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Skeletal muscle phosphorus-31 31P MRS is the oldest MRS methodology to be

applied to in vivo metabolic research. The technical requirements of 31P MRS in skele-

tal muscle depend on the research question, and to assess those questions requires

understanding both the relevant muscle physiology, and how 31P MRS methods can

probe it. Here we consider basic signal-acquisition parameters related to radio fre-

quency excitation, TR, TE, spectral resolution, shim and localisation. We make specific

recommendations for studies of resting and exercising muscle, including

magnetisation transfer, and for data processing. We summarise the metabolic infor-

mation that can be quantitatively assessed with 31P MRS, either measured directly or

derived by calculations that depend on particular metabolic models, and we give

advice on potential problems of interpretation. We give expected values and tolera-

ble ranges for some measured quantities, and minimum requirements for reporting

acquisition parameters and experimental results in publications. Reliable examination

depends on a reproducible setup, standardised preconditioning of the subject, and

careful control of potential difficulties, and we summarise some important consider-

ations and potential confounders. Our recommendations include the quantification

and standardisation of contraction intensity, and how best to account for heteroge-

neous muscle recruitment. We highlight some pitfalls in the assessment of mitochon-

drial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we

outline how complementary techniques (near-infrared spectroscopy, arterial spin

labelling, BOLD and various other MRI and 1H MRS measurements) can help in the

physiological/metabolic interpretation of 31P MRS studies by providing information

about blood flow and oxygen delivery/utilisation. Our recommendations will assist in

achieving the fullest possible reliable picture of muscle physiology and

pathophysiology.

K E YWORD S

31P, exercise, metabolism, MRI, muscle, nuclear magnetic resonance spectroscopy, phosphorus

MRS

1 | INTRODUCTION AND PHYSIOLOGICAL (METABOLIC) BACKGROUND

31P MRS studies of skeletal muscle were among the first reported MRS studies of a mammalian organ in situ, and in four decades at least 500 such

studies of human muscle have been published, more than of any other organ.1 MRS methods avoid serious limitations of the classical method for

investigating cellular energetics in human skeletal muscle, namely biopsy; these include technical challenges of biochemical analysis (notably del-

ayed metabolic arrest and the instability of high-energy phosphates, especially PCr, in samples before freezing/deproteination), difficulty of data

acquisition during exercise (especially multiple measurements in kinetic studies), and limited acceptability, particularly for patients, in repeated or

serial studies. Muscles can be studied in various functional states, from the resting state to full contractile activation (using voluntary exercise or

electrical stimulation) and during post-exercise metabolic recovery, and in various experimental manipulations such as hypoxia and hyperoxia. In

vivo 31P MRS can detect only free phosphorus-containing metabolites in tissue concentrations of ~100 μM and above, but these include key par-

ticipants in ATP metabolism and the cellular functions it supports, notably mechanical force production. Here some brief physiological background

will set the scene for the main subject of this consensus article, namely technical recommendations on 31P MRS muscle experiments and their

interpretation.

Mammalian skeletal muscles are composed of multiple muscle cell types (‘myofibres’), of which there are three phenotypically distinct types

functionally classified by their contractile and metabolic properties: slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG) and fast-
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twitch glycolytic (FG) myofibres,2 also known on the basis of their different expression of myosin motor proteins asType I, Type IIa and Type IIb/x

respectively. Metabolically, SO fibres are better equipped to oxidise fat and FG fibres to metabolise glucose and glycogen anaerobically to lactate

