparsity Sk(N,M, s).

Corollary 4 For the setting as before we have

Sk(N,M, s) ≤ 2CgeoCmax

r−1∑

l=0

2−|k−l|/2sl .
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Proof With the estimates from and Equation (4.5) we get

Sk =
(

r∑

l=1

||PNk−1
Nk

U PMl−1
Ml

||2√sl

)2

= 2Cmax

(
r∑

l=1

2−|k−l|/2√sl

)2

≤ 2Cmax

r∑

l=1

2−|k−l|/2
r∑

l=1

2−|k−l|/2sl ≤ 2CgeoCmax

r∑

l=1

2−|k−l|/2sl .

The third inequality follows from the Cauchy-Schwarz inequality and the last line
from the fact the notation of

∑r
l=1 2

−|k−l|/2 = Ck ≤ Cgeo for all k. ��

4.2.3 Bounding M̃

In the estimate of Theorem 2 we have the value M̃ . We aim to bound this value to
reduce the number of free parameters. Hence, we estimate

M̃ = min

{
i ∈ N : max

m≥i
||PNUem ||2 ≤ 1

32K
√
s

}
.

We start with the following calculation with m = 2(J0+n) = Mn ≥ N

||PNUem ||2 =
(

N∑

i=1

|ui,m |2
)1/2

≤
(
CμN · 2−(J0+n)

)1/2
.

Hence, for 2(J0+n) ≥ Cμ · N · (32K√
s
)2 we have

||PNUem ||2 ≤ 1

32K
√
s
.

Therefore,

M̃ ≤ Cμ · �N322K 2s�. (4.9)

4.2.4 Balancing Property

In this chapter we show that the first assumption of Theorem 2 is fulfilled.
For this sake, we use the results from the previous chapter, especially Lemma 4.

We start with relating a bound on ||P⊥
N U PM ||2 to the relationship between N and M .

Corollary 5 Let S and R be the sampling and reconstruction space spanned by the
Walsh functions and separable boundary wavelets of order p ≥ 3 respectively. More-
over, let M = 2R with R ∈ N. Then, we get for all θ ∈ (1,∞)

||P⊥
N U PM ||2 ≤ θ,
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whenever

N ≥ Crs · M · θ−2.

Proof Rewriting N ≥ Crs · M · θ−2 gives us

θ2 ≥ Crs
M

N
.

And hence with Lemma 4 and θ > 1 we get

||P⊥
N U PM ||2 ≤

(
Crs · M

N

)1/2

≤ θ.

��
With this at hand we can now proof the relation between N , M such that the strong

balancing property is satisfied.

Lemma 6 For the setting as before N , K satisfy the strong balancing property with
respect to U , M and s whenever N � M2(log(4MK

√
s)).

Proof FromLemma5we have that ||P⊥
N U PM ||2 ≤ 1

8
√
M

(
log1/2(4KM

√
s)
)−1

when-

ever it holds that N � M2
(
log(4KM

√
s)
)
. Using additionally that U is an isometry

we get

||PMU∗PNU PM − PM ||∞ = ||PMU∗PNU PM − PMU∗ IU PM ||∞
= ||PMU∗P⊥

N U PM ||∞ ≤ √
M||P⊥

N U PM ||2 ≤ 1

8

(
log1/2(4KM

√
s)
)−1

.

For the second inequality we have that

||P⊥
MU∗PNU PM ||∞ = ||P⊥

MU∗PNU PM + P⊥
MU∗ IU PM ||∞

= ||P⊥
MU∗P⊥

N U PM ||∞ ≤ √
M||P⊥

N U PM ||2 ≤ 1

8

(
log1/2(4KM

√
s)
)−1 ≤ 1

8
.

The last inequality follows from the fact that K , M, s are integers and therefore
log(4KM

√
s) ≥ 1. Hence, the strong balancing property is fulfilled. ��

4.3 Proof of theMain Theorem

In this chapter we bring the previous results together to proof Theorem 1.

Proof of Theorem 1 We show that the assumptions of Theorem 5.3. in [9] are fulfilled.
Moreover, we follow the lines of [10].

