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Abstract

Title: Equilibration of deep neural networks and carrier chirality in Rashba systems
Author: Philipp C. Verpoort

This thesis reports results of studies conducted on the equilibration of two systems and
consists of two parts: the first part deals with the optimisation of deep neural networks,
whereas the second part with the decay of non-equilibrium states in strongly Rashba-coupled
systems at low temperature.

Deep learning is a conceptually simple, highly effective, and widely used tool, yet
there remains insufficient understanding for why it works. The optimisation of deep neural
networks with common algorithms such as stochastic gradient descent performs unexpectedly
well given the complexity of the underlying high-dimensional non-convex minimisation
problem. The first part of this thesis therefore looks at the optimisation procedure from the
perspective of statistical physics. This allows us to interpret the loss function landscape
of deep neural networks as the counterpart of the potential energy landscape in molecular
systems and the optimisation of the network as its equilibration dynamics. Using landscape
exploration tools developed in theoretical chemistry, we resolve the structure of the loss
function landscape, from which we can draw conclusions for the relaxational dynamics of
typical optimisers and, consequently, for deep learning.

The second part investigates how a non-equilibrium charge-carrier chirality distribution in
a clean, strongly Rashba-coupled system at low temperatures decays over time. We first mo-
tivate this analysis based on experimental studies of transport properties in Rashba materials
at low temperatures and subject to external magnetic fields. We investigate whether chirality
imbalances could serve as the source for those experimental observations and develop a
framework that models the behaviour of such a system. We then proceed with a more general
theoretical study of the equilibration mechanisms of chirality in low-temperature strongly
Rashba-coupled systems and compute the relaxation timescales of those mechanisms.
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Chapter 1

Introduction

Since the earliest attempts by physicists of the 19th century to explain the energy exchange
and heat transfer between bodies, the notion of equilibrium has been a fundamental concept
of thermodynamics – possibly the most fundamental concept [54]. It was perhaps unknown
at the time of its inception in how many ways this concept could be interpreted beyond the
study of the heat transfer of matter.

Today, the concept of equilibrium – or thermodynamic equilibrium, to be more precise
– allows us to understand phenomena that are observed across a broad range of scientific
problems. For example, chemists rely on the equality between forward and backward reaction
rates in chemical equilibrium to determine the ratio of concentrations between reactants and
products [72]. Quite similarly, the physics of semiconductors makes use of the requirement
of constant electrochemical potential of a system in equilibrium to understand the behaviour
of doped semiconductor devices [5]. But not only systems in equilibrium are of interest,
in fact systems out of equilibrium, their relaxation, and even systems that cannot reach
equilibrium, such as glasses and non-ergodic systems, provide physicists with a range of
intriguing phenomena to study. This work investigates the equilibrium, non-equilibrium, and
relaxation for a further two systems, which are distinctly different in nature.

The first study presented in this thesis investigates deep neural networks and their op-
timisation behaviour. In this context, the concept of thermodynamic equilibrium is taken
further to assess the equilibration properties of systems that cannot directly be linked to any
real physical system, but whose dynamics can nonetheless be described and studied by the
adoption of methods from statistical mechanics.

Deep neural networks are perhaps the most relevant example from the toolbox of machine
learning methods [42] and have over the past decade evolved to become a standard approach
across many different fields of scientific research [93, 97, 132] and industry [101, 141]. Yet,
how this method works or from where its outstanding performance originates has thus far
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been a mystery to a large extent [14, 123]. Technically, the training of deep neural networks is
very similar to the fitting of a curve to a set of data points – something frequently encountered
in physics – albeit with an extremely large array of tunable parameters as well as a high
number of input and output variables. The task of adjusting this complex high-dimensional
non-linear fitting function to a given set of data, a procedure referred to as either learning or
optimisation, amounts to nothing more than a minimisation of a ‘loss’ or ‘cost’ function that
estimates the discrepancy between curve and data.

As is known from both global optimisation of high-dimensional continuous functions as
well as curve fitting with many tunable parameters, this task is far from trivial. Usually, basic
optimisation methods that rely on gradient-based update procedures without the inclusion
of a more sophisticated global navigation strategy easily end up trapped in local extrema.
Yet, it comes as a surprise that stochastic-gradient descent – a method that serves as a
foundation for many commonly employed optimisers – does exactly this and yet reaches
deep neural network solutions that generalise well. From the perspective of physics, the
problem of deep learning optimisation can be regarded as the motion of a physical system
in a high-dimensional complex loss function, much like what is studied in the context
of theoretical chemistry [145], where the thermodynamics and kinetics of molecules or
solids are investigated through the study of the potential energy landscape that arises from
inter-atomic interactions [4, 21, 25, 71, 83].

We shall use methods developed for the study of potential energy landscapes in molecular
systems from the field of theoretical chemistry [145] and apply them to the loss function
landscapes of deep neural networks, which yields useful conclusions for the dynamics that
any optimiser based on the principles of stochastic-gradient descent would exhibit and hence
also for the efficacy of deep learning optimisation.

The second study of this thesis analyses the decay of a non-equilibrium state in a solid-
state system subject to a strong Rashba effect [23], which arises from spin-orbit coupling and
a broken inversion symmetry. Such systems are more conventionally studied in the context
of equilibrium and non-equilibrium statistical mechanics, yet phenomena novel to the field
of solid-state physics are observed and reported.

Solid-state systems with strong Rashba coupling constitute a class of materials that have
received much interest in recent years in the context of spintronics [153, 163] due to their
ability to manipulate spin currents through the application of external electric fields in those
systems [104] as well as in the context of non-centrosymmetric superconductivity, which
can exhibit Majorana fermions [120, 121, 134] and is therefore of interest for fault-tolerant
quantum computing [118]. Consequently, understanding non-equilibrium dynamics in those
systems is of great relevance.
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In this work, we investigate their low-temperature non-equilibrium properties and, in
particular, the decay of chirality imbalances of charge carriers. In doing so, we aim to
explain previously unreported non-equilibrium phenomena in low-temperature strongly
Rashba-coupled systems, for which experimental findings are reported and discussed. This
novel effect is most prominently realised in the normal and superconducting transport of
GeTe, which, as we are able to demonstrate, cannot be understood or explained based
on existing theoretical models. Those novel effects are not only relevant because their
qualitative behaviour is unconventional, but also because the timescale over which the non-
equilibrium effect relaxes turns out to be on the order of several minutes. This is far beyond
the timescales that electronic carriers typically decay on, yet we present evidence that allows
us to attribute the effect to electronic degrees of freedom of the system, which makes this
observation intriguing. The generation and control of electronic non-equilibrium states is
of great importance for both understanding condensed-matter systems as well as for the
design of new devices relevant for technological applications. The feasibility of generating
such non-equilibrium states hinges on a long relaxation timescale, which has sparked much
interest in the search for long-lived electronic states in solid-state systems over the last few
decades across different fields. For example, the endeavour to replace semiconductor-based
technologies by spintronics devices has led to major interest in spin-relaxation timescales in
spin-polarised systems [153]. Electronic momentum relaxes typically on timescales on the
order of a picosecond, while spin-relaxation timescales can range up to microseconds at the
longest [156, 163]. Consequently, the ability to attribute the experimentally observed long
relaxation timescales in Rashba systems to an electronic non-equilibrium state would be an
exciting result.

Following an assessment of relevant properties of the Rashba energy dispersion, we
conclude that a non-equilibrium charge carrier distribution in the two Rashba bands with
opposing chirality could be seen as a source for the slowly decaying non-equilibrium transport
properties in the investigated samples. Consequently, we develop a theoretical framework
based on chirality imbalances in Rashba systems, which capture the salient features of these
experimental discoveries. This framework requires a heuristic approach to the modelling of
carrier imbalances based on the well-known method of the relaxation-time approximation.
To further test this framework with regards to the relaxation time, which is an important
quantity to assess the applicability of the developed theory for the observed experimental
effects, we present in-depth calculations that estimate the values of the relaxation time for
different types of relaxation mechanisms. This study of the relaxation mechanisms allows us
to gain a deeper understanding of chirality relaxation in low-temperature Rashba systems and
verify whether the new framework based on Fermi-level imbalances can serve as a potential
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candidate to explain the novel non-equilibrium transport properties for GeTe observed in
experiments.

This thesis is therefore split into Part I and Part II, where each part deals with one of the
two main studies outlined above. Chap. 2 introduces the concept of deep neural network
optimisation and explains the deep learning conundrum that we attempt to resolve. This
is followed by an in-depth analysis of the loss-function landscape structure of deep neural
networks using methods from molecular sciences in Chap. 3, which concludes Part I. The
second part commences with Chap. 4, which introduces the required background details on
Rashba systems and the employed non-equilibrium methods. Chap. 5 presents evidence of
the above-mentioned novel non-equilibrium effect in low-temperature Rashba systems and
develops a theoretical model based on slowly decaying chirality imbalances. Part II ends with
Chap. 6, which again investigates non-equilibrium chirality charge carrier configuration in a
two-dimensional free electron gas subject to strong Rashba coupling at low temperatures and
estimates the relaxation timescales associated with different mechanisms that assist the decay
of these non-equilibrium carrier configurations. Expressions for the relaxation-time constants
are derived and quantitative estimates are compared to those observed in experiments. Finally,
the work presented in this thesis is summarised in Chap. 7.



Part I

Equilibration in deep neural networks





Chapter 2

Introduction to neural networks and
machine-learning optimisation

Over the last decade, a new class of methods has brought new inspiration and astonishing
progress to many different fields of research: Machine Learning (ML) has enabled new
scientific approaches that rely on the heuristic analysis of large amounts of data, resulting in
new types of studies across a variety of subjects [14]. These methods make predictions, find
patterns, and determine correlations from large datasets without the need for any knowledge
of the hidden underlying principles that govern the relationships in those datasets. While
these methods cannot be used to build new theoretical frameworks or deduce models from
existing ones, they can however provide useful insight into where to look for undiscovered
relationships or extract information from research data where human capacity is destined to
fail due to the impracticably large amount of available data.

These new techniques have over the last few years produced surprising results and revolu-
tionised research in some fields. As such, ML was recently used to learn the exchange-
correlation energy functional in Kohn–Sham density functional theory from reference
molecules [97]. Examples of applying ML to the identification of topological phases have
also been reported [93]. Finally, a modelling of superconducting critical temperatures through
the use of ML has also yielded intriguing results [132]. Clearly, the impact of ML in the field
of condensed-matter physics will be just as big as in many other scientific fields, and the po-
tential of ML is yet to be explored by future scientists. Therefore, even for condensed-matter
theorists, it should be of interest to explore the capabilities of these tools to supplement their
toolbox of research methods.

However, the work reported in this chapter and the following one does not attempt to use
the capabilities of ML to make progress in condensed-matter theory. Rather, we take methods
and tools developed from the physical sciences and apply them to ML methods to test and
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understand their functionality. Specifically, in this chapter we introduce the concept of a
Deep Neural Network, which is a stereotypical prototype for an ML model. Such a model can
be regarded as a large physical system with many degrees of freedom, its learning procedure
as the dynamics of the system, and its loss function (i.e. the goodness of fit observed in the
learning procedure) as its energy. We make this interpretation of deep neural networks more
concrete in this chapter and apply methods of potential-energy landscape exploration from
the field of theoretical chemistry in the next chapter.

2.1 Deep neural networks

In this section, we introduce the concept of a deep neural network (DNN) and explain how
it is used in practice to learn patterns and correlations in large datasets in the context of
supervised learning.

Fundamentally, a DNN is a fitting function with a large number of optimisable parameters.
The function is constructed from an alternating concatenation of weighted linear combinations
and non-linear transformations. This design is inspired by the way that neurons in the human
brain operate, which gives this method its name. For a given entry of a dataset, the DNN takes
a list of input features from that entry and computes a list of model output features from it. A
linear combination of the input features is passed on to the next ‘layer’, where the non-linear
transformation is performed, after which a linear combination is again passed on to the next
layer. The function derived from this scheme is fitted to match the data from a specific dataset
(also referred to as the ‘training’ dataset). The variable parameters of the fitting function are
the weights of the linear combination, and their tuning can be accomplished using special
optimisation algorithms. The latter is also referred to as the ‘learning’ or ‘training’ process
of the DNN. The optimisation procedure relies on an estimate indicating the ‘goodness of
fit’, often referred to as the loss function, such that the goal of the training process is to
minimise this loss function. Once a DNN has been trained and a set of network parameters
that sufficiently minimise the loss function has been found, the DNN can be used to predict
the output features of unseen input features.

We note that the DNN discussed here can be regarded as a prime example from the vast
variety of ML models. Other ML models exist as well, such as convolution neural networks,
recurrent neural networks, and many other model types. These mainly differ in the model
architecture employed, as well as the task to be performed on the data and hence the resulting
optimisable loss function. Crucially, these models all use model architectures in the form of
connected networks of linear transformations and non-linear activation functions. While the
results derived in this work will differ for other model types, we yet expect many observations
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Reprinted with permission from Ref. [142], P.C. Verpoort et al., Proc. National Academy of Sci. USA 117, 21857 (2020). © 2020 National Academy of Sciences.

Fig. 2.1 Composition of a DNN. Input nodes are blue, output nodes are red, hidden nodes
are green. A linear combination of the nodes from each layer is passed on to the next layer
(except for the output layer, which is not passed on further). Each hidden node performs a
non-linear transformation, as indicated by the vertical separation between the activations a(l)i
and the signals z(l−1)

j on these nodes. Bias nodes at the top of the input and hidden layers can
be used to visualise the bias weights θ

(l)
i , which can in this representation be incorporated

into the weight matrices, w(l)
i j . The entries of the weight matrices, w(l)

i j , correspond to the
links in grey connecting individual nodes but are not shown in this illustration for clarity.

reported here to be applicable more broadly for other model types as well. Finally, we note
that there also exist other ML algorithms than the ones discussed here, including those that
facilitate unsupervised learning or reinforcement learning, whose study is beyond the scope
of this work.

We now start off by defining the architecture of the neural networks studied in this work
in Sec. 2.1.1. Next in Sec. 2.1.2, we define the loss function and introduce the procedures
commonly used for DNN optimisation.

2.1.1 Network architecture

The specifics of the DNN architecture considered in this work is shown in Fig. 2.1. We label
layers using l ∈ {0, . . . ,H+1}, with H being the number of hidden layers, l = 0 the input
layer, l = H+1 the output layer, and nl the number of nodes in layer l. The activations a(l)i
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are obtained from the signals z(l−1)
j using:

a(l)i =
nl−1

∑
j=1

w(l)
i j z(l−1)

j +θ
(l)
i =

nl−1

∑
j=0

w(l)
i j z(l−1)

j for 1 ≤ i ≤ nl , (2.1)

where in the second step we have absorbed the bias weights into the link weight matrix by
setting w(l)

i0 = θ
(l)
i and z(l−1)

0 = 1 for all l, giving these matrices an additional column and
hence the shape nl × (nl−1+1). The number of variables is then given by ν = ∑

H+1
l=1 nl ×

(nl−1+1). The activations a(l)i are converted into signals z(l)i by applying the non-linear
transformation function φl , such that

z(l)i = φl(a
(l)
i ) . (2.2)

While it would be interesting to determine how the choice of the activation function affects
our results, we employ φl = tanh for all layers l in the calculations performed in Chap. 3 and
postpone further analysis to future work. We conjecture that similar results would be obtained
from any another sufficiently smooth, monotonic activation function, yet this remains to be
ascertained through the obtainment of further numerical evidence.

We note that the number of hidden layers of the network, denoted by the parameter H, is
also referred to as the ‘deepness’ of the network. Networks with a large number of hidden
layers are therefore often referred to as ‘deep’ networks, hence the name DNN. We note
that the number of hidden layers in this work does not exceed1 H = 3, yet we refer to these
networks as ‘deep’ because we compare their performance with results for ‘shallow’ nets
with H = 1. The number of nodes, nl , in a layer l is referred to as the ‘wideness’ of the
network. While the wideness can in principle change between layers (such as ‘bottleneck’
layers), we keep this number fixed for all hidden layers in the examples studied.

It is important to mention that the DNN architecture defined above features symmetry-
related degeneracies. A degeneracy is given by two DNN models with different weights w(l)

i j

that result in the same output features and the same loss-function value for any given set of
input features. While degeneracies can occur accidentally2, it is likely for these to be caused

1As explained further in Chap. 3, it would be desirable to go deeper than H = 3, yet this remains infeasible
due to computational constraints for the moment. We nonetheless observe interesting shifts in the structure
of the loss-function landscape when going from the shallow (H = 1) to the deep (H ≥ 2) case in the models
studied in this work and believe that these results have relevant implications to more sophisticated models
despite the aforementioned limitations of the examples studied here.

2Note that we define a degeneracy as DNN models with both equal output features and loss-function value.
Finding such a degeneracy is highly unlikely to occur for any DNN architecture and training dataset in practice.
In contrast, degeneracies of just the loss-function value are much more likely to be present, especially for
stationary points occurring at a high density, as further elaborated in App. A.3.
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by symmetries. The most obvious symmetries in the DNN architecture used here are the
permutational symmetries of the hidden nodes. It is clear that neither the final outputs of the
DNN nor the resulting loss-function value should depend on how we label the nodes in each
hidden layer. Consequently, a relabelling of the hidden nodes results in a simple permutation
of the entries of the weight matrices, w(l)

i j . The relabelling of nodes in hidden layer l with
1 ≤ l ≤ H is defined by the mapping

z(l)i 7→ z(l)
σ(i) and a(l)i 7→ a(l)

σ(i) (2.3)

for all i with 1 ≤ i ≤ nl , where σ ∈ Snl and Sn is the n-symmetric group, i.e. the group of all
permutations of n elements. This relabelling necessitates the change of the weight matrices
according to the following mappings:

w(l)
i j 7→ w(l)

σ(i) j ∀ 0 ≤ i ≤ nl,1 ≤ j ≤ nl−1 (2.4)

and

w(l+1)
i j 7→ w(l+1)

iσ( j) ∀ 0 ≤ i ≤ nl+1,1 ≤ j ≤ nl . (2.5)

The first mapping, i.e. Eq. (2.4), becomes clear when inserting Eq. (2.3) into the definition
of the a(l)i in Eq. (2.1) and of the z(l)i in Eq. (2.2). Consequently, a reordering of the hidden
nodes requires a reordering of the corresponding rows of the weight matrix that connects the
layer l with the preceding layer l−1. The second mapping, i.e. Eq. (2.5), is required in order
to keep the values of the next layer unchanged. This is because

a(l+1)
i =

nl

∑
j=0

w(l+1)
i j z(l)

σ( j) (2.6)

will give a different result to Eq. (2.1), whereas

a(l+1)
i =

nl

∑
j=0

w(l+1)
iσ( j) z(l)

σ( j) (2.7)

gives the same result because the summation is commutative. Hence, the reordering of the
hidden nodes in layer l additionally requires that the columns of the weight matrix that
connects the layer l with the subsequent layer l +1 are reordered accordingly.

Note that the number of permutational degeneracies in a DNN equals to ∏
H
l=1 nl!, which

grows quickly with the number of nodes in a hidden layer. Therefore, special care has to be
taken in order to deal with these symmetries when applying the landscape-exploration tools
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in Chap. 3, as is further explained in Sec. 3.1.2. Finally, note that we refer to degenerate DNN
models also as ‘isomers’ throughout the rest of this work due to the obvious correspondence
between degenerate DNN models and molecular isomers in chemistry.

2.1.2 Network training

Having defined the DNN architecture in the previous section, we now turn to the issue of
optimising this function in order to find a set of network parameters, w(l)

i j , that optimise the
match between the data and the network prediction.

For the training procedure of the network, we use a dataset with Ndata entries, in which
each entry is of the form x(d)i for the input and y(d)j for the output features, where the
superscript index (d) numbers the data entries with 1 ≤ d ≤ Ndata and the subscript indices i
and j number, respectively, the input and output features with 1 ≤ i ≤ n0 and 1 ≤ j ≤ nH+1.
In order to find a suitable optimisation procedure, we first need to define a measure that
determines the ‘goodness’ of our fit. This is given by the so-called loss function L defined as

L(w) =
Ndata

∑
d=1

Ld(w)+Lreg(w) , (2.8)

where w = (w(1), . . . ,w(H+1)) is the vector of all weight variables, w(l)
i j , L(w) is the full loss

function, Ld(w) is the loss for the data entry with index d, and Lreg(w) = λ ||w||2 is an L2

regularisation term3 with regularisation parameter λ .
The loss Ld(w) of each dataset entry d can take many forms. For example, a simple sum

of squares can be defined as

Ld(w) =
nH+1

∑
j=1

(y(d)j −a(H+1)
i )2 , (2.9)

where the implicit dependence on w is encoded in the activations of the final layer, a(H+1)
i ,

which can be computed by following the prescription outlined in the previous section. This
loss function is typically used for regression problems, such as modelling the physical
properties of a list of metallic compounds in a database of materials [141]. A loss function
commonly used for classification problems is defined as

Ld(w) =− ln(pc(d)) with pi = ea(H+1)
i

/ 3

∑
j=0

ea(H+1)
j , (2.10)

3Note that || · || is the vector norm defined as ||x||=
√

x2
1 + x2

2 + . . .+ x2
n for x ∈ Rn.
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where c(d) is the index of the known correct outcome for data item d obtained from the
training data, and the pi are the so-called ‘soft-max’ probabilities. This softmax loss function
first converts the activations of the final output layer, a(H+1)

i , to the probabilities pi, which
range between 0 and 1. The loss of an entry is then the negative logarithm of the probability
that the network predicts the correct outcome for this entry, such that a minimisation of the
loss function results in maximisation of the predicted probabilities of the correct outcomes.

The classification loss function in Eq. (2.10) will be used throughout the rest of this
work, where the relevant classification problems are explained further in Chap. 3. We note
that analysis similar to ours applied to other models with different loss functions would
be interesting, yet we leave this to future work. Given the general independence of the
optimisation performance on the precise loss function across many applications of deep
learning, we expect to find similar results for different loss functions, however this remains
speculation and would require further numerical evidence for confirmation.

The fundamental aim of any training algorithm is to minimise the loss function by
updating the weights w. In all cases except for some simple examples it is either impossible
or at least infeasible to find local minima of the fitting function analytically, so the approach
taken is entirely of numerical nature. Moreover, in most practical examples it is neither
achievable nor desirable to find the global minimum of the fitting function. In fact, as is
discussed later in Chap. 3, minima that are particularly low in their loss value for the training
dataset are in some cases less likely to perform well on unseen data (also referred to as the
testing dataset) than minima with a slightly higher loss value. This effect is also sometimes
referred to as ‘overfitting’.

Optimisation of a DNN and its loss function can be achieved in many ways. Reviews can
be found in Refs. [116] and [125]. Among the most important ones are Gradient Descent,
Stochastic Gradient Descent [19], Weight-Decaying Gradient Descent and its derivatives,
the Conjugate Gradient method [137], and the Levenberg-Marquardt method [53], which
are all gradient-based optimisation procedures. This means that these methods compute the
gradient of the loss function and subsequently take a step in the downhill direction of the
gradient. Other procedures include Simulated Annealing [1, 111, 113] and Particle-Swarm
Optimisation [69], which are more general optimisation schemes and can operate without
knowledge of the gradient or even without the requirement of a differentiable loss function.

We note that in this work, we make explicit reference to stochastic gradient descent
(SGD), which is the most widely used optimisation algorithm employed for training DNNs
due to its simplicity in implementation, its robustness, and its effectiveness across many
different applications. However we note that many of the research questions regarding how
an optimiser navigates the loss-function landscape that we formulate in Sec. 2.2 and that
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we attempt to answer in Chap. 3 are not specific to the SGD algorithm and will be equally
relevant to other related gradient-based DNN optimisers.

To complete this section, we briefly summarise how a common implementation of SGD
would minimise a loss function like the one defined above in Eq. (2.8). A full gradient-descent
optimiser would follow the simple approach

w′ = w−η ∇wL(w) (2.11)

to define a new set of weight variables w′, where η is the step size, which is often also
referred to as the ‘learning rate’ in the context of DNN optimisation and which is usually
chosen in a heuristic fashion for the update procedure to yield good optimisation performance.
It has however proven useful for several reasons explained later in this chapter to work with
the gradient of the loss of just a few data entries Ld(w) instead of the full loss function L(w),
which is often referred to as mini-batch SGD4. This yields an optimisation procedure that
randomly divides all Ndata entries into batches D1, . . . ,Dq of no more than bs entries, where
bs is called the ‘batch size’ and we define5 q = Ndata

bs
, which is the number of batches. After

this division of the dataset into q batches of bs entries, the update procedure

w′ = w− η

bs

[
∇w ∑

d∈Dk

Ld(w)+2λw

]
(2.12)

is applied for k ∈ {1, . . . ,q}, before a new random division of the data entries into batches is
performed. Note that the second term proportional to 2λw stems from the regularisation term
introduced above in Eq. (2.8). The completion of such a cycle of division into batches and
update of weights is also referred to as an ‘epoch’. Typically, the batch size bs is chosen such
that the computation of ∇wLd(w) in Eq. (2.12) can be parallelised (or vectorised, in the case
of GPU-based computation) efficiently over d. While the original motivation to work with
the mini-batch gradient instead of the full gradient was to reduce computational cost in the
estimation of the loss gradient, it becomes apparent in the next section why this procedure
in fact provides desirable characteristics for global loss-function optimisation. Mini-batch
SGD adds a form of stochastic noise to the evaluation of the loss function and its gradient,
which prevents trapping of the optimiser in local minima and therefore eases optimisation in
a non-convex loss function.

4While many textbooks use the term SGD strictly to refer to mini-batch SGD with batch size bs = 1, it has
become customary in the ML community to use the term SGD to also refer to procedures with bs > 1.

5Here we assume that Ndata is an integer multiple of bs for the sake of simplicity.
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Finally, we note that the gradient of the loss function with respect to the weights,
∇wLd(w), can be obtained while computing the loss function itself through a method referred
to as ‘back-propagation’. The computation of the second-order derivatives of Ld(w) (also
known as the Hessian matrix) is less common in the ML community, as it is usually not
required for most gradient-based optimisers and requires more involved calculations. The
knowledge of the second-order derivatives is however crucial to the work explained in the
next chapter, so that a computation of both first and second-order derivatives of the DNN
loss function, are outlined in App. A.1.

We note that knowledge of the second-order derivative is primarily useful for Newton-like
minimisation, which we make heavy use of in the next chapter. Such minimisation techniques
are however not usually employed in ML due to the significantly higher computational cost
incurring in the calculation of the second-order derivatives and due to only minor performance
gains for optimisation. It should be borne in mind that the target of optimisation is just
minimisation of the loss function and not the identification of a stationary point. This is
why the second-order derivative is relevant to the studies presented in this work but is often
disregarded in the field of ML, where only the gradient is considered. We also note that the
second-order derivative enables an analysis of the eigenfrequency spectrum for stationary
points. While some analysis of the correlation between the Hessian eigenfrequencies and the
model generalisability is presented in Sec. 3.2.3, we hope that future work will look more
carefully at the number of soft and hard directions of minima, the resulting estimate of the
basin volume, the precise basin volume obtained from thermodynamic integration, and how
all that correlates with goodness of fit and generalisability, where analysis of all these aspects
crucially depends on the calculation of the second-order derivatives.

