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Supplementary Notes 

Nuclear genome quality control and principal component analysis 

 

A genetically European group of UK Biobank participants was defined using principal 

component analysis (PCA, FlashPCA2)1 calculated on SNPs (MAF > 0.05) with: overall 

call rate ≥ 99%, HWE P ≥ 10-5, and R2 < 0.2. Regions of the genome known to exhibit 

long-range linkage disequilibrium (LD) were removed (chr6: 25–33.5Mb, chr8: 8–12Mb, 

chr17: 40.4–42.4Mb) to ensure the nuclear principal component (nucPCs) were picking 

up ancestry and not LD. Then, the method of Astle et al.2 was adopted to identify ancestral 

outliers for removal. This was followed by batch level variant and sample quality control 

(QC) and QC over all batches. During the former, variants were removed if: call rate ≤ 

mean (call rate) - [ 3 x SD (call rate)]; HWE P-value < 1x10-12 (MAF < 0.01) or HWE P-

value < 1x10-6 (MAF ≥ 0.01), and individuals were removed if: call rate < mean (call rate) 

- [3 x SD (call rate)] or Heterozygosity > (mean +/- 3SD). During the latter, variants that 

failed QC in > 48 batches (UKBB array) or > 3 batches (UKBL array), and individuals 

who’s genetic sex and phenotypically defined sex did not match, were excluded.  

After variant and sample QC across all batches, a second PCA was performed 

(FlashPCA2) as above and genetic distance measure of 0.175 calculated using the first 

8PCs was used to remove additional individuals of non-European ancestry. A subset of 

unrelated participants was defined using the kinship information provided by UK Biobank 

that lists the kinship coefficient of pairs of individuals up to 3rd degree relatives3. Pairs that 

shared individual(s) were aggregated into families and only the individual with the highest 

call rate from each family was retained. The nucPCs used in the present article were 

calculated on this final set of variants (N=782,205) and individuals (N=449,771) as above. 

Design of a bespoke workflow for quality control, re-calling and imputation of 
mitochondrial variants 

The workflow we designed (Fig. 1) consists of four stages: 1. pre-recalling QC, 2. manual 

re-calling, 3. pos-recalling and 4. imputation; and makes use of the files routinely provided 

after standard genotyping: 1. file with genotypes per individual (plink, vcf or oxford 

formatted), 2. intensity files (either pre-extracted or CEL files), 3. array manifest files 
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which contain information on the probes and the reference sequence (rCRS; NC_012920) 

to which those were mapped (including strand information). In addition, we used 

reference panels of whole mitochondrial genomes for imputation purposes and to 

estimate allele frequency in reference populations.  

Stage 1: Pre-re-calling QC procedures  

First, within each genotyping array, we determined the per mtSNV and per sample call 

rates (PLINK 1.94). Similar to the nuclear genome, number of missing genotypes per 

variant was low (median call rate of 0.998 and 0.997 for the UKBB array and the UKBL 

array, respectively), and, for each variant, sample were missing at random. However, we 

observed that the per-sample call rate was much lower in comparison to the one observed 

for autosomal variants (mean of 0.89 and 0.96, respectively). Therefore, at that stage, we 

selected for recalling variants with call rate <0.990 (N=7) and variants with lower call rates 

than in the 150,000 UK Biobank release (N=8). Next, we excluded 54 samples who were 

outliers in terms of mean intensities over all SNVs, irrespective of batch, as well as 2,054 

samples, because of plate effects (Supplementary Fig. 3 and 4). Next, in the remaining 

individuals, we calculated allele frequencies and compared those to allele frequencies in 

three reference datasets (GenBank, 1000 Genomes, WTCCC). These datasets are not 

ideal references due to either size (1000 Genomes, WTCCC) or origin (a.k.a. majority of 

sample are non-British: 1000 Genome, GenBank). The GenBank is the biggest cohort 

available and, consequently, it is also the most heterogeneous. Therefore, variants with 

discordant MAF (> 3%), compared to at least one of the reference data sets, were 

selected for re-calling, only if they also showed suboptimal clustering. Finally, to address 

the issue of wrongly assigned calls, cluster plots for each variant were produced and 

visually inspected. This was done per array or, when more resolution was needed to 

determine cluster edges, per-batch (Supplementary Table 1). Variants with more than 2 

clusters, or where clusters were poorly separated or where genotypes were missing for 

entire clusters (in the middle or at cluster edges) were also selected for re-calling.  
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Stage 2 and 3: Re-calling procedures and post-recalling QC 

Re-calling was done using a bespoke R script (https://lighthouse.mrc-

mbu.cam.ac.uk/gogs/cc926/UKBiobank) by E.Y-D and C.C. To ensure re-calling quality, 

a set of SNVs was re-called by both re-callers and the concordance in calls was 99.9%. 

Of the 135 variants, 53 (39.3%) variants were re-called per array for all batches together, 

while for 66 (48.9%) variants the re-calling was done both per array and per batch. 

