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ABSTRACT

In Dou et al. (2021), we introduced the Fundamental Formation Relation (FFR), a tight relation

between specific SFR (sSFR), H2 star formation efficiency (SFEH2
), and the ratio of H2 to stellar mass.

Here we show that atomic gas H i does not follow a similar FFR as H2. The relation between SFEHI and

sSFR shows significant scatter and strong systematic dependence on all of the key galaxy properties

that we have explored. The dramatic difference between H i and H2 indicates that different processes

(e.g., quenching by different mechanisms) may have very different effects on the H i in different galaxies

and hence produce different SFEHI-sSFR relations, while the SFEH2
-sSFR relation remains unaffected.

The facts that SFEH2
-sSFR relation is independent of other key galaxy properties, and that sSFR is

directly related to the cosmic time and acts as the cosmic clock, make it natural and very simple to

study how different galaxy populations (with different properties and undergoing different processes)

evolve on the same SFEH2
-sSFR ∼ t relation. In the gas regulator model (GRM), the evolution of

a galaxy on the SFEH2
-sSFR(t) relation is uniquely set by a single mass-loading parameter λnet,H2

.

This simplicity allows us to accurately derive the H2 supply and removal rates of the local galaxy

populations with different stellar masses, from star-forming galaxies to the galaxies in the process of

being quenched. This combination of FFR and GRM, together with the stellar metallicity requirement,

provide a new powerful tool to study galaxy formation and evolution.
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galaxies: ISM
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1. INTRODUCTION

From the first principle, the global star formation rates

(SFRs) of galaxies are determined by their cold gas con-

tent (Mgas) and star formation efficiency (SFE, defined

as SFR/Mgas). The gas content in the galaxy is regu-

lated by the dynamical balance among gas cooling and

accretion from the intergalactic medium, gas consump-

tion from star formation, gas outflow driven by feedback,

and gas stripping. Gas content and star formation are

expected to be primarily controlled by the net gas accre-

tion (i.e. gas inflow minus gas outflow or gas removal),

and star formation proceeds in a self-regulated manner.

For a given positive net gas accretion rate, a higher SFR

consumes gas faster and gas mass will decrease, result-

ing in a declining SFR; while a lower SFR consumes gas

slower and gas mass will increase, resulting in a rising

SFR. Quenching plays a critical role in gas cycle and

star formation. For instance, star-forming galaxies can

be quenched by gas removal, via either external environ-

mental process (e.g., Gunn & Gott 1972; Abadi et al.

1999; Quilis et al. 2000) or ejection by feedback (e.g.,

Granato et al. 2004). It can also be quenched by stran-

gulation, being broadly interpreted as halting gas inflow

via either external enviroment process (e.g., Larson et al.

1980; Balogh & Morris 2000; Balogh et al. 2000; Dekel &

Birnboim 2006) or internal processes such as preventive

feedback (e.g., Croton et al. 2006; Somerville & Davé

2015; Zinger et al. 2020); or the excess angular momen-

tum of the inflowing gas (e.g., Peng & Renzini 2020;

Renzini 2020; Song et al. 2020). Despite all these plau-

sible quenching mechanisms that may act at different

epochs or in different environments, if net gas accretion

resumes (i.e. inflow larger than outflow or gas removal),

the quenched galaxy may rejuvenate as gas gradually
accumulates in the galaxy and continue to form stars.

Therefore, understanding gas cycle and star formation

process are central issues in studying galaxy formation

and evolution (e.g., White & Rees 1978; Dekel & Birn-

boim 2006; van de Voort et al. 2011; Davé et al. 2012;

Conselice et al. 2013; Madau & Dickinson 2014; Scoville

et al. 2017; Tacconi et al. 2018; Krumholz et al. 2018;

Pan et al. 2019; Walter et al. 2020). By analyzing the

molecular gas content in the local galaxy populations,

we show in Dou et al. (2021; hereafter D21) that the

specific relations (i.e. µ-sSFR, SFE-sSFR, and SFE-

µ, where µ is the H2 gas mass to stellar mass ratio)

are much tighter than the corresponding absolute ones

(i.e. MH2
-SFR, MH2

-M∗, and SFR-M∗). In particu-

lar, the scatter of the µ-sSFR and SFE–sSFR relations

can be entirely explained by the measurement errors,

which implies that the intrinsic scatter of the µ-sSFR

and SFE–sSFR relations is very small. This also sug-

gests that there is little room to further reduce the scat-

ter of these specific relations by including any system-

atic dependence on other galaxy properties. Indeed, as

shown in D21, the specific relations are independent of

all other key galaxy properties that we have explored, in-

cluding stellar mass, structure, environment and metal-

licity. This suggests some more universal or important

physical connection between these quantities.

The small intrinsic scatters of the specific relations

also require them to have only one single sequence hold-

ing from star-bursting galaxies to galaxies in the pro-

cess of being quenched, as indeed observed and shown

in D21. On the contrary, the absolute relations con-

tain two structures (i.e. a star-forming sequence and a

passive cloud), which contribute to increase their over-

all scatters. The large scatters of the absolute relations

are also due to their strong systematic dependence on

other galaxies properties. Therefore, we have proposed

the sSFR-µ-SFE relation as the Fundamental Formation

Relation (FFR), which governs the star formation and

quenching processes, and provides a simple framework

to study galaxy evolution.

The three quantities in FFR are linked by equation

sSFR = µ×SFE. sSFR, SFE, and µ are not only normal-

ized quantities of M∗, SFR, and MH2
, but are also pri-

mary parameters in galaxy formation and evolution with

specific physical meanings. As discussed in Section 5.1

in D21, 1/sSFR is the e-folding timescale of the growth

of the stellar mass. The evolution of sSFR is primarily

driven by the dark matter halo accretion history (Peng

& Maiolino 2014). SFE (or the gas depletion timescale

τ) is related to a galaxy’s dynamical time. Some fraction

of molecular gas is turned into stars per galactic orbital

time under the gravitational instability of the cold gas

on the disk, and the exact fraction depends on detailed
feedback physics (Elmegreen & Efremov 1997; Silk 1997;

Kennicutt 1998; Genzel et al. 2010). µ is mainly a mea-

surement of the gravitational instability parameter Q

for the gas disk (e.g., Wong & Blitz 2002). Therefore,

the equation sSFR = µ×SFE suggests that the star for-

mation level, in terms of sSFR, is determined by the

combination of gas instability and the galactic dynamic

timescale of the disk. It is also interesting to note that

1/SFE and 1/sSFR are both timescales, one for gas and

one for stars. 1/SFE is termed as “galactic clock” in

Tacconi et al. (2020) and 1/sSFR is called as “cosmic

clock” in Peng et al. (2010).