2.2 The deep-learning conundrum

While the capabilities of DNNs to learn patterns and predict outcomes for unseen data has
been highly successful and continues to be exploited in new emerging fields of industry
and research, it is still unclear why common training procedures, especially those relying
on SGD or other gradient-descent optimisation methods, can succeed in locating locally
optimal points in the high-dimensional space of weight variables that sufficiently minimise
the loss function. Without the evidence of the effectiveness of DNN optimisation using SGD
based on a large number of highly successful practical examples, one would naively expect a
gradient-descent optimiser to end up trapped in the catchment basins of local minima, and
that transcending the barriers that separate these basins in order to sustain a global downhill
trajectory is unlikely to be yielded by simple methods such as SGD [123].
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We believe that this question can at least partly be answered by better understanding the
structure of the underlying loss-function landscape (LFL) [12, 36, 107, 151], i.e. the high-
dimensional hypersurface created by the loss value as a function of the weight parameters,
L(w), as defined in Eq. (2.8). One of the most important features of a LFL is its connectivity,
determined by the barrier heights separating local minima, which we investigate in the next
chapter. In the following, we make use of the analogy between the LFL in DNNs and the
potential-energy landscape (PEL) in molecules and solids, and we therefore apply methods
developed in the context of PEL exploration to the analysis of LFLs in DNNs. This allows
us to gain a better understanding for the relevance of the structure of the LFL for DNN
optimisation. In molecular sciences, the PEL is defined by the potential energy of a molecule
or solid-state system as a function of the coordinates of each atom, where each local minimum
corresponds to a molecular isomer or frozen solid-state structure, and the pathways between
these minima correspond to atomic rearrangements.

Gradient-based optimisation of a DNN relies on two ingredients: (1) minimisation,
i.e. moving in the direction of the downhill gradient to minimise the loss-function value, and
(2) a mechanism that ensures that the minimiser does not converge to high-lying local minima,
or ends up trapped in the catchment basins of such minima. This mechanism can manifest
in different ways: In stochastic gradient descent (SGD), noise is provided by using only a
fraction of all samples to compute the loss and its gradient6, whereas simple gradient descent
with stochastic noise has its noise added artificially on top. In basin-hopping [29, 80, 81, 148],
a powerful global-optimisation technique employed in Chap. 3, random displacements in the
parameter space are made to hop between the catchment basins of local minima. In physical
systems, the forces driving the motion towards lower energy are given by the gradient of the
energy, whereas noise to overcome barriers arises from thermal fluctuations7.

It intuitively makes sense that a combination of (1) gradient-based local minimisation
and (2) an ’untrapping’ strategy can yield successful (sometimes even global) optimisation
of a function, yet this is not guaranteed to work. For example, there exist many physical
systems whose energy landscapes display a hierarchical structure, where a vast number of
low-lying minima exist, separated by high barriers [39–41, 91]. The consequence is that those

6We note that the ‘noise’ introduced through mini-batch SGD is of course very different in its nature from
pure stochastic noise [161] and, moreover, depends strongly on the dataset employed. For instance, note that
the noise introduced by mini-batch SGD is small when all entries of a dataset are similar and is big when there
is large variation between dataset entries. Moreover the strength of this noise also depends on the learning
rate η , as for small learning rate an epoch will have passed before the optimiser has made any large steps in
parameter space, whereas for huge learning rate the gradient would be entirely replaced by the gradient for just
a subset of the data. Details on the relationship between the learning rate η , the batch size bs, and the amount
of training data N can be found in Refs. [130, 131].

7Notably, this is a fully classical picture that does not take into account the quantum nature of molecular
dynamics, yet this simplified picture will be sufficient for our comparison with DNN optimisation.
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systems exhibit glassy dynamics across a large temperature range. In such systems, thermal
fluctuations are unable to untrap the system and guide it to a low-lying state. (Basin-hopping,
on the contrary, has been shown to work even for glassy landscapes, and we employ it to
explore the LFL in the next chapter.)

Given the complexity of a DNN and the number of locally optimal solutions (as deter-
mined in the next chapter), it is reasonable to expect high barriers separating those solutions
and a complex loss-function landscape that is difficult to navigate. This structure would
make minimisation through ‘simple’ optimisation procedures such as SGD infeasible, given
that SGD untraps itself through noise in a similar fashion to thermal fluctuations of physical
systems, as is evident from previous work by Zhang et al. [161] that maps the dynamics of
SGD optimisation to Langevin-type equations of motion. Practical experience from SGD
optimisation of DNNs however indicates the opposite: it is usually easy to find a set of
parameters η and bs that succeed in navigating the LFL and quickly locating low-lying points
in the landscape8.

To clarify this point further, we present numerical evidence of the trajectory of SGD
in the LFL of a DNN. To achieve good optimisation with SGD, an appropriate choice of
parameters (in particular batch size bs and learning rate η) is key. In Fig. 2.2, we report
the loss L during training as a function of epochs for varying values9 of bs (the training
dataset employed is the one from the LJAT19-3HL-2000 example from the next chapter, but
this is of minor relevance here). When the batch size is too small, and hence the noise too
big, SGD becomes essentially a random walk in the landscape. Optimisation to low-lying
minima is not possible, and instead the optimiser oscillates at loss values far above the global
minimum. When the batch size is chosen too large, and hence there is insufficient noise, the
optimiser gets trapped in local minima and does not reach low-lying solutions. The ideal
parameterisation lies somewhere in between those two cases. These observations are widely
known, yet understanding why this is possible given the high complexity of the LFL of a
DNN remains a puzzle, which the study presented in the next chapter aims to uncover.

Another important question of DNN optimisation is why SGD finds solutions that
generalise well. One might ask how well a low training loss value might correlate with
good performance on unseen testing data. This is particularly relevant when overfitting

8Note that the aim of optimisation in ML is not to identify stationary points. While gradient-based
minimisation pursues the target of minimising the gradient, which would result in the discovery of stationary
points, the ultimate goal is simply to find points in the LFL whose loss value is low, hence indicating a good fit
of the model with the training data.

9Note that η is kept fixed in the presented examples. We could have alternatively varied η and kept bs fixed.
In fact Refs. [130, 131] suggest that it might even be more advisable to look at the “noise scale”, defined as
g = η

(
N
bs
−1
)

, when comparing the different cases shown in Fig. 2.2, which is however beyond the scope of
this work.
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Fig. 2.2 Loss function L plotted as a function of training epochs for SGD optimisation of a
DNN model. Each line in the plot corresponds to a different random initialisation. The black
line at the bottom of each plot is the loss of the lowest minimum obtained from basin-hopping.
This procedure explores the LFL of a DNN architecture with Ndata = 2000 entries and H = 3
hidden layers using the LJAT19 dataset introduced in Chap. 3 and learning rate η = 0.1.
(a) bs = 1. The batch size is too small (for the given step size), and, consequently, the
optimisation is poor. (b) bs = 100. The noise is not too big so that efficient local downhill
optimisation is possible, equally the noise is not too small, allowing the optimiser to overcome
barriers between minima. (c) bs = 2000. The batch size is too big, hence the optimiser is
trapped in local minima and does not reach low-lying solutions.

occurs, which we can expect to be the case in most practical examples, as it has proven to be
successful to choose DNNs with numbers of variables, ν , of the same order of magnitude as
the amount of training data, Ndata. It has been shown that SGD optimisers prefer wider minima
with a low curvature over ones with a high curvature [161], and improved performance of
DNNs has been achieved by further biasing the optimisation towards such solutions [10, 26].
We therefore analyse the correlation between training and testing loss values in the next
chapter, after having successfully obtained an accurate and comprehensive database of all
local minima of the LFL.

The present work is not the first to study the LFLs of DNNs. Previous works either
developed analytical models that investigate the LFL for simple DNNs, usually by assuming
random data and making heavy approximations, or numerically studied the LFL of concrete
DNN training examples, in which however complete and accurately converged databases of
local minima and transition states are usually not obtained.

On the analytical side, Ref. [89] described the dynamics of optimising a DNN with
H = 1 using SGD and proved the ‘convergence of SGD to a near-global optimum’ by
studying the partial differential equation governing those dynamics for this simple example.
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In Ref. [31], DNNs with linear rectifiers as activation functions, with random training data,
and without bias nodes are mapped to spin-glass models with spherical constraints. The
authors use random-matrix theory to gain insight into the distribution of minima of the LFL.
Unfortunately, their study cannot provide any details about barriers separating those minima.
Nonetheless, it reveals that local optima are ‘located in a well-defined band lower-bounded
by the global minimum’. This intriguing result can at least partly be confirmed through our
results reported in the next chapter. However, it should be noted that their mapping of a DNN
to a spin-glass model involved a number of significant approximations.

On the numerical side, geometric properties of LFL minima have been reported, most
notably their width and how this relates to the generalisability of a model [62, 63, 65, 70].
The vast majority of numerical LFL studies however do not explore the connectivity of
minima. Some exceptions exist though, including studies of the LFL for single hidden-layer
networks [11, 12, 30, 36, 37], which use a formalism similar to the one we employ in the
next chapter. Essentially, the work presented here can be regarded as an extension of this
existing work on the LFL of single-hidden layer networks to multi-layer networks. Moreover,
Ref. [79] developed a method for visualising, quantifying and comparing LFL complexity that
reveal astonishing results for skip-connection networks, i.e. networks that feature additional
connections between non-neighbouring layers to promote better learning capabilities and
avoid the vanishing-gradient problem in optimisation. Finally, a very intriguing study by
Draxler et al. in Ref. [45] observed that pairs of minima in the LFL of DNNs are connected
by low-barrier minimal-loss pathways, which encounter much lower barriers than the direct
interpolation path between those two minima.

Finally, a combined analytic study of the minima geometry in LFLs of DNNs attributes
the effectiveness of SGD to the different sizes of the basins of attraction of ‘good’ and ‘bad’
minima [155]. While these results are interesting and are revisited in the next chapter, where
we also analyse the correlation between Hessian matrix eigenvalues and generalisability of
minima, that study does not provide insights into the barrier heights or the navigation of the
LFL by a SGD optimiser.

While all these studies, both analytical and numerical, have contributed significantly to
our understanding of the structure of LFLs of DNNs, they can only report isolated results on
some aspects and lack a global view that connects all these individual observations. We aim
to deliver this missing global perspective of the LFLs of DNNs in the next chapter.

Having completed an introduction to DNNs, their optimisation through SGD, and the
importance of the structure of their LFL in this chapter, we proceed by analysing the LFL for
a set of DNN examples in the next chapter. We employ techniques from global optimisation
for energy landscapes in molecular sciences to resolve the structure of the LFL, which allows
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us to gain insights into the number of training minima, their distribution of loss values, the
height of the barriers connecting them, and their Hessian eigenvalues. We use these results to
gain deeper understanding of the structure of the LFL and, consequently, why SGD succeeds
in navigating it.



Chapter 3

Loss-function landscapes for deep neural
networks

In this chapter, we study the structure of the LFL of DNNs, and we do so by determining the
number of local minima and transition states in these LFLs, the barriers separating minima,
and the correlation between minima geometry and model generalisability. We employ
the computational energy-landscape exploration techniques and the disconnectivity-graph
formalism originally developed for the study of PELs in molecular science [15, 145, 150].
We perform this analysis for varying numbers of hidden layers, H, and the amount of training
data, Ndata.

The networks studied here are sufficiently small that we can can efficiently converge the
databases of minima and transition states. We note that these networks comprise relatively
small architectures compared to the ones commonly used in typical ML applications. How-
ever, we conjecture that the fundamental observations in these small networks, which feature
up to 5×105 local minima and 106 transition states, can be generalised to larger and more
complex networks, where the dimensionality of the LFL it too big to enumerate all minima
or even converge a single local minimum accurately.

The results obtained from the study presented in the following sections, which we
summarise further at the end of this chapter, reveal that the LFLs of DNNs in the shallow
(H = 1) or data-abundant (Ndata ≫ 1000) limits feature a single-funnelled structure, in which
the downhill barriers are small. In contrast, for a multi-layer network (H ≥ 2) and for little
training data (Ndata . 1000) the LFL is characterised by a large number of minima of similar
loss values that are separated by low barriers. Both of these landscapes are different from
the hierarchical landscapes observed in structural glasses, which helps us understand why
procedures commonly employed by the ML community can navigate the LFL successfully
and reach low-lying solutions.
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This chapter is structured as follows. The employed methods are outlined in Sec. 3.1,
where we introduce the datasets used for training and the landscape-exploration tools bor-
rowed from the molecular sciences. This is followed by a presentation of the results in
Sec. 3.2, where we visualise the resolved LFL structures using disconnectivity graphs and
present statistics on the number of minima, number of transition states, their loss values,
barrier heights, and the correlation to minima geometry. Finally, we conclude with a summary
and an interpretation of our results in Sec. 3.3.

3.1 Methods

3.1.1 Training and testing data

We analyse the LFLs for three distinct datasets: LJAT19 [142], OPTDIG [2], and WINE [32],
as summarised below.

The LJAT19 dataset was generated specifically for the assessment of DNN loss landscapes.
It is based on the outcome predictions of geometry optimisation of the LJAT3 problem, which
was used in previous work [11, 12, 30, 37]; details of its creation are reported in App. A.2.
Readers primarily interested in LFLs need simply note that this is a four-fold classification
problem with the correct outcome being fully determined by the three inputs. Here, we
only employ two of these inputs for training and testing to make this problem harder.
This benchmark is appealing because we can generate arbitrary amounts of training and
testing data, and it has practical importance in chemistry, where calculations of molecular
configuration volumes and densities of states are of interest. In the case of LJAT19, we
assess the performance of both a training and a testing dataset. These datasets are obtained
by generating 200000 entries from geometry optimisation and splitting the data up into two
random subsets of Ndata = 100000 data points, which are then referred to as the training and
testing data, respectively. When fewer data are employed in training, i.e. Ndata < 100000, we
use the first Ndata entries of the complete training dataset.

OPTDIG is a set of optical data for handwritten digits with the target being digit recogni-
tion/classification. This resource is similar to the widely known MNIST dataset, but with
inputs of size 8x8. The WINE dataset is a list of red and white wines, with the target being
the classification of their quality as ‘good’, ‘medium’, or ‘bad’ based on 11 physicochemical
tests (such as acidity, sulphates, alcohol, etc). Both OPTDIG and WINE are ‘real-life’ data,
and were obtained from the UCI Machine Learning Repository [46].

We primarily focus our studies on the LJAT19 dataset because we can generate as much
data as is needed for benchmarking, which allows us to produce disconnectivity graphs with
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up to Ndata = 100000 training data. In contrast, the WINE and OPTDIG datasets only have
up to Ndata = 5000 entries, so we use these to validate and confirm our principal conclusions.
The computational cost of our methods grows quickly with the dimensionality of the LFL,
and hence the datasets we study are a compromise between complexity and feasibility.

The performance of any point in the LFL, defined by a set of weight variables w, can
be quantified using standard Area Under Curve (AUC) receiver operating characteristic
metrics [57]. AUC values range between 0 and 1, where random classification yields an
AUC value of 0.5, and a perfect prediction yields 1. In addition, we visualise the prediction
outcomes of points in the landscape of the LJAT19 dataset by colouring a representative
subspace of the inputs according to the classification indices (see caption of Fig. 3.2, and
App. A.2 for further details).

The L2 regularisation parameter used for training and testing throughout the rest of
this work is λ = 10−4. Decreasing this value would make the landscape more complex
and increase the number of stationary points, while an increase would result in fewer local
minima and a simpler landscape structure. While a study of the dependence of the LFL
structure as a function of λ would be interesting, we restrict ourselves to a constant value
here and postpone the investigation of the dependence of the LFL on the value of λ to future
work.

3.1.2 Exploring the loss-function landscape

As mentioned before, this chapter makes heavy use of geometry optimisation tools developed
for the analysis of PELs in molecular sciences and applies them to the exploration and
visualisation of LFLs of DNNs. Several extensive reviews of this methodology exist [11,
67, 145–147], hence the introduction to these methods presented below is intentionally kept
concise.

The exploration of the landscape can be separated into two main steps. First a (likely
incomplete) list of minima is obtained through global optimisation using basin-hopping
(BH). In a second step, approximate steepest-descent paths connecting two local minima
pairwise are determined, from which the transition-states (TS) and hence the connectivity of
the landscape can be obtained.

BH is a simple yet powerful technique for global optimisation of high-dimensional
non-convex functions [29, 80, 81, 148]. It starts off with performing a gradient-based
minimisation to identify a zero-gradient stationary point. The discovered stationary point
is typically the lowest point of the basin of attraction of the starting position, although this
cannot be guaranteed and depends on the step-size. After this minimisation has succeeded
and a stationary point has been identified, a random displacement in variable space is taken,
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and the function value for the new candidate position is evaluated. The new candidate
position is adopted according to the satisfaction of the following Metropolis-type condition:
the displacement step is always accepted if the new resulting function value is lower than
the current one and is otherwise accepted with probability P(L,L′) = exp(β (L′−L)), where
L is the function value at the current position, L′ is the function value at the new candidate
position, and β is the inverse fictitious temperature.

The parameter β should ideally be chosen to be roughly on the order of magnitude of the
average barrier height that has to be overcome. In physical systems, choosing this parameter
is guided by knowledge of physical quantities, which can in some cases be determined from
experiments. In this work, β was chosen in a heuristic way that allowed an efficient discovery
of the low-lying minima of the landscape. Choosing a β that is too large will discover lots of
new minima but will struggle to identify low-loss solutions, whereas choosing a β that is too
low will end up trapped in the catchment basins of just a small sub-funnel of wider landscape
(similar to what is shown and discussed in Fig. 2.2). A good choice of β will discover the
global or at least a near-global minimum, revisit this minimum repeatedly, and not identify
any new lower minima after reaching convergence following a large number of steps. We
note that this approach does not guarantee finding the global minimum. However, we are
more interested in the relative organisation of minima and macroscopic structure, for which
knowledge of the global minimum is not needed. Moreover, the minima discovered by BH
only act as a starting point for a more extensive analysis using TS searches.

In summary, BH combines approaches from gradient-based methods for continuous
function optimisation with a global combinatorial optimisation strategy. It has been shown
that BH is able to navigate complex landscapes successfully, escape from basins of locally
optimal minima in order to maintain a global downhill trajectory, and often locate the global
minimum even in multi-funnelled landscapes [27] or the PELs of structural glasses [39–
41, 102, 103]. Importantly, BH is not subject to the exponential slow-down suggested by
spin-glass models [31].

The local minima obtained from BH are not sufficient to understand the structure of the
LFL. In order to establish a complete picture of the landscape, the connectivity of the minima
has to be determined as well. This step is accomplished by identifying the TSs connecting
the local minima obtained from BH. TSs are defined as stationary points (i.e. points with
vanishing gradient), for which the number of negative eigenvalues of the Hessian matrix (also
referred to as the Hessian index) is precisely one. Hence, following the two steepest-decent
paths from a TS lead to the two minima it is connecting, while the curvature remains positive
in all other directions. The Murrell-Laidler theorem [96] guarantees that TSs rigorously
define the lowest-barrier paths connecting the catchment basins of local minima. Higher-
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index saddles (i.e. stationary points with Hessian index greater than one) exist as well, but
they are not relevant to the study of the lowest barriers separating local minima. We note that,
arguably, higher-order stationary points might play an important role in DNN optimisation
because commonly employed optimisers may erroneously converge to such points. However
this problem is beyond the scope of this work. For that reason, the term ‘barriers separating
local minima’ used in this work refers to the highest point of the minimal-loss pathways
between minima and is the lowest possible loss value any optimisation procedure, including
ML optimisers such as SGD, must surmount to pass between the catchment basins of two
connected local minima [90, 145].

Local TS searches can be performed using eigenvector-following procedures [95, 159],
which are an extension of the Newton-Raphson method [145]. This procedure employs a
modified Newton-Raphson step that moves uphill in one and downhill in all other Hessian
eigenvector directions and converges to the standard Newton-Raphson step in the vicinity of
the stationary point. While this method is useful for converging potential candidates for TSs,
it is ineffective for global TS searches.

To identify TS candidates, a doubly nudged [138, 139] elastic band [59, 60] (DNEB)
approach is used here. This method places a fixed number of ‘beads’ between a starting and
end point in the landscape and optimises their position using a fictitious force consisting of
the loss gradient in all directions orthogonal to the tangent vector plus a spring force between
the beads. The optimisation of this elastic band of beads can be performed by integrating
the Newtonian equation of motion or, as is done in this work, by using more advanced
optimisation methods, such as a limited-memory quasi-Newton Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) routine [22, 51, 56, 124]. This procedure yields a series of approximate
intermediate positions on the steepest-descent paths, of which any one can be used as an
input for hybrid eigenvector-following in order to obtain a TS.

When this approach is taken for two given minima in the landscape, there is no guarantee
that there exists a single steepest-descent path that connects the initial to the final point.
Rather, following a DNEB procedure that yields a TS candidate and a convergence of the
candidate to a true TS of the LFL, the correct end points that the steepest-descent path leads
to downhill from the identified TS have to be determined. This procedure may or may not
result in the initial minima used in the DNEB approach and often discovers new minima, thus
extending the database of discovered minima. Strategies for selecting a pair of minima for
connection using the DNEB approach in order to efficiently build the connectivity network
have been developed, such as the missing connection algorithm [24], which is also employed
in the present work.
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The combined application of these three methods – BH for discovering minima, DNEB
searches between minima to identify TS candidates, and hybrid eigenvector-following for
converging those TS candidates – produces a database of connected minima and TSs. This
database can be regarded as the analogue of a kinetic transition network in molecular
sciences, where the techniques outlined above have been applied extensively in previous
works. Standard procedures developed for expanding those databases [11, 67, 145–147] can
equally be applied to the study of LFLs. As already reported in previous work in Ref. [88],
the fact that the Hessian eigenvalues can be spread across several orders of magnitude
between different directions makes the convergence of pathways harder for LFL compared to
PELs. Moreover, as established in Ref. [88], a suitable method for dealing with symmetry-
induced degeneracies of local minima lies in a tight convergence of their loss values and
an identification of equal representations of the same minimum purely based on their loss
value. This approach is required because the degeneracies induced by the permutational
symmetry of the hidden nodes, which are unlike the ones commonly found in molecules,
are hard to treat with a distance metric, at least when the number of hidden layers exceeds
one1. We note however that this simplified approach to permutational degeneracies results
in deficiencies in our results because different minima with similar loss values may falsely
be identified as equal representations of the same minimum.

1 While in this work, we detect different representations of identical minima with permuted weights through
the similarity of their loss values, a more robust approach would be to test for their proximity in weight space.
This approach, however, requires determining the minimal distance between two given points in the LFL under
consideration of all possible symmetries.

In the molecular sciences, this calculation involves finding the minimal distance between two isomers
for all combinations of permutations of atoms of the same species along with translational and rotational
rearrangements. This calculation is achievable because translational and rotational symmetries are continuous
symmetries, and because the determination of the specific permutation of equal atomic species that minimises
the distances between two isomers can be mapped to a linear assignment problem. This setup does not naturally
carry over to DNNs, where the symmetries are very different in nature.

The symmetries in DNNs are mainly given by permutation of hidden nodes inside any hidden layer. Trying
out all permutations in order to find the one that minimises the distance in weight space is NP-hard and
unfeasible even for moderately large networks; note that the number of permutations scales as n! with n being
the number of hidden nodes to permute, which results in approximately 3×106 permutations for networks with
10 hidden nodes. For one hidden layer, finding the optimal permutational alignment is a linear assignment
problem and can be solved in polynomial time using the Hungarian method [75]. For H = 2, this is already
NP-hard, although approximating algorithms have been reported [33]. For H > 2, no efficient algorithms are
currently known.

In practice it may suffice to employ a much simpler scheme that does not rely on computing the minimal
distance but permuting all hidden nodes in each layer so that they are brought into a normal ordering with a
strictly increasing bias weight. The success of this method relies on the absence of a degeneracy in the bias
weights and does not have the desirable properties of a distance metric unless the two considered points in the
LFL are sufficiently close. Yet, this approach could help with the identification of different representations of
points under all permutations in the LFL, which is however beyond the scope of this work.
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Reprinted with permission from Ref. [150], Springer Nature: Archetypal energy landscapes by David J. Wales et al. (1998). © 1998, Macmillan Magazines Ltd.

Fig. 3.1 Examples of one-dimensional non-convex functions and their corresponding dis-
connectivity graphs, reprinted from Ref. [150]. Original caption: “Pictorial correspondence
between the potential-energy surface and the disconnectivity graph for three different energy
landscapes, following Becker and Karplus [15]. (a) The ‘weeping willow’ results from a
gentle funnel with large barriers. (b) The ‘palm tree’ results from a steeper funnel with lower
barriers. (c) The ‘banyan tree’ results from a rough landscape.”

We note that a nudged elastic-band approach was previously employed in the study of
barrier heights in neural network LFLs in Ref. [45]. This work, however, only established
approximate TS candidates using the nudged elastic band method and did not converge these
candidates, as is done in the present work, using hybrid eigenvector-following. A DNEB
interpolation only yields a series of discrete images that are neither TSs, nor does their
described pathway necessarily correspond to a single steepest-descent path. Consequently,
additional stationary points may be skipped, resulting in missed minima, TSs, and, in the
worst case, an incorrect estimation of the barrier height. It is therefore necessary to first refine
the TS candidates, followed by a calculation of an approximate steepest-descent pathway to
identify the connected minima.

Finally, we report our results of the LFL of DNNs using disconnectivity graphs, a form
of visualisation previously used to present results for PELs [15, 150]. For readers unfamiliar
with disconnectivity graphs, Fig. 3.1 presents reprints from Ref. [150] that illustrate the
correspondence between LFLs and disconnectivity graphs for simple one-dimensional non-
convex functions. Disconnectivity graphs are used to visualise the loss values of minima,
along with the height of the barriers separating them. Each graph consists of a tree diagram,
where every branch end point corresponds to a local minimum. The loss value is on the
vertical axis, and so the height of the end point of a branch represents the loss value of the
corresponding minimum. A superbasin analysis of all minima is performed at thresholds
of regular loss value intervals, where all minima that can be connected via TSs below the
threshold are grouped together. The branches of a group of connected minima are merged
together into a single branch at each threshold, and the branches are positioned on the
horizontal axis in a way that avoids branch crossings.
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3.2 Results

First, we study the LFL of DNNs using the LJAT19 dataset. We characterise the LFLs as a
function of training data (Ndata ∈ {100,1000,2000,10000,100000}) and number of hidden
layers (H ∈ {1,2,3}). We choose nl ∈ {10,5,4} for each hidden layer l, which yields an
approximately equal number of weight variables (ν ∈ {74,69,72}). The number of input and
output features are n0 = 2 and nH+1 = 4, respectively. For each of these cases, the procedure
outlined in Sec. 3.1.2 is performed to calculate databases of local minima along with TSs
connecting them pairwise. We report the number of minima and TSs, visualise the LFL
using disconnectivity graphs, and analyse the correlation between train error, test error, and
minima geometry. We reiterate that the above values of ν are small compared to those found
in typical applications, yet they exhibit LFLs that feature sufficiently many local minima to
identify trends, and for which optimisation procedures can be converged accurately.

We note that the lowest minimum discovered from BH remains the lowest in all cases on
expanding the database, except for H = 3 and Ndata = 100. This result indicates that the land-
scapes are sufficiently easy to optimise with BH such that we can uncover the fundamental
organisation of the landscape independently of the exact details of the optimisation protocol.

After our study of the LJAT19 dataset we confirm that our key results also apply to the
OPTDIG (Ndata ∈ {1500,5000}, H ∈ {1,3}) and WINE (Ndata = 1500, H ∈ {1,3}) datasets,
where we simply report the disconnectivity graphs for comparison.