Furthermore, 2 variants (1.5%) that showed overlapping clusters to an extent where re-

calling was not possible and 15 monomorphic variants (10.7%) were excluded, resulting 

in a set of 248 (Supplementary Tables 1-4). To check the quality of the re-calling 

procedure, for each of the recalled variants cluster plots (per array and per batch) were 

generated and visually inspected by E.Y-D and C.C., and in cases of disagreement (N = 

7), additionally by J.M.M.H. Finally, we re-calculated the per sample call rate (within each 

array) using the final set of SNV and excluded samples with call rate ≤ 0.97 (N = 2,643).  

Stage 4: Imputation  

Prior to attempting imputation, we explored whether imputation of mtDNA variants was at 

all possible. We split the GenBank reference panel described in Wei W et al.5 (30,506 

sequences, 6,580 biallelic SNVs) in half and imputed one half (a test set) against the 

other (a reference set). We then deleted different number of variants from the test set and 

kept 50%, 12.5% and 1.3% of variants in common between the two sets (Supplementary 
Fig. 5). Furthermore, we also tested our high-quality set of 248 variants that were present 

in the UK Biobank. The imputation was done using IMPUTE26 and both haploid and 

diploid settings were tested and found to perform equally well (Supplementary Fig. 5). 

When the two sets shared ≥ 10% of SNVs, an imputation quality score (INFO) cut-off of 

0.7 was sufficient to assure high concordance for the minor allele (≥ 90%), irrespective of 

MAF (Supplementary Fig. 5). However, when the number of shared mtSNVs was lower 

than 10% of those present in the reference panel, as is the case with UK Biobank, an 

additional MAC cut-off was also required (Supplementary Fig. 5). Finally, as with nuclear 

variants, when the reference and imputation panel shared very few SNPs (≤ 1%), only 

common variants could be imputed accurately (Supplementary Fig. 5). We therefore 



 5 

chose the most conservative score cut-off for filtering the imputation results and set out 

to use only imputed SNVs with INFO score ≥ 0.7 and mac ≥ 10.   

We then imputed the UK Biobank dataset against GenBank,  described in Wei W 

et al.5 As partial sequences may present with alignment errors, to further increase 

accuracy we excluded those from the reference data set, resulting in 17,815 GenBank 

complete genomes and we only used biallelic SNVs (N = 5,271). The GenBank genomes 

was the largest data-set available to us and included European (58%) and non-European 

haplogroups (42%). Imputation was performed separately on each array (N = 49,945 for 

UKBL and N = 438,377 for UKBB). Although homoplasmic mtDNA variants are in phase, 

IMPUTE2 cannot handle missing calls. Thus, we used the IMPUTE2 prephasing step to 

fill in those, following standard procedures. The post-imputation QC parameters were set 

as above (Supplementary Fig. 5). In cases where mtSNVs were genotyped on one array 

and imputed on the other, we took forwards the imputed genotypes only if their INFO 

score was ≥ 0.7. 

Functional annotation of mtSNVs in UK Biobank 

With the exception of a few rare variants linked to mitochondrial diseases such as LHON, 

the 265 mtSNVs probed in UK Biobank were mostly selected to broadly capture 

haplogroup variability, rather than variant pathogenicity (Supplementary Table 5-6). 

Similarly, the imputation procedure we used was agnostic of the functional consequences 

of mtSNVs, hence we assessed functional annotations of the genotyped and imputed 

SNVs that passed QC (N = 473) in the EUR set and calculated variant allele fractions, in 

both the Full (N=483,626) and the EUR set (N=358,916), in all groups of variants (N = 

265 before recalling, N = 248 after recalling, N = 471 imputed) (Supplementary Tables 
1,3,4) to further compare these with the three reference datasets (GenBank, 1000 

Genomes and WTCCC). Allele frequencies and MAC were calculated using QCTOOL v2 

(https://www.well.ox.ac.uk/~gav/qctool_v2/).  

 Half of the 473 SNVs were synonymous (N=238, 50.3%), while non-coding SNVs 

(N = 125, 26.4%) and non-synonymous SNVs (N=110, 23.3%) were present in similar 

proportions (Supplementary Figure 10, Supplementary Table 5). Only a small 

percentage (N = 25; ~5%) of mtDNA SNVs were shown to be pathogenic based on 
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previous studies (Methods), of which only 6/24 (25%) had a confirmed pathogenic status 

according to MITOMAP7 (Supplementary Table 5). Notably, known pathogenic 

mutations, like the m.3243A>G8 and m.3460G>A9 were not in the final set of 473 SNVs 

because they were monomorphic (Supplementary Table 1, Supplementary Figure 10), 

and those with confirmed pathogenic status were very rare (MAF < 1%). We compared 

allele frequencies of genotyped and imputed UK Biobank SNVs, using Spearman 

correlation, with those calculated in the reference datasets (UK Biobank N = 483,626; 

GenBank N = 17,815; 1000 Genomes N = 2,419; WTCCC N = 763), repeating also the 

comparison within the set of Europeans with nuclear-mitochondrial matched ancestry (UK 

Biobank N = 358,916; GenBank N = 6,593; 1000 Genomes N = 986; WTCCC N = 747). 

This comparison showed that the correlation was stronger when comparing European 

subgroups rather then the whole sets with no further selection for matched ancestries 

(Supplementary Table 7).  