In parallel, the gas regulator model (e.g., Bouché

et al. 2010; Lilly et al. 2013; Peng & Maiolino 2014;

Dekel & Mandelker 2014; Belfiore et al. 2019) has been

proposed as a simple toy model to describe the inter-
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play between gas accretion, star formation and out-

flow. Despite its simplicity, the model has been quite

successful in interpreting a variety of observations of

star forming, secularly-evolving galaxies, including the

mass-metallicity relation (e.g., Lequeux et al. 1979;

Tremonti et al. 2004), the fundamental metallicity re-

lation (e.g., Mannucci et al. 2010), metallicity gradi-

ents (e.g., Maiolino & Mannucci 2019 for a review) and

quenching mechanism from the stellar metallicity differ-

ence between star-forming and passive galaxies (Peng

et al. 2015; Trussler et al. 2020a,b).

In this paper, we first explore whether the H i gas

follows a similar FFR as H2. Then we explore how to

use the FFR of the molecular gas, in combination with

the gas regulator model, to study galaxy evolution.

2. SAMPLE

The main sample analyzed in this paper is the same

xCOLD GASS (Saintonge et al. 2017) sample that we

have used in D21. Briefly, it was assembled through

CO (1-0) observations on the IRAM 30m single-dish

telescope. The xCOLD GASS survey aims to uni-

formly span the SFR-stellar mass (M∗) plane down to

M∗ ∼ 109M� in the nearby Universe (0.01 < z < 0.05),

and hence is not biased towards star-forming galaxies or

passive galaxies. This makes it an ideal sample to study

both star formation and quenching processes in the local

galaxies. Galaxies are selected in xCOLD GASS to pro-

duce a roughly flat distribution in M∗, which is different

from the mass distribution of the parent SDSS sample.

This mass bias can be corrected by a statistical weight

(Catinella et al. 2010).

The H2 gas mass of each individual galaxy is derived

from CO luminosity via the CO-to-H2 conversion factor

(αCO) using the calibrations in Accurso et al. (2017) as

recommended by xCOLD GASS. We have also tested

alternative conversion factors, including constant αCO

or metallicity-dependent-only αCO (e.g., Genzel et al.

2012). The results are very similar to these presented

in the paper, hence our results are not sensitive to the

choice of conversion factor. The stellar masses are re-

trieved from the SDSS DR7 MPA-JHU catalog (Salim

et al. 2007). SFRs in xCOLD GASS are calculated us-

ing the combination of MIR and UV from WISE and

GALEX survey, respectively, as described in Janowiecki

et al. (2017). All stellar masses and SFRs are converted

to a Chabrier initial mass function (Chabrier 2003). The

final sample used in our analysis contains 330 galaxies

with reliable CO (1-0), SFR and stellar mass measure-

ments.

Other auxiliary data used in our analysis includes r-

band effective radius (R50), which is obtained from the

SDSS DR7 (Abazajian et al. 2009) official database.

The mass-weighted bulge-to-total ratios (B/T) are taken

from Simard et al. (2011) and Mendel et al. (2014),

where a pure exponential disk and a de Vaucouleurs

bulge are used. The classifications of the central and

satellite galaxies are retrieved from the SDSS DR7 Yang

et al. (2007) group catalogue. Central galaxies are de-

fined to be both the most massive and the most luminous

(r-band) galaxy within a given group. Other galaxies

in the group are defined as satellites. The gas-phase

metallicities 12 + log O/H were measured from the

emission line ratios derived by Tremonti et al. (2004).

Only galaxies with lines of Hβ, Hα, and [N II] λ6584

detected at greater than 5 σ have metallicity measure-

ments, and galaxies with weaker or no emission lines

(i.e. most of the quenching or quenched galaxies) are

not included in the metallicity-related analysis. We have

also tested other independent measurements of metallic-

ity such as the N2 and O3N2 calibrations and find very

small changes to the results presented in this paper.

The FFR proposed in D21 refers to the molecular gas

H2. In this work, we also wish to explore if the H i follows

a similar FFR as the H2 gas, by including in our analy-

sis the H i gas measurements from the extended GALEX

Arecibo SDSS Survey (xGASS). xGASS provides a cen-

sus of the H i gas content of 1179 galaxies using the

Arecibo telescope (Catinella et al. 2018). They are se-

lected only by redshift (0.01 < z < 0.05) and stellar

mass (109M� < M∗ < 1011.5M�) from the intersected

area of the SDSS DR7 spectroscopic survey, the GALEX

Medium Imaging Survey (Martin et al. 2005) and pro-

jected ALFALFA footprints (Haynes et al. 2011). Sim-

ilar to xCOLD GASS, the xGASS survey is composed

of GASS and GASS-low (low mass extension of GASS).

To optimize the survey efficiency, galaxies with reliable

H i detections already available from the 40% ALFALFA

catalog or the Cornell H i digital archive (Springob et al.

2005), were not observed again. The rest galaxies were

observed with the Arecibo telescope until the H i line

was detected, or a limit of a few percent in MHI/M∗
was reached. This limit of MHI/M∗ is 2% for galaxies

with log M∗ > 9.7, and a constant gas mass limit of log

MHI = 8 for galaxies with lower stellar masses (which

corresponds to a varying limit of MHI/M∗ from 2% at

log M∗ ∼ 9.7, 4% at log M∗ ∼ 9.4 to 10% at log M∗ ∼
9). In our analysis, we only include reliable H i detec-

tions such that the H i line is detected and not confused

by close companions. After this selection, there are 662

galaxies in our H i sample. Each galaxy is weighted by a

correction factor to account for selection effects in stellar

mass, described in Catinella et al. (2018). The selection

effects were discussed in detail in the Appendix in D21.
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In addition, we show the H i detection ratio as a func-

tion of SFR and M∗ (Figure A1), and of sSFR (Figure

A2), analogous to Figure A1 and A2 in D21 for the H2

detection ratio.

3. RESULTS

3.1. Molecular and atomic hydrogen gas

Figure 1 shows the average H2 molecular gas mass

(left panel) and average H i gas mass (right panel) in

the SFR-M∗ plane. In both panels, the dashed line in-

dicates the position of the star-forming main sequence

(MS) defined in Saintonge et al. (2016). The dotted lines

indicate ±0.4 dex scatter around the main sequence.