We stress that the employed procedure, which combines BH global optimisation with TS
searches using DNEB approaches and hybrid eigenvector following, is in principle capable
of discovering all minima and TSs in the LFL, provided the process is continued for long
enough for the database to be converged sufficiently. However, there exists a deficiency in
our procedure due to the potential miss-identification of minima as permutational isomers.
This problem is further explained and its impact investigated in App. A.3. In summary, in
some cases of the LJAT19 dataset, in which the minima density becomes high enough such
that the loss difference between minima becomes less than the loss difference tolerance used
in the identification of permutational isomers, minima are incorrectly treated as permuted
representations of known minima. While we interpret this mishandling of some of the minima
in LFLs in those cases as of only minor importance for the overarching trends reported in
the following sections (except perhaps for the total number of minima and TSs reported in
Sec. 3.2.1), we stress that future work ought to revisit the results presented here using more
advanced procedures for treating the permutational degeneracy problem, including methods
that accurately estimate the geometric distance in DNN weight space. We also note that this
aspect is not of relevance to the analysis done using the OPTDIG or WINE datasets, where
only a small fraction of all minima and TSs in the respective LFLs were discovered in order
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Table 3.1 Number of local minima and TSs for DNNs with varying number of hidden layers,
H, and training data, Ndata, using the LJAT19 dataset.

H = 1 H = 2 H = 3
Ndata nmin nts nmin nts nmin nts
100 649 10426 299484 508471 585730 1126877

1000 7 33 13336 41837 85150 263615
2000 5 21 487 1583 3027 35363

10000 7 43 49 393 150 804
100000 5 11 33 200 23 96

to plot a disconnectivity graph, hence showing just a selection of the features determining
the LFL structure.

All the results are labelled as ‘DATASET-#HL-#’, where the two digits indicate, respec-
tively, the number of hidden layers, H, and the amount of training data, Ndata.

3.2.1 Number of minima

First, the clearest and most unsurprising trend in the LFLs is easily summarised: the number
of local minima, nmin, and the number of transition states, nts, for which data is reported in
Tab. 3.1, decrease rapidly with increasing Ndata (until Ndata reaches a critically low value,
after which oscillations of nmin and nts start to occur). All the reported values are lower
bounds, as a full convergence of the procedure outlined in Sec. 3.1.2 cannot be guaranteed,
partly due to the miss-identification problem for symmetry-unrelated minima with similar
loss values, as discussed at the beginning of Sec. 3.2 and in App. A.3. The largest databases
for Ndata = 100 and H ∈ {2,3} can be expected to be the least complete. However, we expect
the low-loss regions of the LFL to be sampled extensively. For H = 1, we also compare the
LFLs for Ndata ∈ {100, 250, 500, 1000, 2000, 3000, 4000, 5000, 10000, 20000, 30000,
40000, 50000, 60000, 70000, 80000, 90000} to confirm these observed trends, for which
Tab. 3.2 holds the corresponding data2.

2It is worth noting that nmin and nts show clear monotonic trends only when Ndata is moderately small and
when nmin is sufficiently large. For Ndata > 40000, the small numbers of nmin and nts begin to oscillate. We
attribute this to insufficient convergence, which is likely for cases with large Ndata, as the computational cost
scales linearly with Ndata and is thus very high in these cases. It could be possible that the few remaining minima
above the global minimum in fact feature extremely small downhill barriers, which can vanish as a consequence
of small fluctuations. This organisation could result in a disappearance and reappearance of these minima in the
LFL as different data subsets of the full dataset are selected for training. However, this statement is speculative
and would require confirmation through more careful analysis. We also note that nts is surprisingly large for
Ndata = 10000, which we expect arises because a more thorough TS search is performed for this LFL. This
observation again suggests the incompleteness of the minimum and TS databases presented here for large Ndata.
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Table 3.2 Number of local minima and TSs discovered in the LFL of a DNN with H = 1 as a
function of Ndata using the LJAT19 dataset.

Ndata 100 250 500 1000 2000 3000 4000 5000 10000
nmin 649 436 37 7 5 4 8 2 7

nts 10426 5867 244 33 21 18 21 10 43

Ndata 20000 30000 40000 50000 60000 70000 80000 90000 100000
nmin 6 7 3 6 3 3 8 4 5

nts 19 4 5 3 7 8 11 6 11

A more interesting observation that can be made analysing the data reported in Tab. 3.1 is
that nmin and nts for fixed Ndata increase drastically when going from the shallow limit with
H = 1 to the DNN case with H = 2. We stress that this is seen despite the fact that the number
of variables is kept approximately fixed between those DNN architectures. This observation
can be interpreted as an increased complexity of the LFL for deeper compared to shallower
DNNs. A similar increase from H = 2 to H = 3 is observable for almost all values of Ndata

too, albeit to a much lesser extent. It should also be noted that due to the large number of
existing minima and TSs for H ≥ 2 and due to the difficulty with identifying permutational
isomers further explained in App. A.3, a full convergence of the numbers shown in Tab. 3.1
cannot be guaranteed, and might lead to an underestimation or overestimation of the change
from H = 2 to H = 3.

As is further outlined in Sec. 3.2.6, a common goal in ML is to identify the best-
performing ML model among a range of options. The best-performing model is characterised
by high expressibility of the fitting function accompanied by fewest possible optimisable
parameters (since the training and evaluation cost increases with this number). Compar-
isons between DNN architectures are therefore often made between models of the same
dimensionality of the parameter space, ν . In fact, the success of deep learning is due to the
increased expressibility of the fitting function of deep compared to shallow DNNs and the
fact that training deeper networks remains feasible. Our present observation of the strong
increase in number of minima for deeper networks at fixed ν allows us to draw the interesting
conclusion that the strong increase in the number of local minima does not seem to have a
great impact on optimisation performance, which strengthens our motivation to investigate
the connectivity between minima. We shall revisit the interpretation of this finding at the end
of this chapter.
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(This figure is continued on the next page.)
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Visualisation key

(1) (2)

The visualisations in the bottom left corner of each graph show the predictions of the model
for the lowest minimum in that graph. These visualisations map out the class index of the
four-fold LJAT3 classification problem in a representative subspace. The two visualisations
on the left are for reference: (1) was generated from geometry optimisation of the LJAT3
problem and hence indicates the ‘correct’ result, whereas (2) is coloured according to the
global minimum of a DNN with H = 1 layer and n1 = 10 nodes trained on Ndata = 100000
data and represents the best possible outcome we can expect when employing only two of
the three inputs. For details see Sec. 3.2.2 and App. A.2.2.

Reprinted with permission from Ref. [142], P.C. Verpoort et al., Proc. National Academy of Sci. USA 117, 21857 (2020). © 2020 National Academy of Sciences.

Fig. 3.2 Disconnectivity graphs for Ndata ∈ {100,1000,2000,10000,100000} training data
(from top to bottom) for the DNNs with H ∈ {1,2,3} hidden layers (from left to right),
labelled as ‘DATASET-#HL-#’ on the top of each panel, where the two digits indicate,
respectively, the number of hidden layers, H, and the amount of training data, Ndata. Only the
lowest 2000 minima (or all if fewer than 2000 were identified) are shown, and the vertical
scale has been adjusted to span the range of loss-function values within this set. Included
as an inset graph below each disconnectivity graph are a graphical visualisation of the
performance of the global minimum (see App. A.2 for details) as well as a plot of the training
(horizontal axis) versus testing (vertical axis) loss values of all minima. It is apparent from
these graphs that in each case the structure of the LFL is either funnelled or comprises many
minima with similar loss values connected by low barriers.
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3.2.2 Connectivity of minima

Next, we report the disconnectivity graphs for LFLs using the LJAT19 dataset, which can
be found in Fig. 3.2. Note that these disconnectivity graphs show only the lowest 2000
minima for reasons of clarity. It is evident from those graphs that for sufficiently large
Ndata the loss-function features a relatively simple structure corresponding to a funnelled
landscape, where finding the global minimum3 is straightforward [145]. This ‘palm tree’
[150] organisation becomes particularly clear in panels4 LJAT19-1HL-100, LJAT19-2HL-
2000, LJAT19-3HL-10000, and those with higher Ndata: pathways from all the minima with
higher loss to the global minimum encounter relatively low downhill barriers. The structure
in the cases with small Ndata and H ∈ {2,3} is rather different: we see many low-lying
minima with similar loss values. Moreover, it can be seen that the barriers between the
minima are very low, especially those for LJAT19-2HL-100 and LJAT19-3HL-100, where
the number of minima is the highest, which is in agreement with previous calculations [45].
This should be contrasted with the PELs that have previously been reported for structural
glasses [39–41, 102, 103]. The LFLs of these systems equally feature a large number of
amorphous structures with similar potential energy. In contrast, however, these minima are
separated by large barriers compared to the relevant thermal energy, producing a landscape
with a hierarchical structure [150]. The structure at the bottom of the LFLs for cases LJAT19-
2HL-100 and LJAT19-3HL-100 has previously been unobserved, and the disconnectivity
graph is reminiscent of a ‘mangrove swamp’. The overall funnelled structure could serve
as an explanation for the unexpected efficiency of commonly employed DNN optimisation
methods, as is discussed further at the end of this chapter.

Visualisations of the predictions of the DNN global minimum are included in Fig. 3.2;
a key is provided below the figure with further details in App. A.2.2. These visualisations
plot the LJAT19 class index in a representative subspace of the full three-dimensional space
of LJAT19 input features. This is achieved through projecting the three input features onto
a plane, where the details of this procedure are outlined in App. A.2.2. The four-fold class
index is plotted as colours grey, red, green, and blue. For further details, we refer the reader
to the appendix, but we stress again that these visualisations can simply be regarded as one
way of displaying the classification outcomes of DNN models in a reduced-dimensionality
subspace of the full three-dimensional space of input features. These visualisations allow

3Again we remind the reader that our main interest in the context of ML lies with the optimisability of the
LFL structure and not reaching the global minimum. Identifying points in the LFL with low training loss is
sufficient, and these points need not be the lowest minimum (and in fact this is even counterproductive, as
further discussed in Sec. 3.2.3).

4We remind the reader that the ‘DATASET-#HL-#’ notation used to refer to a specific LFL example is
introduced at the beginning of Sec. 3.2.
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us to observe how the best solution converges to the same pattern as sufficient training data
are supplied (see Fig. 3.2 as Ndata increases from top to bottom). The best AUC value here
is around 0.8 and corresponds to convergence of the relative probabilities for predictions
in the subspace of one missing input variable. Note that the class index coloured in red is
entirely absent in these visualisations, reflecting the difficulty of distinguishing the red from
the grey class index in the LJAT3 problem without knowledge of all three inputs. The same
optimal solution is obtained for H ∈ {1,2,3}, but more training data are required for larger H
(even though the number of variable weights that are optimised is very similar in each case).
The enhanced expressibility of the DNNs with higher H may be reflected in the increased
complexity of the patterns in the visualisations (see especially Ndata ∈ {100,1000}).

The performance of all minima in the LFLs for the LJAT19 training dataset can also be
analysed for the accompanying testing dataset. We plot the training versus testing loss of all
minima as scatter plots in Fig. 3.2. Because nmin is large in the cases in which H ∈ {2,3}
and Ndata ∈ {100,1000,2000} and because the resulting high density of points in the scatter
plots presented in Fig. 3.2 makes these plots unreadable, we additionally provide histograms
in Fig. 3.3 for the relevant cases (i.e. H ∈ {2,3} and Ndata ∈ {100,1000,2000}). The graphs
for H ∈ {2,3} reveal the following trends: there exists a weak anti-correlation between
the train-loss and test-loss values of low-lying minima in the case of little training data
(Ndata ≤ 1000). This result suggests overfitting: minima with loss values lower than the
optimal value obtained for the large training data limit must gain their advantage in a way that
does not generalise well to testing data. In this regime, the corresponding DNN models likely
yield no good learning capability when trained. This result is due to the lack of train-test
loss correlation, which results in poor generalisability of the model. For a medium amount
of training data (Ndata = 2000), the graphs indicate no clear correlation between the relative
variations of train and test loss, while for large amounts of training data (Ndata ≥ 10000)
there is a positive correlation for, both, absolute and relative loss variations. Interestingly, the
lack of bare train-test loss correlation for medium amounts of training data, e.g. Ndata = 2000
(but not small, e.g. Ndata = 100) can be overcome by considering the correlation with the
minimum geometry, as discussed in the next section.

3.2.3 Relating test error and basin geometry

To further investigate the correlation of training and testing loss, Ltrain and Ltest as well as how
the loss of each minimum correlates with local curvatures, we perform a fit of the following
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Fig. 3.3 Minima of the LFLs for the LJAT19 training dataset with H ∈ {2,3} and Ndata ∈
{100,1000,2000} presented as histograms as a function of training and testing loss, Ltrain
and Ltest. The number of minima in one bin of the histogram is indicated by its colour, and
the colour can be interpreted using the colour scale on the right-hand side of each histogram.

two functions to the data:

L(1)
test (Ltrain) = a1 +b1 Ltrain (3.1)

and

L(2)
test (Ltrain,S) = a2 +b2 Ltrain + c2 S, (3.2)

where S is the log product of all eigenvalues of the Hessian matrix evaluated for the respective
minima and is defined analogously to the entropy in molecular systems. The optimal fit
parameters and values of the adjusted coefficient of determination, r2, are reported in Tab. 3.3,
where fit results for H = 1 and Ndata ≥ 1000 were omitted (because nmin ≤ 7, which does
not allow a conclusive statistical analysis). First, the trend of negative to positive correlation
between Ltrain and Ltest as a function of increasing Ndata is confirmed by the values of b1 and
b2. Second, while adding the term proportional to S seems to be irrelevant in the case of
Ndata ≥ 10000 (as c2 is small, b2 is similar to b1, and r2 changes only slightly), the results are
very different for small Ndata: the parameter c2 increases by up to three orders of magnitude
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Table 3.3 Fitting parameters for correlation analysis between training and testing loss values
of minima (see Eqs. 3.1 and 3.2).

Ndata b1 r2 b2 c2 r2

H = 1
100 −7.8(11) 0.068 −4.7(11) 8.39(88) 0.18

H = 2
100 −5.500(27) 0.097 −4.858(27) 5.57(5) 0.12

1000 −2.529(38) 0.25 −0.308(33) 0.4495(38) 0.63
2000 −0.155(85) 0.0047 0.231(70) 0.1510(85) 0.4

10000 1.07(10) 0.68 0.90(13) 0.035(16) 0.71
100000 0.940(57) 0.89 0.944(58) 0.0034(47) 0.89

H = 3
100 −4.050(17) 0.09 −4.678(16) 6.736(30) 0.16

1000 −2.998(11) 0.48 −1.083(13) 0.5131(25) 0.65
2000 −1.059(45) 0.15 −0.063(35) 0.2122(37) 0.6

10000 0.673(75) 0.35 0.672(71) 0.0267(69) 0.41
100000 0.945(23) 0.99 0.939(25)−0.0019(27) 0.99

with decreasing Ndata, the optimal values of b1 and b2 differ drastically, and the r2 value
increases significantly between the two fits. The change between fitting with Eq. (3.1) and
Eq. (3.2) is most pronounced for Ndata ∈ {1000,2000}. We even find that in the case of
LJAT19-2HL-2000 the correlation between training and testing loss changes from negative
to positive, and r2 increases from 0.0067 to 0.4. This result suggests that knowledge of the
curvature of a minimum (in our case encoded in the entropy parameter S) may enhance the
prediction of the performance of training LFL minima on testing data, which is in good
agreement with studies by Wu et al. reported in Ref. [155]. We note that S summarises the
information contained in the eigenvalues of all the ν dimensions of the Hessian matrix (where
we recall that in the present example ν takes the values 74, 69, and 72 for 1, 2, and 3 hidden
layers respectively). In future work, it would be interesting to investigate the distribution
of those eigenvalues [117], which play a key role in determining the structure of the heat
capacity analogue for the LFL [12, 36].

3.2.4 Performance of minima

We now turn to the analysis of the performance of LFL minima for both training and testing
datasets. In Tab. 3.4, we list the loss function and AUC values averaged over all minima for
both datasets. The values reported in that table display the following trends: as Ndata increases,
the average performance improves. Training loss increases, training AUC decreases, testing
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Table 3.4 Average loss function and AUC values for train and test data of all minima found
in training as listed in Tab. 3.1.

H = 1 H = 2
train test train test

Ndata loss AUC loss AUC loss AUC loss AUC
100 0.297 0.953 1.453 0.547 0.166 0.995 2.344 0.557

1000 0.519 0.810 0.552 0.796 0.511 0.823 0.572 0.787
2000 0.539 0.806 0.548 0.795 0.534 0.809 0.550 0.792

10000 0.546 0.801 0.559 0.801 0.542 0.802 0.557 0.801
100000 0.547 0.797 0.551 0.796 0.543 0.798 0.548 0.797

H = 3
train test

Ndata loss AUC loss AUC
100 0.121 0.994 2.424 0.564

1000 0.502 0.829 0.596 0.779
2000 0.531 0.812 0.556 0.788

10000 0.542 0.803 0.557 0.801
100000 0.543 0.798 0.548 0.797

loss decreases, and testing AUC increases with growing Ndata. We note that training loss
should decrease with growing Ndata, as this indicates a reduced overfitting of the data. Weak
deviations from this behaviour persist when the model is already converged, and the numbers
only change by less than 1%, which we attribute to statistical noise. We note that this effect
could be linked to the variations of nmin and nts reported in Sec. 3.2.1.

Next, we test the average model performance as a function of minima included in the
assessment, with results for H ∈ {2,3} and Ndata ∈ {100,1000,2000} shown in Fig. 3.4.
Interestingly, for all cases except for the ones with fewest training data provided (i.e. Ndata =

100), the average minimum performance on test data is worse at the bottom of the training
loss landscape compared to the overall average performance. Note that the graphs show
the reduced loss function, which reports loss values ranging from 0 to 1, where 0 would
correspond to the lowest minimum and 1 to the highest discovered in the respective LFL.
The absolute loss values can therefore not be compared between the graphs, yet they show
how the loss values of minima relative to all minima of the respective landscape perform.
The trends revealed by these graphs are intriguing: the lowest minima of the Ndata = 100
landscape in average perform better (compared to all other minima in that specific LFL)
than in the case for Ndata ≥ 1000. However, note that these results reported in Fig. 3.4 may
be particularly susceptible to the undersampling of minima in loss ranges of high minima
density discussed at the beginning of Sec. 3.2 and in App. A.3.
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Fig. 3.4 Reduced test loss plotted against reduced train loss of minima of the LFL for the
LJAT19 dataset with Ndata ∈ {100,1000,2000}. The train loss is divided into 100 intervals
and the test loss is averaged over all minima found with train loss in the interval. The reduced
loss is defined as Lred(L) =

L−Lmin
Lmax−Lmin

, where Lmax is the maximal and Lmin is the minimal
loss value in the corresponding database of minima. The graph shows that the average test
loss increases towards the bottom of the train loss landscape for Ndata ∈ {1000,2000}, as one
would intuitively expect from overfitting. Intriguingly, for Ndata = 100, the average test loss
seems to decrease again at the bottom of the training loss landscape. This result indicates
that, when very little Ndata is used, minima very close to the bottom of the landscape overfit
slightly less than ones further up in the landscape. (a) H = 2. (b) H = 3.

3.2.5 Barrier heights

In Tab. 3.5, we report the barrier heights to the global minimum averaged over all minima
discovered in the LFL, together with the average of those barrier heights divided by the loss
difference. Intriguingly, the relative barrier heights are small in all cases, and especially the
cases with H ∈ {2,3} and Ndata ∈ {100,1000}, where the disconnectivity graphs in Sec. 3.2.2
reveal a ‘mangrove-swamp’ type structure with many local minima of similar loss values, are
characterised by extremely low relative barriers (defined as the barriers heights divided by
the loss difference between the minima). These relative barrier heights are below 10 %, as is
evident from the numbers reported in Tab. 3.5.

It is also interesting to discuss trends in the barrier heights across different values of H
and Ndata. It is clear that the total barrier heights decrease monotonically in all those cases in
which nmin is of reasonable size (i.e. not for H = 1 with Ndata ≥ 2000). Clear trends in the



3.2 Results 39

Table 3.5 Downhill barrier of a minimum to the global minimum for all other minima located
in the training LFL, averaged over all minima. The ‘relative’ column reports the average of
these barrier heights divided by the loss difference between the minima.

H = 1 H = 2 H = 3
Ndata total relative total relative total relative
100 0.105×10−3 0.0178 0.276×10−2 0.0783 0.324×10−2 0.0781

1000 0.298×10−5 0.0905 0.357×10−3 0.0562 0.540×10−3 0.0462
2000 0.589×10−4 0.9777 0.101×10−3 0.0676 0.566×10−4 0.0294

10000 0.415×10−5 0.0597 0.316×10−4 0.4342 0.324×10−4 0.0477
100000 0.663×10−5 0.3301 0.332×10−4 0.3019 0.216×10−4 0.0286

relative barrier heights would be even more interesting but can unfortunately not be identified
in the data presented in Tab. 3.5. We note that the average barrier heights are particularly
susceptible to full convergence of minima and TS databases, which could be the reason for
the absence of trends in the relative barrier heights in the reported data. We conclude that the
main result obtained from the presented data is that the barriers are all low, whereas we are
unable to deduce any clear trends as a function of H or Ndata from them.

These results are of great relevance to the understanding of the effectiveness of SGD and
similar methods for the optimisation of LFLs of DNNs. The typical barriers that an optimiser
has to overcome are small compared to the overall change of the loss function. This structure
means that small amounts of noise added to the loss value and its gradient are sufficient to
result in a global downhill trajectory even for a ‘simple’ gradient-based optimiser.

3.2.6 Performance as a function of number of hidden nodes

The main results reported in this chapter focus on systems with varying deepness of DNNs
while keeping the number of weight variables, ν , approximately fixed. This setup is dom-
inantly used as it allows a direct comparison of the obtained results in previous work on
shallow neural networks [11, 12, 30, 36, 37]. Before we move on to present results that do
not obey this constraint, we give a list of other reasons for this choice of comparison.

First, it is generally known for PELs that the complexity of a landscape increases with ν ,
and so do the numbers of minima and TSs, nmin and nts. In fact they do so exponentially with
the number of degrees of freedom D as nmin ∝ exp(γD) and nts ∝ Dexp(γD) [133, 149]. We
would therefore like to find out what happens to the structure of the LFL when the number of
degrees of freedom is kept fixed, and only the deepness of the network is varied.

Second, recent studies of DNN learning have already established that the capability of
DNNs to some extent stems from over-parameterisation [9]. While this result appears to
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Fig. 3.5 Disconnectivity graphs for LJAT19-3HL-2000 with nl ∈ {2,3,4,5,6} nodes in each
hidden layer (with nl increasing in the order of appearance from left to right).

be a necessary condition for good performance, it certainly cannot be a sufficient condition
as wide shallow neural networks are not as effective as ones that are deep but narrow. It
is therefore interesting to investigate not just the degree to which over-parameterisation
facilitates learning but instead how the distribution of these degrees of freedom across the
network affects performance.

Third, the field of ML seeks to find the best-performing architecture in a competition
between networks of similar degrees of freedom [84, 109]. This objective is due to the fact
that the training cost grows at least linearly with the number of parameters, as does the cost
for the evaluation of the network function in prediction.

Nonetheless, for reasons of completeness, disconnectivity graphs for the LJAT19 dataset
for Ndata = 2000, H = 3, and n1 = n2 = n3 ∈ {2,3,4,5,6} are presented in Fig. 3.5. As
expected, nmin and nts grow significantly with ν . The structure of the LFL however does
not vary significantly between different numbers of hidden nodes, although the landscape
becomes more funnelled with a decrease of hidden nodes. For a larger number of hidden
nodes, it is closer to the ’mangrove-swamp’ structure, with many local minima of similar
loss values connected by low barriers (which is also observed in Sec. 3.2.2 for very little
training data).

3.2.7 Comparison with other datasets

To check that our results are transferable to very different prediction problems, we analyse
the LFL for the OPTDIG and WINE datasets and present their disconnectivity graphs in
Fig. 3.6. The two DNN architectures employed in conjunction with the OPTDIG dataset are
characterised by H = 1, nl = 5 and H = 3, nl = 4 with, in both cases, n0 = 64, nH+1 = 10.
The resulting numbers of weight variables are ν = 385 and ν = 350, respectively. Similarly,
the two architectures used for the WINE dataset are characterised by H = 1, nl = 5 and
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H = 3, nl = 3 with, in both cases, n0 = 11, nH+1 = 3. This results in ν = 78 and ν = 72.
We note that for the cases studied in this section, the procedure outlined in Sec. 3.1.2 for
searching minima and TSs is not converged fully, as we only aim to obtain enough minima
and TSs in order to resolve the high-level LFL structure and plot the resulting disconnectivity
graphs.

The structure of these landscapes appears to be qualitatively similar to those using the
LJAT19 dataset. The LFLs all display a single-funnelled structure, as is evident from the
disconnectivity graphs plotted in Fig. 3.6. Importantly, there are no large barriers separating
low-lying local minima, which would hinder efficient optimisation. Notably the differences
between the disconnectivity graphs for the different cases studied in this section is not very
large. This is unsurprising given the range of Ndata considered is much smaller than in those
previously studied (Ndata only differs by a factor of 3.3, whereas it changes over three orders
of magnitude in the cases reported in Fig. 3.2). We also observe very little change in the
LFL structure between H = 1 and H = 3. This may be due to insufficient convergence of
the minima and TSs databases. It can be expected that the LFLs with H = 3 will develop a
mangrove-swamp like structure as the databases are further converged. We also note that
the value of Ndata where the different LFL archetypes would emerge will depend on the
precise nature of the training data (features, noise, correlation, etc). In summary, there is
great scope for more studies of LFLs using other training datasets, and the results presented
in this section could be developed further. Yet the key result that we are able to demonstrate
here is that, again, we encounter predominantly low barriers separating local minima, which
would again suggest good optimisability of the respective DNN models.

3.3 Conclusions

We conclude this chapter by summarising and interpreting the results reported above. The
central study we present is the resolution of the structure of the LFL of DNNs as a function
of amount of training data, Ndata, provided and for varying deepness, as captured by the
number of hidden layers, H. This structure is analysed in a number of ways, of which the
main findings are again repeated here.

In Sec. 3.2.1, we report the number of minima, nmin, and the number of TSs, nts, which
both decrease with growing Ndata, as expected. This result is in agreement with the ex-
pected exponential growth with the number of degrees of freedom D as nmin ∝ exp(γD) and
nts ∝ Dexp(γD) found in PELs [133, 149]. More interestingly, both nmin and nts increase
significantly as H is increased from 1 to 2, hence indicating that the ‘deep’ networks behave
rather differently from the ‘shallow’ ones.
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Fig. 3.6 Disconnectivity graphs for the training datasets OPTDIG (with Ndata ∈ {1500,5000}
and H ∈ {1,3}) and WINE (with Ndata = 1500 and H ∈ {1,3}). Only the lowest 2000 minima
(or all of them if fewer than 2000 were found) are shown. The vertical scale is adjusted to
span the range of loss-function values within this set.

This trend is substantiated in Sec. 3.2.2, where we plot the disconnectivity graphs. The
graphs reveal one of the main findings of our study: the LFLs of DNNs fall into two
archetypes depending on Ndata and H. We either observe a single-funnelled landscape, when
Ndata is large or when H = 1. For the data-scarce deep examples, however, a new, previously
unreported structure is discovered with many minima of similar loss values connected by
small barriers, which we call a ‘mangrove-swamp’ type structure due to the appearance of the
disconnectivity graph. This result also shows that the LFL of a DNN is qualitatively different
from the PEL of a structural glasses [39–41, 102, 103] or systems with multi-funnelled
landscapes [27].