(although they usually work aerobically, generating pyruvate), while FOG fibres are metabolically intermediate.3 Under normoxic conditions the

mitochondrial reticulum is the main generator of the ATP that provides the energy for fibre contraction and relaxation4; the energy available for

work is measured by the strongly negative (i.e. far from thermodynamic equilibrium) cytosolic Gibbs free energy of ATP hydrolysis (ΔGATP), which

reflects a high ATP/ADP concentration ratio (~400 at rest). The contribution of anaerobic glycolytic adenosine diphosphate (ADP) phosphoryla-

tion* in resting normoxic skeletal muscle is negligible, but can far exceed mitochondrial ADP phosphorylation,5 particularly during high duty cycle,

high power contractions.6 Myofibres are organised in phenotypically homogeneous clusters innervated by individual somatic neurons (‘motor

units’), which are sequentially, not synchronously, recruited during voluntary exercise in a fixed order (SO ! FOG ! FG motor units) to produce

mechanical force.3 This underlies the well-known metabolic shift from fat to carbohydrate oxidation during progressive exercise. It also

complicates analysis and interpretation of in vivo 31P MRS muscle recordings in voluntary exercise at submaximal workloads, though this can be

somewhat clarified by computational model-based analysis7 or alternative experimental strategies such as low-duty-cycle ballistic contractions8

or electrical stimulation.9

Skeletal muscle is a convenient experimental model to study the ATP synthetic function of the mitochondrial network in situ, as it allows

exercise studies† in which the metabolic load is manipulated via voluntary or electrically-stimulated contraction. Such dynamic 31P MRS exercise-

recovery studies have contributed to understanding in vivo kinetic control of oxidative ADP phosphorylation in muscle.1 In ‘purely oxidative’

exercise (i.e. at moderate workloads below the mechanical threshold of FG motor unit recruitment) under steady-state conditions, mechanical

work rate can be used as a surrogate for oxidative ADP phosphorylation rate, and its relationship to metabolic control signals such as free [ADP]

or ΔGATP (see Table 1) can be used10-13 to make inferences about the muscle's capacity for oxidative ADP phosphorylation.14 This interpretation

critically depends on localised 31P MRS signal collection in the active muscles only, and on accurate quantification of mechanical work. A more

robust strategy, relatively independent of workload, is to study the kinetics of PCr resynthesis immediately following moderate exercise. The dif-

ferent technical and interpretative approaches are reviewed elsewhere,14 but the idea is that because PCr recovery is almost wholly fuelled by

oxidative ATP synthesis, its kinetics reflect muscle ‘mitochondrial capacity’ (sometimes called Qmax), which can be conceptualised as the inferred

maximum rate of oxidative ADP phosphorylation under ‘maximum’ stimulation by 31P MRS-measurable negative feedback control signals such as

[ADP] (although clearly stimulation by other factors, not measurable by 31P MRS, such as cytosolic Ca2+ or redox state will not be maximal during

submaximal exercise).

Another long-standing theme in skeletal muscle physiology is to understand how chemical energy is transformed into mechanical force and

power, how this process is controlled,15 and how it breaks down at high-contraction duty cycles (muscle fatigue).16 In vivo 31P MRS has made

important contributions by correlating mechanical function with the calculated free intramuscular concentrations of ATP, ADP, Pi, Mg2+ and

H+.16-19 Also, in vivo 31P MRS can quantify contractile efficiency,20 as the ratio of muscle power or force output (normalised to muscle volume or

cross-sectional area) to the total ADP phosphorylation rate, determined from dynamic 31P MRS measurements during electrical stimulation or vol-

untary exercise. This is most straightforwardly done by measuring the initial rate of PCr depletion,14,20 although ways are described to estimate

the relative contributions of the different ADP phosphorylation pathways, viz. the creatine kinase reaction, glycogenolysis and oxidative

phosphorylation, as they evolve during exercise.21

Exercise studies with 31P MRS have also contributed to understanding the control of glycolysis in muscle in vivo.22-25 This is most straightfor-

ward during exercise under conditions of cuff ischaemia, where glycogenolytic ADP phosphorylation can be estimated from pH and PCr changes

in a closed system where oxidative ADP phosphorylation and acid efflux are negligible.5,26 Some stoichiometric technicalities of the cellular meta-

bolic production, consumption and buffering of acid (‘H+’ in shorthand form) are reviewed elsewhere.27,28