The lower dotted line is the approximate divide be-

tween star-forming and quiescent galaxies. The upper

dotted line indicates the approximate divide between

normal star-forming galaxies and galaxies with elevated

SFR (starburst galaxies). It is evident that the color-

coded data distribution in panel a and b are different.

This is because panel a is produced by galaxies with

H2 detections regardless of their H i detection status,

while panel b is produced by galaxies with H i detec-

tions regardless of their H2 detection status. These two

samples share many common galaxies that have detec-

tions in both H i and H2, but are not the same due to

that some galaxies have only H i detections/observations

while some have only H2 detections/observations. We

discuss below the reasons that cause this difference in

data distribution and the impact to the results.

Comparing the data distribution in panel a and b,

the small extra extension to the star-bursting regime

in H2 at log M∗ ∼ 10 - 11 is due to the xCOLD GASS

survey containing some extra star-bursting galaxies that

have not been included in the xGASS survey. In other

words, this is not because these star-bursting galaxies

have H2 detections but no H i detections, but simply

because they have not been observed in H i. Meanwhile,

the fact that many starbursts/LIRGs have strong 21-cm

continuum in the star-bursting regions results in strong

H i absorption and hence obvious H i emission may not

be easily detected by single-dish telescopes (e.g., van

Driel et al. 2001). The more obvious difference between

panel a and b is in the low SFR regime, where only

H i data is present. First, this difference here is not

due to different samples as in the star-bursting regime

discussed above. These galaxy samples are identical,

i.e. they have been observed in both H i and H2. Sec-

ond, the observation limit in H2 is similar to H i, both

go down to a gas fraction of about 2%. This suggests

that some galaxies in the low SFR regime are genuine

H2 poor (hence not detected in CO) but H i rich (hence

detected in H i). Indeed, as discussed in Zhang et al.

(2019, 2021), during the quenching of the massive cen-

tral disk galaxies, their H2 gas mass drops rapidly by

more than 1 dex from MS to the lowest observed sSFR,

but their H i gas mass remains surprisingly constant, i.e.

the H i/H2 ratio rapidly increases with decreasing sSFR.

If we select galaxies that have detections in both H i and

H2, the results in panel a and b in the overlapped region

of H i and H2 distributions on the SFR-M∗ plane remain

the same.

Comparing panels a and b, H2 gas mass and H i gas

mass follow similar trend of distribution on the SFR-

M∗ plane. Both of them increase with increasing stellar

mass and SFR. At a given stellar mass and SFR, on

average, the H i gas mass is higher than the H2 gas mass,

especially for low-mass galaxies that are H i dominated.

This indicates the SFE of H2 gas (SFEH2
) is higher than

that of the H i gas (SFEHI). Or equivalently, the gas

depletion timescale τdep (=1/SFE) of H2 gas (τdep,H2) is

shorter than that of the H i gas (τdep,HI). It should be

noted that SFEHI can be reformed as SFEHI = SFEH2
×

MH2/MHI. Hence SFEHI is simply the product of SFEH2

and the H2 to H i gas mass ratio.

The typical timescale of H2 formation in equilibrium is

∼ 107 yr (e.g., Goldsmith et al. 2007; Liszt 2007), which

is much shorter than τdep,H2
of typical star-forming

galaxies. This hence suggests that a significant frac-

tion of H i gas will not be able to form H2, in particu-

lar in low-mass galaxies, probably due to the low sur-

face density or lack of dust. H2 formation efficiency

is also expected to depend on the gas-phase metallic-

ity and/or the gas pressure (e.g., Blitz & Rosolowsky

2006; Krumholz et al. 2009). In addition, H2 can also

be destroyed by star formation feedback (Morselli et al.

2020).

3.2. SFE-sSFR relation

Various studies have shown that τdep,H2
is tightly cor-

related with the SFR offset from the MS (e.g., Saintonge

et al. 2011, 2012, 2017; Huang & Kauffmann 2014; Gen-

zel et al. 2015; Scoville et al. 2017; Tacconi et al. 2018,

2020 for a review; Eales et al. 2020). In D21, we show

the τdep,H2
-sSFR relation is part of the FFR. Similar to

Figure 4 in D21, Figure 2 shows the average SFE as a

function of sSFR for H2 (upper six panels) and for H i

(lower six panels). We split the galaxies into different

stellar mass (panel a and g), bulge-to-total ratio (panel b

and h) and effective radius (panel c and i), centrals and

satellites (panel d and j), and different gas-phase metal-

licities (panel e and k). In panel f and l, we also show

the distribution of all galaxies in the H2 and H i sam-

ple, respectively, without splitting into subsamples. The

vertical light blue and red shades in each panel indicate
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Figure 1. The average molecular gas mass (left panel) and average atomic gas mass (right panel) in the SFR-M∗ plane. The
average values are obtained by using a moving box of size 0.6 dex in SFR and 0.6 dex in M∗, with the requirement of minimum
of 3 galaxies in each box. In both panels, the dashed line indicates the position of the star-forming main sequence defined in
Saintonge et al. (2016). The dotted lines indicate ±0.4 dex scatter around the main sequence.

the position of the star-forming MS and the approximate

position of the quenched galaxies at M∗ = 1010M�, re-

spectively.

Since SFE = sSFR/µ, where µ is the gas to stellar

mass ratio, for a given position on the SFE-sSFR plane,

the value of µ (or the gas fraction fgas) is uniquely de-

termined. At a given sSFR, a larger SFE corresponds

a lower gas fraction. The two dark diagonal lines in

the upper six panels mark the constant µH2 of 1.5%

and 2.5%, respectively. These are the detection limits

for the xCOLD GASS galaxies at different stellar mass

(1.5% for log M∗ > 10 and 2.5% for 9 < log M∗ < 10).

The three dark diagonal lines in the lower six panels

mark the constant µHI of 2%, 4% and 10%, respectively.

These are the detection limits for the xGASS galaxies at

different stellar mass (see Section 2). The dark shades

in each panel mark the regions below the detection limit

for different M∗.

The sample selection effects in xCOLD GASS and the

uncertainties in SFR measurements have been discussed

in detail in D21. The average H2 detection ratio is higher

than 80% at log sSFR > −1.6 Gyr−1, where the results

should be reliable. For H i, as in Figure A1 and A2, the

average H i detection ratio in xGASS is higher than 80%

at log sSFR > −1.5 Gyr−1 (where the results should be

reliable). For galaxies with log sSFR < −1.5 Gyr−1, the

detection ratio for both H2 and H i decreases rapidly due

to the observation limit of the surveys. Hence results in

this regime are for H2 or H i detected galaxies, which

may not represent the statistics of a unbiased sample.