We further annotated the haplogroups tagged by each of the 473 mtSNVs 

(Supplementary Table 6) according to the Phylotree build 1710. The majority of SNVs (N 

= 412, 87%) were observed at least once in the human phylogeny, prevalently tagging 

European haplogroups (H, J, K, T, U, I, V, W, X). Despite the fact that the ancestry of this 

subset was exclusively European, African and Asian alleles (both genotypes and 

imputed) were still present, but at very low MAFs (mean MAF < 1%), suggesting that the 

UK Biobank sequencing data could be a valuable resource to re-evaluate the current 

human mitochondrial phylogenetic tree.  

Finally, the non-synonymous m.10398A>G in MT-ND3 (rs2853826) which we 

found associated with an increased risk of multiple sclerosis in the UK Biobank cohort 

(Table 1) was previously found associated with a decreased risk of MS (OR = 0.87; P = 

1.5 x 10-2) in a mtGWAS cohort with a larger number of cases (N = 9,985)11. The same 

variant was found associated with a similar decreasing risk for Parkinson’s disease, 

Ischemic Stroke and Ankylosing Spondylitis11. However, the mitochondrial P-value 

threshold adopted in Hudson et is not properly accounting for the actual number of 

independent mtSNVs and/or distinct haplogroup branches tested (Methods), thus is far 

above the mitochondrial threshold (P < 5x10-5) proposed here. We did not confirm any of 

the previously observed pleiotropic effects of this variant even though for the majority of 
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traits we have over 70% power to detect association of the same effect size at the P-

value (P = 0.01) reached by Hudson et al.11 (Multiple Sclerosis: 0.59; Ankylosing 

Spondylitis: 0.81; Parkinson’s disease: 0.75; Ischemic Stroke: 0.97).    

 

Modelling the geographic distribution of mtDNA variation in Great Britain   

We modelled the geographic distribution of mitochondrial variation in Great Britain and its 

relationship to the nuclear genome variation at different levels of granularity. We analysed 

macro-haplogroups, mtDNA principal components (mtPCs) or mtSNVs to study mtDNA 

variation, while we used nucPCs or clusters derived using those to study nuclear variation 

(Supplementary Tables 10-13). In terms of geographic parameters, we used either 

postcode of birth longitude (#130) and latitude ( #129) on their own or regional units 

derived from Nomenclature of Territorial Units for Statistics level 2 (NUTS2) 

(https://geoportal.statistics.gov.uk/datasets/nuts-level-2-january-2018-names-and-

codes-in-the-united-kingdom) (Supplementary Table 11, Fig. 2). Detailed information on 

haplogroup predictions and nucPCs derivation is provided in the main text and above. To 

further reduce dimensionality and make the geographic comparison between macro-

haplogroups and nucPCA easier, we also performed k-means clustering using the first 10 

nucPCs, establishing the number of clusters as equal to 8. This number was chosen using 

the Elbow method, which determines the number of clusters at which the total within-

cluster sum of square is minimised.  

In UK Biobank, mtPCs were calculated with FlashPCA21 using three different sets 

of genotyped variants: (1) a set of 35 common LD-pruned (MAF > 0.01, R2 < 0.2) mtSNVs; 

(2) a set of 123 common mtSNVs (MAF > 0.01), without LD-pruning; (3) a set including 

all 248 post-recalling mtSNV (Extended Data Fig. 2). LD-pruning was performed using 

PLINK4 and the whole mt-genome was treated as a single window. The mtPCs resulting 

from the first set were used for the detection of mt-related genetic structure in UK Biobank, 

while the mtPCs from the other two set were used to explore whether those strategies 

would capture long-range LD patterns and recapitulate the haplogroup predictions. For 

comparison we also calculated mtPCs in the reference datasets (GenBank, 1000 
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Genomes, WTCCC) in the same way as in UK Biobank (Supplementary Fig. 8 and 
Extended Data Fig. 3). 
The birth coordinates (#130, #129) were intersected with NUTS2 geographical locations 

as follows. The reverse_geocoder Python module (v. 1.5.1) was used to retrieve 

administrative regions (UK region, county and city), which were subsequently intersected 

with UK NUTS level 2 data available at the GRID database (2019-02-17 release) 

(https://www.grid.ac/). Level 2 was chosen as it provides a more detailed classification 

than level 1 and more power per category than level 3. Individuals with missing birth 

coordinates or where NUTS category could not be assigned were excluded from the 

analyses and territory units with less than 1000 participants were merged to a neighboring 

unit. This resulted in 327,665 individuals in the EUR set, classified in 34 units 

(Supplementary Table 11).   

We first explored the distribution of the European macro-haplogroups across 

NUTS2 and found small but significant differences (P < 5x10-5) in frequencies for macro-

haplogroups J, W and I across the country (Fig. 2, Extended Data Fig. 1, 

Supplementary Table 11). The first 10 nucPCs explained 23% (longitude) and 15% 

(latitude) of variance in birth location and the cluster derived from those were present at 

different frequencies across NUTS2 (Fig. 2). For example, fewer people fell within 

clusters 1 and 4 and those were approximately equally distributed across the country, 

while cluster 5 was most common in the two NUTS2 units mapping to Wales. People born 

in the South and central England predominantly fell within clusters 2 and 6, while cluster 

3 was most common in the North of England. People born in Scotland fell predominantly 

in clusters 7 and 8, while people from the North East and West of England fell within 

clusters 2, 6 and 8. Furthermore, clusters common in Scotland and Wales were more 

likely to occur in individuals belonging to macro-haplogroups I, J and K (Supplementary 
Table 10). We also explored the association between longitude or latitude and common 

mtSNV (MAF > 0.01). This replicated what we observed with the macro-haplogroups and 

NUTS2 but did not yield additional information (Supplementary Table 11).   