Next, in Sec. 3.2.3, a study of the correlation between train loss, test loss, and minimum
curvature (quantified using the log product of Hessian eigenvalues) for all discovered minima
allows us to recover results previously reported [155] that attribute the success of SGD to the
wide basin geometry of ‘good’ minima. When little training data is supplied, the large number
of minima in the LFL for the training dataset spread across a wide range of loss values, and
the same is true for loss values of those minima when evaluated for the accompanying testing
dataset. In this limit, the system is prone to overfitting, which manifests as an anticorrelation
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between training and testing loss values. Moreover, a strong correlation between the local
curvatures and the generalisability of minima in the deep medium-Ndata regime is observed.
Hence we conclude that entropic contributions to the optimisation dynamics may guide
SGD-type optimisers to minima that generalise well. This observation allows us to gain
deeper insight into the success reported for additional mechanisms that guide the optimiser
towards low-curvature minima [10, 26].

Finally, an analysis of the barrier heights in Sec. 3.2.5 confirms the assessment from
Sec. 3.2.2 that the barriers disconnecting local minima are small, especially when compared
to the respective loss value difference, and this observation holds for all network architectures
irrespective of Ndata.

The main conclusion drawn from these results is that our analysis of the LFL structure
helps in answering the question why simple optimisation procedures such as SGD are
successful for systems as complex as DNNs with a high-dimensional weight-variable space
and non-convex loss function. The LFL is either funnelled or exhibits a structure with many
competing low-loss minima connected by low barriers. Both structures are easy to optimise
as the barriers that any optimiser has to overcome in order to follow a global downhill
trajectory are small compared to the overall loss value changes.

We stress that this is the first study of its kind to be conducted. Previous works either only
considered single-hidden layer neural networks [11, 12, 30, 36, 37], employed nudged-elastic
band approaches but without properly assessing the connections [45], or inferred properties
of the LFL from the training dynamics of DNNs [9]. While these previous contributions are
relevant and add other interesting observations not studied in this work, our in-depth analysis
of the LFL provides a much more complete picture.

We reiterate that the methods employed in this work are in principle capable of discovering
all minima and TSs in the LFL of DNNs. However, the problem of the potential miss-
identification of stationary points as permutational isomers due to a high density (as a
function of training loss) of such stationary points remains a challenge that this work is not
able to fully resolve. Future work will have to find a more suitable approach for dealing with
this problem in order to discover sufficiently converged databases of minima and TSs.

It would be interesting in future work to extend the approach presented here to larger
DNN architectures that are closer to the ones commonly used in practical applications. The
trends for small architectures that we report in this contribution appear to be consistent
with analytical studies based on spin-glass models [31]. Yet, developing the numerical
methods used in this contribution to the point where they are efficient enough to resolve
at least moderately large structures is desirable. However, this aim is unfortunately not
straightforward due to the significant growth in computational cost. The numerical results
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obtained and presented in this work required an approximate 170000 core hours, which
can be expected to grow strongly with increasing complexity of network architecture and
size of training dataset. First, the methods that are outlined in Sec. 3.1.2 and that are
employed to obtain the results reported throughout this chapter scale at least linearly with
the dimensionality of the space, which in our case is the number of weight variables, ν .
Second, sampling the entire space becomes increasingly difficult because the number of
minima, nmin, and number of TSs, nts, grow quickly, which is known to be exponential for
PELs [133, 149], and has been demonstrated to be of equal severity for LFLs in Sec. 3.2.1. It
is possible that sampling methods that identify small subsets of minima and TSs for detailed
analysis, dimensionality-reduction techniques that eliminate less relevant directions (either
particularly ‘soft’ or particularly ‘hard’ ones) or an increased usage of the regularisation to
reduce the effective nmin and nts could be viable approaches to overcome the impediments
arising from increasing computational cost in larger systems.

Many open research questions regarding the structure of the LFL and its optimisation
with SGD remain, of which several can be addressed using the methods presented in this
chapter. For example, higher-index stationary points (those with Hessian index greater than
1) would be interesting to study more carefully due to their possible relevance for deep
learning optimisation, given that many DNN optimisers cannot distinguish between minima
and other types of stationary points. Moreover, it would be interesting to investigate other
ML architectures such as convolutional neural networks, recurrent neural networks, or DNNs
with reduced node connectivity. Notably, previous studies reported exciting effects of reduced
node connectivity on the LFL structure of shallow networks [30], and it would be interesting
to extend those studies to deep networks.

In summary, this work has advanced our understanding of the LFLs of DNNs, yet many
open tasks remain that can be addressed using the methods and procedures described.
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Chapter 4

Introduction to Rashba systems and
non-equilibrium solid-state physics

The second part of this thesis focuses on the study of non-equilibrium charge-carrier densities
in systems with strong Rashba spin-orbit coupling. Therefore, the system studied here is
very different in nature to the one studied in the first part of this thesis. Nonetheless, the
two presented studies are linked by the fact that, in both cases, we are investigating the
relaxation of a complex system with many degrees of freedom, albeit by the use of very
different methods.

The study outlined in this and the following two chapters consists of two main points
of investigation. First in Chap. 5, we attempt to understand and analyse the transport
measurements of two systems that are known to have strong Rashba coupling and that
display intriguing non-equilibrium effects in their magnetotransport curves. Second, these
observations together with our attempts to explain and model them inspire a systematic study
of chirality relaxation in Rashba systems, for which results are reported in Chap. 6. The
remainder of the present chapter introduces the required theoretical background that will be
used throughout the next two chapters.

4.1 Rashba systems

Rashba systems are a class of materials that have proven to be of great interest for both ex-
ploitation in technological applications as well as for academic study of intriguing phenomena
in solid-state systems.

The Rashba effect is named after E.I. Rashba, who, together with Y.A. Bychkov, was
the first to discover and describe it [23]. This effect exists in solid-state systems with strong
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spin-orbit coupling together with a broken inversion symmetry and can either manifest in
three-dimensional (3D) materials that have a distorted inversion-asymmetric unit cell, such
as Ferroelectric materials, or in two-dimensional (2D) systems, in which the Rashba effect
arises due to the existence of an electric field perpendicular to the plane, typically realised on
the interface between two materials where a 2D electron gas or edge states can be found [77].

More recently, the Rashba effect has also been realised artificially and studied in ultra-
cold atomic gases [160]. The Rashba effect and its implications on transport effects is
well-documented in a number of review articles [85, 16, 17], and we summarise some main
aspects relevant to our study in this section.

The Rashba effect gives rise to a spin-orbit coupling term in the Hamiltonian of the form

HRashba = αRσσσ · (rSO ×k) , (4.1)

where αR is the Rashba parameter, σσσ is the vector of the Pauli matrices, k is the wavevector,
and rSO, which is a unit vector, points in the direction of the spin-orbit coupling along which
inversion symmetry is broken.

For a parabolic Bloch band, i.e. Hfree = }2k2/2m with effective mass m, the additional
Rashba interaction term lifts the spin degeneracy of the two Bloch bands and leads to
momentum-dependent spin mixing within the band. This yields the energy dispersion

ε
±
k = }2/2m(k± kR)

2 −ER , (4.2)

where kR = αRm/}2 is known as the Rashba momentum and ER = }2k2
R/2m is the Rashba energy

scale, and where the + (−) superscript refers to the upper (lower) Rashba band, respectively.
The energy dispersions for a Rashba system that result from Eq. (4.2) are plotted in Fig. 4.1
along with an indication of the Rashba energy scale ER and the Rashba momentum kR. The
band index replaces the degenerate spin index of the free parabolic energy dispersion. As a
consequence, the new dispersion features k-dependent spin alignments on the Fermi surface.
The free-electron parabolic dispersions of the two spin species are mutually shifted apart in
momentum space by the Rashba momentum kR. While the free electron system has two equal
Fermi surfaces with degenerate spin and the same Fermi momentum, the Rashba system has
a chiral spin texture and two concentric Fermi surfaces at different Fermi momenta separated
by 2kR.

When here and in the following the term ‘chirality’ is used, we refer to the alignment
between spin and momentum, which for the eigenstates in the Rashba Hamiltonian are
locked together as orthogonal to each other. The two resulting types of spin polarisation for a
given carrier momentum have different eigenenergies and are referred to as the two opposite
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Reprinted with permission from Ref. [143], P.C. Verpoort et al., J. Phys.: Condens. Matter 32, 355704 (2020). Licensed under Creative Commons Attribution 4.0.

Fig. 4.1 The energy dispersion of a free system with an additional Rashba interaction. Top:
energy dispersion. Bottom: chiral spin structure at the Fermi surface with arrows indicating
spin directions.

chirality species. We adopt the term ‘chirality’ from now on to refer to the two carrier types,
although we note that some other terms exist in the literature, such as the ‘Rashba carrier
type’ or the ‘helicity’ of carriers, which all refer to the same property.

A common experimental technique to ascertain the existence of Rashba coupling in the
band structure of a solid-state system is through spin- and angular-resolved photoemission
spectroscopy (often abbreviated as SARPES or spin-ARPES) [44], where the binding energy
and in-plane momentum can be obtained from the exit angle and kinetic energy (as is done
in standard ARPES measurements), while the spin of the emitted electron is determined
using a spin detector. While several techniques exist to measure the spin, the most common
method employs a Mott detector, which is based on the spin-dependent diffraction off heavy
nuclei, an effect first studied by Mott [94]. The main limitation of SARPES is that it can only
probe surface or near-surface states, yet it has effectively become the standard method for
the investigation of spin-polarised energy dispersions, as it is capable of directly measuring
the electron spin, momentum, and energy at the same time.

Another common technique for establishing the existence of a chiral spin texture at the
Fermi level based on transport measurements is the observation of a magnetoresistance curve
featuring weak anti-localisation (WAL) behaviour, which is sometimes also referred to as a
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WAL ‘cusp’. The standard weak localisation (WL) behaviour present in all regular metallic
samples below a certain temperature threshold arises due to quantum coherence effects,
which makes closed-loop paths interfere constructively and results in an increase of the
overall resistivity [3]. In contrast, in systems with a chiral spin texture, the phase acquired in
a closed-loop path results in destructive interference and hence a reduced resistivity. Adding
an external magnetic field results a destruction of the WAL effect, which manifests in the
WAL cusp described by the Hikami-Larkin-Nagaoka (HLN) equation [61]. Reporting a
cusp in the magnetoresistance curve can thus in some contexts be regarded as proof for the
existence of Rashba coupling. It should however be mentioned that Rashba coupling is not
the only source of WAL effects, as other dispersions with a chiral spin texture, such as surface
states of topologically non-trivial systems, can also result in a WAL effect. Consequently,
whether the observation of WAL in the magnetotransport curve can be seen as sufficient
evidence for Rashba coupling has to be determined depending on the specifics of the system
under consideration.

Rashba materials have attracted the interest of condensed-matter and solid-state physicists
for a number of reasons in recent years. Their strong intrinsic spin-orbit coupling and
the ability to control its direction in ferroelectric materials by flipping the ferroelectric
polarisation through external electric fields have generated much interest in the context
of designing devices for memory and logics based on spin currents – a field also well
known as spintronics [153, 163]. Moreover, exciting novel effects have been predicted and
observed in systems with strong Rashba coupling, including the universal intrinsic spin-
Hall effect [126], the WL to WAL transition [92], or spin-based logical circuits [85, 128].
Moreover, non-centrosymmetric superconductors have been predicted to host Majorana
zero-modes [120, 121, 134], hence making superconducting Rashba materials a potential
candidate for discovering Majorana fermions, which in turn are much sought after to build
robust devices for fault-tolerant quantum computing applications.

Having completed this preliminary introduction to Rashba systems, we can now proceed
with defining the required methods from the field of non-equilibrium solid-state physics that
are used in the subsequent two chapters.

4.2 Non-equilibrium physics in solid-state systems

The following two chapters will study Rashba systems in the context of non-equilibrium
physics. This section therefore briefly summarises some basic concepts and theoretical
background on non-equilibrium phenomena. Further details can be found in any standard
textbook on solid-state physics [5, 86].
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As mentioned in Chap. 1, the concepts of equilibrium and non-equilibrium are among
the oldest and most fundamental concepts in statistical mechanics and date back to the
early studies of heat transfer between bodies from the 19th century [54]. The definition
of equilibrium, which initially was based on the exchange of energy and entropy, has
since evolved and is nowadays more commonly defined as the stationarity of microscopic
distribution functions, which is the definition that we shall work with in the following.

It is customary to describe the time evolution of microscopic states of many-body systems
in and out of equilibrium using a semi-classical distribution function f (k,r, t), whose value
corresponds to the likelihood of a carrier occupying the state with momentum k and position
r at time t and whose dynamics are governed by the semi-classical Boltzmann equation of
motion,

∂ f
∂ t

+
∂ f
∂r

ṙ+
∂ f
∂k

k̇ =

(
∂ f
∂ t

)
coll

. (4.3)

The particle velocity is then normally obtained from the group velocity of a wave packet as
ṙ = ∇kεn(k)/}, and the change of momentum, k̇, is given by the sum of all electromagnetic
forces acting onto a particle in state k. In the context of this work however, we will not be
working with spatial gradients (i.e. f (k,r, t) = f (k, t)) of the distribution function or any
electromagnetic forces, and hence we can significantly simplify this equation to a form that
we shall work with in the following two chapters:

∂ f
∂ t

=

(
∂ f
∂ t

)
coll

. (4.4)

Hence, the change of the distribution function is entirely determined by the collisions of the
charge carriers.

We will make additional assumptions regarding the form of the distribution function and
its behaviour later in Chap. 6. In particular, we assume the distribution function to take the
form of a free Fermi-Dirac equilibrium distribution, which is given by

fFermi(k) =
1

eβ (εk−µ)+1
, (4.5)

where εk is the energy dispersion of the respective charge carrier type, and µ is the chem-
ical potential. While our research deals with non-equilibrium charge carrier distributions,
our work is restricted to non-equilibrium in the form of chirality imbalances, such that
the distributions of each carrier type will continue to exhibit a Fermi-Dirac equilibrium
distribution.
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Finally, one important approach taken in both Chap. 5 and Chap. 6 is the relaxation-time
approximation, which is briefly outlined and described here and applied to the relaxation of
chirality imbalances later on. A conventional attempt to evaluate the transport properties
of conductors is to simplify the collision integral on the right-hand side of Eq. (4.3) and
to replace it with a term that corresponds to a linear relaxation towards the equilibrium
distribution f0 with a time constant τ such that

∂ f
∂ t

+
∂ f
∂r

ṙ+
∂ f
∂k

k̇ =− f − f0

τ
=− f1

τ
, (4.6)

where we have defined f1 to be the difference between the full distribution function and
the corresponding equilibrium distribution, i.e. f1 = f − f0. The above approximation then
typically yields an exponential relaxation of the distribution function with time constant
τ to the equilibrium distribution. This approach can be used to derive expressions for
relevant transport properties, such as the thermo-electric conductivity tensor. We shall take a
fairly similar approach, albeit, instead of approximating the collision integral, we apply the
relaxation-time approximation to electronic properties such as the chirality density C. We
note that C, which will be defined again in Chaps. 5 and 6, is given as C = n−−n+, i.e. the
difference between carrier densities of the two Rashba bands, n±. This yields the differential
equation

dC
dt

=−
C−Ceq.

τ
. (4.7)

By evaluating the collision integral and by expanding it in first order of C−Ceq. and dC
dt ,

this will allow us to derive an expression for the relaxation-time constant τ . This follows
an approach taken by Yafet [158] that determines the spin-relaxation time constant from
the electron-phonon interaction in a similar way. This procedure is further explained when
applied in the next two chapters.

With this introductory section on non-equilibrium phenomena, methodology, and ter-
minology completed, we are ready to continue our investigation of chirality relaxation in
strongly Rashba-coupled systems in the next two chapters.



Chapter 5

Long-lived non-equilibrium states in
Rashba systems

In this chapter, we summarise experimental observations of slowly decaying non-equilibrium
effects in systems that exhibit strong Rashba spin-orbit coupling, where these effects manifest
in anomalies of transport properties. After an in-depth discussion of existing experimental
evidence, we analyse various theoretical frameworks that could potentially serve as a source
of these observations, yet we demonstrate that due to a number of inconsistencies they all
fail to truly explain the discovered novel non-equilibrium effects. Therefore, we put forward
an alternative framework based on slowly decaying chirality imbalances. Based on this
assumption, we model the dynamics of the Fermi energies and the resulting resistances.

As stated in the Preface to this thesis, all experimental evidence presented in this chapter
has been obtained and kindly provided by V. Narayan and J.R.A. Dann, whose support is
gratefully appreciated.

5.1 Experimental observations

This section introduces the key experimental observations that lead us to declare a novel
previously undetected non-equilibrium effect in Rashba systems. The main focus of this
chapter is on the material GeTe, which serves as the prime example and is used to define the
novel non-equilibrium effect. In addition, we present one other system that displays non-
equilibrium transport anomalies similar to those in GeTe and whose behaviour we attribute
to the same effect, namely the LaAlO3/SrTiO3 system studied in Ref. [35].

There exist a few other potential candidate materials showing a similar behaviour that
could be interpreted as the same effect, such as a Bi2Te3/Sb2Te3 vertical TI heterostruc-
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ture [8], which features a non-equilibrium WAL cusp in its magnetoresistance similar to that
of GeTe, SmB6 (Samarium-Hexaborite), where slowly decaying non-equilibrium states were
first reported by Wolgast et al. [154], and finally AuxGe1 – x, where a strong non-equilibrium
response of the magnetoresistance upon magnetic field-sweep with a clear rate dependence
has also been observed [34]. There however remain many unresolved questions in those
systems with respect to their properties, such as the exact origin of the WAL or the nature of
the states carrying electrical current, and other sources for these observed effects cannot be
ruled out with certainty, which is why they are not considered in this chapter.

More generally we note that, if the effect observed in experiment does in fact arise due to
the existence of a strong Rashba spin-orbit coupling, there are plenty of other materials to
study as potential candidates for realisation of the observed effect. These are of course the
strongly coupled bulk-Rashba materials, including BiTeI and BiTeBr, as well as all materials
that exhibit strong Rashba coupling on the interface, such as a InGaAs/InAlAs semiconductor
interface, yet neither have these been studied systematically nor have observations been
reported on them. Whether the same effect will be observable in other Rashba materials will
obviously depend on several material-specific parameters, including, of course, the Rashba
coupling strength (measured through the Rashba momentum kR or the Rashba energy ER) but
also the carrier concentration, the effective mass, the resulting Fermi energy, and many other.
In summary, there is great scope for extending the presented research to other materials of
the Rashba class, yet such a systematic study is beyond the scope of this work.

5.1.1 Long-lived non-equilibrium superconductivity in GeTe

Introduction to the material

We commence by describing a novel non-equilibrium effect in GeTe, a narrow band-gap
semiconductor that exhibits a giant bulk-Rashba spin-orbit coupling [108, 110, 112]. This
bulk-Rashba effect arises from a non-centrosymmetric unit cell when the temperature is
below its ferroelectric transition temperature of around1 T = 700K so that the ions are
displaced from their inversion-symmetric rocksalt configuration. While the nature of this
ferroelectric transition is still under debate [28, 87, 127, 152, 157], this will not be of
relevance to this study, as all reported experiments are well below the transition temperature,
where the system can be expected to be fully in its rhombohedral phase with excitations to
the inversion-symmetric cubic phase occurring at far higher temperatures. With a Rashba
parameter of αR = 4.8eVÅ, a Rashba energy of ER = 227meV, and a Rashba momentum of

1The exact value ranges between T = 600K and T = 750K, and the precise value depends on the carrier
concentration [127].
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kR = 0.09Å
−1

, GeTe ranks among the materials with the largest known Rashba momentum
split [110] and will serve as our main candidate of investigation for non-equilibrium chirality
relaxation. Due to the intrinsic Ge-vacancy doping of the material, holes are introduced into
the valance band that push the Fermi energy just below the nodal crossing point of the Rashba
band [110], giving the semiconductor its metallic properties [47, 48, 55, 73]. We note that,
while GeTe is a hole-doped system, we always consider systems with positive effective mass
in the following. Moreover, GeTe is known to become superconducting at temperatures of
around T = 100mK, where the exact value of Tc depends on the concentration of carriers [58],
which in the high-quality molecular-beam-epitaxy (MBE)-grown samples presented here are
dominantly provided by Ge vacancies.

Due to its strong Rashba coupling and its ferroelectric switchability, GeTe is currently
investigated for its potential applications in spin-based logic schemes [85, 128] such as the
Datta-Das spin transistor [38]. In addition to its potential applications in spintronics, GeTe
is also a subject of investigation for its unconventional superconducting behaviour [58, 99].
Rashba systems are expected to exhibit Fulde-Ferrell-Larkin-Ovchinnikov [52, 76] (FFLO)
phases, where the different Fermi momenta of the electron species give rise to Cooper pairs
whose total momentum q is finite, which results in a spatially varying order parameter. As a
consequence, while conventional superconductors normally show only a minor dependence
on spatial variations of impurity concentrations, FFLO phases depend strongly on disorder [6,
64]. In addition to the possible FFLO physics present in GeTe, its ferroelectrically distorted
unit cell also makes it a non-centrosymmetric superconductor, which have been theoretically
shown to be of non-trivial topology if the p-wave pairing potential is larger than the s-wave
potential, in which case they can host Majorana zero-modes in their edge states or in their
vortex cores [120, 121, 134]. We note that all these effects are intriguing and make the GeTe
material particularly complex to study. Our study of the novel non-equilibrium phenomena
in GeTe however focusses on the normal-state behaviour, as this is less likely to be affected
by FFLO physics and p-wave superconductivity.

The full band structure of GeTe has been investigated using density-functional theory
(DFT) calculations [43, 110, 82, 115] and has been confirmed using SARPES [74, 82, 115].
This highlights a more complex band structure than described earlier in Fig. 4.1 due to a
star-shaped Fermi surface in the lower Rashba band as well as regions of low effective mass
and high density of states above the nodal point. While these effects would also be interesting
to discuss in the context of the present work, we shall, for reasons of simplicity, restrict
ourselves to approximating the GeTe band structure as a standard rotationally symmetric free
energy dispersion with an additional Rashba term as introduced in Sec. 4.1 and visualised
in Fig. 4.1. This simplification may of course affect the response of the system to the non-
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Reprinted with permission from Ref. [100], V. Narayan et al., Phys. Rev. B 100, 024504 (2019). © 2019 American Physical Society.

Fig. 5.1 (a) The GeTe films show activated and therefore semiconducting transport for
T > 100K, where a fit of the exponential growth yields a band gap parameter of ∆ =
0.1eV. For T < 100K, the resistivity saturates and becomes effectively constant, suggesting
that conductance is dominated by metallic 2D surface states. (b) Measurements of the
longitudinal conductivity with varying magnetic field strength feature a WAL cusp at zero
field. The cusp can be described well by the HLN formula valid for 2D systems [61].
σxx ≡ (L/W )Rxx/(R2

xx +R2
xy), where Rxx and Rxy are the longitudinal and Hall components

of resistance, respectively. Data obtained from Sample 1.

equilibrium carrier distributions that we consider in our model in the following sections, yet
we do not expect the estimation of relaxation times and the fundamental underlying nature of
the non-equilibrium effect to be much dependent on the precise band structure.

Characterisation of the sample

GeTe films of 18 nm thickness are grown onto Si(111) substrates using molecular-beam epi-
taxy (MBE). These are then fabricated into Hall bars to measure the longitudinal conductance
(note that the Hall conductance was also measured but this is not discussed here, for further
details check Ref. [100]). This section reports results from two GeTe samples patterned from
the same wafer, in the following referred to as Samples 1 and 2. The equilibrium properties,
as determined by the behaviour of the sample in the infinite-time limit for constant magnetic
field, are characterised by transport measurements reported in Figs. 5.1, and 5.2.

The temperature dependence of the resistivity shown in Fig. 5.1(a) displays activated
behaviour down to T = 100K, where a fit of the exponential growth of the resistivity suggests
a band gap of ∆ = 100meV, which is in good agreement with ARPES measurements [74]
of GeTe of ∆ = 60meV. Below a temperature of T = 100K, the resistivity saturates at a
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Reprinted with permission from Ref. [100], V. Narayan et al., Phys. Rev. B 100, 024504 (2019). © 2019 American Physical Society.

Fig. 5.2 (a) The sample undergoes a broad superconducting transition between T = 0.1K
and 0.2K below. We note that Rxx does not vanish fully, which may possibly arise due
to a positive voltage offset during the measurement (for further details check Ref. [100]).
Inset: superconductivity is suppressed when the sample is cooled in the presence of a
constant magnetic field perpendicular to the plane of the film. Note that this data suggests
a possible field offset of B = 15mT, which can occur due to trapped magnetic flux in the
external superconducting magnet. (b) Plotting the critical field Bc as a function of T allows
to obtain Bc(0K) = 70mT and Tc = 140mK from extrapolation. For this extrapolation the
superconducting transition is defined for Rxx = RN/2, where RN is the normal-state resistance.
Data obtained from Sample 2.

constant level, which suggests that metallic 2D surface states exist that dominate transport
below that temperature.

This conjecture of 2D transport is further corroborated by the observed WAL cusp in
the resistivity at T < 1K, as shown in Fig. 5.1(a). The strong Rashba spin-orbit coupling
gives rise to quantum corrections of transport properties, as outlined in Sec. 4.1, which
results in an enhancement of the electrical conductivity for non-zero external magnetic fields,
i.e. ∆σxx = σxx(B)−σxx(0). A functional fit of the HLN formula valid for 2D systems [61]
is in good agreement with the obtained data and therefore suggests that transport at low
temperatures is of 2D type. In fact, the existence of 2D metallic modes is consistent with
spectroscopic measurements in GeTe [82]. We note that, due to the apparent 2D nature of
the conductance, the electric resistivity is in all plots reported as ‘sheet resistance’ given by
R×W /L, where R is the resistance obtained from a four-terminal setup, and W and L are
the width and length of the Hall bar. Finally, the onset of superconductivity at T = 0.2K and
its suppression through a perpendicular magnetic field are shown in Fig. 5.2.

In summary, we have so far presented a strongly Rashba-coupled semiconductor with
metallic 2D conducting states that are the sole carrier of transport below T = 100K. This
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Fig. 5.3 Non-equilibrium magnetoresponse of GeTe for a continuously swept external mag-
netic field. (a) Resistivity when measured under alternating current (AC). The traces obtained
from up and down sweeps follow different curves. This measurement is performed using
frequency f = 77Hz, current I = 100nA and sweep rate Ḃ = 10Th−1. (b) Resistivity when
measured under direct current (DC). The non-equilibrium effect observed for AC ceases
when switching to DC measurement. This measurement is performed using current I = 2µA,
and sweep rate Ḃ = 10Th−1.

system features a WAL cusp, indicative of its strong Rashba coupling as well as supercon-
ducting transport properties around T = 100mT, which is suppressed by external magnetic
fields larger than the (zero-temperature) critical field of Bc(0K) = 70mT.

Slowly decaying non-equilibrium state

We now continue by examining the non-equilibrium magnetoresistance curves of this material.
In the following, we report an extremely long-lived non-equilibrium state of the system,
which is observable due to its salient transport properties, and which relaxes on macroscopic
timescales of several minutes. In this section, we only described the observed properties,
and we postpone the consideration of existing frameworks to explain these results and the
presentation of our novel interpretation to Secs. 5.2 and 5.3.

We set off by reporting the normal-state (i.e. non-superconducting) non-equilibrium
behaviour of the sample in Fig. 5.3. When measured with alternating current (AC), the
magnetoresistance (R as a function of B) follows two different curves depending on the
sweep direction of the magnetic field. The difference in resistivity between the continuously
swept curve and the equilibrium curve decays exponentially with time over a period of several
minutes. Strikingly, the non-equilibrium effect does not occur when the same measurement
with the same sample is performed with direct current (DC). This observation will serve later
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as one important argument to support the proposition that this effect cannot be explained by
existing frameworks, such as nuclear spin effects or magnetocaloric effects (see Sec. 5.2).