With Lemma 6we have that N , K satisfy the strong balancing property with respect
to U , M and s. Hence, point (2) in Theorem 2 is fulfilled.
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The last two steps show that (4.3) and (4.4) are fulfilled and Theorem 2 can be
applied. We have

Nk − Nk−1

mk
log(ε−1)

(
r∑

l=1

μN,M(k, l)sl

)

log(K M̃
√
s)

≤ Nk − Nk−1

mk
log(ε−1) log(322CμNK 3s3/2)

(
r−1∑

l=1

Cμ2
−1/22−(J0+k−1)2−|k−l|/2sl + Cμ2

−(J0+k−1)2−(r−k)/2sr

)

= Cμ

log(ε−1)

mk

Nk − Nk−1

Nk−1

(
r∑

l=1

2−|k−l|/2sl

)

log(32CμNK 3s3/2),

where we used the estimate ofμN,M fromCorollary 2 and 3, (3.3) and (4.9).Moreover,
Cμ is independent of k, l,M,N, s. Therefore,

Cμ

log(ε−1)

mk

Nk − Nk−1

Nk−1

(
r∑

l=1

2−|k−l|/2sl

)

log(32CμNK 3s3/2) � 1

and Equation (4.3) is fulfilled. Now, we consider Equation (4.4) we directly estimate
μN,M(k, l) for k < r directly without the 2−1/2 term to keep the sum notation.

r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
μN,M(k, l)s̃k

≤
r∑

k=1

(
Nk − Nk−1

m̂k

)
Cμ2

−(J0+k−1)2−|k−l|/2s̃k

= Cμ

Nk − Nk−1

Nk−1

r∑

k=1

s̃k
m̂k

2−|l−k|/2

≤ Cμ

r∑

k=1

s̃k
m̂k

2−|l−k|/2

Due to the fact that the geometric series is bounded we have

r∑

k=1

2−|l−k|/2 ≤ Cgeo, for all l = 1, . . . , r .
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We are left with bounding s̃k/m̂k for all k = 1, . . . , r . Denote the constant from � in
Theorem 2 by C . With the estimate in Corollary 4 we can then bound s̃k with (3.3) by

s̃k ≤ Sk(N,M, s) ≤ CgeoCμ · 2
r−1∑

l=0

2−|k−l|/2sl

≤ 2CgeoCμCmk · Nk−1

Nk − Nk−1

(
log(ε−1) log(K 2sN )

)−1

≤ 2CgeoCμC
Nk−1

Nk − Nk−1
m̂k = 2CgeoCμCm̂k . (4.10)

All together yields

r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
μN,M(k, l)s̃k ≤ 2C2

μC
2
geoC � 1.

��

4.4 Recovery guarantees for theWalsh-Haar case

In this section we pay attention to the Walsh-Haar case. This relationship is of high
interest because of the very similar behaviour of Walsh functions and Haar wavelets.
As seen earlier this results in perfect block diagonality of the change of basis matrix,
see Fig. 1a. This block diagonal structure has been analysed in [63] with a focus on its
impact on linear reconstruction methods. In contrast to general Daubechies wavelets it
is possible to evaluate the inner product between the Walsh function and Haar wavelet
and scaling function exactly.

Lemma 7 (Lem. 1 [63]) Let ψ = X[0,1/2] − X(1/2,1] be the Haar wavelet. Then, we
have that

|〈ψR, j ,Wal(n, ·)〉| =
{
2−R/2 2R ≤ n < 2R+1, 0 ≤ j ≤ 2R − 1

0 otherwise.

For the scaling function we have

Lemma 8 (Lem. 2 [63]) Let φ = X[0,1] be the Haar scaling function. Then, we have
that the Walsh transform obeys the following block and decay structure

|〈φR, j ,Wal(n, ·)〉| =
{
2−R/2 n < 2R, 0 ≤ j ≤ 2R − 1

0 otherwise.

The order does not change from the one for general Daubechies wavelets and each
level j contains 2 j many elements. Due to the structure of the change of basis matrix
U in the Walsh-Haar case, the off diagonal blocks do not impact the coherence and
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sparsity structure at one level. Therefore, the number of samples per level only depends
on the incoherence in this given level and the relative sparsity within. With this the
main theorem simplifies for the Walsh-Haar case to the next Corollary.

Corollary 6 Let the notation be as before, but let the wavelet be the Haar wavelet.
Moreover, let ε > 0 and � = �N ,m be a multilevel sampling scheme such that:

(1) The number of samples is larger or equal the number of reconstructed coefficients,
i.e. N ≥ M.