Next, we explored the relationship between mtSNV, mtPCs and nucPCs. Three 

hundred and thirty-two mtSNVs were associated with at least one of the first 10 nucPCs 

(P < 5x10-5, Extended Data Fig. 2). We further show both in UK Biobank and the 
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reference datasets that mtPCs, when calculated without pruning, reflect long range LD-

patterns and not geographic structure. In all cases, the correlation between nucPCs and 

mtPCs was low and mtPCs or haplogroups were less informative in terms of population 

structure compared to the nucPCs. This is in line with a previous study that showed that 

macro-haplogroup membership provides limited information about either continental 

ancestry or geographical origin of individuals12.  

GenBank 

For reference and imputation purposes, we used 17,815 complete GenBank human 

genomes5, accounting for 5,271 biallelic mtSNVs. The SNVs present in the reference 

dataset were identified by aligning the complete human genomes downloaded from 

GenBank to rCRS (NC_012920.1), as described in Wei et al. 20175. We retained only 

homoplasmic variants (i.e. not showing ambiguity in the genome sequence) and variants 

tagging biallelic single nucleotide variants. With the exception of three SNVs not present 

in the reference dataset, 99% of the high quality re-called UKBB mtSNVs (N = 245/248) 

were observed at least once in GenBank (Supplementary Table 3). We cross-checked 

haplogroup predictions and nuclear ancestry to identify a subset of 6,593 (37%) GenBank 

genomes with European origin. 

1000 Genomes 

We used mitochondrial variant calls for 2,419 individuals from Phase 1 and 3 of the 1000 

Genomes Project13, to calculate reference allele frequencies and haplogroup predictions. 

We downloaded the VCF file with mtDNA calls generated by the MToolBox pipeline14 

from the sourceforge repository of the tool 

(https://sourceforge.net/projects/mtoolbox/files/1000Genomes_data/) and re-mapped the 

variant to the rCRS reference sequence. To calculate allele frequencies and to perform 

haplogroup predictions we further retained only variants that were homoplasmic or nearly 

homoplasmic (i.e. with heteroplasmic fraction≥0.8, N=3,608). These we used for quality 

check purposes and cross-checked with nuclear ancestry to identify 498 (21%) 1000 

Genomes individuals with European origin. The 1000 Genomes consortium subjects 
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provided their consent as explained in 

https://www.internationalgenome.org/sample_collection_principles. 
 

Wellcome Trust Case Control Cohort 

The Wellcome Trust Case Control Cohort (WTCCC)15 individuals were residents of Great 

Britain, self-identified as white Europeans. We sequenced 763 individuals of the WTCCC 

with Illumina Hiseq 2000 using an amplicon-based library preparation and Illumina 

sequencing. In brief the Fluidigm Access ArrayTM technology was used to generate 

tagged and indexed amplicons, (roughly ~100 per sample of 150-200bp), with sample-

specific barcodes and Illumina adaptor sequences. We checked the resulting PCR 

products for quality using the Agilent 2100 Bioanalyzer and then pooled together in equal 

volumes. The PCR product library was purified using AMPure XP beads and quantified 

with PicoGreen prior to loading for Illumina sequencing. Prior to mapping we check the 

quality of raw sequencing fastq files with FastQC. We mapped read using the MToolBox 

pipeline14 with default arguments, using rCRS as mitochondrial reference genome and 

the hg19 genome build as nuclear reference to remove possible nuclear-mitochondrial 

DNA sequences (NumtS) contaminations. Sequencing coverage (% of rCRS covered by 

the mapped reads) was>95% in all samples and mean read depth per sample was 1004X 

(sd=223X; min=514X, max=1903X). Mitochondrial variant calling was performed with the 

MToolBox pipeline, using the default options (minimum read depth per alternative allele 

≥ 5 and minimum quality score per base ≥25). Only variants homoplasmic or nearly 

homoplasmic (i.e. with heteroplasmic fraction≥0.8, N=825) were further retained to 

calculate allele frequencies and to perform haplogroup predictions. These were used for 

quality check and to identify 747 (98%) participants with matched nuclear-mitochondrial 

European origin. The Wellcome Trust Case-Control Consortium subjects gave written 

informed consent and the project protocols were approved by the relevant research ethics 

committees in the UK. A list of investigators who contributed to the generation of the data 

is available from www.wtccc.org.uk. 
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Haplogroup predictions in the reference datasets  

In order to compare mtSNV allele frequencies and haplogroup distributions, with the three 

reference datasets, Haplogrep215 predictions for the 17,815 GenBank complete 

mitochondrial genomes were downloaded from Wei W et al, 20175, and calculated also 

for 2,419 1000 Genomes individuals and 763 WTCCC individuals, using only the subset 

of homoplasmic variants identified by the MToolBox variant calling14 (Supplementary 
Tables 8-9). In this case, only variants homoplasmic or nearly homoplasmic (i.e. with 

heteroplasmic fraction ≥ 0.8) were retained to calculate allele frequencies and to perform 

haplogroup predictions.  