We note that evidence of this non-equilibrium effect in the normal state of GeTe was
already reported previously by Narayan et al. in Ref. [99], where the novelty of this effect
was not yet fully understood. In this publication it is presented as a hysteretic effect, although
the Supplementary Information of this article presents a graph showing the dependence of the
effect on the sweep rate. We recall that hysteresis is defined as a ‘rate independent memory
effect’ [144] and is an equilibrium phenomenon that does not decay over time. As the effect
observed in GeTe decays with time and, therefore, is not an equilibrium effect (as defined in
Sec. 4.2), it does not fall into the common definition of hysteresis. Furthermore, we stress that
the magnetoresistance traces reported in Fig. 5.3 should not be confused with the so-called
‘butterfly hysteresis’ observed in magnetic Dirac materials [20, 98, 136, 154] because, again,
the observed effect is not hysteretic but of non-equilibrium nature. As already discussed in
Ref. [99], the curves in Fig. 5.3 are asymmetric and can therefore not be explained by a
mere field shift (although this could in theory be created by an remnant hysteretic magnetic
field following a hysteresis loop, yet such fields are also excluded, as further discussed in
Sec. 5.2).

Next, we report evidence of the non-equilibrium effect that involves superconducting
transport behaviour, where the presented data is summarised in Fig. 5.4. While the onset of
a magnetic field quickly destroys the superconductivity, as seen in Fig. 5.4a (and outlined
before in Fig. 5.2), a continuously swept field can create a drop to almost zero resistivity at
magnetic field strengths higher than the equilibrium upper critical field, B > Bc, as is visible
in Figs. 5.4b and 5.4c. Moreover does this non-equilibrium resistance drop vanish at zero
field, where the equilibrium superconductivity would be expected to occur. We attribute this
to the existence of a second non-equilibrium superconducting state. This state decays slowly
over the period of several minutes, as is evident from Fig. 5.4d, and even occurs above the
critical temperature Tc of the equilibrium superconductor, as observed in Fig. 5.4(f)–(i). The
absence of a drop to absolute zero resistance could be interpreted as a competition between
the timescales for the superconducting transition and the decay of the non-equilibrium state.

Summary

In summary, we have presented a novel non-equilibrium effect in GeTe, which manifests
in transport properties for both the normal and the superconducting behaviour. This non-
equilibrium state decays over the course of several minutes, hence is extremely long lived.
Its existence seems to be strongly dependent on the rate at which the external magnetic
field is ramped. Moreover, its resistance drop occurs even above the upper critical field, Bc,
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Reprinted with permission from Ref. [100], V. Narayan et al., Phys. Rev. B 100, 024504 (2019). © 2019 American Physical Society.

Fig. 5.4 Evidence of non-equilibrium effect with superconducting transport properties. (a)
Starting in equilibrium in the superconducting state, an external magnetic field destroys the
superconductivity at B =−15mT, and the system transitions to its normal state. (b) However,
when starting at B =−1T and slowly ramping the field up to B = 1T, the resistance drops
almost all the way to zero. This starts to occur at B =−250mT, i.e. a field much higher in
strength than the apparent critical field, Bc, observed in (a) and Fig. 5.2. Moreover, this drop
in resistance vanishes sharply at zero field, leaving the system at Rxx(B = 0)≈ RN. (c) The
mirror image of (b). Grey arrows indicate sweep direction of the magnetic field. (d) Stopping
the sweep at zero field allows to observe the decay of the non-equilibrium state. It persists
for ≈ 100s before relaxing to equilibrium over 300s. (e) The height of the resistance drop
is reduced by increasing the sweep rate. This indicates that an optimal value exists for the
sweep rate, dB/dt, below 5 Th−1. (f) – (i) While the equilibrium superconductivity vanishes
entirely for T > 200mK (compare Fig. 5.3), the non-equilibrium resistance drop persists up
to T = 400mK. Data obtained from Sample 1, except for inset in (e), which is obtained from
Sample 2.

and critical temperature, Tc, of the equilibrium superconducting state, hence is not directly
contingent on the equilibrium superconductivity of the system.

5.1.2 Transient superconductivity at LaAlO3/SrTiO3 interface

Having completed a report of the salient non-equilibrium properties of GeTe, the main
material studied in this work, we continue by comparing this with the behaviour of one other
material that shows comparable non-equilibrium properties.
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The LaAlO3/SrTiO3 system

The material presented in this section is a two-layered LaAlO3/SrTiO3 system that features
non-equilibrium transport properties under a continuously swept magnetic field involving
both normal-state and superconducting behaviour, of which experimental evidence was
recently reported by Daptary et al. [35]. In summary, the material features (1) a 2D electronic
system on the LaAlO3/SrTiO3 interface with Rashba spin-orbit coupling (evidence of which
is obtained through WAL effects in transport measurements), (2) a slowly decaying non-
equilibrium magnetoresistance curve in the normal state, and (3) a superconducting state that
is accessible through the application of a continuously swept external magnetic field.

While the article offers an explanation for the onset of a decaying superconducting
state under continuous field sweep based on a reduction of the magnetic field strength of a
neighbouring magneticly ordered system, we believe that this is insufficient to explain the
observation, and we put forward our model as an alternative attempt to explain the effect.

Previous interpretation

As outlined by Ref. [35], it is believed that the dxy levels of the d-t2g orbitals of the Ti atoms
at the interface are saturated first due to the broken crystallographic inversion symmetry at
the interface, which give rise to ferromagnetism [106] because of strong on-site Coulomb
repulsion. Once the electron density reaches a certain level, the dxz and dyz levels are
occupied, which have a higher mobility and constitute the main carrier of transport in the
system. Ref. [35] then claims that the observed non-equilibrium superconductivity can be
explained based on a derived model that, under the assumption of a long spin-lattice and
spin-spin relaxation timescale of 100 s–200 s, the magnetic field of the ferromagnetic state in
the dxy orbitals is sufficiently destroyed to no longer suppress the superconducting state in
the dxz and dyz orbitals.

While this explanation is interesting, several inconsistencies can be identified. First, it
falls short of explaining the normal-state non-equilibrium behaviour, which the article refers
to as hysteresis, despite the identification of its slow decay with time: “The hysteresis is
time dependent and relaxes exponentially to an equilibrium value over a time scale of a few
hundreds of seconds.” [35] We stress again that this identification of a non-equilibrium effect
as a hysteretic effect is in disagreement with the conventional definition of hysteresis as an
equilibrium memory effect that does not change with time [144]. As an alternative expla-
nation for this observation, magnetocaloric effects are considered: “Although hysteresis in
magnetoresistance in the low doping regime has been seen previously in LaAlO3/SrTiO3 het-
erostructure devices and was taken to indicate the presence of ferromagnetic domains in the
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system..., there is a growing concern in the community that it might also have contributions
from induction effects due to fast magnetic field sweeps.” [35] This argument is inconsistent,
as heating effects arising from induced current should not be dependent on the direction
of the field sweep. Moreover, it is unlikely to be the source of the slow decay of the mag-
netoresistance anomaly since the thermalisation timescale of the sample can be expected
to be much less than the observed relaxation timescales, as is also the case for the GeTe
samples from the previous section. Second, this explanation is based on the assumption that
the localised ferromagnetic moments in the dxy orbitals follow Bloch-spin dynamics with
spin-lattice and spin-spin relaxation timescales of 100 s–200 s. It is questionable whether
such long relaxation timescales can generally be expected from these spins. For comparison,
a study of conduction-electron spin resonance in zinc-blende GaN thin films [50] has revealed
a spin-lattice relaxation time on the order of 6×10−5 s at T = 10K and B = 1.8mT, where
the resonance is attributed to non-localised electrons in a band of shallow donors arising from
N vacancies. Arguably, the dxy levels on the LaAlO3/SrTiO3 interface are more localised,
yet it is unclear whether this suffices to justify such vastly different relaxation times.

Summary

The inconsistencies of the model presented by Ref. [35] opens up the space for alternative
interpretations, including a model put forward further below in Sec. 5.3. While we note that
we are unable to understand the specifics of the LaAlO3/SrTiO3 system to the extent that we
can in GeTe, as parameters such as the Rashba momentum kR are unknown, we believe that
this material could be considered as another example of the same novel effect reported for
GeTe in the previous section.

5.2 Other possible explanations

A multitude of mechanisms could be suggested as a potential source for the non-equilibrium
effects in the mangetoresistance of the two systems outlined above, which could explain
their unconventional magnetotransport properties and the slowness of the relaxation back to
equilibrium. In this section, we examine the most relevant ones, in particular ferromagnetism,
magnetocaloric effects, trapped flux, and nuclear spins. We are able to demonstrate why
these cannot serve as a way to explain the observed behaviour.

Ferromagnetic hysteresis: First and foremost, we reiterate that the observed effects cannot
arise due to hysteresis stemming from ferromagnetic alignment of magnetic moments in the
sample. It is easy to misinterpret the magnetoresistance curves as a hysteresis effect, and
in fact several works erroneously report the observation of hysteresis. The fact that this is
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incorrect can be understood by acknowledging – again – that hysteresis is an equilibrium
effect that does not change with time, whereas the effects discussed in the previous sections
clearly decay with time and are thus of non-equilibrium nature.

Magneto-caloric effects: The perhaps most prominent alternative explanation attributes
the non-equilibrium response of those systems under a ramped external magnetic fields to
magnetocaloric effects, i.e. the exchange of heat of the system with the varying magnetic
field, which would result in a change of temperature. This could either arise from adiabatic
cooling of some intrinsic spin degree of freedom in the system as spin ordering is lost when
the external field ceases. Equally, the change of the magnetic field strength, which induces
Eddy currents, could lead to magnetic heating. This can however be excluded, at least for
the GeTe samples, where the thermalisation timescale has experimentally been verified to be
significantly shorter than the observed non-equilibrium timescale in the experiments. The
exchange of heat between the sample and its bath results in an abrupt and instantaneous
return to the base temperature of the cryostat, whereas the non-equilibrium magnetotransport
properties persist over a timescale of several minutes, even when the magnetic field sweep is
entirely stopped.

Trapped flux in the superconducting magnet: The external magnetic field that is used
to obtain the magnetoresistance curves is supplied via a superconducting magnet. It is
possible that magnetic flux could be trapped in the superconducting coil, resulting in an
offset of the magnetic field strength, which can in some cases decay on very long timescales.
This however would only be an offset in B and cannot explain the dynamical drop in
resistivity above Tc. Additionally, the magnetic field offset from such trapped fluxes would
correspond to a paramagnetic correction to the external field. This is clearly inconsistent
with the experimental observations, which would suggest a diamagnetic correction since the
minimum of Rxx in Fig. 5.3 appears before crossing B = 0T.

Nuclear spin dynamics: Another potential candidate for the source of the observed effects
are dynamics arising from nuclear spins, in particular because the relaxation timescales
associated with nuclear spin dynamics are typically quite long and can in principle be on the
order of the ones observed here in experiments. However, two shortcomings cast doubt on
nuclear spins as a source: 1) the alignment of nuclear spins only results in the onset of an
additional weak magnetic field, also known as the Overhauser field, and it is unclear how this
field, which is typically rather weak and usually on the order of a few mT [135], could serve
as a source for the non-equilibrium magnetoresponse, especially in those examples where
T > Tc; 2) it is unclear how the change of the external magnetic field, which apparently is
the driver of the non-equilibrium response of the samples, could affect the polarisation of the
nuclear spins. Nuclear spins are affected by the the hyperfine interaction with the conduction
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electrons. This hyperfine interaction can only, if at all, depend on B, and not on its temporal
change, dB/dt.

Finally, it is worth noting that all the above-mentioned effects, which could act as
candidates for the source of the observed non-equilibrium magnetotransport properties, fail
to offer an explanation for the discrepancy between the AC and DC responses in GeTe, which
are presented in Fig. 5.3. This different behaviour under AC or DC operation indicates
that the observed effects could in fact be manifested in a non-equilibrium charge carrier
distribution, which cannot arise due to any of the effects listed in this section. This idea that
the non-equilibrium response of the system is rooted in a non-equilibrium distribution of the
carriers will be taken up and discussed in more detail in the next section.

5.3 Explanation of the observations based on slow chirality
relaxation

Having presented experimental evidence of slowly decaying non-equilibrium magneto-
transport properties in systems with Rashba coupling and having ruled out all conventional
ways of explaining these findings, we will now develop a model that aims to explain the
observations based on slow electronic chirality relaxation based on the Rashba energy
dispersion.

5.3.1 Introduction

We start by outlining the basic principles that guide our development of a new model theory.
The following main observations will need to be incorporated when finding a new model:
(1) the system is subject to strong Rashba coupling, (2) the system can host non-equilibrium
charge carrier configurations that decay slowly and are created through a varying external
magnetic field, and (3) these non-equilibrium charge carrier configurations lead to different
transport properties.

Points (1) and (3) are evident from the experimental evidence presented in Sec. 5.1,
whereas point (2) might require further clarification. This additional assumption that the
non-equilibrium nature of the system arises from charge carrier redistributions is based on
the observation that the dynamical magnetoresistance curves only occur when the system
is measured under AC but vanish when the system is measured under DC, as shown in
Fig. 5.3. This observed dependency on the current frequency allows us to conclude that the
non-equilibrium state of the system arises due to a non-equilibrium distribution function
of the charge carriers. This conclusion is based on the interpretation that driving a non-
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alternating current through the system could cause carriers entering the sample from the
leads to populate the electron distribution function in a way that relaxes the non-equilibrium
state of the system, whereas an alternating current of sufficiently large frequency will not
move the carriers enough to allow this to happen.

Based on the assumptions (1)–(3), we develop a theoretical framework in the next section
that aims to model the experimental observations reported in Sec. 5.1.

5.3.2 Modelling of chirality imbalance relaxation

The model presented in this section is based on the Rashba energy dispersion introduced in
Sec. 4.1 but with an additional coupling to an external magnetic field B. This is described by
the Hamiltonian

H =
}2k2

2m
−αRσσσ · (rSO ×k)+gµBσσσ ·B , (5.1)

where the second term on the right is the Zeeman energy due to the external magnetic field
B = Bẑ, which is taken to point along rSO, g is the Landé g-factor, and µB is the Bohr
magneton. We consider the case B ∥ rSO for concreteness but note that configurations where
B is not perfectly parallel to rSO do not affect the results qualitatively. Eq. (5.1) then gives
the energy dispersion

ε
±
k = }2k2/2m±

√
(gµBB)2 +(αRrSO ×k)2 , (5.2)

where the + (−) superscript refers to the inner (outer) Rashba band, respectively. The
dispersions with and without B field and the resulting k-dependent spin alignments on the
Fermi surface are shown in Fig. 5.5(a) and Fig. 5.5(c), respectively. We note that the Rashba
dispersions in those figures are similar to the one shown in Fig. 4.1, however with a gap
introduced at zero field in Fig. 5.5(c).

In a typical electronic system, the relaxation of a non-equilibrium carrier population back
to equilibrium can be expected to happen on very short timescales, typically on the order of a
picosecond. In a Rashba system, relaxation requires scattering events that induce transitions
between the Rashba bands. As indicated in Fig. 5.5(b) and Fig. 5.5(d), these can broadly be
split up into two types: (1) small-angle scattering events that change the momentum only
marginally but have to flip the spin and (2) large-angle scattering that reverses the momentum
but leaves the spin unchanged. Clearly, the entirety of all scattering events includes cases in
between (1) and (2), and these will be discussed further in Chap. 6.

The argument of the long timescales for this relaxation process is established by con-
sidering the energy-momentum conservation for phonons and the nature of small-angle
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Fig. 5.5 Charge carrier configurations in Rashba systems when sweeping a magnetic field. The
four snapshots correspond to the instantaneous non-equilibrium and the relaxed equilibrium
carrier configurations after the B field was turned on and off. Top: energy dispersion with
bold lines representing occupied states. Bottom: chiral spin structure at Fermi surface with
arrows indicating spin directions. (a) The spin-orbit coupling and lack of inversion symmetry
lift spin degeneracy, resulting in two parabolic dispersions centred symmetrically away from
k = 0. Consequently, Rashba systems have two concentric Fermi surfaces with opposite
spin helicity that are separated in momentum space by 2kR. (b) Under an applied B field a
Zeeman gap εZ = 2gµBB opens at momentum k = 0, pushing the inner band up in energy
and lowering the outer band. The panel shows a non-equilibrium situation in which the
bands have unequal Fermi levels. Equilibrium is restored via the inter-band transitions.
The transitions must either involve a spin-flip or a reversal of momentum (labelled 1 and 2,
respectively). (c) When equilibrium is achieved the inner Fermi surface has reduced in size
and the outer one has grown as compared to the B = 0T case. (d) When the field is swept
back towards 0 T, the configuration of the bands is opposite to that in (b), with the outer band
at a higher Fermi level. Equilibration is achieved via processes such as 1’ (spin reversal) and
2’ (momentum reversal).

scattering. In a system with strong Rashba coupling, the value of kR can be much larger than
the thermal phonon momentum scale at low T . This means that inter-band transitions induced
by the electron-phonon interaction are prohibited for simple reasons of energy-momentum
conservation. Furthermore, scattering with charged impurities and inter-carrier Coulomb
scattering is dominated by the transfer of small momenta, which for inter-band transitions is
incompatible with the Rashba coupling for two reasons: 1) the split of the Fermi surfaces in
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momentum space by 2kR acts as a small-momentum cutoff and 2) the spinor overlap vanishes
for transitions with the smallest possible momentum transfer. This is discussed in greater
detail in Chap. 6.

We therefore conjecture that Rashba systems display slowly decaying non-equilibrium
carrier populations that are similar to the ones shown in Fig. 5.5(b) when T is lower than
a threshold below which the phonon bath is unable to provide the momentum required to
induce inter-band transitions.

We will investigate the time evolution of this system under the influence of a time-
dependent magnetic field as depicted in the transition from Fig. 5.5(a) to Fig. 5.5(d). If the
field is swept sufficiently slowly, the adiabatic theorem holds, which implies that the time-
dependent eigenstates are approximately equal to the instantaneous eigenstates (sometimes
referred to as ‘snap-shot eigenstates’) of the Hamiltonian and that transitions into other states
only occur through terms of a higher-order perturbation expansion in the slowness of the field
sweep [114]. Consequently, as the energy of the instantaneous eigenstates in the inner (outer)
Rashba band is increased (decreased), the respective Fermi energies of the two bands follow
this motion, which results in a detuning of the Fermi energies of the two bands. At the same
time, the Fermi momenta of the two bands remain unchanged. By applying a time-dependent
B field, the system is therefore brought into a state, where the Fermi energies ε

±
F of the two

Rashba bands are not equal to each other, as is shown in Fig. 5.5(b) and Fig. 5.5(d).
We now attempt to model the Fermi energy dynamics described above and incorporate

the effects of a time-dependent magnetic field as well as a slow exponential decay of the
chirality to its equilibrium value. The Fermi energies of the two Rashba bands, ε

±
F , are a

function of B as well as the occupation number of the respective band, n±, and hence their
time evolution is governed by the differential equation

dε
±
F

dt
=

∂ε
±
F

∂B
∂B
∂ t

+
∂ε

±
F

∂n±
∂n±

∂ t
. (5.3)

The first term drives the Fermi energies out of equilibrium, whereas the second term allows
the charge carriers to relax back to two equal Fermi energies. We note that in the following
steps we will always assume that the equilibrium Fermi energy of the system is above the
nodal point, i.e. ε

eq.
F > 0.

In order to model ∂n±
∂ t , we use a relaxation-time approximation with time constant τ . We

define the total carrier density, n = n++ n−, and the chirality density, C = n−− n+. The
relaxation-time approximation then takes the form

∂C
∂ t

=−C−Ceq.

τ
, (5.4)
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as explained in Sec. 4.2. Furthermore, we can assume that the magnetic field changes at a
constant rate, hence

∂B
∂ t

=: Ḃ = const. (5.5)

This allows us to derive an ordinary coupled differential equation for ε
+
F and ε

−
F ,

dε
±
F

dt
=

bḃ

−2ER ±
√

b2 +4E2
R +4ERε

±
F

(5.6)

± 1
2τ

1+
2ER

−2ER ±
√

b2 +4E2
R +4ERε

±
F

×
(

ε
−
F − ε

+
F +2

√
b2 +4E2

R +4ERε
eq.
F

−
√

b2 +4E2
R +4ERε

+
F −

√
b2 +4E2

R +4ERε
−
F

)
,

where b := gµBB. The steps to obtain this equation from Eqs. (5.3), (5.4), and (5.5) are
outlined in App. B.1. We can integrate Eq. (5.6) and obtain the dynamical Fermi energies,
ε
±
F (t), which are plotted in Fig. 5.6 for τ = 40s in accordance with the experimental obser-

vations2, Ḃ = 1Th−1, εF = 0.075meV, and ER/εF = 0.01, where the latter two parameters
have been adjusted such that the resulting resistance graph qualitatively matches the results
from Sec. 5.1.

In addition to the report of the Fermi energies, one can also calculate the resistivity. In
theory this would require a careful analysis of the WAL quantum corrections to transport
and how these would be affected by a Fermi level imbalance. This is however much too
complex for the simple model we are employing here, and so we work with classical transport
theory, for which the difference in conductivity per carrier of the two Rashba bands arises
purely due to the different effective masses at the Fermi level. In Fig. 5.6(b) we report
ρxx(B)∼ 1/(σ+

xx+σ−
xx) as derived from the conductivities σ±

xx ∝
∫

d3k (∂ε
±
k/∂k)2 δ (ε±k − ε

±
F ).

We stress that the results reported in Fig. 5.6 are very qualitative and should not be
quantitatively compared to the experimental observations in Fig. 5.3. In particular, the
parameters used for plotting the resulting resistance curves are somewhat different from the
correct values for GeTe. Yet, a qualitative similarity3 between the results obtained from our

2We are using τ = 40s here because this value is in good agreement with the observed relaxation-time
constant in several different systems. This number is slightly less than the τ observed in GeTe (as evident from
Fig. 5.4), yet it allows a more direct comparison with the non-equilibrium magnetoresponse in other materials
(including LaAlO3/SrTiO3 and AuxGe1 – x).

3We note that traces for up and down sweeps are interchanged, i.e. the down sweep has a higher resistivity
for B > 0 in our model, whereas this has a lower resistivity in the experiments with GeTe. Again, this is
unsurprising, as it depends on the conductivities per carrier of the two Rashba bands. In classic transport theory,
our account would be incomplete, as we employed the effective masses of the free Rashba system, whereas the
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Reprinted with permission from Ref. [100], V. Narayan et al., Phys. Rev. B 100, 024504 (2019). © 2019 American Physical Society.

Fig. 5.6 Model prediction of (a) non-equilibrium Fermi energies and (b) the resulting
resistance. The parameters used are τ = 40s, Ḃ = 1Th−1, εF = 0.075meV, and ER/εF =
0.01.

model and the graphs reported on the normal state non-equilibrium magnetoresistance traces
in GeTe suggest that our theoretical framework could in principle be seen as the source for
the observed effect.

While we do not aim to extend our framework to also model the non-equilibrium super-
conducting behaviour of the samples reported in Sec. 5.1, it is worth mentioning that the
Fermi energy dynamics suggest a dynamical change of the density of states, which in turn
could lead to a reduction of the superconducting transition temperature for a continuously
swept magnetic field. Therefore, one could also argue that the developed model can act as a
source for the non-equilibrium superconducting transport anomalies reported for the GeTe
and LaAlO3/SrTiO3 samples, yet identifying more clearly how this manifests is beyond the
scope of this work.

energy dispersion of GeTe in fact holds rather different effective masses, including a flat-band region just above
the nodal point. Moreover, as stated above, the underlying transport theory should take into account quantum
corrections.
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5.4 Conclusions

In summary, we have presented a novel non-equilibrium effect with ultra-slow relaxation
timescales that manifests in the magnetoresponse properties of at least two separate 2D
Rashba materials. Both systems feature a normal state and superconducting non-equilibrium
effect, which both cannot be explained based on conventional frameworks such as ferromag-
netic hysteresis, magnetocaloric effects, trapped flux, or nuclear spin dynamics. We have
motivated our assumption that the effect arises due to non-equilibrium carrier distributions
and created a theoretical framework based on this assumption that assumes a long relaxation-
time constant for the chirality of carriers. Based on this framework we model the dynamical
Fermi energies and, by assuming plain classical transport theory, the dynamical resistivity in
the normal state. These results are rather qualitative and should not be taken as a quantitative
confirmation, yet they are in agreement with experimental findings and suggest that our
proposed model could be an accurate description. However, the relaxation-time constant for
the chirality number C, which has been put in ‘by hand’ in our model has not been justified
quantitatively. This is however of great importance given the significant deviation of this
number from typical relaxation-time constants in electronic systems. We therefore conclude
the study of our proposed model in this chapter, and we continue with the theoretical study
of chirality relaxation timescales in the next chapter, which will serve to assess the relevance
of the model put forward here.



Chapter 6

Equilibration studies of chirality in
strongly Rashba-coupled systems

In this chapter, we study the scattering mechanisms that relax non-equilibrium chirality
distributions of charge carriers in Rashba systems and the relaxation timescales associated
with these mechanisms. With chirality being a combination of both spin and momentum
locked together, we analyse how, at sufficiently low temperatures, this can result in a
protection of chirality from phonon scattering events that in non-Rashba materials cause fast
relaxation into equilibrium. The remaining dominant relaxation mechanism, which is the
inter-carrier Coulomb interaction, is then studied, and the degree to which the helical spin
structure serves to weaken scattering via the inter-carrier interaction is assessed.

The focus in this chapter is on the general relaxation mechanisms of chirality in Rashba
systems, however we analyse the implications of our findings in the ferroelectric bulk-Rashba
semiconductor GeTe, which ranks amongst the systems with the highest observed Rashba
coupling and Rashba momentum split [110], and for which we present novel experimental
findings on its non-equilibrium mangetoresistance properties in the previous chapter. At
several points throughout this work, we therefore derive results and expressions for a general
Rashba system and then evaluate these expressions for the GeTe system.

The results are summarised at the end of this chapter, yet a brief summary is presented
here. We find that, at sufficiently low temperature, inter-Rashba band transitions become
suppressed due to the combined effect of the Rashba momentum split and the chiral spin
texture of a Rashba system, which we argue occurs due to a mismatch of the thermal
phonon and the Rashba energy-momentum scales at low temperatures. Specifically, we
show that momentum exchange between carriers and the phonon bath is effectively absent
at temperatures where the momentum of thermal phonons is less than twice the Rashba
momentum. This allows us to identify inter-carrier scattering as the dominant process by
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which non-equilibrium chirality distributions relax. We show that the magnitude of inter-
carrier scattering is influenced by the opposing spin structure of the Rashba bands and derive
a closed-form expression for the inter-band relaxation timescale associated with inter-carrier
Coulomb scattering. We develop a general framework and assess its implications for GeTe, a
bulk-Rashba semiconductor with a strong Rashba momentum split, which yields relaxation
timescales that are both much longer than conventional electronic relaxation timescales but
are at the same time much shorter than the ones assumed in the models employed in the
previous chapter.

The organisation of this chapter is as follows. In Sec. 6.1, we provide an introduction
to the framework used. Next in Sec. 6.2, we study the relaxation of this non-equilibrium
chirality distribution via phonon scattering, and, in Sec. 6.3, we deal with relaxation through
the Coulomb interaction. Finally, we conclude in Sec. 6.4. Appendices B.2 and B.3 provide,
respectively, explicit calculations of maximum allowed non-equilibrium carrier occupations
and the inter-carrier relaxation-time constant, while App. B.4 explains the role of spin-flips
in the context of this work.

