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a b s t r a c t 

Human embryonic stem cells exhibit great potential as a 

therapeutic tool in regenerative medicine due to their self- 

renewal and trilineage differentiation capacity. Maintaining 

this unique cellular state has been shown to rely primar- 

ily on the Activin A / TGF β signaling pathway. While most 

conventional culture media are supplemented with TGF β , in 

the current study we utilize a modified version of the com- 

mercially available mTeSR1, substituting TGF β for Activin A 

in order to preserve pluripotency. (1) Cells cultured in ActA- 

mTesR express pluripotency factors NANOG, OCT4 and SOX2 

at comparable levels with cells cultured in TGF β-mTeSR. (2) 

ActA-mTeSR cultured cells retain a physiological karyotype. 
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(3) Cells in ActA-mTeSR maintain their trilineage differentia- 

tion capacity as shown in the teratoma formation assay. This 

system can be used to dissect the role of Activin A, down- 

stream effectors and signaling cascades in human embryonic 

stem cell responses. 

© 2021 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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i  
pecifications Table 

Subject Cell Biology 

Specific subject area Human Embryonic Stem Cells 

Type of data Graph, Figure 

How data were acquired Image capture (Leica TCS SP8 and SP5 confocal microscopes, LASAF 

software) 

Western blotting (LI-COR Odyssey imaging system, image studio software) 

Data analysis (GraphPad Prism version 6.0) 

qRT-PCR (Light Cycler) 

Teratoma formation assay (H&E staining) 

Data format Raw, Analyzed 

Parameters for data 

collection 

H1 cells were cultured in TGF β or Activin A- based mTeSR1 for several 

passages were tested for expression of pluripotency markers, karyotypic 

abnormalities as well as for in vitro and in vivo differentiation capacity. 

Description of data 

collection 

Pluripotency assessment was performed by indirect immunofluorescence 

of H1 colonies with antibodies against NANOG, OCT4 and SOX2. In vitro 

differentiation potential was assessed by subjecting H1 cells to three 

separate protocols for mesoderm, endoderm and ectoderm differentiation. 

Karyotypic analysis was performed by colchicine-induced mitotic arrest 

and Giemsa staining. Assessing in vivo differentiation potential required 

the formation of teratomas in NOD/SCID mice and the subsequent H&E 

staining. 

Data source location University of Birmingham, School of Biosciences, Birmingham, United 

Kingdom 

Data accessibility Papadopoulos, Angelos (2021), “Supporting data on Combined 

transcriptomic and phosphoproteomic analysis of BMP4 signaling in 

human embryonic stem cells”, Mendeley Data, V1, 

https://doi.org/10.17632/tsk65tw2kx.1 

Related research article [1] A. Papadopoulos et al., “Combined transcriptomic and 

phosphoproteomic analysis of BMP4 signaling in human embryonic stem 

cells.,” Stem Cell Res. , vol. 50, no. November 2020, p. 102,133, Dec. 2020, 

https://doi.org/10.1016/j.scr.2020.102133 . 

alue of the Data 

• These data provide an Activin A dependent culture system substituting TGF β in mTeSR1 and

capable of maintaining the pluripotency of hESCs. 

• The culture system developed is a versatile tool for studying signaling pathways in hESCs. 

• This system allows for complete control over the growth factors and compounds included

in a standard hESC culture and can therefore be employed to develop novel pluripotency

maintenance or differentiation protocols. 

. Data Description 

To develop an mTeSR-dependent human embryonic stem cell (hESC) culture method replac-

ng TGF β with Activin A, H1 cells were cultured in mTeSR without select factors supplemented

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17632/tsk65tw2kx.1
https://doi.org/10.1016/j.scr.2020.102133
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Fig. 1. H1 cells cultured in ActA-mTeSR express pluripotency markers and maintain a normal karyotype. (A) H1 cells 

cultured in ActA-mTeSR immunostained with α-NANOG, α-OCT4 and α-SOX2 antibodies. Scale bar = 10 μm. (B) H1 cells 

cultured in TGF β- (control) or ActA-mTeSR were lysed and immunoblotted with α-NANOG, α-OCT4 and α-TUBULIN 

antibodies. Expression levels of NANOG and OCT3/4 were quantified by densitometry using TUBULIN as loading control 

( N = 3). (C) H1 cells cultured in TGF β- (control) or ActA-mTeSR were arrested in metaphasis, lysed and the metaphasic 

chromosomes were extracted and stained with Giemsa reagent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with LiCl, GABA, pipecolic acid and FGF2 at the concentrations stated in the manufacturer’s pro-

tocol [2] . Media was also supplemented with 0.6 ng/ml TGF β (TGF β-mTeSR) or 0.5 ng/ml Activin

A (ActA-mTeSR). After adapting cells in ActA-mTeSR for 10 passages, localization of the pluripo-

tency factors NANOG, OCT4 and SOX2 was assessed by immunofluorescence ( Fig. 1 A), protein

levels of NANOG and OCT4 were quantified by western blotting ( Fig. 1 B) and the karyotypic

profile was inspected by Giemsa staining ( Fig. 1 C). 