Individuals were considered European if they belonged to the nine major European 

haplogroups (H,V,U,J,T,K,I,W,X) and were also European as inferred by nuclear PCA 

(1000 genomes, WTCCC). Based on this, in the 1000 Genomes data we identified 986 

(41%) individuals belonging to the nine major European haplogroups, of which 498 (21%) 

were also of European origin in terms of their nuclear genome. Of the 763 WTCCC 

participants, 747 (98%) WTCCC individuals had matched nuclear-mitochondrial 

European origin.  

In the case of GenBank, autosomal genotypes were not available. Therefore, we 

retrieved the geographical origin of each genome by running a programmatic API query 

of the HmtDB database16 genome cards for each GenBank accession id. For 4,642 

accessions with undefined geographical origin or not present in HmtDB we attempted the 

retrieval by fetching further metadata from their GenBank genome entries (i.e. publication 

journal, title and sample isolation), using the Bio.Entrez Biopython module 

(https://biopython.org/docs/dev/api/Bio.Entrez.html). When the GenBank entry did not 

provide a clear indication on the geographical origin, we manually reviewed the 

correspondent literature available for that sample. Based on haplogroup predictions 

already available5 and on geographical origin, retrieved as described, we identified 6,593 

(37%) complete European human GenBank genomes. Additionally, to further compare 

allele frequencies of the UK Biobank Full Set with GenBank, as shown in Fig. 1, we 

calculated the number of Asian (AS) and African (AFR) matched nuclear-mitochondrial 

ancestries in UK Biobank, using the ethnicity background field (#21000) (AS, N = 888; 

AFR, N = 2,012), and in GenBank (AS, N = 3,587; AFR, N = 704), adding these to the 
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European group, to obtain 361,816 UK Biobank and 10,884 GenBank matched genomes 

in total. 

Phenotype definitions and model specifications sensitivity analyses 

Binary traits 

We used the ICD-10 category (#41270 code for primary and #41204 code for secondary), 

self-reported category (#20002) and several categories from health and medical history 

records (codes under category #100036) as binary traits, as of the August 2017 freeze. 

Number of informative participants for this analysis were identified as those with at least 

one primary or secondary ICD-10 record (N=279,179 European unrelated individuals). 

Participants with no annotation for a specific ICD-10 code have been considered as 

controls. Regarding the non-cancer self-reported illness (N=166), we mapped them to 

ICD-10 chapters and considered as cases participants with at least one record of non-

cancer self-reported illness (N=271,332 European unrelated individuals), while 

participants with no self-reported records have been used as controls.  

We have also tested 22 traits belonging to health and medical history records, 

assigning to missing values those individuals answering to the touch screen questionnaire 

with “Do not know” and “Prefer not to answer” categories. The full list of categorical traits 

tested is available in Supplementary Table 14. 

 We performed a trait-related sensitivity analysis for a subset of phenotypes of 

interest, already linked to mitochondrial dysfunction. The sensitivity analysis included 

merging ICD-10, ICD-9 and self reported codes together, excluding individuals with co-

morbidities, as well as testing UK Biobank algorithmically defined traits and bespoke 

phenotypes definitions (Supplementary Table 15). The traits of interest were: type 2 

diabetes, Parkinson’s disease, epilepsy, multiple sclerosis, ulcerative colitis, rheumatoid 

arthritis, ankylosing spondylitis, polymyalgia, fibromyalgia, Crohn disease and dyspepsia, 

CVD-related and traits related to airways function. The codes used to create these 

bespoke categories, number of cases and controls and genomic inflation factor per trait 

are available in Supplementary Table 14.  

Post code of birth place (northness and eastness) (#130, #129) were transformed 

using rank inverse normal transformation and tested for association with mtSNVs or 
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haplogroups (factorial variable), adjusting for age, age squared, sex, array and the first 

10nucPCs (Supplementary Table 13). 

Quantitative traits 

We selected 126 quantitative traits for the PheWas analysis, including BCTs, SBs, ATs 

and few other traits, as summarised in Supplementary Table 16. When necessary, traits 

were split by sex before outlier removal and normalisation. Unless stated otherwise, traits 

were transformed using quantile-inverse-normal transformation prior to the association 

analysis. The effects of additional covariates used for further sensitivity analysis are 

available in Supplementary Table 22. For a selected group of traits (anthropometric traits 

and blood cell traits) we performed additional adjustments, as described in the sections 

below. 

Impedance measured anthropometric traits (iATs): We studied 21 iATs (Supplementary 
Table 16). Prior to the analyses, phenotypes were prepared using standardized protocol 

in a sex-specific manner17. Briefly, we removed outliers (values greater than 1st and 99th 

percentile) and normalised the iATs using rank inverse normal transformation. Then the 

iATs were regressed on age and age squared and the resulting residuals were 

standardized to have a mean of 0 and an SD of 1. Finally, the females and males 

standardised residuals were combined. Furthermore, pregnant women or individuals with 

COPD or cancer diagnoses were excluded. 