2 | RECOMMENDATIONS FOR 31P MRS METHODS

2.1 | Introduction to the recommendations

Different scientific questions require particular experimental setups and focus on different metabolites, which imposes specific requirements for

data quality, such as signal-to-noise ratio (SNR), linewidth, temporal resolution and extent of localisation. The MRS methodology must therefore

* ATP is the product of ADP phosphorylation, a process commonly, but more loosely, referred to as ATP synthesis. This is biochemically the reverse of ATP hydrolysis, although the enzymes and

pathways involved are very different; note that although ATP hydrolysis is far from thermodynamic equilibrium (which is what drives metabolic and mechanical work), the creatine kinase reaction

(which also interconverts ATP and ADP) is always close to equilibrium

† The term ‘exercise’, as used throughout this article, refers to a period of muscle work which in most 31P MRS protocols consists of a series of muscle contractions separated by relaxation

phases; ‘recovery’ refers to the data-collection period after cessation of the exercise part of the protocol.
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TABLE 1 Quantities assessable with 31P MRS, and some derived metabolic quantities, pitfalls in data acquisition and possible remedies.
Values are given for resting state, except where indicated

Measured metabolite Challenges and pitfalls Remedy or mitigation

Phosphocreatine (PCr) Long T1 relaxation time, but decreasing T1
at ultra-high field33

Scan at the Ernst angle

Adenosine

triphosphate (ATP)

Concentration low (SNR) ! may affect accuracy of all

metabolites if used for absolute quantification

Quantify ATP from averaged resting data

Decreased visibility due to J-coupling and T2 relaxation

(particularly at ultra-high field) with echo-based

methods

Use shortest possible TE (additional ATP

quantification

at rest with zero echo time sequence is possible,

but almost never done)

Chemical shift (for β-ATP) ! decreased visibility due to

excitation pulse bandwidth (hence also different T1
weighting) or chemical shift displacement artefact

with some localising sequences

Use γ-ATP instead

Inorganic

phosphate (Pi)

Concentration low (SNR) Use appropriate averaging

Decreased post-exercise visibility due to rapid

concentration decrease, peak splitting or linewidth

increase,

either as consequence of partial volume effect

(artefact) or as expected effect of exercise

Average for pH quantification with lower time

resolution during recovery44 (see Figure 3c)

Splitting/detection of acidotic Pi resonance during/

after exercise: broadening due to partial volume

artefact or true heterogeneity of fibre composition

Use appropriate localisation to avoid partial volume

effect; identify true heterogeneity/

compartmentation

Splitting/detection of alkaline Pi resonance at rest

(mitochondrial50 or extracellular/interstitial49,132:

low concentration, separation from main Pi peak)

Use averaging, improve linewidth by shimming (B0-

map, FASTMAP); scan at ultra-high field

Long T1 relaxation time, which does not decrease

at ultra-high field33
Scan at the Ernst angle

Phosphodiesters

(PDE)

Concentration low (SNR) Use appropriate averaging

Specificity: PDE = combined signal of GPE and GPC Use 1H decoupling; scan at ultra-high field;

improve linewidth by shimming

PME Concentration low (SNR), broad signal Use appropriate averaging; use 1H decoupling

NAD+/NADH

and NADP+/

NADPH

Concentration low (SNR), impaired detectability.

Appears

as shoulder on α-ATP, hard to separate.