Subsequently, ActA-mTeSR-adapted cells were assessed for their in vitro trilineage differenti-

ation capacity. For mesodermal specification, H1 cells were induced with Activin A and BMP4.

BRACHYURY levels were analyzed by Western blotting ( Fig. 2 A). For ectodermal differentiation,

H1 cells were subjected to an embryoid body formation assay and stained for PAX6 ( Fig. 2 B). For

endodermal differentiation, H1 cells were induced with Activin A in a serum-containing medium

and transcription levels of SOX17 were evaluated by qPCR ( Fig. 2 C). 

Last, ActA-mTeSR cultured cells were assessed for their capacity to form in vivo teratomas.

Cells cultured in regular TGF β-mTeSR were used as a positive control. Teratoma size differences

between the two cell groups were not scored for, as this methodology was applied in a quali-

tative manner as a pluripotency test ( Fig. 2 D). Haematoxylin and eosin staining was applied to

visualize the different cell types that emerged ( Fig. 2 E). 

Activin A was first implicated in pluripotency when its precursor was found in the secretome

of mouse embryonic fibroblasts (MEFs) which served as feeders for hESC cultures [3] . Since then,

several Activin A-dependent systems have been developed for the undifferentiated propagation

of hESCs bypassing the need for MEFs or MEF secreted factors [ 4 , 5 ]. Our study provides an ad-

ditional versatile Activin A-dependent medium which allows for the study of pluripotency and

differentiation in a chemically defined background. 
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Fig. 2. H1 cells cultured in ActA-mTeSR retain their capacity for trilineage differentiation and in vivo teratoma formation. 

(A) H1 cells cultured in TGF β- (control) or ActA-mTeSR were differentiated towards mesoderm for 72 hrs, lysed and 

immunoblotted with α-BRACHYURY and α-ACTIN antibodies. (B) H1 cells cultured in TGF β- (control) or ActA-mTeSR 

were differentiated towards ectoderm following an embryoid body formation assay and immunostained with α-PAX6. (C) 

H1 cells cultured in TGF β- (control) or ActA-mTeSR were subjected to endodermal differentiation for 5 days. Total RNA 

was extracted and used to quantify SOX17 transcription levels by qPCR. (Di) Teratomas formed in 4 separate NOD/SCID 

mice by subcutaneous injections of H1 cells cultured in TGF β-mTeSR (left flank) or ActA-mTeSR (right flank). (Dii) TGF β- 

mTeSR (arrow) and ActA-mTeSR (arrowhead) cultured H1 cells were injected into the same animals to limit subject 

variability. (E) H&E-stained teratoma sections. Numbered arrows denote different cell types observed: (1) cartilage, (2) 

melanin producing epithelial cells and (3) small glandular formations. 
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. Experimental Design, Materials and Methods 

.1. Cell culture conditions 

The matrigel-adapted hESC line H1 was purchased from WiCell (WB0113; Madison, WI, USA)

nd maintained in mTeSR without select factors (05,896; Stem Cell Technologies) supplemented

ith 1 mM lithium chloride (62,476; Sigma), 1 mM G-aminobutyric acid (A5835; Sigma), 0.1 mM

ipecolic acid (P2519; Sigma), 100 ng/mL FGF2 (11,343,627; ImmunoTools) and 0,5 ng/mL Activin

 (Dr Marko Hyvönen, University of Cambridge) or 0.6 ng/mL TGF β (100–21; Peprotech) on ma-

rigel (354,277; Corning) coated dishes. H1 cells were cultured at 37 °C in a humidified incubator

ontaining 5% CO 2 . 

.2. Immunofluorescence assays 

Sub-confluent H1 cells on 35 mm μ-dishes (IB81151; Ibidi) were subjected to immunoflu-

rescence as previously described [6] . Cells were incubated with primary antibodies against

ANOG (3580 s; Cell Signaling), OCT3/4 (sc-5279; Santa Cruz Biotechnology), SOX2 (MAB2018;
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R&D) and PAX6 (DHSB). Subsequently, samples were stained with Alexa Fluor ®488 α-Rabbit IgG

(711–545–152; Jackson ImmunoResearch), Alexa Fluor ®594 α-Mouse IgG (715–585–151; Jackson

ImmunoResearch) or FITC a-Mouse (715–095–151; Jackson ImmunoResearch) and DAPI (D9542;

Sigma). Samples were imaged using a Leica TCS SP8 or SP5 confocal microscope with a 40X/1.30

NA or 10X objective, and LASAF Imaging Software. All Images are maximum projections. 

2.3. Western blot analysis 

For western blotting, total cell lysates were electrophoresed and transferred onto nitrocel-

lulose membranes (10,600,012; GE Healthcare) which were incubated with primary antibodies

against NANOG, OCT3/4 and TUBULIN (E7; DSHB). Next, membranes were stained with near-

infrared fluorescent secondary antibodies IRDye ® 800CW α-Rabbit IgG (926–32,213; LI-COR)

and IRDye ® 680RD α-Mouse IgG (926–68,070; LI-COR). Results were visualized on a LI-COR

Odyssey imaging system. Densitometry was carried out using the Image Studio Lite software. For

Brachyury expression membranes were incubated with primary antibodies against BRACHYURY 

(R&D; AF2085) and ACTIN (EMD Millipore; MAB1501). For protein visualization, membranes

were incubated for 1 min with Amersham ECL Western Blotting Detection Reagent (Amersham;

RPN2209) and exposed onto Fuji Super Rx X-ray films. 