(2) Let K = maxk=1,...,r

{
Nk−Nk−1

mk

}
, M = Mr , N = Nr and s = s1 + . . . + sr and

for each k = 1, . . . , r:

mk � log(ε−1) log(K
√
sN ) · sk .

Then, with probability exceeding 1 − sε, any minimizer ξ ∈ �1(N) satisfies

||ξ − x ||2 ≤ c ·
(
δ
√
K (1 + L

√
s) + σs,M ( f )

)
,

for some constant c, where L = c ·
(
1 +

√
log(6ε−1)

log(4KM
√
s)

)
. If mk = Nk − Nk−1 for

1 ≤ k ≤ r then this holds with probability 1.

Proof The proof is separated in two parts. We first evaluate the analysis tools for the
Walsh-Haar case. Second, we conclude that under our assumptions the requirements
of theorem 2 are fulfilled, i.e. the balancing propery, equation (4.3) and (4.4).

For the analysis of the balancing property, let M = 2R and ϕ ∈ RM be represented

as ϕ =∑2R−1
j=0 α jφR, j with

∑2R−1
j=0 |α j |2 = 1. Then we have for N ≥ M that

||P⊥
N U PM ||22 = max

ϕ∈RM

∑

k>N

|〈Wal(k, ·), ϕ〉|2 =
∑

k>N

|〈Wal(k, ·),
2R−1∑

j=0

α jφR, j 〉|2 = 0

because k > N ≥ M = 2R such that Lemma 8 applies. Hence, the balancing property
is satisfied for any K and with it assumption (2) in 2 is fulfilled.

Next, we analyse M̃ .

M̃ = min

{
i ∈ N : max

m≥i
||PNUem ||2 ≤ 1

32K
√
s

}

we have for m = 2R + j with j ≤ 2R − 1 that

||PNUem ||22 =
∑

k≤N

|〈Wal(k, ·), φR, j 〉|2 =
{
N2R/2 2R < N

0 2R > N .
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(A) (B)

Fig. 5 Original functions

We obtain that the minimal i is achieved for m = 2R+1 and therefore M̃ = 2N .
Similar to the above discussion we get that μN,M(k, l) = 0 for k �= l. This removes
the sum in (4.3) in theorem 2.

Nk − Nk−1

mk
log(ε−1)

(
r∑

l=1

μN,M(k, l)sl

)

log(K M̃
√
s)

≤ Nk − Nk−1

mk
log(ε−1)

(
2−(J0+k−1)sk

)
log(2K

√
sN )

= Nk − Nk−1

Nk−1

log(ε−1)

mk
sk log(2K

√
sN )

= log(ε−1)

mk
sk log(2K

√
sN ) � 1.

For the second Eq. (4.4) we get with the general estimate of the relative sparsity in
Eq. (4.10)

r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
μN,M(k, l)s̃k

≤
(
Nl − Nl−1

m̂l

)
2−(J0+l−1)s̃l

≤ Nl − Nl−1

Nl−1

s̃l
m̂l

≤ C � 1.

With this we have seen that all assumptions of theorem 2 are fulfilled and the recovery
is guaranteed. ��
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Fig. 6 Sampling pattern used in the experiments in Figs. 7 and 8, the samples are taken in the black area

5 Numerical Experiments

In this section we demonstrate how the theoretical results can be used in practice.
We investigate the reconstruction of two signals with different smoothness properties.
We start the analysis with the impact of the sampling bandwidth N if we keep the
number of samples constant. Further we compare the reconstruction with CS to the
application of the inverse Walsh transform to the subsampled data. This highlights the
subsampling possibilities of the method. Related to the discussion in Remark 3 we
investigate the experimental differences between Fourier and Walsh measurements.
Finally, we illustrate the importance of the structure of the sampling pattern with the
flip test as introduced in [9].