6.1 Theoretical framework

In this section we define the framework that this study is based on. Again we start from the
Rashba band dispersion presented in Sec. 4.1. We investigate the relaxation of this system
in a non-equilibrium state depicted in Fig. 6.1, which is very similar to Fig. 5.5 from the
previous chapter but without any magnetic fields (we do in fact consider magnetic fields
briefly later in this chapter but our primary focus here is on relaxation in the free system).

Fig. 6.1(b) and Fig. 6.1(c) show, respectively, charge carrier configurations in which the
Fermi energy of the upper (lower) Rashba band, ε

+
F (ε−F ), is higher (lower) than in equilibrium

and vice versa. These states are clearly non-equilibrium states and must equilibrate on a finite
period of time. As discussed in the previous chapter, the relaxation of such non-equilibrium
carrier populations back to equilibrium in any ordinary electronic system can be expected
to happen on very short timescales, typically on the order of picoseconds [86]. In this work
however, we provide evidence that the mechanisms relaxing this specific non-equilibrium
distribution (i.e. chirality imbalance in strongly Rashba-coupled systems at low temperature)
are suppressed, which results in much longer relaxation timescales. We note that such carrier
populations could either be realised experimentally by injecting spin-polarised currents or by
employing strong external magnetic fields. The latter claim is further quantified in Sec. 6.2,
and experimental signs for potential realisations of it are in fact discussed in the previous
chapter.
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Reprinted with permission from Ref. [143], P.C. Verpoort et al., J. Phys.: Condens. Matter 32, 355704 (2020). Licensed under Creative Commons Attribution 4.0.

Fig. 6.1 Equilibrium and non-equilibrium chirality distributions of charge carriers in a Rashba
system. Top: energy dispersion with bold lines representing occupied states. Bottom: chiral
spin structure at Fermi surface with arrows indicating spin directions. (a) Equilibrium occupa-
tion of the Rashba dispersion. (b) Non-equilibrium occupation of the Rashba dispersion. The
Fermi energy ε

+
F (ε−F ) of the upper (lower) Rashba band is higher (lower) than in equilibrium.

In this example, the number of particles in the upper Rashba band is set to be 50% higher
than in equilibrium. This number is quite high but was chosen for illustrative purposes.
Equilibrium is restored via inter-band transitions, which must involve a spin-flip or a reversal
of momentum (labelled 1 and 2, respectively). (c) Vice versa of (b) with the number of
particles in the upper band being 50% less than in equilibrium.

Relaxation requires scattering events that induce transitions between the Rashba bands.
The main process by which carriers can transition between bands is scattering off phonons
as these can readily impart very large momentum and affect large-angle and backscattering
effects. In addition to phonon scattering, momentum can also be imparted via Coulomb scat-
tering with other carriers (so-called inter-carrier or carrier-carrier scattering) and scattering
off charged impurities (so-called carrier-impurity scattering). The present work discusses
two key observations for such processes based on the energy-momentum conservation for
phonons and the nature of Coulomb scattering. In a system with strong Rashba coupling, the
value of kR can be much larger than the thermal phonon momentum scale at low temperature
T . Furthermore, scattering with charged impurities and inter-carrier Coulomb scattering is
dominated by the transfer of small momenta, which for inter-band transitions is incompatible
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with the Rashba coupling because the spinor overlap vanishes for transitions with the smallest
possible momentum transfer. These two points are discussed in greater detail in Secs. 6.2
and 6.3.

6.2 Phonon scattering

Charge carriers can exchange momentum with the solid either by emitting phonons or by
absorbing or scattering with thermally excited phonons. These processes must obey energy-
momentum conservation and therefore we have the following relations for the initial and
final momenta, k and k′ = k+q, and corresponding energies, εk and εk′:

Emission : εk = εk′ +}ω−q ,

Absorption : εk +}ωq = εk′ ,

Scattering : εk +}ωp = εk′ +}ωp−q .

Here }ωq is the energy of a phonon with momentum q, and p is the momentum of a thermally
excited phonon. We assume the carrier initially to be in the band with higher Fermi energy
(the inner one in Fig. 6.1(b) and the outer one in Fig. 6.1(c)), and we define ∆ε = εk−εk′ to be
the energy difference between initial and final states. We now combine energy conservation,
Pauli exclusion, and the phonon dispersion to construct our argument for the suppression of
these relaxation events in the case where T is low such that,

kBT ≪ }ω2kR . (6.1)

Absorption: for an inter-band transition, we require that q≥ 2kR. However at temperatures
sufficiently low such that condition Eq. (6.1) holds, such phonons are not thermally excited,
thereby disallowing the absorption process completely.

Emission: since for an allowed process q ≥ 2kR, we find }ω2kR ≤ }ω−q = εk − εk′ = ∆ε .
Consequently, the Rashba momentum scale imposes an upper bound on the energy difference
below which inter-band transitions are not allowed:

∆ε < }ω2kR . (6.2)

Therefore, the emission is prohibited as long as the energy difference ∆ε between any
occupied state in the Rashba band with higher Fermi energy and any empty state in the band
with lower Fermi energy obeys above condition. This imposes a maximum detuning of the
Fermi energies below which equilibration of the non-equilibrium state depicted in Sec. 6.1
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will be suppressed. We will discuss the relative strengths of the energy scales of ∆ε and
}ω2kR in typical Rashba materials at the end of this section. Because this means that there
are no unoccupied states to scatter into as the outcome of a phonon emission, one can think
of this process as being Pauli-blocked by the occupied low-lying carrier states. Note that all
thermally activated excitations will be too small to disobey this condition as long as Eq. (6.1)
holds.

Assuming an excess occupation in the Rashba bands of n± = n±,eq.(1±δ ) with small δ ,
where n±,eq. are the equilibrium carrier densities, we find that the condition in Eq. (6.2) is
satisfied when approximately

δ <
1
2

}ω2kR

ε
eq.
F +ER

. (6.3)

The derivation of this and the exact expression are reported in App. B.2.
Scattering: depending on the relative angle between q and p, it is }cph(q − 2p) ≤

}ωp−q −}ωp = ∆ε ≤ }cphq, where we have assumed a linear acoustic phonon dispersion
with speed of sound cph and that p < q. Consequently, the modified condition under which
scattering is prohibited becomes

∆ε < }ω2(kR−p) . (6.4)

When Eq. (6.1) holds, it is p ≪ kR. Therefore, this condition is almost equivalent to the one
for emission. Also note that the above only holds for the case where p and q are antiparallel,
hence the likelihood of such an event is already diminished in the first place.

It is easy to see how higher-order processes that are built up of several absorption and
scattering events could eventually change the momentum of a carrier sufficiently to induce
a transition into the other Rashba band while having no strong constraints on the energy
difference between initial and final state. The contribution to equilibration can however be
expected to be weak, not only because it is a higher-order process but also because the phase
space for such a process is small (the relative angles of phonon momenta have to be aligned
in a particular way).

Furthermore, it is worth noting that our argument prohibits scattering events independently
of whether they conserve or flip the spin of the charge carrier, as our discussion is purely
based on energy-momentum conservations.

We now assess the degree to which these effects are present in physical systems. There
are two relevant conditions to check, namely whether both kBT and ∆ε are sufficiently
less than }ω2kR . Simply speaking, the first condition ensures that there are no thermally
excited phonons to absorb for an inter-band transition, whereas the second ensures that
the energy detuning is not so big that inter-band transitions can be induced by emission of
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phonons. For concreteness, we consider GeTe, a system that is known to have giant Rashba
coupling, in which kR = 0.19Å

−1
[82]. Assuming a typical value1 of cph = 3×103 ms−1

and T = 1K, we find that kBT = 0.09meV ≪ }ω2kR = 2}cphkR = 7.5meV. To understand
the implications of this on the relaxation timescales, note that the likelihood of such a
relaxation event to take place is suppressed exponentially by the a Boltzmann factor of
exp(−2}cphkR/kBT) ≈ exp(−87) ≈ 10−38, consequently resulting in effectively a complete
suppression of any such phonon-induced relaxation events. Furthermore, the condition in
Eq. (6.3) has to be satisfied, which yields δ < 1.6% for GeTe with doping of ε

eq.
F = ER/2

(i.e. close to but above the nodal crossing point, which is realistic for Ge-vacancy doping).
Thus, the non-equilibrium state is protected from carrier-phonon relaxation as long as the
population imbalance is not more than a few percent. Note that this number can change
drastically depending on the Rashba coupling α , the effective mass m, and the speed of
sound cph.

Before concluding this section, we use the derived expression for the Fermi level detuning
in App. B.2 and the upper limit δ found in this section to determine what magnetic field
strength would be required to create carrier distributions with such chirality imbalances.
Using

gµBB = ∆εF = 2δ (εF +ER) (6.5)

as well as g = 2, δ = 1.6%, and εF = 0.5ER, we find that B ≈ 9.4T. The absence of phonon
relaxation and the resulting long relaxation times will manifest for carrier imbalances created
by magnetic fields below this value, whereas for larger fields the phonon relaxation may no
longer be Pauli blocked.

In summary, we have explained how in a Rashba system phonon-induced inter-band
transitions of charge carriers are ineffective to relax a detuning of the Fermi level if the
detuning is sufficiently small and the temperature is low, both compared to the energy scale
}ω2kR , which is imposed by the Rashba momentum and the phonon dispersion. We have
reasoned that this occurs because phonons are not available for absorption, the emission
is Pauli blocked, and higher-order scattering will even for the best possible alignment of
phonon momenta have only a comparatively small effect.

1This is an estimate that is in good agreement with the cph of a vast range of crystals. The value of cph in
GeTe is unknown, and we therefore use this value for convenience. We note that we do not expect the true
value to differ by much. Therefore, our results should not be strongly affected by this approximation.
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6.3 Inter-carrier and carrier-impurity scattering

We continue by examining the role of scattering via the Coulomb interaction of charged
carriers with each other (inter-carrier scattering) and with charged localised impurities
(carrier-impurity scattering). In contrast to the phonon scattering case, here both the Rashba
split 2kR and the opposing helical spin structure at the Fermi surfaces (see Fig. 6.1) play a
role in the suppression of the transfer of small momenta. It is worth mentioning that there
are no restrictions on these processes within a band, but this is irrelevant towards inducing
inter-band transitions.

As indicated in Fig. 6.1(b) and Fig. 6.1(c), inter-band transitions can broadly be split up
into two types: (1) small-angle scattering events that change the momentum only marginally
but have to flip the spin and (2) large-angle scattering that reverses the momentum and leaves
the spin unchanged. We show that (1) is strongly suppressed because of the vanishing spinor
overlap, which leaves processes of type (2) with large momentum transfer as the dominant
mode of relaxation. Coulomb scattering however is dominated by the transfer of small
momenta q because the Fourier transform of the Coulomb potential is strong at q ≈ 0 and
because (in the case of inter-carrier scattering) energy conservation is always satisfied when
q = 0, resulting in a logarithmically divergent phase space. This incompatibility between
the nature of the Coulomb interaction and the helical spin alignment of the Rashba energy
dispersion is the reason why the Coulomb scattering is also suppressed. However, we also
show in the following that this effect is much less pronounced than in the phonon case
presented in the previous section.

The entirety of all scattering events includes cases in between (1) and (2), and the aim
of the following analysis is to account for this. We derive expressions for the relaxation
timescale of carrier-impurity and carrier-carrier scattering, which allows us to show how the
above-mentioned arguments manifest quantitatively. Furthermore, we explicitly calculate
the timescale for inter-carrier scattering for the case of GeTe. This section only reports the
results, whereas detailed calculations can be found in App. B.3. We note that the calculations
in this section exclude processes involving spin-flips, whose role we discuss in App. B.4.

Our analysis will be based on Boltzmann transport theory introduced in Sec. 4.2, and
we want to study the time dependence of the distribution function f±k1

, where the + (−)
superscript indicates the upper (lower) Rashba band index. We neglect external fields and
temperature gradients, which allows us to reduce the Boltzmann equation to

∂ f±k1

∂ t
= Ici[ f±k1

]+ Icc[ f±k1
] , (6.6)
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where the indices ci and cc refer to the carrier-impurity and carrier-carrier contributions of
the scattering integral, respectively. These are given by

Ici = ∑
k2

(
wcar−imp
(k2∓)→(k1±)

f∓k2
[1− f±k1

]

−wcar−imp
(k1±)→(k2∓)

f±k1
[1− f∓k2

]
)

(6.7)

and

Icc = ∑
k2k3k4

(
wcar−car
(k3k4∓)→(k1k2±) f∓k3

f∓k4
[1− f±k1

][1− f±k2
]

−wcar−car
(k1k2±)→(k3k4∓) f±k1

f±k2
[1− f∓k3

][1− f∓k4
]
)
. (6.8)

We have neglected all terms that conserve the Rashba band index of each particle or induce
an exchange of particles between the bands, as these will not lead to a decay of the carrier
imbalance between the two Rashba bands. We will make up for this by assuming that
intra-band scattering events are so quick that they will relax each individual band into local
thermal equilibrium on a timescale that is immediate compared to the inter-band processes.

We calculate the probability amplitudes w(k3k4∓)→(k1k2±) using Fermi’s Golden Rule,

w(k3k4∓)→(k1k2±) =
2π

}
| ⟨Ψfinal|U |Ψinit⟩ |2 (6.9)

× δ (ε±k1
+ ε

±
k2
− ε

∓
k3
− ε

∓
k4
) ,

for which we need to obtain the matrix element corresponding to the relevant transition. The
matrix element will consist of two parts: 1) the Fourier transform of the Coulomb potential,
which arises from its expectation value for the incoming and outgoing plane waves and 2) the
spinor overlap between initial and final states. We shall use the 2D Fourier transform of the
screened 3D Coulomb potential for our calculations (where the static screening is obtained
using the random-phase approximation) [119], which is of the form

Up =Up =
2πe2

0
p+ kS

(6.10)

with e2
0 = e2/4πκε0, where κ is the effective background lattice dielectric constant, kS is the

Thomas-Fermi screening momentum, and p = k − k′, where k and k′ are the incoming
and outgoing plane waves. Furthermore, to determine the spinor overlap, we write each
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single-particle state as a superposition of the Pauli matrix σZ eigenstates [129] as

|k,+⟩= 1√
2

(
|k,↑⟩− ieiθk |k,↓⟩

)
, (6.11)

|k,−⟩= 1√
2

(
−ie−iθk |k,↑⟩+ |k,↓⟩

)
, (6.12)

where θk is defined such that k = (kx,ky)
T = |k| (cosθk , sinθk)

T. This can then be used to
evaluate the overlap between states from different bands, ⟨k′,+|U |k,−⟩, as

e−
i
2

(
θk+θk′

)
sin(θk−θk′/2)

〈
k′∣∣U |k⟩ . (6.13)

Following a well-known approach by Yafet [158], which derives an expression for the
spin relaxation time from phonon-assisted spin-flip processes, we start from two Rashba
bands, induce a small imbalance of the chemical potential and perturb to first order in the
detuning to find an expression for the relaxation-time constant for carrier-impurity scattering,
τci, and carrier-carrier scattering, τcc, respectively.

Our calculation yields the following expression for the relaxation-time constant of the
carrier-impurity processes.

1
τci

=
1

τci,0

π

4
, (6.14)

where τ
−1
ci,0 = 8π mni e4

0
/
}3(k0

F)
2, ni is the impurity density (per area), and k0

F is the average
equilibrium Fermi momentum of the system. We compare this result to the case where
we omit an essential feature of the Rashba system, namely the helical alignment of spin
eigenstate at the Fermi surface, whose overlap is given by the first two factors in Eq. (6.13).
This yields

1
τci

=
1

τci,0

k0
F

kS
, (6.15)

which is enhanced over the result in Eq. (6.14) by a factor of k0
F

kS
. Since typically the Fermi

momentum is much larger than the screening momentum scale, we see how the Rashba
dispersion serves to enhance the screening of the Coulomb interaction. Using standard
Lindhard theory, we estimate k0

F
kS

≈ 23.7 for GeTe. This result is worth noting but equally
not too relevant for practical applications, where the carrier-impurity scattering is mainly
influenced by the impurity concentration ni and the suppression by a factor of k0

F
kS

will not be
as big as in the case of electron-phonon scattering described above.
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Furthermore, we derive the following expression for the carrier-carrier Coulomb scatter-
ing relaxation-time constant,

1
τcc

=
1

τcc,0

(kBT )2

(µ −ER)2 ×ρ

(
ER

µ
,

kBT
µ −ER

)
, (6.16)

with

ρ (x,y) =
π2

6

(
1− x(1− log(x))− (1− x) log

(
π2

6
y
))

, (6.17)

where τ
−1
cc,0 =

(2πe2
0)

2

2π}
2m
}2 .

This result is of a form similar to the scattering lifetime of a quasi particle subject to
inter-carrier Coulomb interaction reported by Zheng and Das Sarma [162]. The expression
for ρ contains a logarithmically divergent part and a constant part, where the latter occurs
due to the regularising effect of the opposing helical spin structure (which however only
affects one part of the divergent phase space).

Using T = 100mK as well as κ = 10, µ −ER = 0.1eV, and ER
µ
≈ 0.5 (which we assume

for 32 nm thick α-GeTe [82, 99, 140]), we find

τcc ≈ 1µs . (6.18)

This result is impressive in that the lifetime is significantly enhanced over the picosec-
ond lifetime that is commonly observed in electronic systems [86]. Normally, relaxation
timescales on the order of microseconds are only observed for carrier-phonon processes
at extremely low temperature [68]. However, we also note that the suppression is not of
the exponential form found for the phonon case and hence not as dramatic. Furthermore,
we note that the chiral alignment of spin eigenstates on the Fermi surface only serves to
suppress one of the two logarithmic divergences at q = 2kR of the form log(µ−ER/kBT) and
does not affect the same divergence occurring at q = k+F + k−F . It would be interesting to see
if more complex band structures involving more intricate spin alignments could result in
even stronger suppression and even longer relaxation timescales.

We note that, while our calculation is sufficiently accurate to approximate the order of
magnitude of the relaxation-time constant, an estimate of the time constants for real materials
necessitates the consideration of exact band structures as well as, possibly, dynamic screening
and exchange interaction effects.
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6.4 Discussion and conclusions

In summary, this chapter studies the relaxation of chirality imbalances in Rashba systems,
and the relaxation processes and timescales associated with those states. It is shown that
phonon-mediated inter-band transitions in Rashba systems are effectively absent when T
is low and the occupation number detuning δ is below a certain threshold. This happens
due to an energy-momentum mismatch between the electronic and phonon dispersion, and
consequently phonons do not contribute to relaxation of carrier chirality. We identify the inter-
carrier scattering mediated by the Coulomb interaction as the resulting dominant relaxation
mechanism (in a pure sample) and further analyse it. We find that this is also weakened due
to the chiral spin structure at the Fermi level, and consequently the relaxation time arising
from this is much longer than what is commonly expected from inter-carrier interaction.
We estimate the relaxation timescales for the inter-carrier scattering for a typical strongly
Rashba-coupled system (GeTe in our example) at low temperatures of T ≈ 100mK to be on
the order of τ ≈ 1µs.

This result is on the one hand surprising because 1 µs is certainly beyond what is com-
monly observed as a relaxation timescale in most electronic systems, on the other hand it is
much shorter than the experimentally observed timescale of several minutes reported for the
novel non-equilibrium effect in GeTe in the previous chapter. This allows us to conclude that,
despite the intriguing idea of modelling the dynamical magentoresistance curves presented in
the previous chapter, chirality imbalances are unlikely to be the sole source of the observed
effects since such imbalances would decay on much faster timescales.

Nonetheless, it might be interesting to consider whether the validity of the theoretical
predictions reported in this chapter could be tested through experimental investigations. We
argue that the studied non-equilibrium chirality populations could be realised in experiments
in a number of ways, such as through the application of magnetic fields as well as by
injecting spin-polarised currents that dominantly occupy one of the two Rashba bands,
although developing these ideas further is beyond the scope of this work.

We note that the results we obtain for the timescales mainly rely on the large momentum
split that strong Rashba coupling induces between the Fermi surfaces of the bands of the two
carrier species as well as on the fact that carriers from different Rashba bands with lowest
momentum separation have orthogonal spin states (which is always true for systems with a
spherical Fermi surface). As such, it is possible to generalise the results from this study to
systems with different energy dispersion, as long as those two main ingredients are retained.

More generally, a remarkable finding of our study is that, due to the absence of phonons,
the dominant mode of inter-band relaxation is carrier-carrier Coulomb scattering, whereas
conventionally this is mediated by phonons.





Chapter 7

Conclusion

This thesis studies the equilibration properties of two distinct systems, starting with the
minimisation dynamics of an SGD optimiser in the LFL of a DNN, followed by the relaxation
of non-equilibrium chirality distributions of charge carriers in low-temperature strongly
Rashba-coupled solid-state systems.

In Part I of this thesis, we advance the understanding of the training process of DNNs
with SGD by gaining a better understanding of the underlying LFL structure. As outlined
in Chap. 2, the aim of our investigation is to shine light into the the unusual effectiveness
of SGD optimisation, which is commonly observed in deep learning. While extreme values
of the learning rate result in either too small or too large noise to facilitate optimisation, the
parameters of SGD can in most cases be easily tuned to promote a global downhill trajectory.
This crucial observation is best summarised by Fig. 2.2. This effectiveness of deep learning
is unusual given the complexity of the optimisation problem involved in minimising the loss
function, which is high-dimensional and non-convex. It has empirically been observed by
the ML community that this principle is almost universally applicable. Therefore, a clear
understanding of this conundrum is eminent and holds the potential to design even more
effective ML methods.

Following this introduction, Chap. 3 subsequently analyses the LFLs of a range of DNN
applications using different datasets (LJAT19, OPTDIG, and WINE). For LJAT19 we assess
the dependency of the LFL structure on the network deepness (H = 1,2,3) and amount
of training data (Ndata = 100,1000,2000,10000,100000). Our main finding is that for all
datasets and hyperparameters, the local optima in the LFL are connected by low barriers,
which is apparent from the disconnectivity graphs in Figs. 3.2, 3.5, and 3.6. This is true
across all datasets and persists for different Ndata and H. More precisely, for all shallow nets
with H = 1 and in the deep case H > 1 with a sufficiently large Ndata (i.e. Ndata & 2000), the
LFL features a single funnel, where in average the downhill paths from a minimum to the
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global minimum display small barriers. Only in the deep data-scarce limit, we observe a
novel, previously unobserved landscape structure, which comprises many local minima of
similar loss values connected by low barriers.

These results are intriguing and lead to the final conclusion that one of the main reasons
for the success of SGD optimisation methods in deep learning is the underlying LFL structure
of the employed DNN architectures. The geometry that these LFLs display can be described
as ‘nearly convex’, which is easy to optimise by methods as simple as SGD. Moreover, we
analyse the correlation between train loss, test loss, and minima geometry, where the latter
is quantified in terms of the Hessian eigenvalues and their log product. The results confirm
previously reported evidence of the enhanced generalisability of minima that are ‘wide’ and
‘shallow’ [10, 26] but also reveals new results concerning the precise correlation between
loss generalisability and minima geometry.

In the future, it would be interesting to extend the studies of LFLs reported in this work
to consider other common ML models. This should entail the investigation of bigger systems,
given that all architectures and datasets used in our work are relatively small compared to
those commonly employed in ML applications. While the results presented here show clear
trends that we believe will generalise to larger networks, it remains crucial to ascertain the
continuation of this trend beyond the small networks considered in this contribution.

Moreover, there are many hyperparameters, such as the regularisation parameter λ or
the non-linear activation functions φl , whose influence onto the LFL structure would be
intriguing to investigate. There also exist many other popular ML architectures, such as
Convolutional Neural Networks or Recursive Neural Networks, which follow quite similar
principles as DNNs and which would lend themselves perfectly as a way to extend the
methods used in this work to a broader study of LFLs in ML models.

Importantly, one extension of the work presented here would include a more accurate
identification of permutational isomers of minima and TSs in the LFLs of DNNs and avoid
falsely identifying newly discovered stationary points as symmetry-related representations of
already known ones due to an insufficiently small loss difference tolerance in cases of LFLs
with a high density of stationary points. While we do not expect this deficiency to affect the
overarching results of this work, obtaining a complete database of minima and TSs for the
simple DNN examples considered here would be desirable and should be a central aim for
future work.

Furthermore, it would be exciting to explore what other conclusions can be drawn from
the resolved LFL structure. For instance, sampling techniques, which rely on the combination
of the predictions of several ML models to obtain improved and more robust models, would
be interesting to investigate using a LFL analysis. This approach could in turn have the
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potential to reveal novel ML techniques that stem from advanced landscape exploration tools.
Finally, a study of higher-index saddle points, which are stationary points but with a Hessian
index higher than 1, could complement our understanding of DNN optimisation, since many
commonly employed DNN optimisers in fact converge to such points.

Moving on to Part II of this thesis, Chaps. 4, 5, and 6 study the relaxational dynamics
of non-equilibrium charge carrier distributions in strongly Rashba-coupled systems at low
temperature. We define the chirality number C of those carrier distributions, i.e. the difference
between numbers of carriers with chirality + and −, and we investigate the equilibration of
this quantity to its equilibrium value Ceq. with time.

Chaps. 5 and 6 present the two main studies of non-equilibrium carrier distributions of
this type, best summarised by Figs. 5.5 and 6.1. First, we motivate the existence of such
non-equilibrium configurations in Chap. 5 based on experimental evidence found in the
magnetotransport properties of low-temperature Rashba systems subject to external magnetic
fields, where the most prominent salient features are shown in Figs. 5.3 and 5.4. This is
followed by a theoretical study of the dynamical Fermi energies of the two Rashba bands,
which is governed by the differential equation Eq. (5.3). Using a fixed relaxation-time
constant τ , integrating Eq. (5.3), and plotting its results in Fig. 5.6 allows us to conclude
that some of the measurements reported in Chap. 5 can at least partly be modelled using our
framework, which therefore can be seen as a potential source of the observed effect. However,
uncertainty regarding various aspects of this model persist, in particular with respect to the
system-specific properties assumed in the modelling of the resistance graphs, as well as in
relation to the role of the quantum corrections that result in the WAL cusp. These remaining
inconsistencies result in a cautious interpretation of the findings derived from our model.
Moreover, the value of the relaxation-time constant of several seconds employed in the model
is unusually long for electronic relaxation timescales and hence requires further justification
on a microscopic level that goes beyond the pure qualitative assessment of the experimental
observations.

A quantitative assessment of the relaxation timescales is therefore conducted in Chap. 6,
where we study the relaxation of the non-equilibrium chirality distributions through phonon
and Coulomb-interaction processes. We find that, while phonon-mediated relaxation may
be practically absent at low temperatures of T = 1K and for a small Fermi level detuning δ

of a few percent in GeTe, the inter-carrier Coulomb scattering persists at moderately strong
magnitude, resulting in a relaxation-time constant of τ = 1µs. Consequently, this finding
casts some doubt on the validity of the model developed in Chap. 5 and suggests that a
more thorough analysis of the charge-carrier configuration in GeTe is needed to adequately
describe the discovered novel non-equilibrium effect in low-temperature Rashba systems.
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The studies presented in the second part of this thesis could be extended in numerous ways
in the future. First and foremost, the resolution of the puzzling magnetic-field induced non-
equilibrium transport properties in GeTe and other Rashba systems should be revisited, and
new frameworks taking into account other sample-related properties should be considered.
In addition, experiments further probing the salient features observed in those samples
would be extremely insightful. For example, investigating the frequency dependence of
the magnetotransport properties beyond the simple AC and DC limits presented in Fig. 5.3
would be of great relevance. Moreover, a careful study of the temperature dependence of
the observed relaxation-time constants could provide insights into the underlying relaxation
mechanism and hence the nature of the observed non-equilibrium effect.