2.4. Quantitative real-time PCR 

Total RNA was extracted according to the manufacturer’s protocol (Macherey Nagel; 119–

22,402). Sample quantity and purity was determined using Nanodrop (ND-10 0 0 V3.8.1)

and samples were aliquoted and stored in −80 °C. qPCR reactions were prepared using

the QuantiTect SYBR 

® Green RT-PCR Kit (Qiagen; 204,243) and appropriate primer pairs

to a final concentration of 3 μM. The reaction was performed in a Roche LightCycler

PCR System. CT values were normalized to GAPDH using the equation: 2 ̂ - �Ct. Primer

sequences: SOX17 (FW:TCCCATGCACCCCCGACTC, RV:TGCTGGTGCTGGTGCTGGTGTTG), GAPDH 

(FW:CGCGCCCCCGGTTTCTAT, RV:CCTTCCCCATGGTGTCTGAGC). 

2.5. Differentiation protocols 

Mesoderm [7] : H1 cells were propagated for 72 hrs in 6 well plates. At that point, ActA-

mTeSR or TGF β-mTeSR was substituted with RPMI 1640 (Gibco; 21,875,034) containing 1%

Glutamax (Gibco; 35,050,061), 1% MEM Non-Essential Amino Acids (Gibco; 11,140,050), 1%

Penicillin-Streptomycin (Gibco; 15,070,063), 1% Insulin-Transferrin-Selenium (Gibco; 41,400,045), 

0.1 mM β-mercaptoethanol (Gibco; 31,350,010), 50 ng/ml Activin-A (Dr Marko Hyvönen, Univer-

sity of Cambridge) and 50 ng/ml BMP4 (Gibco; PHC9534). 

Endoderm [8] : H1 cells were propagated for 72 hrs in 6 well plates. At that point, ActA-mTeSR

or TGF β-mTeSR was substituted with RPMI 1640 (Gibco; 21,875,034) containing 1% Glutamax

(Gibco; 35,050,061), 1% Penicillin-Streptomycin (Gibco; 15,070,063), 0.5% Fetal Bovine Serum

(Gibco; 16,0 0 0,044) and 10 0 ng/ml Activin A (Dr Marko Hyvönen, University of Cambridge). At

24hr, medium was replenished and at 72hr FBS concentration was increased to 2%. Total RNA

was isolated 5 days after induction. 

Ectoderm [9] : H1 cells were seeded on non-adherent plates in DMEM/F-12 (Gibco;

12,634,010) containing 20% KnockOut Serum Replacement (Gibco; A3181502), 1% MEM Non-

Essential Amino Acids (Gibco; 11,140,050), 1% l -Glutamine (Gibco; 25,030,149) and 0.1 mM β-

mercaptoethanol (Gibco; 31,350,010). Suspension conditions enabled the folding of colonies

and the subsequent formation of embryoid bodies. At 96hr, cell aggregates were transferred

in DMEM/F-12 (Gibco; 12,634,010) containing 1% MEM Non-Essential Amino Acids (Gibco;
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1,140,050) and 2 μg/ml Heparin (Gibco; RP-43,138). After 7 days, embryoid bodies were trans-

erred to 35 mm μ-dishes (IB81151; Ibidi) that were pre-coated with laminin (Gibco; 23,017,015).

n day 10 cells were fixed with 4% PFA. 

.6. Karyotype 

Sub-confluent H1 cells cultured in ActA- or TGF β-mTeSR were treated with 0,04ug/ml Kary-

max colcemid (Gibco; 15,212) for 2 hrs at 37 °C. Next, cells were dissociated with trypsin,

pun down and resuspended in a hypotonic KCL solution (0,56% w/v) for 30 min at 37 °C.

ells were spun down, resuspended in 2 ml KCL and fixed by applying an ice-cold solution of

ethanol/acetic acid (3:1), dropwise. Fixed cells were kept at −20 °C overnight and processed

or Giemsa staining. 

.7. Teratoma formation assay 

Sub-confluent H1 cells cultured in ActA- or TGF β-mTeSR were manually dissected with an in-

ulin needle and digested with 1 mg/ml dispase (Gibco; 17,105–041). The cell clumps were spun

own for 3 min at 100 g and resuspended in 150 μl matrigel. The mixture was injected through

 25 G 7/8 needle (BD Biosciences; 305,124) subcutaneously into the hind legs of immunodefi-

ient NOD/SCID mice. Prior to injection, the matrigel, tips and syringes were stored on ice to

void matrix polymerization. Mice were maintained under pathogen free conditions, at the ani-

al house of the Biomedical Research Foundation (Academy of Athens, Greece). 10 weeks later,

nimals were sacrificed and the resulting teratomas were fixed, embedded in paraffin, dissected

nd stained with haematoxylin/eosin. 
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