Blood cell traits (BCTs): We studied 33 hematological traits (Supplementary Table 16) 

that were either measured in standard clinical full blood counts (FBCs, N = 15) or derived 

from the measurements taken during those counts (N = 18), including red blood cell traits 

(N = 12), platelet traits (N = 4) and myeloid and lymphoid white blood cell traits (N = 17). 

The FBCs were obtained using Beckman Coulter LH700 Series instruments. To increase 

the power to detect genetic associations, an extensive quality control was performed as 

previously described2. Briefly, sources of technical and non-genetic biological variation 

were identified and removed. To improve accuracy, FBCs measured more than 36 hr after 

venipuncture and samples that fell within the 96th percentile of mean platelet volume were 

removed2. Further technical covariables such as the time between venipuncture and FBC 

analysis, FBC instrument drift, calibration events, episodes of malfunction, and seasonal 



 14 

effects were adjusted for. Individuals suffering from blood cancers or other blood 

disorders were removed, and the following biological covariables were adjusted for: age, 

sex, menopause status, height, weight, smoking, and alcohol consumption2. 

Observations by trait for which there was a large difference between the raw measured 

trait value and the adjusted trait value were removed. Finally, the adjusted BCTs were 

standardized and transformed using quantile-inverse-normal transformation. 

Sensitivity analyses of model specifications 

Trait and covariate definitions: For phenotypes already linked to mitochondrial 

dysfunction ICD-10, ICD-9 and self-reported codes were reviewed by a clinician and 

codes with similar meanings were merged. Individuals with disorders causing a similar 

phenotype, or at high risk of developing the disorder of interest were excluded from 

controls, for example individuals with optic neuritis were excluded from controls for the 

multiple sclerosis analysis. Besides bespoke phenotypes definitions, we have also 

included UKBB algorithmically defined traits (Supplementary Table 15). We also 

explored additional covariate (eg. age, geographic parameters) that, for the purpose of 

increasing power, were not part of the initial model In all these analyses, a change of 

estimate (absolute difference is Z scores (beta/standard error)) was deemed significant 

if it exceeded 10% irrespective of changes in P-values.  

Due to the sensitive of binary traits to model misspecification, especially in the case of 

imbalanced case-control analyses, we explored three different tests (score, Wald tests 

and likelihood ratio test) to ensure robustness of the results. These tests were applied on 

the 29 significant binary associations and produced similar results (Supplementary 
Tables 21). We focused on the results from the Wald test as those were the most 

conservative. In addition, we explored whether treating the genotypes at each mtSNV as 

factorial variable altered the results (STATA 14.2, likelihood ratio test). For this step we 

converted the genotype probabilities to hard-call genotypes at cut-off of 0.6. The factorial 

and additive models did not differ, again showing the robustness of the results and that 

models, usually used for autosomal variants, are applicable for mitochondrial variants as 

well.  
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We also explored the effects of adding different covariates to the models. We first tested 

the standard set of covariate such as age, age squared, sex, array and the addition of 

nuclear principal components. All those were retained in subsequent models for the 

quantitate traits as they were statistically significantly associated with the traits of interest 

(Methods). In order to increase power, age and age squared were not included in the 

models for binary traits, but their effect was tested in the sensitivity analyses 

(Supplementary Tables 21). The observed binary associations were valid to the addition 

of the effects of age.   

We also explored additional covariate that, for the purpose of increasing power, were not 

part of the initial model: variables that account for geographic differences in variant and 

haplogroup frequencies (easthnes and northness of birth, region of birth), variables that 

adjust for the effect of drugs proposed to influence mitochondrial function (e.g. antibiotics, 

metformin, antidepressants), and, when possible, adjusting for the effect of nuclear 

genetic variants known to be associated with the outcome (Supplementary Tables 21-
22). The observed associations were valid to the addtion of all these different covariates 

even when addting those covariated redused the sample size avaialbe for analyses (e.g. 

covariates derived from birth coordiantes). 

Lambda simulations 

To evaluate the λ distribution we drew 10,000 samples per trait from the test statistics 

available from the Astle et. al.2 that matched the MAF distribution in the mitochondrial 

data and calculated the λ each time (Supplementary Fig. 11). The Astle et. al.2 utilised 

smaller number of individuals (~170,000) and triple genomic control. Given this and the 

polygenicity of BCTs, our simulation is likely to underestimate the inflation that could be 

observed in a sample of over 350,000 participants. Therefore, we increased by 15% each 

of the simulated λs. 

 

 
 
 
 



 16 

Supplementary Figures 

 
Supplementary Figure 1. Power calculations for binary and quantitative traits  

 

The figure summarises the results of power calculation for binary and quantitative traits 

across different minor allele frequency (MAF) ranges of mitochondrial variants. The 

number of participants needed for a study to have 80% power to detect an effect at 

α=5x10-5 for (a) binary traits with 7% prevalence and (b) continuous traits. x-axes: number 

of individuals needed to achieve 80% power; y-axes: odd ratio (OR) for (a) and beta for 

(b). Power calculations were performed using Quanto21 
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Supplementary Figure 2. Examples of mitochondrial cluster plots of the UK 
Biobank mtSNVs before and after genotype re-calling 
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Cluster plots of probe intensities for three mitochondrial SNVs genotyped in UK Biobank 

in 488,377 individuals (Affx-34461745 (a), Affx-34461788 (b) and Affx-34462282 (c)). 