We also note that, as shown in the upper six panels in

Figure 2, the general trend of the SFEH2-sSFR relation

seems to persist below log sSFR < −1.5 Gyr−1, i.e. keep

a similar slope and is still independent of other parame-

ters. In the modeling part below, we assume this is true.
Future deeper surveys will provide critical observation

evidences in the low sSFR regime. If the SFEH2
-sSFR

relation does change its slope and normalization in the

low sSFR regime, or becomes dependent on other galax-

ies properties, the derived gas cycle during quenching

should be revised accordingly.

The results shown in Figure 2 confirm the results in

D21 that there exists a tight correlation between SFEH2

and sSFR. This relation holds from star-bursting galax-

ies to those in the process of being quenched, probing

most accurately galaxies with log sSFR & −2 Gyr−1. It

is independent of all key parameters that we have ex-

plored, including stellar mass, B/T, size, environment

(in terms of central/satellite) and gas-phase metallicity.

However, no such a tight correlation is found for H i gas.

The brown dashed line in all panels indicates the best

orthogonal distance regression (ODR) fitted relation be-
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Figure 2. The average star formation efficiency as a function of sSFR for molecular gas (upper six panels) and atomic gas (lower
six panels). The galaxies are divided into different stellar mass (panel a and g), bulge-to-total ratio (panel b and h), effective
radius (panel c and i), centrals and satellites (panel d and j) and different gas-phase metallicities (panel e and k). In panel f
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tween SFEH2
and sSFR as in D21:

log SFEH2 = 0.50 log sSFR + 0.56, (1)

the 1 σ systematic uncertainties in the two fitting pa-

rameters are 0.5±0.021 and 0.56±0.027, respectively.

The slope of 0.5 is in good agreement with previous

studies (e.g., Saintonge et al. 2012; Sargent et al. 2014;

Genzel et al. 2015; Tacconi et al. 2018). For the ques-

tion of whether changes in star formation are primarily

driven by the change in SFE or gas fraction, it becomes

immediately clear with the equation sSFR = µ×SFE.

The answer is given by the logarithmic slope of the µH2 -

sSFR relation, or equivalently, of the SFEH2
-sSFR rela-

tion. Given sSFR = µH2
× SFEH2

, the sum of the two

logarithmic slopes should be unity. As shown in D21

and equation (1), the measured logarithmic slope is ∼
0.5 for SFEH2

-sSFR, ∼ 0.6 for µH2
-sSFR. Hence their

sum is indeed about unity. The two logarithmic slopes

are similar (∼ 0.5), which means the change in log sSFR

is due to similar contribution from the change in log

SFEH2
and log µH2

, i.e. µH2
and SFEH2

are compara-

bly important in determining the star formation level (in

terms of sSFR), for both quenching and star formation

enhancement. Since the exact values of the two slopes

may depend on sample selection, observation limit, CO

conversion factor, and also fitting method, it remains to

be determined more precisely with further surveys.

It should be noted that knowing SFR alone is not

enough to know the star formation status of the galaxy,

i.e. it is star-forming or quenching. The SFR of a mas-

sive galaxy in quenching may be higher than the SFR

of a star-forming low-mass galaxy. In addition to the

SFR, one also needs to know the stellar mass (hence the

sSFR). The same argument also applies to MH2
, i.e. a

higher MH2 alone does not necessarily mean the galaxy

is a star-forming MS galaxy, while a higherMH2
/M∗ (i.e.

µ) does, at least in a statistical sense via the observed

average µ-sSFR relation. Therefore, the specific relation

sSFR = µH2× SFEH2 is more effective in studying the

star formation status and its determining factor.

Interestingly, the sSFR depending on both SFE and µ

holds also locally as derived from the resolved data, as

illustrated in Section 4.2 in Morselli et al. (2020) and the

various studies of ALMaQUEST (Ellison et al. 2020a,b).

Besides, in the lower panels, all the curves are essentially

below the dashed line, which indicates, as mentioned

before, on average the SFEH2
is higher than SFEHI.

The difference between the SFE-sSFR relation for H i

and that for H2 is dramatic. It is well known that the ex-

tended H i gas is very sensitive to environmental effects

for satellites (Giovanelli & Haynes 1985; Catinella et al.

2013), while for massive central disk galaxies, it remains

largely unchanged during quenching (Zhang et al. 2019).

Therefore, different processes, in particular quenching

processes (e.g., the two separated quenching channels

as in Peng et al. 2010, mass quenching and environment

quenching) may have very different effects on the H i gas

and hence produce very different SFEHI-sSFR relations.

On the contrary, the SFEH2-sSFR relation remains the

same for galaxies with vastly different stellar masses,

structures, sizes and in different environments. It should

be noted that, this does not mean different processes

(e.g., quenching, keeping galaxies evolving on the MS or

star-burst triggering) have zero effect on the H2 gas. As

we will show in the next subsection, different processes

require different H2 gas supply or removal rate, which

controls how the galaxy evolves on the (same) SFEH2
-

sSFR relation (i.e. positions on the relation, evolution

speed, evolving to the low or high sSFR direction).

3.3. Galaxy evolution on the SFEH2-sSFR(t) relation

As discussed in D21, the scatter of the SFEH2
-sSFR

relation is 0.2 dex, similar to the combined measurement

errors of SFE and sSFR on the orthogonal direction to

the fitted line which is 0.21 dex, i.e. the scatter of the

SFEH2
-sSFR relation can be entirely explained by the

measurement errors. This means the intrinsic scatter of

this relation is extremely small. This is supported by the

fact that the SFEH2
-sSFR relation is independent of all

key galaxy properties that we have explored in the pre-

vious section. This unique feature of the relation makes

it simpler and more convenient in modeling the evolu-

tion of different galaxy populations than other scaling

relations. This is because when galaxy evolving with

time, its stellar mass increases due to star formation. If

a mass-dependent scaling relation is used, for instance

the integrated SFR-MH2
relation (as shown in Figure 3

in D21), then different SFR-MH2 relations have to be

used at different times (due to its strong dependence

on stellar mass). Conversely, the SFEH2
-sSFR relation

is stellar mass independent, hence there is no need to

consider this effect. The same argument is also applied

to other galaxy properties, such as structure, size and

environment that are all changing with time. For in-

stance, as shown in D21 and Figure 2, the SFR-MH2

relation also depends on B/T and the B/T for a given

galaxy is also changing with time. On the contrary, the

SFEH2-sSFR relation is independent of all other galaxy

properties that we have explored, and therefore we con-

sider it more fundamental that the SFR-MH2
relation.