Assignment of multiple peaks to metabolites and

compartmentation.133

Use appropriate averaging; improve linewidth by

shimming; use appropriate localisation; use 1H

decoupling

(decreases α-ATP and NAD+ linewidth)

Derived quantity Challenges and pitfalls Remedy or mitigation

pH Chemical shift δ between Pi and PCr using

Henderson-Hasselbalch equation134:

pH = 6.75 + log[(δ – 3.27)/(5.63 – δ)]

Broad or split Pi peak For two peaks: pH of separate peaks,50,132

or weighted combination of both Pi

peaks132

For one broad asymmetric peak: weight

according to frequency ranges and

amplitudes of Pi moieties

Spectral frequency resolution Use time-domain fitting; increase spectral

resolution in acquisition

In frequency domain: use up to 2× zero-

filling

with apodisation

Free

[ADP]

Adenosine diphosphate concentration

from pH and [PCr] assuming creatine

kinase (CK) equilibrium106:

[ADP] = {([TCr]/[PCr]) – 1} � [ATP]/(K[H+])

Assuming normal total

creatine concentration

([TCr])

may be wrong, especially

in disease or altered dietary

creatine

Measure [TCr] in parallel or separate

experiments by 1H MRS or biopsy29

(Continues)
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be tailored to the specific application, while respecting constraints imposed by the instrumentation. SNR depends on, inter alia, field strength, coil

sensitivity, size and location of the volume of interest (VOI) or voxel—namely, its distance from the coil element(s)—and the linewidth. The latter

is, in turn, influenced by shim, and also size and location of the VOI. We make recommendations on signal acquisition for studies of resting muscle

(with and without magnetisation transfer) and dynamic studies of muscle exercise. We discuss post-processing steps (fitting, quantifying and

deriving physiological parameters from time series). We recommend units for reporting the results, and give some typical values expected in

healthy subjects and patients. An overview of the most important recommendations is given at the end of this article. This brief summary can only

highlight some important methodical aspects of 31P MRS and subject preparation but cannot go into depth and does not cover aspects of inter-

preting the data.

2.2 | Signal acquisition

2.2.1 | General features of acquisition

On most clinical MR systems, which are generally designed with 1H MRI as the main or only application, a package has to be acquired that allows
31P MRS. Such extensions generally enable the MR system to acquire signals from several ‘x-nuclei’ (i.e. nuclei other than 1H), and comprise

TABLE 1 (Continued)

Derived quantity Challenges and pitfalls Remedy or mitigation

Where K = 1.66 × 109 l mol−1 and normal

[ATP] and [TCr] = 8.2 and 42.5 mmol/l

cell water, respectively29

The expression is an

approximation

More complex expressions are available26

The calculation of ADP assumes free solution

in the cytosol; recent work35

calls this into question

ΔGATP Gibbs free energy of ATP hydrolysis106:

ΔGATP = ΔG0’
ATP + RT ln([ATP][Pi]/[ATP])

Where ΔG0’
ATP = 32 kJ mol−1

and RT (gas constant ×
temperature) = 2.57 kJ mol−1

Same limitations and mitigations as its

component measurements (q.v.)

Mg2+ Chemical shift δ between α-ATP and

β-ATP135 or between PCr and β-ATP136

Confounders of α-ATP and

β-ATP
(broad or unresolved

resonances)

Improve linewidth by shimming; use

averaging; ensure sufficient spectral

resolution

pH-dependent, requires

assumptions for

exchange between Mg2+,

H+ and ATP136

Determine pH robustly; assume standard

values for the different exchange

variables48

PCr recovery

kinetics

PCr(t) = PCre – ΔPCr � exp(−t/τPCr) where

PCre is the [PCr] after recovery, ΔPCr
is the difference between post-recovery

and post-exercise [PCr], and τPCr is the

time constant for PCr resynthesis.