On the theoretical side, there exist two ways of extending the presented work. On the one
hand, it could be fruitful to enhance the current framework and incorporate other features
of the studied system, which could result in a suitable model for the reported experimental
observations. As such, our current assessment of the relaxation-time constant only considers
the relaxation of charge carriers. However, it is evident from the experiments that the system
is close to a superconducting instability, which suggests that perhaps the relaxation of Cooper
pairs may in fact be a property worth investigating. Moreover, the dispersion relation of
holes in the valence band of GeTe features flat-band regions, which are subject to various
instabilities. Studying these could reveal alternative mechanisms resulting in the observed
long relaxation-time constants in the magnetotransport properties of GeTe and other Rashba
materials. Finally, an assessment of the results for the relaxation timescales reported in
Chap. 6 independent of the experimental evidence reported in Chap. 5 could be interesting.
The predicted relaxation-time constant of τ = 1µs could potentially become observable in
experiments, for example in devices that combine strong Rashba coupling and spin-polarised
currents.
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Appendix A

A.1 First and second-order derivatives of the loss function

While the computation of the loss-function derivatives is conceptually simple, the practical
implementation of the second-order derivatives is not standard in most ML codes, and its
integration in the energy landscape exploration toolkit is an important contribution of this
work, which is why a detailed description is provided here.

A.1.1 First-order derivatives

We start off by computing the first-order derivatives of the loss function, dL
dwl

i j
. We can write

d
dwl

i j
=
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i

dwl
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i
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j
∂
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Furthermore, we can define σ l
i =

∂L
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i
. For all l ∈ {1, . . . ,H +1}, these can be computed as
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and so the σ l
i can be calculated iteratively from the σ

l+1
i . We define vl

ji = wl
ji f ′(al−1

i ) so that
we can write

σ
l
i = ∑

j
σ
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j vl+1

ji . (A.3)
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This iteration can be computed if the σ
H+1
i are known. For the two loss functions defined in

Sec. 2.1.2, it is

σ
H+1
i = 2(aH+1

i − yi) and σ
H+1
i = eaH+1

i
/ 3

∑
a=0

eaH+1
a −δic . (A.4)

Hence, the first-order derivatives are given by

dL
dwl

i j
= σ

l
i zl−1

j (A.5)

A.1.2 Second-order derivatives

A general methodology for calculating the second-order derivatives of a multi-layer per-
ceptron was first reported by Bishop [18]. Here, we derive concrete expressions for the
second-order derivatives of the DNN architecture defined in Sec. 2.1.1 that can easily be
implemented in computational code.

We aim to calculate the second-order derivative of the loss function, d2L
dwl

i j dwl′
mn

. Next for

1 ≤ l′ ≤ l ≤ H +1, we compute
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where we have defined bll′
im =

dσ l
i

dal′
m

and gll′
jm =

dal
j

dal′
m

. For l′ > l, it is gll′
jm = 0, for l′ = l it is

gll′
jm = δ jm, and for l′ = l −1 we find

gll′
jm =

dal
j

dal−1
m

= wl
jm f ′(al−1

m ) = vl
jm , (A.12)
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and we can use

gll′
jm =

dal
j

dal′
m
= ∑

k

dal
j

dal−1
k

dal−1
k

dal′
m

= ∑
k

f ′(al−1
k )wl

jk gl−1,l′
km = ∑

k
vl

jk gl−1,l′
km (A.13)

to compute each entry of g iteratively. Next, we find that

bll′
im =

dσ l
i

dal′
m

(A.14)

=
d

dal′
m

(
∑

j
σ

l+1
j wl+1

ji f ′(al
i)

)
(A.15)

= ∑
j

bl+1,l′
jm wl+1

ji f ′(al
i)+∑

j
σ

l+1
j wl+1

ji f ′′(al
i)g

ll′
im . (A.16)

We define ul
ji = wl

ji f ′′(al−1
i ), so that we can write

bll′
im = ∑

j
bl+1,l′

jm vl+1
ji +∑

j
σ

l+1
j ul+1

ji gll′
im . (A.17)

Because the definition of bll′ is symmetric with respect to interchanging l ↔ l′, we can also
write,

bll′
im = ∑

j
bl,l′+1

i j vl′+1
jm +∑

j
σ

l′+1
j ul′+1

ji gl′l
mi . (A.18)

We will use this formula to compute all bH+1,l′ from bH+1,H+1. In that case, the second term
vanishes because gl′l

mi = 0 for l′ < l. Hence,

bH+1,l′
im = ∑

j
bH+1,l′+1

i j vl′+1
jm . (A.19)

Finally, it is

bH+1,H+1
im = 2δim and bH+1,H+1

im =−eaH+1
i

eaH+1
m −δim ∑

3
a=0 eaH+1

a(
∑

3
a=0 eaH+1

a

)2 . (A.20)

A.2 Creation of the LJAT19 dataset

In this appendix, we provide details of the creation of the LJAT19 dataset and the visualisa-
tions of the corresponding classification problem, which we make use of in Chap. 3.
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A.2.1 Predicting the outcome of geometry optimisation for an atomic
cluster

The dataset employed in this work is based on a geometry optimisation problem and has
been used for benchmarking problems considered in several previous contributions that
employed single hidden-layer neural networks [11, 12, 37, 30]. The geometry optimisation
problem is defined by a triatomic system with pairwise Lennard-Jones [66] and three-body
Axilrod-Teller [7] interactions. Its locally optimal geometries are three permutational isomers
of a linear minimum with all three atoms in a line distinguished by the central atom and one
additional geometry for an equilateral triangle with D3h symmetry. The total potential energy
for this LJAT3 cluster is given by

V = 4ε ∑
i< j

[(
σ

ri j

)12

−
(

σ

ri j

)6
]
+Z ∑

i< j<k

[
1+3cosθ1 cosθ2 cosθ3

(ri jrikr jk)3

]
, (A.21)

where θ1, θ2, and θ3 are the internal angles of the triangle formed by atoms i, j, and k. The
distance between atoms i and j is ri j, and Z is a parameter that weights the contribution of the
three-body term. For Z = 2 the linear minima have potential energy V =−2.219ε , and the
triangle lies slightly higher with V =−2.185ε . For the triangle r12 = r13 = r23 = 1.16875σ ,
and in the linear minima the nearest-neighbour distances are both 1.10876σ .

A four-fold classification problem can be defined based on the input coordinates of this
geometry optimisation problem and its four possible outcomes. The class index, which
ranges from 1 to 4, can be mapped out across all positive values of the three input variables
r12, r13, and r23, and the supports of the class indices equal the catchment basins of the
respective local minima of the LJAT3 cluster. In order to turn this classification problem
into a learnable dataset, we generate random starting geometries that distribute the three
atoms in a cube of side length L, and we evaluate the true corresponding class index from
geometry optimisation by determining which of the four structures the initial state relaxes to.
The LJAT19 dataset created for this work is based on 200000 geometry minimisations for
starting positions in a cube with L = 1.385σ . Half of each dataset is used for training and
the other half for testing, where appropriate. A similar dataset with 10000 minimisations
and L = 2

√
3σ was employed in previous work [11, 12, 37, 30].

When training the DNN architectures in Chap. 3, we restrict the inputs to just two of the
three interparticle distances, i.e. providing r12 and r13 only while omitting r23. This makes
the prediction problem harder, as it can no longer be known with certainty what the correct
outcome is. The best outcome to expect from a converged DNN architecture is a prediction
of the classification index with the highest marginal probability.
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Reprinted with permission from Ref. [142], P.C. Verpoort et al., Proc. National Academy of Sci. USA 117, 21857 (2020). © 2020 National Academy of Sciences.

Fig. A.1 Graphical representation of the LJAT3 classification problem. (a) Coloured accord-
ing to the true outcome determined by geometry optimisation for the LJAT3 cluster. The four
optimal atomic configurations are associated with their corresponding basins of attraction.
(b) Coloured according to the predictions for the global minimum of a single hidden-layer
neural network with 3 hidden nodes and 100 training data confined in the (x,y) plane (AUC
0.98 from the corresponding test set). (c) Coloured according to the predictions for the global
minimum of a single hidden-layer neural network with 10 hidden nodes trained on 100000
training data from the LJAT19 dataset (AUC 0.79 from corresponding test set).

We find the benchmark presented in this appendix appealing because we can generate
arbitrary amounts of training and testing data, because the classification problem has a clear
physical interpretation, and because of the practical importance of the configuration volumes
themselves. The training and testing datasets with 100000 entries each, which are generated
from this benchmark, are therefore used heavily in Chap. 3, yet we also validate our key
results with real-life data examples in Sec. 3.2.7.

A.2.2 Visualisation of solutions

We aim to visualise prediction functions of DNN models trained with the LJAT19 dataset.
This is accomplished by plotting the classification index in a representative subspace of
the full three-dimensional [r12,r13,r23] space. Specifically, we project coordinates onto the
plane r12 + r13 + r23 = 3re with re = 21/6 being the equilibrium bond length in a dimer and
in the equilateral triangle minimum. This plane is perpendicular to the {1,1,1} direction
and spanned by the unit vectors v̂1 = (1,1,−2)/

√
6 and v̂2 = (1,−1,0)/

√
2. The projected

coordinates can be defined as x = (r12 + r13 −2r23)/
√

6 and y = (r12 − r13)/
√

2, such that
each point in the [r12,r13,r23] space can be assigned an (x,y) coordinate.

Fig. A.1 shows different visualisations of the LJAT19 class index on the projected plane.
Fig. A.1(a) colours each point on the (x,y) grid according to the true class index of the
corresponding point on the projected plane. The equilateral triangle is coloured in grey, while



104

the three linear minima with atoms 1, 2, and 3 in the centre are coloured red, green, and blue,
respectively. Fig. A.1(b) presents the results of a single hidden-layer neural network trained
data confined to the projected plane. In this confined space, the knowledge of r12 and r23 is
sufficient to determine the correct class index, which is why the visualised solution comes
close to the correct one in Fig. A.1(a). Finally, Fig. A.1(c) shows the prediction of a neural
network trained on the LJAT19 dataset, where points in the training dataset are distributed all
across the [r12,r13,r23] space. Consequently, the network cannot distinguish between the red
and the grey solution. The presented visualisation in Fig. A.1(c) is hence the best outcome
we can expected neural networks to converge to that have been trained on data from the
LJAT19 dataset with only two inputs provided.

While this graphical visualisation only represents a small subspace of all possible input
configurations from the three-dimensional [r12,r13,r23] space, it can serve as a useful tool
to compare DNN models and their predictions and provide valuable insight into how well a
particular DNN model performs. This visualisation can be plotted for any DNN configuration,
including minima, TSs, and generally any point in the LFL. Its main application in this work
is in Fig. 3.2, where it is employed to visualise the performance of the global minimum of
different DNN architectures for varying number of training data, Ndata. Interestingly, the
complexity of the patterns in these visualisations suggest a higher expressibility of those
DNNs with higher H, as further outlined in the main text.

A.3 Identification of permutational DNN isomers from loss
value difference

As discussed in Sec. 3.1.2, our analysis of the LFL in DNNs relies on the identification
of degeneracies (or isomers) arising from permutational degeneracies when searching for
minima and TSs. Because of the difficulties associated with computing the distance in weight
space between two points while considering all permutational symmetries, the present work
takes a simplified approach to identify these: minima are treated as identical if their difference
in training loss value is below a certain threshold, namely the loss-difference tolerance, ∆Ltol.
This assumption is necessary when no other methods of identifying permutational isomers is
available because we would otherwise overestimate the number of minima (potentially in
quite a significant way, given the factorial growth of the DNN symmetries with the number
of nodes in a hidden layer, as explained at the end of Sec. 2.1.1). The simplified approach
we employ however also holds the risk of miss-identifying minima, hence discarding newly



A.3 Identification of permutational DNN isomers from loss value difference 105

discovered minima as permutational isomers of known minima when the new ones are in
fact separate minima.

Choosing a sensible value of ∆Ltol is not straightforward. This number has to be somewhat
greater than the loss convergence tolerance of all minima. Given the finite convergence
tolerance of the training loss of minima due to various computational constraints, ∆Ltol

should be large enough so that two representations of the same minimum are not identified as
independent minima because their loss values were not converged sufficiently. Choosing ∆Ltol

as too large will generally result in accidental identification of minima. This is particularly
likely to happen when minima of the LFL occur at high density such that the difference ∆L
in their training loss values is less than ∆Ltol. Following some initial estimation, the number
∆Ltol was set to be either 10−6 or 10−7. This section continues to study whether that choice
of ∆Ltol is in fact sufficient given the density of minima.

In order to analyse the extent of potential deficiencies arising from too low ∆Ltol, we
plot the difference ∆L of neighbouring minima discovered from the procedure described
in Sec. 3.1.2 as a function of the training loss of these minima, Ltrain. We discover that
in those examples with few minima, i.e. any of the cases with H = 1 as well as those
with Ndata ≥ 2000 for H = 2 and Ndata ≥ 10000 for H = 3, the distance between discovered
minima in training loss space is greater than the loss-difference tolerance, ∆Ltol, hence it is
unlikely that we have missed minima in those cases. On the contrary, cases with Ndata ≤ 1000
for H = 2 and Ndata ≤ 2000 for H = 3 have minima with ∆L very close to ∆Ltol. In fact the
spectrum shows a clear cut-off at ∆Ltol. This indicates the miss-identification of dissimilar
minima as permutational isomers due to an insufficiently large choice of ∆Ltol.

This analysis indicates that the results obtained for the latter cases of the LFLs using the
LJAT19 dataset are incomplete: some minima have gone undiscovered because they were
falsely identified as permutational isomers of already existent minima in the database. Future
work has to either incorporate a sufficiently small ∆Ltol or rely on additional, more advanced
procedures for checking permutational isomers, such as through normal ordering of nodes
(as alluded to in Sec. 3.1.2) in order to establish a complete picture of the LFL in those
high-density cases.

While not performed explicitly here, the analysis presented above does of course carry
over to TSs as well, for which we expect to find similar results and consequences.
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Fig. A.2 Training loss difference, ∆L, between neighbouring LFL minima as a function of the
reduced training loss, Lred(Ltrain), for the LJAT19 dataset. The reduced loss is defined in the
same way as in Fig. 3.4 and is computed as Lred(L) =

L−Lmin
Lmax−Lmin

, where Lmax is the maximal
and Lmin is the minimal loss value in the corresponding database of minima. The dashed line
at the bottom of each graph indicates the loss-difference tolerance, ∆Ltol. Columns left to
right: H taking values 1, 2, and 3. Rows top to bottom: Ndata taking values 100, 1000, 2000,
10000, and 100000.



Appendix B

B.1 Differential equation for dynamical Fermi energies

This appendix section derives a coupled ordinary differential equation for the Fermi energies
of the two Rashba bands that describes their dynamics under a constantly ramped external
magnetic field.

We start from the energy dispersions of the Rashba bands, ε
±
k , subject to a magnetic field,

B,
ε
±
k = ε

f
k ±
√

b2 +4ERε f
k , (B.1)

which is derived from Eq. (5.2), and where we have defined the free energy dispersion,
ε f

k = }2k2/2m, and the magnetic field in the dimensions of energy, b = gµBB. This allows us
to compute the value of the Fermi momentum, k±F , for any given Fermi energy εF. Instead of
solving for the Fermi momentum, we instead solve for the value of the free energy dispersion
at the Fermi momentum, ε f

k±F
, which yields

ε
f
k±F

= ε
±
F +2ER ∓

√
b2 +4E2

R +4ERε
±
F . (B.2)

The total number of carriers n± is given by

n± =
∫ d2k
(2π)2 Θ(εF − ε

±
k ) , (B.3)

where Θ(x) is the Heaviside function. By substituting ε = ε f
k, we find

n± =
m

2π}2

∫
∞

0
dε Θ(ε f

k±F
− ε) =

m
2π}2 ε

f
k±F
. (B.4)
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We define the reduced carrier density ν± = 2π}2

m n±, which has the dimension of energy, such
that

ν
± = ε

±
F +2ER ∓

√
b2 +4E2

R +4ERε
±
F . (B.5)

This equation can be inverted to yield the Fermi energies ε
±
F from the carrier density ν±,

ε
±
F = ν

±±
√

b2 +4ERν± . (B.6)

As explained in Sec. 5.3.2, we define the total density, νtot = ν++ν−, and the chirality
density, νc = ν−−ν+, as the time dependence of the occupation numbers ν± are determined
by a relaxation time approximation,

∂νc

∂ t
=−νc −ν

eq.
c

τ
. (B.7)

Using ν± = νtot∓νc
2 , we can write

∂ν±

∂ t
=±1

2
νc −ν

eq.
c

τ
. (B.8)

It is

νc = ν
−−ν

+ = ε
−
F − ε

+
F +

√
b2 +4E2

R +4ERε
−
F +

√
b2 +4E2

R +4ERε
+
F , (B.9)

and

ν
eq.
c = νc

∣∣∣∣
ε
±
F =ε

eq.
F

= 2
√

b2 +4E2
R +4ERε

eq.
F . (B.10)

We now turn to the expression defined in Eq. (5.3) that governs the dynamics of the Fermi
energy. This can now be written as

dε
±
F

dt
=

∂ε
±
F

∂b
ḃ+

∂ε
±
F

∂ν±
∂ν±

∂ t
, (B.11)

where ḃ is a constant. Using

∂ε
±
F

∂b
=± b√

b2 +4ERν±
=

b
ε
±
F −ν± =

b

−2ER ±
√

b2 +4E2
R +4ERε

±
F

(B.12)

and
∂ε

±
F

∂ν± = 1+
2ER

b
∂ε

±
F

∂b
= 1+

2ER

−2ER ±
√

b2 +4E2
R +4ERε

±
F

, (B.13)
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we can write

dε
±
F

dt
=

bḃ

−2ER ±
√

b2 +4E2
R +4ERε

±
F

(B.14)

± 1
2τ

1+
2ER

−2ER ±
√

b2 +4E2
R +4ERε

±
F

×
(

ε
−
F − ε

+
F +2

√
b2 +4E2

R +4ERε
eq.
F

−
√

b2 +4E2
R +4ERε

+
F −

√
b2 +4E2

R +4ERε
−
F

)
,

which is the equation reported in Sec. 5.3.2.

B.2 Condition on the excess occupation

This appendix section aims to derive an expression for the upper bound of the excess
occupation δ from the Rashba band dispersion εk and the value of the equilibrium Fermi
energy ε

eq.
F .

The Fermi energies ε
±
F from the carrier density ν± can be obtained from Eq. (B.6) by

setting B = 0, which yields
ε
±
F = ν

±±2
√

ERν± . (B.15)

Therefore, given occupations ν± = ν±,eq.(1±δ ), we can calculate the Fermi energy differ-
ence to be

∆εF = ε
+
F − ε

−
F (B.16)

= ν
+,eq.(1+δ )−ν

−,eq.(1−δ ) (B.17)

+2
√

ER

(√
ν+,eq.(1+δ )+

√
ν−,eq.(1−δ )

)
= 2δ (ε

eq.
F +2ER)−4

√
E2

R + ε
eq.
F ER +2

√
ER (B.18)

×
[√

1+δ

√
ε

eq.
F +2ER −2

√
E2

R + ε
eq.
F ER

+
√

1−δ

√
εF +2ER +2

√
E2

R + εFER

]
,
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and, by expanding
√

1+δ +
√

1−δ as a series around δ = 0, we find

= 2δ (εF +ER)+4
√

ER (B.19)

×
[√

ER + ε
eq.
F

∞

∑
k=1

(
1/2

2k

)
δ

2k

−
√

ER

∞

∑
k=1

(
1/2

2k+1

)
δ

2k+1
]
.

When δ is small, the series expansion can be truncated after the first element, which yields
the result reported in Sec. 6.2.

B.3 Computation of relaxation-time constants

B.3.1 General considerations

In this appendix, we provide a detailed explanation of our calculations of the Boltzmann-
transport scattering integrals that are discussed in Sec. 6.3 of the main text. We start by
providing some general calculations that hold for both carrier-impurity and carrier-carrier
scattering, and we continue by calculating expressions for the relaxation-time constants for
the two cases explicitly.

Boltzmann equation and scattering integrals

We consider the Boltzmann equation,

∂ f±k1

∂ t
= Ici[ f±k1

]+ Icc[ f±k1
] , (B.20)

where the indices ci and cc refer to the carrier-impurity and carrier-carrier contributions of
the scattering integral, respectively. These are given by

Ici = ∑
k2

(
wcar−imp
(k2∓)→(k1±)

f∓k2
[1− f±k1

]

−wcar−imp
(k1±)→(k2∓)

f±k1
[1− f∓k2

]
)

(B.21)
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and

Icc = ∑
k2k3k4

(
wcar−car
(k3k4∓)→(k1k2±) f∓k3

f∓k4
[1− f±k1

][1− f±k2
]

−wcar−car
(k1k2±)→(k3k4∓) f±k1

f±k2
[1− f∓k3

][1− f∓k4
]
)
. (B.22)

We have neglected all terms that conserve the Rashba-band index of each particle or induce
an exchange of particles between the bands (as the latter will not lead to a decay of the
carrier imbalance between the two Rashba bands). We will make up for this by assuming
that intra-band scattering events are so quick that they will relax each individual band into
local thermal equilibrium on a timescale that is immediate compared to the inter-band
processes we study. We note that there exist additional inter-carrier scattering processes
that conserve the Rashba-band index of one carrier but not of the other. These however are
(due to considerations based on momentum conservation) absent when kR > k+F and remain
weak as long as kR ≈ k+F , which we assume to be the case and which is the case for Rashba
materials where the Rashba energy scale is comparable to the Fermi energy.

Defining the chirality density

We define the total particle density, n = n++n−, and the total chirality density, C = n−−n+

(which is defined to be a positive number, as there are more particles in the lower Rashba
band). Using the distribution function f±k , we can write the densities as n± = 1

V ∑k1 f±k1
, and,

therefore, we can express C as

C =
1
V ∑

k1

(
f−k1

− f+k1

)
(B.23)

and its derivative with respect to time t as

dC
dt

=
1
V ∑

k1

(
∂ f−k1

∂ t
−

∂ f+k1

∂ t

)
, (B.24)

where V is the area of the system.
We insert the carrier-impurity contribution of the scattering integral in Eq. (B.21) and the

carrier-carrier contribution in Eq. (B.22) into Eq. (B.24). By, in the second term, renaming
k1 7→ k2 and k2 7→ k1 for the carrier-impurity case and k1,k2 7→ k3,k4 and k3,k4 7→ k1,k2 in
the carrier-carrier case and then making use of the reversibility of the microscopic processes,
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i.e. wcar−imp
(k2+)→(k1−)

= wcar−imp
(k1−)→(k2+)

and wcar−car
(k3k4+)→(k1k2−)

= wcar−car
(k1k2−)→(k3k4+)

, we find

dC
dt

∣∣∣∣
ci
=

2
V ∑

k1k2

wcar−imp
(k1−)→(k2+)

( f+k2
− f−k1

) (B.25)

and

dC
dt

∣∣∣∣
cc
=

2
V ∑

k1k2k3k4

wcar−car
(k1k2−)→(k3k4+)

(
f+k3

f+k4
[1− f−k1

][1− f−k2
] (B.26)

− f−k1
f−k2

[1− f+k3
][1− f+k4

]
)
.

Inducing a Fermi-level detuning

We use the Rashba energy dispersion ε
±
k = }2(k±kR)

2

2m −ER (where ER = }2k2
R/2m is the Rashba

energy) as shown in Fig. 6.1, although we shift all energies by ER so that we can neglect the
offset and assume the entire energy dispersion to take positive values.

We assume the equilibrium Fermi momentum keq.±
F = k0

F ∓ kR and the equilibrium chem-
ical potential µeq. = }2(k0

F)
2/2m. A chirality non-equilibrium distribution that conserves the

total density n = n++ n− is induced by letting
(
k±F
)2

=
(

keq.±
F

)2
∓
(
δk
)2. By defining

δ µ = }2(δk)2/2m, we can express the non-equilibrium chemical potentials as

µ
± = µ

eq.∓ 1

1∓
√

ER
µeq.

δ µ +O(δ µ
2) . (B.27)

We replace the distribution functions f±k in Eqs. (B.23), (B.25), and (B.26) by Fermi
distributions fµ±(ε±k ) with chemical potential µ±, which can, by using Eq. (B.27), be
expanded to first order in δ µ as

fµ±(ε) = f (ε)∓χ
±

δ µ
∂ f (ε)

∂ µ
(B.28)

and

[1− fµ±(ε)] = [1− f (ε)]∓χ
±

δ µ
∂ [1− f (ε)]

∂ µ
, (B.29)

where we have defined χ± = (1∓
√

ER/µeq.)−1, and f is the equilibrium Fermi distribution.
By using ∂ f

∂ µ
=−∂ f

∂ε
= β f (ε) [1− f (ε)] and ∂ [1− f (ε)]

∂ µ
=−β f (ε) [1− f (ε)], we can rewrite
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C as

C−Ceq. =+
δ µ β

V ∑
k1

Φ
0(ε−k1

,ε+k1
) (B.30)

and dC/dt as

dC
dt

∣∣∣∣
ci
=−2δ µ β

V ∑
k1k2

Φ
0(ε−k1

,ε+k2
) × wcar−imp

(k1−)→(k2+)
, (B.31)

dC
dt

∣∣∣∣
cc
=−2δ µ β

V ∑
k1k2k3k4

Φ
1(ε−k1

,ε−k2
,ε+k3

,ε+k4
) × wcar−car

(k1k2−)→(k3k4+) . (B.32)

The zeroth order term in δ µ for dC
dt vanishes as the equilibrium carrier configuration does not

induce any changes of C. Furthermore, we have introduced Φ0(ε1,ε2) and Φ1(ε1,ε2,ε3,ε4),
which account for all distribution functions and which we define as

Φ
0 = χ

− f (ε1)[1− f (ε1)]+χ
+ f (ε2)[1− f (ε2)] , (B.33)

Φ
1 = f (ε3) f (ε4)[1− f (ε1)][1− f (ε2)] (B.34)

×
(

χ
+ ([1− f (ε3)]+ [1− f (ε4)])

+χ
− ( f (ε1)+ f (ε2))

)
+ f (ε1) f (ε2)[1− f (ε3)][1− f (ε4)]

×
(

χ
+ ( f (ε3)+ f (ε4))

+χ
− ([1− f (ε1)]+ [1− f (ε2)])

)
.

The factors of χ±, which account for the difference in density of states of the two Rashba
bands at their respective Fermi energies, can be approximated as 1, and we will therefore
neglect them in the following.

Using the expressions for C and dC
dt , we want to find the relaxation-time constant τ in the

following relaxation time approximation:

dC
dt

=−
C−Ceq.

τ
. (B.35)

This yields

1
τci

=
2
V ∑

k1k2

Φ
0(ε−k1

,ε+k2
)×wcar−imp

(k1−)→(k2+)

/
1
V ∑

k1

Φ
0(ε−k1

,ε+k1
) (B.36)
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and

1
τcc

=
2
V ∑

k1k2k3k4

Φ
1(ε−k1

,ε−k2
,ε+k3

,ε+k4
)×wcar−car

(k1k2−)→(k3k4+)

/
1
V ∑

k1

Φ
0(ε−k1

,ε+k1
) . (B.37)

Fermi’s Golden Rule

The probability amplitudes in Eqs. (B.36) and (B.37) are given by Fermi’s Golden Rule,

w(k3k4∓)→(k1k2±) =
2π

}
| ⟨Ψfinal|U |Ψinit⟩ |2 × δ (ε±k1

+ ε
±
k2
− ε

∓
k3
− ε

∓
k4
) , (B.38)

where the subscripts init and fin refer to the initial and final states of the transition, respectively.
We now have to find the matrix element for the transitions for carrier-impurity and carrier-
carrier processes.