Since the sSFR is directly related to the cosmic time

t and acts as the cosmic clock (Peng et al. 2010; Peng

& Maiolino 2014), the SFEH2
-sSFR relation is in fact a

SFEH2-sSFR ∼ t relation. For simplicity in modeling,
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we further assume that galaxies with different properties

(e.g., stellar masses, metallicities, structures, sizes and

in different environments) are all strictly evolving on

the SFEH2-sSFR relation given by equation (1). Then

we use the gas regulator model to study how different

galaxy populations evolve on this scaling relation.

The change of the total cold gas (i.e. H i + H2) mass

of the galaxy per unit time is given by equation (8) in

Peng & Maiolino (2014). In a similar way, given the

mass conservation of H2, the change of the H2 gas mass

is given by the net H2 supply (or removal) rate minus

the H2 consumed by star formation, i.e.,

dMH2

dt
= ΦH2

− ΨH2
− (1 −R) × SFR

= λnet,H2
× SFR − (1 −R) × SFR

= (λnet,H2
− (1 −R)) × SFEH2

×MH2
(2)

where R is the fraction of the mass of the newly formed

stars as measured by the SFR, which is quickly returned

to the interstellar medium and is assumed to be about

0.4. Here we have also assumed that stars form only

from H2 gas, i.e. (1 - R) × SFR is the total mass per-

manently consumed by star formation and is also the H2

mass permanently locked up into long-lived stars. ΦH2

is H2 supply rate and ΨH2 is H2 removal rate. Hence

λnet,H2
= (ΦH2

−ΨH2
) / SFR is the net H2 supply load-

ing factor. It should be noted that we use the term “H2

supply/removal” instead of “H2 inflow/outflow”. This

is because H2 does not typically accrete onto galaxies

or haloes as “inflow”, except for mergers, but is rather

formed inside galaxies from pre-accreted H i. Hence the

“H2 supply” here includes H2 formed inside galaxies,

and those brought in by mergers or accreting filaments.

The “H2 removal” here includes the H2 outflow driven

by star formation or AGN feedback, and it can also in-

clude H2 destroyed by photo-dissociation (see e.g., Blitz

& Rosolowsky 2006; McKee & Krumholz 2010; Morselli

et al. 2021), or removed by external environment effects

(e.g., strong ram-pressure stripping).

As noted above, if galaxies with different properties

are all assumed to evolve strictly on the SFEH2
-sSFR

relation given by equation (1), given the analytic form

of equation (2), the evolution locus of a galaxy on

the SFEH2
-sSFR(t) relation is uniquely controlled by

λnet,H2 . A positive value of λnet,H2 means net H2 sup-

ply, and a negative value means net H2 removal. In

particular, when λnet,eq = (1 − R) ∼ 0.6, dMH2
/dt =

0 and the model achieves equilibrium at a constant H2

gas mass. Therefore, we can use the evolution locus of

a given galaxy population on the SFEH2
-sSFR(t) rela-

tion to accurately determine λnet,H2
and the net H2 gas

supply or removal rate.

Figure 3 and 4 show the evolution locus of model

galaxies with different stellar mass and λnet,H2
(labeled

on the top of each panel) on the SFEH2-sSFR(t) relation

(thick brown line). Although the SFEH2-sSFR(t) rela-

tion itself does not depend on stellar mass, the sSFR of

the MS do. For the MS as shown in Figure 1, the sSFR

at log M∗ ∼ 9, 10 and 11 is -0.7, -1 and -1.7 Gyr−1,

respectively. These are indicated by the vertical dashed

line, labeled as “z ∼ 0 MS” in each panel of Figure 3 (for

log M∗ ∼ 10) and Figure 4 (for log M∗ ∼ 9 and 11). As

shown in Figure 3b in Peng et al. (2015), the stellar age

difference between the star-forming and quiescent galax-

ies is almost constant across the entire observable stellar

mass range in SDSS and is equal to ∆age ∼ 4 Gyr. This

is in broad agreement with other quenching timescales

measured in Balogh et al. (2016); Fossati et al. (2017);

Guo et al. (2017). Therefore, in the toy model we start

the evolution from the MS at z = 0.5 (that is, 4 Gyr

ago), shown by the circle dot labeled as “0 Gyr” in each

panel. The observed sSFR of the MS at z = 0.5 is about

0.5 dex higher than the MS at z = 0, derived from sSFR

∼ (1 + z)3 (e.g., Lilly et al. 2013; Speagle et al. 2014;

Ilbert et al. 2015).

The initial conditions are the initial M∗, redshift and

the assumed λnet,H2
(labeled in each panel in Figure

3). As mentioned above, the appearance of M∗ in the

initial conditions is due to the sSFR of the MS is mass-

dependent at a given redshift. The SFEH2
-sSFR relation

itself is mass-independent. One great feature of this ap-

proach is that there is no need to assume any initial

MH2
or SFR. The evolution of the model galaxy is cal-

culated as follows. The sSFR of the MS is given by the

observed sSFRMS(M∗, z). Then SFEH2
is given by the

SFEH2-sSFR relation in equation (1). µH2 is then given

by sSFR/SFEH2
. Then µH2

and M∗ together give MH2
.

Putting SFEH2
, MH2

and λnet,H2
into equation (2) gives

the change of MH2 during dt. Repeating this iteration

gives the evolution loci of the model galaxy under dif-

ferent assumed gas cycle regime (i.e. different λnet,H2
)

in each panel in Figure 3.

As shown in Figure 1 in Peng & Maiolino (2014), the

average accretion rate of a given dark matter halo and

the implied baryonic accretion rate change little in the

past few Gyrs (e.g., from z = 0.5 to 0). The H2 sup-

ply may also have not changed much, hence a constant

λnet,H2
has been assumed here. At z > 1, both halo and

baryonic accretion rate change rapidly with time, hence

a time-dependent λnet,H2
will need to be used.