Each dot represents a participants and colours correspond to genotype assignment. 

Black dots indicate missing genotypes. Affx-34461745 and Affx-34462282 (a-b) are 

examples of cluster plots with missing calls at high intensities prior to recalling (left), and 

post recalled genotypes (right). Affx-34462282 (c) is an example of a cluster plot with a 

rare allele (G/G) showing high missingness before recalling (left) which is improved after 

genotype recalling (right). 

 



 19 

Supplementary Figure 3. Mean allele A and allele B intensity outliers across all mtSNVs 

 
This figure shows the mean allele A and allele B intensities for all mtSNVs (N=265) for the UK Biobank Affymetrix Axiom 

array (a) and UK BiLEVE Affymetrix Axiom array (b). Each dot represents a participant: N=438,427 in a) and N=49,950 in 

b). The magenta and green lines denote 7 and 10 standard deviations (SDs) from the cluster center, respectively. UK 

Biobank Affymetrix Axiom array samples falling beyond 10 SDs (N=49) and UK BiLEVE array samples falling beyond 7 SDs 

(N=5) were excluded   
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Mean allele A and allele B intensities over all mtSNVs for each participant. Three examples of plate effects for (a) batch 53 

(N=4,613), (b) batch 78 (N=4,638) and (c) batch 87 (N=4,660) are shown. Outlying participants are shaded in grey (N=66, 

N=91 and N=90, for a-c respectively), green (N=94) and purple (N=90). 
 
 

Supplementary Figure 4. Examples of plate effects 
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Supplementary Figure 5. Imputation procedure validation  
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Our validation steps for the imputation of mtSNVs. (a) Flow-chart of the validation procedure. The GenBank full data set 

(30,506 sequences, 5,983 mtSNVs) was split into a reference and an imputation set of equal sizes. Between 50% and 

98.7% of mtSNVs were deleted from the imputation set. The missing mtSNVs were next imputed using the reference set to 

assess the robustness of the imputation approach. The number of mtSNVs in common between the sets at each iteration 

is reported; (b) Concordance (%) between imputed and actual genotypes is reported for the major and the minor alleles 

separately: diploid imputation (blue); haploid imputation (purple); all mtSNVs (A), mtSNVs with INFO ≥ 0.7 (I); variants with 

INFO≥0.7 and minor allele count (MAC) ≥10 (IM); (c) a boxplot showing the relationship between minor allele frequency 

(MAF) (divided into 8 categories) and INFO score for both diploid (blue) and haploid (purple) imputation; the blue line 

represents INFO=0.7. (d) Distribution of INFO scores by MAF bins for the UK Biobank imputed mtSNVs. The number of 

SNVs per bin is indicated above each box. dash line: INFO=0.7 The lower and upper hinges of boxplots in (c) and (d) 

correspond to the first and third quartile of the distribution, with median in the center and whiskers spanning 1.5 times the 

interquartile range. Black dots depict boxplots outliers.   
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Supplementary Figure 6. Haplogroup predictions in the UK Biobank and the 
three reference cohorts: WTCCC, GenBank and 1000 Genomes 
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(a) Boxplot representing the per-individual quality of haplogroup prediction (expressed as 
Haplogrep2 rank score), based on genotyped, post-recalling and post-imputed SNVs, 
across all participants that passed the QC in the “Full set”; The lower and upper hinges 
of boxplots correspond to the first and third quartile of the distribution, with median in the 
center and whiskers spanning no further than 1.5*interquartile range. Black dots depict 
boxplots outliers (b-c) Fraction of individuals with haplogroup predictions calculated (b) 
over the total number of individuals available per cohort in the “Full set” and (c) over the 
EUR subgroup. Shown are UK Biobank and the three reference cohorts: WTCCC, 
GenBank and 1000 Genomes. The number of individuals in the “Full sets” are: N=483,626 
UK Biobank, N=763 WTCCC, N=17,815 GenBank and N=2,419 1000 Genomes. EUR 
individuals per cohort are: N=358,916 UK Biobank, N=747 WTCCC, N=6,593 GenBank 
and N=498 1000 Genomes. Haplogroups corresponding to less than 1% of the entire 
cohort in panel b) were not show 



 25 

 

 

 
The figure shows the distribution of nuclear clusters (calculated using the first 10 nuclear 
principal components) across the territorial units (UK regions) from the Nomenclature of 
Territorial Units for Statistics version 2 (NUTS2) units in 327,665 participants with 
available birth coordinates. 