Initial and final states are taking the forms∣∣∣Ψci
init

〉
= |k1,−⟩ ,

∣∣∣Ψci
fin

〉
= |k2,+⟩ ,

|Ψcc
init⟩ = |k1,−⟩|k2,−⟩ , |Ψcc

fin ⟩ = |k3,+⟩ |k4,+⟩ . (B.39)

We note that a full treatment of this problem would envolve an antisymmetrisation of the
two-particle wave-function, which would result in exchange-interaction terms in the matrix
element. This however makes the integration that follows further below intractable. We
also do not expect this to have a big impact onto the end result as exchange interaction only
matters when a process and its exchange process are of similar strength, which is not true for
the parts of the phase space that contribute dominantly to the scattering.

Each single-particle state can be written as a superposition of the Pauli matrix σZ eigen-
states [129] as follows:

|k,+⟩= 1√
2

(
|k,↑⟩− ieiθk |k,↓⟩

)
, (B.40)

|k,−⟩= 1√
2

(
−ie−iθk |k,↑⟩+ |k,↓⟩

)
. (B.41)
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Because the component of U in spin space is the identity, its matrix element, ⟨k′,+|U |k,−⟩,
can be written as

1
2

(〈
k′,↑

∣∣+ie−iθk′
〈
k′,↓

∣∣)U
(
−ie−iθk |k,↑⟩+|k,↓⟩

)
(B.42)

=
1
2

(
−ie−iθk′ + ie−iθk

) 〈
k′∣∣U |k⟩ (B.43)

=
1
2i

e−
i
2

(
θk+θk′

)(
e

i
2

(
θk−θk′

)
− e−

i
2

(
θk−θk′

)) 〈
k′∣∣U |k⟩ (B.44)

=e−
i
2

(
θk+θk′

)
sin(θk−θk′/2)

〈
k′∣∣U |k⟩ . (B.45)

We set p = k−k′ and hence ⟨k′|U |k⟩=Up/V , where V is the area of the system and
Up is the Fourier transform of the Coulomb potential [119],

Up =Up =
2πe2

0
p+ kS

(B.46)

with e2
0 = e2/4πκε0, where κ is the effective background lattice dielectric constant and kS is

the Thomas-Fermi screening momentum.

B.3.2 Impurity scattering

Next, we evaluate the time constant for carrier-impurity scattering, which is easy to compute
as carrier-impurity scattering is a single-particle process that conserves energy.

Following the general considerations from the previous section, we find that wcar−imp
(k1−)→(k2+)

is equal to
2π

}V 2 sin2 (θk1−θk2/2)U2
|k1−k2| δ (ε

−
k1
− ε

+
k2
) , (B.47)

which we insert into Eq. (B.36) to obtain an expression for the time constant. We convert the
sums to integrals to find

1
τci

=
4π

}V

∫∫ dk1dk2

(2π)4 Φ
0(ε−k1

,ε+k2
)δ (ε−k1

− ε
+
k2
) ×

U2
|k1−k2| sin2 (θk1−θk2/2)

/∫ dk1

(2π)2 Φ
0(ε−k1

,ε+k1
) . (B.48)

We use the variable transformation kidki =
2m
}2 dε

±
i

1
2 (1±

√
ER/εi) (for i ∈ {1,2}). Similar to

our previous approximation of assuming χ± ≈ 1, we drop the correction in the brackets, as
this only accounts for a small correction stemming from the different densities of states of
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the two Rashba bands. Furthermore, we take the limit T → 0, in which case Φ0(ε1,ε2)→
β−1(δ (ε1 −µ)+δ (ε2 −µ)), to carry out the integrations over ε1 and ε2.

This yields for the denominator∫ dk1

(2π)2 Φ
0(ε−k1

,ε+k1
) =

1
2π

2m
}2 β

−1 . (B.49)

Using this and carrying out the integration over ε1 and ε2 in the numerator, the result for
timescale can be expressed as

1
τci

=
1

2π}V
2m
}2

∫
dθk1,k2 U2

|k1−k2| sin2 (θk1−θk2/2) , (B.50)

where θk1,k2 is the angle between k1 and k2. By writing |k1/2| = keq.±
F = k0

F ∓ kR, we can
derive that |k1−k2|2 = 4(k0

F)
2 sin2(θ/2)+4k2

R cos2(θ/2)≈ 4(k0
F)

2 sin2(θ/2)+4k2
R. Using this,

we can write

1
τci

=
1

τci,0

∫
π

0
dθ

sin2 (θ/2)(
2

√
sin2(θ/2)+

(
kR
k0

F

)2
+ kS

k0
F

)2 , (B.51)

where we have also multiplied the result with the number of impurity sites in the system
Ni and introduced ni = Ni/V and τ

−1
ci,0 = 8π mni e4

0
/
}3(k0

F)
2. In the last expression, we can

observe that kR appears in a similar way to the screening momentum kS. Because, in strongly
Rashba-coupled systems, kR is several orders of magnitude larger than kS, this therefore
serves to enhance the screening of the Coulomb potential. More importantly, in the case
without Rashba coupling, it is kR = 0 and the spinor-overlap matrix element vanishes, and
we therefore find

1
τci

=
1

τci,0

∫
π

0
dθ

1(
2sin(θ/2)+ kS

k0
F

)2 ≈ 1
τci,0

k0
F

kS
, (B.52)

whereas if we retain kR and include the helical spin structure and use the fact that kS ≪ kR,
we instead find

1
τci

=
1

τci,0

∫
π

0
dθ

1
4

sin2(θ/2)

sin2(θ/2)+
(

kR
k0

F

)2 ≈ 1
τci,0

π

4
. (B.53)

This results in an overall suppression factor of ≈ kS/k0
F. We use Lindhard theory [86], which

gives kS = e2m
}2 , and using the effective mass m ≈ 0.02me for GeTe (me being the electron
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mass), we find kS/k0
F ≈ 23.7, as reported in Sec. 6.3. While this suppression is not as dramatic

as in the phonon-scattering and inter-carrier cases, we note that to obtain the effective rate
for carrier-impurity scattering, this suppression factor must be multiplied by a density of
impurities. Therefore, in clean, undoped samples, in which the concentration of unintentional
dopants is negligibly small, we expect this not to be of importance.

B.3.3 Inter-carrier scattering

We now continue with examining the carrier-carrier contribution to relaxation, which is
harder and requires significantly more work.

Inserting Fermi’s Golden Rule and converting sums to integrals

Using the result in Eqs. (B.45) and (B.46), the matrix element squared, | ⟨Ψfinal|U |Ψinit⟩ |2,
can be computed to be

U2
q

V 2 sin2 (θk1,k1+q/2)sin2 (θk2,k2−q/2) δk4,k2−q , (B.54)

where we have defined q = k3−k1, and where θk1,k1+q (θk2,k2−q) is the angle between initial
wavevector k1 (k2) and final wavevector k1 +q (k2 −q). Using Fermi’s Golden Rule in
Eq. (B.38), we can insert this into the expression for the relaxation-time constant in Eq. (B.37)
and convert the sums over momentum space to continuous integrals. This results in

1
τcc

=
4π

}

∫∫∫ dk1dk2dq
(2π)6 U2

q Φ
1(ε−k1

,ε−k2
,ε+k3

,ε+k4
)

× sin2 (θk1,k1+q/2)sin2 (θk2,k2−q/2) (B.55)

× δ (ε−k1
+ ε

−
k2
− ε

+
k1+q − ε

+
k2−q)

/∫ dk1

(2π)2 Φ
0(ε+k1

,ε−k1
) .

Defining variable transformations

What follows is a series of variable transformations. As in the impurity case, we use
ki dki =

2m
}2 dεi

1
2 (1±

√
ER/εi) (i ∈ {1,2}), and the denominator again becomes 1

2π

2m
}2 β−1.

Next, we follow an approach by Lawrence and Wilkins [78] to write the integrals over k1

and k2 in terms of the variables ε1 = ε
−
k1

, ε2 = ε
−
k2

, εp = ε
+
k1+q, and εp′ = ε

+
k2−q.

First, we find an expression for the angle between k1 and q, which we call θk1,q, as a
function of the new variables. It is ε1 = }2/2m(k1 − kR)

2 and εp = }2/2m(|k1 +q|+ kR)
2, and
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by writing (k1 +q)2 = k2
1 +q2 +2k1qcosθk1,q, we find that

cosθk1,q =
|k1 +q|2 − k2

1 −q2

2k1q
(B.56)

=−
ε1 − εp + εq +2

√
ER(

√
εp +

√
ε1)

2
√

εq(
√

ε1 +
√

ER)
(B.57)

and accordingly for the angle θk2,q between k2 and q and variable εp′ . Therefore, we find the
derivative of the angles with respect εp and εp′ to be

∂θk1,q

∂εp
=−Ω(ε1,εp,εq)

(
1−

√
ER

εp

)
, (B.58)

∂θk2,q

∂εp′
= Ω(ε2,εp′,εq)

(
1−
√

ER

εp′

)
. (B.59)

where Ω(ε1,εp,εq) is defined as

1√
4εq
(√

ε1+
√

ER
)2−
(
ε1−εp+εq+2

√
ER(

√
εp+

√
ε1)
)2

. (B.60)

Using this result, we can find the Jacobian determinants for the transformation from k1 to
(ε1,εp) and k2 to (ε2,εp′). We find that k1dk1 dθk1,q equals to

dε1dεp
2m
}2 Ω(ε1,εp,εq)

(
1+
√

ER

ε1

)(
1−

√
ER

εp

)
(B.61)

and the same expression for k2dk2 dθk2,q under exchange of ε1 7→ ε2 and εp 7→ εp′ . As was
done previously, we drop the last two terms in the brackets as these small corrections account
for the difference in the densities of states. We have included an extra factor of 2 because the
cos is only uniquely defined on the [0,π] interval and so accounts for only half of the integral
that we want to calculate. The boundaries of the εp integral will be such that the momenta of
k1 and q either align or antialign, and so we find

ε
max/min
p =

}2

2m
( |k1 ±q|+ kR)

2 , (B.62)
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which can be rewritten as

ε
max
p = (

√
ε1 +

√
εq +2

√
ER)

2, (B.63)

ε
min
p =

{
(
√

ε1 −
√

εq +2
√

ER)
2 , for εq < ε1 ,

(
√

ε1 −
√

εq)
2 , for εq > ε1 .

(B.64)

and the respective result for εp′ with ε1 7→ ε2. Finally, it is qdq = 1/2(2m/}2)dεq with
εq = }2q2/2m. The integration over the remaining free angle results in an additional factor of
2π . Using this and Eq. (B.61), we can rewrite Eq. (B.55) as

1
τcc

=
1

2π}

(
2m
}2

)2

β

∫ +∞

−∞

dε1

∫ +∞

−∞

dε2

∫
∞

0
dεq

∫
εmax

p

εmin
p

dεp

∫
εmax

p′

εmin
p′

dεp′

×U2
εq

Φ
1(ε1,ε2,εp,εp′)S(ε1,εp)S(ε2,εp′)

×Ω(ε1,εp,εq)Ω(ε2,εp′,εq)δ (ε1+ε2−εp−εp′), (B.65)

where the transformed Coulomb potential, Uεq , and spinor-overlap matrix elements, S(ε1,εp)

and S(ε2,εp′), will be provided in the next section.

Applying variable transformations to integrand

Having defined suitable variable transformations and having calculated their Jacobian deter-
minants, we will proceed by applying the transformation to the integrand.

The Coulomb potential can easily be rewritten as

Uεq =

(
2m
}2

)−1/2 2πe2
0√

εq +
√

εS
, (B.66)

where we have defined εS = }2k2
S/2m.

We can relate the angle between k1 and k1 +q (k2 and k2 −q) to the angle between k1

(k2) and q,

cos
(
θk1,k1+q

)
=

k1 +qcos
(
θk1,q

)
|k1 +q|

(B.67)

and

cos
(
θk2,k2−q

)
=

k2 −qcos
(
θk2,q

)
|k2 −q|

, (B.68)
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and, using sin2(θ/2) = 1/2(1− cos(θ)), we find

sin2 (θk1,k1+q/2) =
1
2
|k1 +q|− k1 −qcos

(
θk1,q

)
|k1 +q|

(B.69)

(B.56)
=

1
4

q2 − (k1 −|k1 +q|)2

k1|k1 +q|
, (B.70)

sin2 (θk2,k2−q/2) =
1
2
|k2 −q|− k2 +qcos

(
θk2,q

)
|k2 −q|

(B.71)

=
1
4

q2 − (k2 −|k2 −q|)2

k2|k2 −q|
. (B.72)

Therefore, we can define the spinor-overlap function S(ε1,εp,εq) used in Eq. (B.65) as

1
4

εq − (
√

ε1 −
√

εp +2
√

ER)
2

(
√

ε1 +
√

ER)(
√

εp −
√

ER)
. (B.73)

Computing the integral

In this section, we will proceed by computing the integral in Eq. (B.65). This will yield an
expression for the inter-carrier scattering relaxation timescale τcc.

We define ε∆ = εp − ε1 and ε∆′ = εp′ − ε2 and write Eq. (B.65) as

1
τcc

=
β

τcc,0

∫ +∞

−∞

dε1

∫ +∞

−∞

dε2

∫
∞

0
dεq

∫
εmax

∆

εmin
∆

dε∆

∫
εmax

∆

εmin
∆

dε∆ u2
εq

(B.74)

×Φ
1(ε1,ε2,ε1+ε∆,ε2+ε∆′)S(ε1,ε1+ε∆)S(ε2,ε2+ε∆′)

×Ω(ε1,ε1 + ε∆,εq)Ω(ε2,ε2 + ε∆′,εq)δ (ε∆+ε∆′) ,

where uεq = (
√

εq +
√

εS)
−1 and

1
τcc,0

=
(2πe2

0)
2

2π}
2m
}2 =

1
8π

m
}3

e4

ε2
0 κ2 . (B.75)

The boundaries of the integration over ε∆ can be deduced from Eq. (B.63) and are given by

ε
max/min
∆

= (2
√

ER ±
√

εq)
2 +2

√
ε1(2

√
ER ±

√
εq) (B.76)
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for εq < ε1 and

ε
max
∆ = (2

√
ER +

√
εq)

2 +2
√

ε1(2
√

ER +
√

εq) , (B.77)

ε
min
∆ = εq −2

√
ε1εq (B.78)

for εq > ε1 (and accordingly for ε∆′).
In order for the δ function to give a contribution, it must be εmax

∆
+ εmax

∆′ > 0 and
εmin

∆
+ εmin

∆′ < 0. The first condition is trivial and can be omitted. In the case εq < ε1, the
second condition requires that(

2
√

ER−
√

εq
)2
+
(√

ε1+
√

ε2
)(

2
√

ER−
√

εq
)
< 0 . (B.79)

This necessitates that
√

εq > 2
√

ER, which is just the observation that q > 2kR that we discuss
in detail in the main text. When this condition is satisfied, the inequality is inverted when
dividing by

(
2
√

ER −√
εq
)
, and we find(
2
√

ER −
√

εq
)
+
(√

ε1 +
√

ε2
)
> 0 , (B.80)

which is always true for the case εq < ε1 that we started with. In the case of εq > ε1 (in which
case we also assert that εq > ε2), the condition εmin

∆
+ εmin

∆′ < 0 requires that

√
εq <

√
ε1 +

√
ε2 . (B.81)

We can now execute the integration over ε∆′ , which is equivalent to setting ε∆′ =−ε∆ due
to the δ function. The integration over ε∆ will then run from εmin = max

(
εmin

∆
,−εmax

∆′
)

to
εmax = min

(
εmax

∆
,−εmin

∆′
)
. To find the min or max, we check whether ε

min/max
∆

+ ε
max/min

∆′ > 0,
which in the case of εq < ε1 is equivalent to

4ER + εq +2
√

ER(
√

ε1+
√

ε2)∓
√

εq(
√

ε1−
√

ε2)> 0 . (B.82)

Because |√ε1−
√

ε2| ≈
√

kBT ≪
√

ER <
√

εq, this is always true. Furthermore, in the case
εq > ε1 the above condition is equivalent to

(2
√

ER+
√

εq)
2+εq +2

√
ε2/1ER∓2

√
εq(

√
ε1−

√
ε2)> 0 , (B.83)
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which is satisfied again because |√ε1−
√

ε2| ≪
√

εq. Therefore, εmin = εmin
∆

and εmax =

−εmin
∆′ . Using these results, we can now write

1
τcc

=
β

τcc,0

∫
dε1

∫
dε2

∫ (
√

ε1+
√

ε2)
2

4ER

dεq

∫
εmax

εmin

dε∆ u2
εq

(B.84)

×Φ
1(ε1,ε2,ε1+ε∆,ε2−ε∆)S(ε1,ε1+ε∆)S(ε2,ε2−ε∆)

×Ω(ε1,ε1 + ε∆,εq)Ω(ε2,ε2 − ε∆,εq) .

So far, all manipulations have been exact. We will continue with a number of approxi-
mations to be able to find a closed expression for the relaxation time. The spinor-overlap
function S(ε1,ε1 + ε∆,εq) takes the form

1
4

εq − (
√

ε1 −
√

ε1 + ε∆ +2
√

ER)
2

(
√

ε1 +
√

ER)(
√

ε1 + ε∆ −
√

ER)
. (B.85)

ε∆ is of order kBT and therefore much smaller than ε1 ≈ µ and ER. We therefore expand the
denominator in lowest order in ε∆ and drop its dependence in the numerator, which gives

1
4

√
ε1(εq −4ER)+2ε∆

√
ER√

ε1(ε1 −ER)
. (B.86)

Similarly, we approximate Ω(ε1,ε1 + ε∆,εq) (defined in Eq. (B.60)) as

1√
4εq
(√

ε1+
√

ER
)2−
(
−ε∆+εq+4

√
ε1ER

)2
. (B.87)

Next, we note that ε1 and ε2 are approximately equal to µ , and variations around this value
are on the order of kBT . We can therefore neglect these variations and replace ε1 and ε2 by µ

everywhere except for in the Fermi distributions in Φ1. Consequently, we can perform the
integrations over ε1 and ε2. We use the following expression for Φ1(ε1,ε2,ε1 + ε∆,ε2 − ε∆):

f (ε1 + ε∆) f (ε2 − ε∆)[1− f (ε1)][1− f (ε2)] (B.88)

×
(
[1− f (ε1 + ε∆)]+ [1− f (ε2 − ε∆)]+ f (ε1)+ f (ε2)

)
+ f (ε1) f (ε2)[1− f (ε1 + ε∆)][1− f (ε2 − ε∆)]

×
(

f (ε1 + ε∆)+ f (ε2 − ε∆)+ [1− f (ε1)]+ [1− f (ε2)]
)
,
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where the second term gives the same contribution as the first, as can be seen by renaming
ε1 + ε∆ 7→ ε2 and ε2 − ε∆ 7→ ε1. Finally, a straight-forward integration over ε1 and ε2 gives

∫
ε1

∫
ε2 Φ

1(ε1,ε2,ε1+ε∆,ε2−ε∆) =
4ε2

∆
eβε∆

(eβε∆ −1)2 . (B.89)

This allows us to write

1
τcc

=
(kBT )2

τcc,0

∫ 4µ

4ER

dεq u2
εq

∫
εmax

−εmax

β dε∆ (B.90)

× 4(βε∆)
2eβε∆

(eβε∆ −1)2
1
16

µ(εq −4ER)
2 −4ε2

∆
ER

µ(µ −ER)2

× 1√
4εq(

√
µ +

√
ER)2 − (εq +4

√
µER + ε∆)2

× 1√
4εq(

√
µ +

√
ER)2 − (εq +4

√
µER − ε∆)2

.

We use the lowest-order expansion in ε∆ and use the substitution x = βε∆ to find

1
τcc

=
1

τcc,0

(kBT )2

(µ −ER)2

∫ 4µ

4ER

dεq
εq −4ER

εq(4µ − εq)
γ(βεmax) , (B.91)

where we’ve set εS = 0 (because its effect on screening can be neglected), and where we
have defined

γ(y) =
1
2

∫ y

0
dx

x2ex

(ex −1)2 . (B.92)

Where εmax =
√

εq(
√

4µ −√
εq) ≫ kBT , we can replace γ(βεmax) with γ(∞) = π2

6 . This
holds everywhere except for εq close to 4µ , which is the upper limit of the εq integral and
also where the rest of the integrand is logarithmically divergent (due to the (4µ − εq)

−1

contribution). We therefore have to split the εq integration up into one part close to εq = 4µ

and one part further away from this point. As shown in Fig. B.1, we can approximate γ(y) as

γ(y) =

{
π2

6 , if y > π2

3 ,
y
2 , if y ≤ π2

3 .
(B.93)
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We solve βεmax =
π2

6 for εq to find

εq = 2µ

(
1− π2

6
kBT

µ
+

√
1− π2

3
kBT

µ

)
(B.94)

≈ 4µ

(
1− π2

6
kBT

µ

)
=: ε

∗
q . (B.95)

We can therefore write

1
τcc

=
∫ 4µ

4ER

dεq
εq −4ER

εq(4µ − εq)
γ(βεmax) (B.96)

=
π2

6

∫
ε∗q

4ER

dεq
εq −4ER

εq(4µ − εq)
(B.97)

+
1
2

∫ 4µ

ε∗q
dεq

εq −4ER√
εq(

√
4µ +

√
εq)

,

and since ε∗q ≈ 4µ we can set εq = 4µ in the second integral, which results in

1
τcc

=
π2

6

[
−ER

µ
log(εq)−

(µ−ER) log(4µ−εq)

µ

]εq=ε∗q

εq=4ER

+
4µ

2
π2

6
kBT

µ

4µ −4ER

2
√

µ (
√

4µ +
√

4µ)
(B.98)

≈ π2

6

(
1− ER

µ

(
1− log

(
ER

µ

))

−
(

1− ER

µ

)
log
(

π2

6
kBT

µ −ER

))
, (B.99)

which we define as ρ

(
ER
µ
, kBT

µ−ER

)
. We can therefore write

1
τcc

=
1

τcc,0

(kBT )2

(µ −ER)2 ×ρ

(
ER

µ
,

kBT
µ −ER

)
. (B.100)

Using Eq. (B.75) and κ = 10, we find τcc,0 = 10−11 s. For thin films of GeTe with µ −ER =

0.1eV [82, 99] and ER
µ

≈ 0.5, which gives ρ

(
ER
µ
, kBT

µ−ER

)
≈ 10, and Eq. (B.100) yields

τcc ≈ 1µs at T = 100mK as reported in Sec. 6.3.
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Reprinted with permission from Ref. [143], P.C. Verpoort et al., J. Phys.: Condens. Matter 32, 355704 (2020). Licensed under Creative Commons Attribution 4.0.

Fig. B.1 Black curve: γ(y), as defined in Eq. (B.92). Red curve: approximation of γ(y), as
defined in Eq. (B.93).

B.4 The role of spin-flips

While the phonon-mediated transitions are prohibited independently of spin due to energy-
momentum conservation, we made explicit use of the anti-alignment of spin eigenstates for
low-q inter-band transitions mediated by the Coulomb interaction in Sec. 6.3 and assumed
the absence of spin-flip processes. It is however well known that the spin of a carrier can be
flipped through various different mechanisms, and it is therefore worthwhile asking whether
any of these can enhance the inter-band scattering rate and ultimately invalidate the arguments
presented in Sec. 6.3.

The spin of a carrier can either be flipped through interaction with magnetic impurities,
which can be disregarded in high-purity samples, or alternatively through strong spin-orbit
coupling, which is a crucial ingredient of our work. One may therefore ask whether the
spin-orbit coupling of the Rashba system can induce spin-flips that will lead to fast inter-band
equilibration.

First we note that it is important not to confuse the spin-relaxation timescale with the
likelihood for spin-reversing processes to occur. We expect spin relaxation to continue to
occur on very short timescales in our system, as spin is not a conserved quantity in each
individual Rashba band and scattering events that conserve the chiral index will occur at a
high rate. To relax the non-equilibrium carrier configuration that we study, spin-reversing
inter-band scattering processes are required, and there is no direct relation between their rate
and the spin-relaxation timescale.
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Next, we note that while spin-orbit coupling by itself leads to spin mixing of electronic
eigenstates, no spin-flips can occur without a scattering process that mediates it. We have
identified all relevant scattering processes for the relaxation of the depicted non-equilibrium
state in Sec. 6.1, and we would now have to continue by examining the effect of the spin-orbit
coupling onto those mechanisms.

As explained in Sec. 6.2, phonon-mediated transitions between the Rashba bands are
suppressed due to energy-momentum conservation completely independently of the relative
spin alignments. If we assume a high-purity sample and ignore carrier-impurity scattering for
the moment, then inter-carrier scattering is the only way of inducing transitions between states
of opposite chirality. We therefore have to check how the addition of spin-orbit coupling
affects these transitions.

It is important to understand that the momentum-dependent spin mixing of the Rashba
coupling is already taken into account explicitly in our calculations in Sec. 6.3 and App. B.3,
where we include the spinor part of the wavefunctions in the matrix element. It will therefore
only be necessary to probe the effect of momentum-dependent spin mixing to other Bloch
bands and not between the two Rashba bands.

Phonon-mediated spin-orbit induced spin-flips can be described using the language of the
Elliot-Yafet mechanism [13], where the momentum-dependent spin mixing to other Bloch
bands is referred to as the Elliot contribution [49] and the effect of the phonon-modulated
spin-orbit interaction referred to as the Overhauser contribution [105]. For the inter-carrier
scattering, the Overhauser part is absent, and we will have to focus on the Elliot contribution
only. We will now show that this vanishes up to first order in q. As we explain in Sec. 6.3,
inter-carrier scattering is dominated by low-q transitions and therefore incompatible with
this q dependence of the Elliot contribution.

We determine the scattering rate for spin-reversing inter-band processes by adding the
spin mixing to another Bloch band to the transition-matrix element in Eq. (6.9). This is
done by adding the product of the lattice-periodic part uµk of the Bloch functions ϕµk(r) =
exp(ikr)uµk(r) of initial and final state to the real-space integral in the expectation value.
In momentum space, this results in multiplying the outcome of the result from Sec. 6.3 with
the Fourier transform of the product of the initial and final uµk ,∫

d2r exp(iqr) u∗µkuµ ′k+q . (B.101)

Note that the labels µ and µ ′ refer to both the Bloch-band index and the pseudospin index
that labels the spin degree of freedom. We can expand this integral around q = 0 and examine
the leading-order terms. The zeroth order term is the overlap of the two wavefunctions with
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same momentum and opposite spin index and is zero as the uµk are orthogonal. The term in
first order integrates over the r vector,

iq
∫

d2r u∗µk r uµ ′k+q . (B.102)

This term however must vanish because it can only exist in a system that breaks inversion
symmetry1. Therefore, we can conclude that the lowest-order term in the small-q expansion
is proportional to q2.

This is the main reason why typically phonons are considered as the main source for
spin-orbit induced spin-flips, as they are able to provide sufficient change of momentum to be
compatible with the vanishing of the momentum-dependent spin mixing for small momentum
transfer2. In other words, we can expect the spin mixing to have a similar effect in inhibiting
inter-carrier transitions as the opposing spin alignments of the Rashba spin texture had in
Sec. 6.3. This leaves us to conclude this section by summarising that spin-orbit coupling
(Rashba coupling and to other Bloch bands) is ineffective in enabling inter-band transitions
to opposite spin states.

1Note that we refer to the symmetry within the 2D plane, while obviously the Rashba interaction breaks the
inversion symmetry in the direction perpendicular to the plane

2Check Ref. [13] for a detailed discussion of the low-q expansion of the Elliot-Yafet mechanism.
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