As shown in Figure 3a and 3b, with λnet,H2
= 0 (no

net H2 supply or removal, like a closed box) or -0.25

(weak net H2 removal), the galaxy evolves rapidly along

the SFEH2
-sSFR(t) relation towards low SFEH2

and low
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Figure 3. The evolution locus of a model galaxy on the SFEH2 -sSFR(t) relation (thick brown line, given by equation (1)), with
an initial M∗ = 1010M� and different values of λnet,H2 . In each panel, the two vertical blue dashed lines indicate the sSFR of
MS at M∗ = 1010M�, at z = 0 and 0.5. The blue and red shades indicate the approximate position of the star-forming galaxies
and fully quenched galaxies at z ∼ 0, respectively.

sSFR. It will be fully quenched and join the quiescent

galaxy population (whose SFRs are to be 1 dex below

that of the MS galaxies) within 4-5 Gyr, in good agree-

ment with the observed ∆age ∼ 4 Gyr. This suggests

that a strong H2 removal is not required to quench the

low-redshift MS galaxies. As shown in panel c, with

a stronger H2 removal λnet,H2
= 1, the galaxy will be

fully quenched in about 2 Gyr. However, as shown in

Figure 4 of Peng et al. (2015) (see also in Trussler et al.

2020a), with a net gas removal of λnet,H2
= 1, the stellar

metallicity enhancement during quenching will be sig-

nificantly smaller than the observed values, and hence

argues against strong net outflow during quenching for

middle to low-mass galaxies, on average.

As shown in Figure 3d, with λnet,H2 = 0.58 (modest

net H2 supply), the galaxy evolves slowly downwards

along the SFEH2
-sSFR(t) relation. After about 4-5 Gyr

(the cosmic time difference between z = 0.5 and 0), it

arrives at the MS at z = 0. This suggests that to keep

the galaxy evolving on the MS, it needs a net H2 gas sup-

ply rate of about 0.58 SFR (i.e. λnet,H2 = 0.58), which

interestingly is about the equilibrium value predicted in

the gas regulator model, of λnet,eq = (1−R) ∼ 0.6 with

R assumed to be 0.4. Therefore, the MS galaxies with

log M∗ = 10 are indeed evolving around the equilibrium

state, in which their H2 gas mass is about constant with

time. Since its stellar mass will continue to grow due

to star formation, their sSFR and gas fraction will still

decrease gradually with time.

We investigate the effect of the uncertainties in the

fitting parameters in equation (1) on the results, by al-

lowing the two fitting parameters to change within the
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Figure 4. As for Figure 3, but for different initial stellar mass M∗ = 109M� (upper panels) and M∗ = 1011M� (lower panels),
with different values of λnet,H2 . The left two panels show the cases of quenching, and the right two panels show the cases of
evolving on the main sequence.

estimated uncertainties. We also test our results using

fitting parameters derived from ordinary least squares,

which produces a slightly shallower slope of 0.44. These

results are shown in Figure A3 in the Appendix. The

evolution loci of the model galaxy on different lines are

all similar. Hence the uncertainties in the fitting param-

eters only have small effect on our results.

Figure 4 is similar to Figure 3, but for galaxies with log

M∗ = 9 (upper panels) and log M∗ = 11 (lower panels).

As mentioned above, the difference due to a different

M∗ is the sSFR of the MS, which is now -0.7 Gyr−1 for

log M∗ ∼ 9 and -1.7 Gyr−1 for log M∗ ∼ 11 at z ∼ 0.

The case for log M∗ ∼ 9 is very similar to log M∗ ∼
10 as shown in Figure 3. With no net H2 supply, the

galaxy will be fully quenched in about 4 Gyr. To keep it

evolving on the MS, a net H2 supply of λnet,H2
∼ 0.6 is

required, which is also equal to the equilibrium value of

λnet,eq = (1 − R), see equation (2), with R assumed to

be 0.4. For a massive MS galaxies with log M∗ ∼ 11, the

situation is different. To fully quench it in 4 Gyr (i.e.

within the observed ∆age ∼ 4 Gyr as discussed before),

the halt of H2 supply (through either prior strangulation

of predominantly H i gas, and/or prevention of H i-to-H2

conversion inside galaxies) is not enough, and it requires

an additional net H2 removal with λnet,H2
= −1 (i.e. a

mass-loading factor of unity). This means the massive

galaxies are more resistant to quenching due to the halt

of H2 supply. This is because massive MS galaxies have

a lower sSFR than low-mass MS galaxies, hence a lower

SFE or longer τdep. While the definition of quench is

the same for all galaxies, i.e. to decrease the sSFR by

more than 1 dex relative to the MS. This effect is clearly
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seen in other panels that the decrease of sSFR is largest

during the first Gyr of quenching. For the same reason,

it is also relatively easier to keep the massive galaxy stay

on the MS, which requires a net H2 supply of λnet,H2 ∼
0.4, lower than the λnet,eq. This means the H2 gas mass

in the massive MS galaxies will slowly decrease with

time.

Putting together, to quench middle to low-mass galax-

ies, the halt of H2 supply is required. The observed

stellar metallicity difference between star-forming and

passive galaxies argues against any strong outflow or

gas removal in this mass range (Peng et al. 2015; Trus-

sler et al. 2020a). Massive galaxies are more resistant

to quenching due to the halt of H2 supply. To quench

them, additional H2 gas removal is required (with a net

mass-loading factor about unity), probably driven by

AGN feedback in massive galaxies (e.g., Cicone et al.

2014; Förster Schreiber et al. 2019; Veilleux et al. 2020

for a review) or by photodissociation of H2. Interest-

ingly, this does not contradict to the stellar metallicity

requirement as in Peng et al. (2015). This is because

although gas outflow or gas removal will act to reduce

the stellar metallicity enhancement during quenching,

the fgas of the MS massive galaxy on average is already

very low and the stellar metallicity enhancement will be

very limited even if the galaxy is quenched with zero

gas removal. Therefore, counterintuitively, although the

low-mass galaxies have a significantly higher fgas in H i

than massive galaxies (evidently in Figure 2g), they are

more sensitive to the H2 gas supply and are easier to be

quenched by the halt of H2 supply (through either prior

strangulation of predominantly H i gas due to environ-

mental effect, and/or prevention of H i-to-H2 conversion

inside galaxies).

It is also interesting to notice that for the cases of

quenching (i.e. with no H2 supply or net H2 removal,

including Figure 3a,b,c and Figure 4a,c), the quenching

speed (dsSFR/dt) is faster in the beginning due to the

higher SFE (hence shorter τdep). The sSFR drops more

than 1 dex in the first 1 or 2 Gyr (as in Figure 3 and

Figure 4).

While keeping galaxies evolving on the MS, the middle

to low-mass galaxies require a net H2 supply of λnet,H2
∼

0.6, which is the equilibrium state predicted by the gas

regulator model of λnet,eq = (1 − R) ∼ 0.6 with R as-

sumed to be 0.4. Massive galaxies require a slightly

lower net H2 supply of λnet,H2 ∼ 0.4, which is smaller

than the λnet,eq due to their relatively lower sSFR.