Supplementary Figure 7. Distribution of nuclear clusters across NUTS2 units 
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Supplementary Figure 8. Principal component analysis of the “Full Set” of UK 
Biobank participants in comparison to GenBank and 1000 Genomes participants    
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Plots of the first 3 mtDNA principal components (mtPCs) for individuals in: (a) the Full Set 

of UK Biobank (N=483,626), (b) GenBank reference set used for imputation (N=17,815) 

and (c) 1000 Genomes individuals (N=2,419). Each dot represents a participant and are 

colored according to macro-haplogroup carrier status. mtPCs were calculated using 

genotyped mtSNVs (MAF>0.01). For each of the three data sets, plots on the left-hand 

side show mtPCs calculated using mtSNVs (with R2<0.2 for UK Biobank and R2<0.1 for 

GenBank and 1000 Genomes) while the plots on the right were generated without pruning 

correlated mtSNVs. The WTCCC reference set was not considered in this analysis 

because it includes almost exclusively individuals of European origin (98%). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 28 

 

473 mtSNVs (open circles) were tested for association with age (a) and sex (b) in 358,916 

EUR UK Biobank individuals and we provide the quantile-quantile (Q-Q) plots as a an 

indicator of deviation from normality (a, b). We used two-sided P-values from score tests 

adjusting for the first 10 principal components calculated using nuclear variants (nucPCs), 

sex and array are presented. (c) box-plot showing the distribution of the number (N) of 

mtSNVs (y-axis) a participant carries (out of 473 mtSNVs) stratified by age (categorical; 

x-axis) and H haplogroup carrier status. (d) boxplot showing the distribution of the number 

Supplementary Figure 9. Relationship between mtSNVs, age and sex 
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(N) of mtSNVs a participant carries (out of 473 mtSNVs) stratified by sex (x-axis). For (a) 

and (b) grey shading denotes the 95% confidence intervals for the observed P-values. 

For (c) and (d) mean N is denoted by a diamond. The lower and upper hinges of boxplots 

in (c) and (d) correspond to the first and third quartile of the distribution, with median in 

the center and whiskers spanning no further than 1.5*interquartile range. Black dots 

depict boxplots outliers  
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Supplementary Figure 10. Functional annotation of mtSNVs in the UK Biobank 
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Breakdown of the 473 mtSNVs (post-recalling and post-imputation) minor allele 

frequencies (MAFs) by (a) tagged haplogroup, (b) nucleotide change, (c) function (Cfrm 

= confirmed pathogenic status according to MITOMAP). Histograms show the distribution 

of MAFs in each category (dashed line indicates the corresponding smoothed densities). 

The stacked bar on the right side of each histogram plot shows the percentages of 

mtSNVs in each category. mtSNVs that are on European haplogroups tag: haplogroups 

H, J, U, T, K, X, I, V and W; mtSNVs falling on African haplogroups tag haplogroup L; 

mtSNVs on Asian haplogroups tag: haplogroups A, B, C, D, F, G, M, N9 and R9; SNVs 

on other haplogroups tag haplogroups E, O, P and Q. (d) MAF distribution of the 12 

pathogenic mtSNVs variants with confirmed MITOMAP status. MAFs in a-d are -log10 

transformed. e-g) Fractions of the UK Biobank individuals carrying the wild type (not 

carrier) and the mutated (carrier) allele of the three pathogenic mtSNVs, stratified by 

European haplogroups: e) m.1555A>G (P = 3.7x10-50 for J haplogroup; P = 1.2x10-04 for 

T haplogroup; P = 2x10-82 for X haplogroup); f) m.11778G>A; g) m.14484T>C (P = 

6.4x10-05 for J haplogroup; P = 2x10-11 for U haplogroup). Two-sided P-values were 

calculated with Wald test using multinomial analysis to evaluate significant enrichment or 

depletion for carriers of pathogenic mtSNVs with a specific haplogroup compared to the 

reference (H haplogroup) (Supplementary Table 26). Significant (P < 5x10-5 , denoted 

by **) and marginally significant enrichments (P < 0.05, denoted by *) are indicated. 
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Supplementary Figure 11. Distributions of inflation factors from the simulation 
studies 

 

Distributions of inflation factors, lambda, calculated (1000x per trait) by sampling from the 

effects of nuclear genome SNP associations with blood cell traits reported by Astle et. al. 

(2016)2. The nuclear variants used in the calculation were matched in terms of minor 

allele frequency to the allele frequencies observed for the mitochondrial genome variants. 

Green dots represent the lambdas we observed for association of the mtSNVs with the 

listed blood cell trait using mtSNVs with R2<0.2. The lower and upper hinges of boxplots 
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correspond to the first and third quartile of the distribution, with median in the center and 

whiskers spanning no further than 1.5*interquartile range. Black dots depict boxplots 

outliers. BASO# = basophil count; BASO% = percentage of basophils; EO# = eosinophil 

count; EO% = percentage of eosinophils; EO%GRAN = percentage of eosinophils in 
granulocyte fraction; GRAN# = granulocyte count; GRAN%MYELOID = % of granulocytes 
in the myeloid fraction; HCT = hematocrit; HGB = hemoglobin; HLSR# = high light scatter 
reticulocyte count; HLSR% = high light scatter reticulocyte percentage; IRF = immature 
fraction of reticulocytes; LYMPH# = lymphocyte count; LYMPH% = lymphocyte 
percentage; MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular 
hemoglobin concentration; MCV = mean corpuscular volume; MONO# = monocyte count; 
MONO% = percentage of monocytes; MPV = mean platelet volume; MYELOID# = 
myeloid white cell count; NEUT# = neutrophil count; NEUT% = percentage of neutrophils; 
NEUT%GRAN = neutrophil percentage of granulocytes; PCT = plateletcrit; PDW = 
platelet distribution width; PLT# = platelet count; RBC# = red blood cell count; RDW = red 
blood cell width; RET# = reticulocyte count; RET% = reticulocyte fraction of red cells; 
WBC# = white blood cell count;  
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