To see the impact of the sparsity of the signal we consider two functions. We have

f (x) = cos(2πx) + 0.2 cos(2π5x) (5.1)

and

g(x) = cos(2πx) + cos(2π5x)Xx≥0.5. (5.2)

The first function is very smooth and hence obeys only very few non-zero coefficients
in the wavelet domain which all are located in the first levels. In contrast the function
g has a discontinuity at 0.5. This results to non-zero elements in the wavelet domain
also in higher levels and hence a larger M for perfect or near perfect reconstruction.
The sparsity structure of natural images behaves equally. The more discontinuities
a signal has the more higher level coefficients need to be reconstructed. Therefore,
a prior analysis on the signals that will be reconstructed is important, even though
all natural signals have the same coefficient structure with a few very large ones in
the beginning and fewer in the high levels. It only differs in the number of higher
level coefficients. This can be seen for the two examples. For both functions we have
that the first level is not sparse, and we therefore need to sample m1 fully. However,
for mk with k ≥ 2 we can use the main theorem and reduce the number of samples
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|m| = ∑r
k=1 mk . The sampling pattern is chosen such that the first level is sampled

fully and that the rest of the possible samples is divided equally on all mk and hence
independent on the size of the level.

For the implementation of the optimization problem (1.1) we have chosen L = 212

it can be observed that the reconstruction does not change from L = 210 onwards.
Therefore, it can be assumed that the algorithm has converged at this point and that
this finite setting resembles the infinite setting. We can see that the location of the
highest level coefficients only depends on the choice of N . The code for the numerical
experiments relies on the cwwMatlab package for the reconstruction of wavelet coef-
ficients from Walsh samples by Antun in [14]. The optimization problem is solved
with SPGL-1 from Antun available at [13]. We adapted the code to include the infinite
setting. It can be found in [62]. The wavelet in use is the Daubechies wavelet with
p = 4 vanishing moments.

In Fig. 7 the reconstruction of g from |m| = 256 is presented for different choices
of N . The related sampling pattern are shown in Fig. 6. The aim of this experiment
is to show the impact of the balancing property. Hence, how the choice of N effects
M the coefficient bandwidth. To make this more visible we have plotted the wavelet
coefficients of the reconstruction next to the reconstructed signals. It can be seen
that the coefficients with numbering larger than N cannot be reconstructed with CS.
However, it can also be seen that the square relation between N andM in the balancing
property in (3.2) is not sharp as we are able to reconstruct coefficients larger than√
N . The decay of the error terms with increasing N can be seen in Fig. 8f. Without

increasing the number of samples we can decrease the error term in the reconstruction
for CS and improve over the directed inversion of the samples.

In Figs. 8a, b and 8e we see the related experiments for the continuous signal f .
The signal only obtains a few non-zero coefficients in the first levels. Therefore, the
increased number of N does not change the error or reconstruction which is already
for the smallest choice N = 26 nearly invisible. That is the reason why we did not
show the reconstruction for N = 27, 28 as there is no visible difference. But also in
this case it can be seen that we only reconstruct coefficients indexed smaller than N
but still larger than

√
N which implies that the bound for the balancing property is

also not sharp in the continuous and very sparse setting.
After the analysis of the impact of the balancing property on the reconstruction, we

show how the number of samples influences the reconstruction. As it has been shown
in the main theorem we have to control two parts the balancing property which mainly
aims at the bandwidth of the samples N and the related bandwidth of the reconstructed
coefficients M . Here, the number of coefficients in each level is not considered. This is
part of the second requirement on the number of samples in each level mk . It has been
seen that beside other logarithmic factors this mainly depends on the sparsity sk in that
level and with exponentially decaying impact also on the sparsity in the neighbouring
levels. It can be seen that the discontinuous function g has wavelet coefficients in
higher levels. However, in every level there are only one or two and hence the signal
is very sparse in those higher levels. This can be exploited to reduce the number of
samples drastically as in Fig. 9b. Even though the error increases a small amount
we were able to reduce the number of samples by to 64 and this is only 25% of the
previous number of samples. In this case the contrast to the truncatedWalsh transform
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Fig. 7 Reconstruction of the signal g with |m| = 256 and varying choices of N to visualize the impact of
N on the maximal wavelet coefficients

gets even more obvious as in Fig. 9d. The continuous function in contrast has only
non-zero coefficients until M = 64 however it is not very sparse up to this number.
Therefore, the reconstruction from even less samples |m| = 32 obeys more artefacts
than before, see Fig. 9a. Nevertheless, the general structure is still more visible than
with the direct Walsh inverse transform in Fig. 9c.