It should be appreciated that in the simple frame-

work of FFR, the value of M∗ only matters due to its

(weak) dependence on sSFR (at a given z). As a con-

sequence of this, at a given z, the MS galaxies with

different M∗ locate on slightly different positions on the

SFEH2
-sSFR(t) relation. Apart from this, their evolu-

tion on the SFEH2
-sSFR(t) relation is controlled solely

by λnet,H2 . A zero or negative λnet,H2 (net H2 removal)

in general quenches the galaxy and makes it rapidly

evolve to join the quiescent population within 4-5 Gyr;

a positive λnet,H2 around λnet,eq (modest net H2 sup-

ply) can keep the galaxy evolve on the MS (with slowly

decreasing sSFR), and a large positive λnet,H2
(strong

net H2 supply introduced by e.g., mergers or strong dy-

namical interactions) can boost the sSFR (e.g., trigger

starbursts).

We stress that although the SFEH2
-sSFR relation

is very tight and is independent of other key galaxy

properties such as M∗, structure, metallicity and envi-

ronment, the value of λnet,H2
may strongly depends on

these properties. For instance, when move from fields

to groups, and to clusters, as environmental quenching

becomes more and more effective, the value of λnet,H2

is expected to become progressively smaller (i.e. sup-

pressed H i gas inflow, hence less available H i gas to be

converted into H2), then around zero (i.e. strangulation

of H i gas inflow and no more H2 supply), and then nega-

tive (i.e. strangulation plus additional gas removal, such

as gas stripping in clusters). This means that galaxies

in dense regions, on average, will evolve faster along

the SFEH2 -sSFR relation to the low sSFR direction (i.e.

being quenched faster). Therefore, the fact that SFEH2 -

sSFR relation is independent of environment does not

contradict to the well-known fact that the fraction of the

passive galaxies is higher in dense regions (Kauffmann

et al. 2004; Baldry et al. 2006; Peng et al. 2010). This

argument can also be applied to explain morphologi-

cal quenching (Martig et al. 2009; Genzel et al. 2014;

Gensior et al. 2020), i.e. the SFEH2
-sSFR relation is in-

dependent of B/T, but the galaxies with a more massive

bulge (hence higher B/T) may have a smaller λnet,H2 ,

and hence more suppressed star formation.

3.4. Galaxy evolution on the SFEHI-sSFR relations?

As shown in Figure 2, the SFEHI-sSFR relation shows

strong systematic dependence on all key parameters that

we have explored (to a less extent for B/T), in particular

at the star-forming regions at log sSFR > −1.5 (where

the sample has a high detection rate > 80%). We note

that at log sSFR < −1.5, the H i detection rate drops

rapidly below 20% (Figure A2). This is evident in panel

g,h,i,j in Figure 2 that the differences between different

curves become smaller at lower sSFR, which are likely

caused by the increasing non-detections in H i. The true

differences could be much larger, like those at log sSFR
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> −1.5. Comparing panel f and l, the scatter of the SFE-

sSFR relation for H i is significantly larger than that for

H2, in particular at log sSFR > -1.5, where both the

H i and H2 sample have a high detection rate > 80%.

In general, given the fact that the SFEHI-sSFR relation

is very different for galaxies with different M∗, struc-

tures, metallicities and in different environments (i.e.

central/satellite), it is impossible to derive a simple H i

gas supply/removal rate as for H2. As discussed before,

this reflects that different quenching mechanisms may

have very different effects on H i gas and hence produce

very different SFEHI-sSFR relations. We will further

investigate this in the future work.

4. SUMMARY

The main focus of this paper is to explore how to

use the Fundamental Formation Relation (FFR) of the

molecular gas, in combination with the gas regulator

model, to study the gas cycle and star formation in the

local galaxy populations. Our results and conclusions

may be summarized as follows.

(1) At a given stellar mass and SFR, on average,

the MHI is higher than the MH2
, especially for low-

mass galaxies that are H i dominated. Since the typical

timescale of H2 formation in equilibrium is much shorter

than τdep,H2
of typical star-forming MS galaxies. This

suggests a significant fraction of H i gas will not be able

to form H2, in particular in low-mass galaxies.

(2) The H i gas does not follow a similar FFR as

the H2. The SFEHI-sSFR relation shows significant

scatter and strong systematic dependence on all of the

key galaxy properties that we have explored, while the

SFEH2
-sSFR relation does not. This dramatic differ-

ence between H i and H2 indicates that different pro-

cesses (e.g., quenching by different mechanisms or star-

forming) may have very different effects on the H i

gas and hence produce different SFEHI-sSFR relations,

while SFEH2
-sSFR relation remains unaffected. The

tighter correlation between sSFR and SFEH2 is also in-

dicative of the well-known fact that stars form predom-

inantly in molecular clouds, not from atomic hydrogen.

(3) The unique feature of the SFEH2 -sSFR relation

(i.e. very small scatter and independent of other galaxy

properties) makes it a simple and convenient tool to

study the evolution of different galaxy populations. For

simplicity, we further assume that galaxies with differ-

ent properties are all strictly evolving on the SFEH2
-

sSFR relation given by equation (1). Then we apply the

gas regulator model to study how different galaxy pop-

ulations evolve on this scaling relation. We show how

galaxies evolve on the SFEH2
-sSFR relation (e.g., evo-

lution to the low or high sSFR direction, how fast is the

evolution) is uniquely controlled by a single parameter

λnet,H2
. To keep galaxies evolving on the star-forming

MS, the middle to low-mass galaxies requires a net H2

supply of λnet,H2 ∼ 0.6, which is the equilibrium state

predicted by the gas regulator model of λnet,eq = (1−R)

with R assumed to be 0.4. Massive galaxies require a

lower net supply of λnet,H2 < λnet,eq to stay on the MS.

(4) To quench middle to low-mass galaxies, the halt

of H2 supply is sufficient (through either prior stran-

gulation of predominantly H i gas due to environmental

effect, and/or prevention of H i-to-H2 conversion inside

galaxies). The observed stellar metallicity difference ar-

gues against any strong net outflow or gas removal in

this mass range. To quench massive galaxies, additional

H2 gas removal (with a mass-loading factor of about

unity, probably driven by AGN feedback) is required,

i.e. massive galaxies are more resistant to quenching

due to the halt of H2 supply, despite their lower gas

fraction than galaxies with lower M∗. For all galaxies,

quenching is faster in the beginning, and the sSFR drops

more than 1 dex in the first 1 or 2 Gyr’s quenching.

(5) Although the SFEH2
-sSFR relation is very tight

and is independent of all key galaxy properties that we

have explored, the value of λnet,H2 may strongly depends

on these properties. For instance, the value of λnet,H2

is expected to become progressively smaller, when move

from field to dense regions where environmental quench-

ing becomes more effective. This means that galaxies

in dense regions, on average, will evolve more rapidly

along the SFEH2
-sSFR relation to the low sSFR direc-

tion (i.e. being quenched faster). This argument can

also be applied to explain other phenomenons, such as

morphological quenching, i.e. the SFEH2
-sSFR relation

is independent of B/T, but galaxies with a more mas-

sive bulge may have a smaller λnet,H2
, and hence more

suppressed star formation (due to the smaller λnet,H2
).

We caution that the above results are based on galax-

ies with H2 and H i detections. Due to the observation

limit of the surveys, the detection ratio for both H2 and

H i decreases rapidly at log sSFR < −1.5 Gyr−1. Hence

results in this regime may not represent the statistics of

a unbiased sample. On the other hand, as shown in the

upper six panels in Figure 2, the general trend of the

SFEH2 -sSFR relation seems to persist below log sSFR

< −1.5 Gyr−1. Future deeper surveys will provide crit-

ical observations in the low sSFR regime.

In the framework of FFR, the facts that the SFEH2 -

sSFR relation is independent of all key galaxy properties

that we have explored, and that sSFR is directly related

to the cosmic time and acts as the cosmic clock, make

it natural and extremely simple to study how different

galaxy populations (with different properties and un-
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dergoing different quenching or star-forming processes)

evolve on the same SFEH2
-sSFR ∼ t relation, for in-

stance, to derive their gas supply/removal rate during

quenching or staying on MS. Both SFEH2
and sSFR can

be observationally determined, and the scatter of the

SFEH2
-sSFR relation is only 0.2 dex, one of the tightest

scaling relations in the field of star formation. Hence

the derived H2 supply and removal rates are of high ac-

curacy. As in D21, we note that both 1/SFEH2
and

1/sSFR are timescales, one for gas and one for stars.

1/SFE is rephrased as “galactic clock” in Tacconi et al.

(2020) and 1/sSFR is rephrased as “cosmic clock” in

Peng et al. (2010). Both of them are closely tied to the

growth of the dark matter halo. We will further explore

their interrelationship and their connections to the halo

in our following paper.
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APPENDIX
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Figure A1. The average H i detection ratio in xGASS sample, as a function of stellar mass (M∗) and star formation rate
(SFR), determined within moving boxes of size 0.5 dex in mass and 0.5 dex in SFR. Each galaxy is weighted by a correction
factor to account for selection effects in stellar mass. The dashed line indicates the position of the star-forming main sequence
defined in Saintonge et al. (2016). The dotted lines indicate ±0.4 dex scatter around the main sequence.
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Figure A2. The average H i detection ratio in xGASS sample as a function of SFR (left panel) and sSFR (right panel), for
galaxies within different stellar mass bins. The average H i detection ratio is larger than 80% at log sSFR > −1.5 Gyr−1.
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Figure A3. As for Figure 3, but for a model galaxy evolving on different SFEH2 -sSFR(t) relations by taking into account the
uncertainties in equation (1). The solid line is given by equation (1). Other four dashed lines are the results of four different
combinations of the uncertainties in the two fitting parameters in equation (1). The gray solid line and triangles show the results
using ordinary least squares fitting: log SFEH2 = 0.44 (±0.02) log sSFR + 0.5 (±0.03). The evolution loci of the model galaxy
on different lines are all similar. Evidently, the uncertainties in the fitting parameters only have small effect on the results.
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Granato, G. L., De Zotti, G., Silva, L., Bressan, A., &

Danese, L. 2004, ApJ, 600, 580

Gunn, J. E., & Gott, J. Richard, I. 1972, ApJ, 176, 1

Guo, Y., Bell, E. F., Lu, Y., et al. 2017, ApJL, 841, L22

Haynes, M. P., Giovanelli, R., Martin, A. M., et al. 2011,

AJ, 142, 170

Huang, M.-L., & Kauffmann, G. 2014, MNRAS, 443, 1329

Ilbert, O., Arnouts, S., Le Floc’h, E., et al. 2015, A&A,

579, A2

Janowiecki, S., Catinella, B., Cortese, L., et al. 2017,

MNRAS, 466, 4795

Kauffmann, G., White, S. D. M., Heckman, T. M., et al.

2004, MNRAS, 353, 713

Kennicutt, Robert C., J. 1998, ApJ, 498, 541

Krumholz, M. R., Burkhart, B., Forbes, J. C., & Crocker,

R. M. 2018, MNRAS, 477, 2716

Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009,

ApJ, 693, 216

Larson, R. B., Tinsley, B. M., & Caldwell, C. N. 1980, ApJ,

237, 692

Lequeux, J., Peimbert, M., Rayo, J. F., Serrano, A., &

Torres-Peimbert, S. 1979, A&A, 500, 145

Lilly, S. J., Carollo, C. M., Pipino, A., Renzini, A., & Peng,

Y. 2013, ApJ, 772, 119

Liszt, H. S. 2007, A&A, 461, 205

Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415

Maiolino, R., & Mannucci, F. 2019, A&A Rv, 27, 3

Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., &

Gnerucci, A. 2010, MNRAS, 408, 2115

Martig, M., Bournaud, F., Teyssier, R., & Dekel, A. 2009,

ApJ, 707, 250

Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005,

ApJL, 619, L1

McKee, C. F., & Krumholz, M. R. 2010, ApJ, 709, 308

Mendel, J. T., Simard, L., Palmer, M., Ellison, S. L., &

Patton, D. R. 2014, ApJS, 210, 3

Morselli, L., Rodighiero, G., Enia, A., et al. 2020, MNRAS,

496, 4606



16 Dou et al.

Morselli, L., Renzini, A., Enia, A., & Rodighiero, G. 2021,

MNRAS, 502, L85

Pan, Z., Peng, Y., Zheng, X., Wang, J., & Kong, X. 2019,

ApJL, 885, L14

Peng, Y., Maiolino, R., & Cochrane, R. 2015, Nature, 521,

192

Peng, Y.-j., & Maiolino, R. 2014, MNRAS, 443, 3643

Peng, Y.-j., & Renzini, A. 2020, MNRAS, 491, L51

Peng, Y.-j., Lilly, S. J., Kovač, K., et al. 2010, ApJ, 721, 193
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