Journal of Fourier Analysis and Applications (2021) 27 :14 Page 37 of 44 14

(A) (B)

(C) (D)

(F)(E)

Fig. 8 CS reconstruction of f with its wavelet coefficients. TW reconstruction for f and g from the same
number of samples as used in CS. CS and truncated Walsh series error values with |m| = 64 for f and
|m| = 256 for g. The x-axis represents the sampling bandwidth N = 2R and the y-axis the relative error
term in the �2 norm
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(C) (D)

(E) (F)

Fig. 9 CS and truncated Walsh series error values with |m| = 32 for f and |m| = 64 for g

The conducted experiments can be compared to the Fourier setting. In Remark 3
we have discussed the relationship between the theoretical results for both sampling
modalities. It is important to recall that the theorems offer sufficient conditions for the
reconstruction. Therefore, the theoretical differences do not have to become visible in
the experiments. Nevertheless, we want to discuss the different aspects of the theory
and what we can observe in numerical experiments. The code to produce the Fourier
experiments is an adaptation of the one discussed in [34] and available at [62]. The
most obvious difference is the squared versus linear relationship in the estimate of
the balancing property. It has been shown in the previous examples that these bounds
are not sharp for the Walsh setting. Hence, the difference in the balancing property
cannot be observed in numerical experiments. Next, we know from the theory that the
smoothness of the wavelet impacts the decay rate under the Fourier transform but not
for theWalsh transform. This difference is clearly visible in the reconstruction matrix,
see Fig. 1. Finally, there is also a difference in the number of necessary samples per
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(G) (H)

Fig. 10 CS reconstruction from Fourier samples and Walsh samples for Daubechies wavelets with 2 and 6
vanishing moments. The experiment is set up with N = 210, L = 213 and |m| = 128 and |m| = 256. The
relative �2-error is denoted by ε
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level because of the number of vanishing moments. With more vanishing moments the
impact of the other levels decreases exponentially for theFourier case.Additionally, the
location of the non-zero elements in the coefficient vector changes with the choice of
the wavelet. In Fig. 10 we have illustrated the results of the reconstruction of the same
function for Fourier measurements and Walsh measurements with wavelets of two
different vanishing moments and also changing number of samples. The illustration
shows us that for a small number of samples the reconstruction with Fourier gives
better results and gives smaller relative error as well as less visible artefacts. However,
for a large enough sampling size the reconstructions are in both cases very close to
the original function. Moreover, it is possible to see that the different wavelets tend to
different artefact types. It can be observed that the wavelets with 2 vanishing moments
are able to recover the discontinuity very well and have less ringing artefacts around it
in contrast to the case ofwavelets with 6 vanishingmoments. However, in the smoother
areas the reconstruction with fewer vanishing moments leads to more artefacts as can
be seen in Fig. 10a, b.

Finally, we demonstrate that the structure of the signal coefficients and the change of
basismatrix are very important. For this sakewe conducted the same experiment for the
continuous function f with a flipped sampling pattern, see Fig. 11b. The reconstruction
is nowhere close to perfect and the original signal is not even identifiable. Hence, it is
important to take the structure into account.

The experiments show that both parts the number of samples per level and the
balancing property are important for the success of the method. For the practical
application it is very helpful to be able to estimate beforehand the size of M as well
as the sparsity per level.

6 Conclusion

In this paper we have analysed the reconstruction of a one-dimensional signal from
binary measurements with structured CS. We gave non-uniform recovery guarantees
for the reconstruction with boundary corrected Daubechies wavelets. Additionally, we
showed the numerical gains and the problems that arise when the theory is not taken
into account.

These result fit nicely in the theory of non-linear reconstruction. We now have
knowledge about uniform and non-uniform recovery guarantees for two of the major
measurement types: Fourier and binary with Daubechies wavelets. For the future it
would be of interest to investigate the theory for Radon measurements. Additionally,
the bounds for the recovery guarantees are not tight and hence it might be possible to
improve them. This relates closely to the question which wavelet type is most suitable
for the reconstruction from binary measurements. This, however, is so far not known.
Therefore, a further investigation of the relationship between the different wavelet
types and Walsh functions would be of interest as numerical experiments suggest that
there exists a difference.
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(A)

(B)

Fig. 11 Reconstruction of f with flipped samples with N = 28 and |m| = 64
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