The rate constant is defined as kPCr = 1/τPCr,

and the half-time as t1/2 = ln(2) τPCr

SNR or time resolution Use maximum reasonable voxel size; avoid

partial volume effects; improve linewidth

by shimming

Signal instability of PCr or

total
31P signal during the

time-course, especially at

end of exercise and after

recovery

Minimise gross motion using straps and

pads for subject positioning; give subject

clear instructions

Multi-exponentiality, partial

volume effects, (partial)

acidification120

Use localisation; keep exercise sub-

maximal;

use more complex fits

Various approaches to the apparent

maximum

rate of oxidative ATP synthesis

Qmax
14,106

Absolute values depend on

theoretical framework

and assumed parameters14

Use relative changes (less sensitive to

these confounders)

H+ efflux

rate

Calculated from pH and d[PCr]/dt in

recovery

from exercise106

Assumptions about buffer

capacity β

Assume standard or indirectly-measured

β,26

or determine β separately using lactate
1H/31P MRS91
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additional hardware (usually a broadband amplifier, cabling, SAR supervision, receive system, and RF coils) and modifications of the scanner soft-

ware. 31P MRS data acquisition should be optimised so that metabolites and derived measurements of interest (Table 1, Figure 1) are unambigu-

ously detectable and quantifiable with sufficient SNR, while also fulfilling the demands imposed by the specificity of localisation, time resolution

and exercise regime.

There are several aspects to consider:

The radio frequency (RF) excitation pulse bandwidth must be sufficiently large and the frequency profile should homogeneously excite all

relevant metabolites for correct quantification. This is crucial for β-ATP, −16.26 ppm from PCr, if this resonance is to be used as a reference for

absolute quantification29 (see also Table 2). Insufficient pulse bandwidth can produce strong chemical shift displacement artefacts when applying

excitation with localisation gradients.

Flip angles of RF pulses should be known, as should the region over which the nominal flip angle applies when B1
+ fields are inhomogeneous.

Repetition time: Signal averaging with partially-saturated spectra increases SNR per unit time, with Ernst angle excitation being preferable.30

While maximum SNR per unit time is achieved with shortest TR (and correspondingly the smallest Ernst angle),31 longer repetition times, on the

order of metabolite T1 or more, are often chosen. This is advantageous because under partial saturation different T1 values of resonances (see

Table 2) affect relative peak amplitudes, which requires correction for quantification (see section 2.3.3). At TR = T1 the theoretical signal reduction

due to partial saturation is ~37 % with 90� excitation flip angle and ~27 % with the Ernst angle.

Spectral resolution must be high enough to resolve the metabolites of interest, for example PME, PDE, components of Pi or the split ATP res-

onances, (if measuring 31P-31P coupling constants or the phase evolution of the multiplets). This can also constrain the precision of pH quantifica-

tion (see Table 1). If the chemical shift between Pi and PCr is measured in the spectral domain, zero-filling may enhance the nominal resolution in

terms of Hz per spectral point in post-processing (section 2.3.1), and oversampling is often applied during acquisition but may be removed before

data storage or data fitting.

Echo time: While T2 of most relevant metabolites is moderately long even at ultra-high field (> 100–400 ms, see Table 2), relatively short T2

relaxation times32,33 and homonuclear coupling of ATP leads to rapid signal decay after excitation,34 so non-echo-based MRS acquisitions with

minimal acquisition delay are typically preferred for 31P MRS. Where echo-based acquisition is used, as in single voxel localisation in dynamic

experiments,34 the echo time is preferably kept to a minimum and e.g. TE = 25 ms incurs only moderate signal loss for Pi at 7 T (T2 = 109 ms). ATP

concentration was successfully quantified with TE = 7.4 ms at 3 T,29 while long TE requires long acquisition times (~20 min with TE = 110 ms for

T2 measurements).32

Shimming: Narrow linewidth is of particular importance at lower field strengths, where the bandwidth is relatively low and metabolites can

overlap, thus impacting their measured chemical shift (e.g. for Pi, which reduces the precision of the pH calculation). Whatever shim method is

used, it is important for dynamic studies that the shim parameters are robust against motion, which can be facilitated by generous volumes to

optimize field homogeneity.

Nuclear Overhauser Effect (NOE): SNR enhancement via heteronuclear 1H-31P NOE is achieved with RF pulses on the 1H channel during the

parts of TR not used for 31P transmission and reception. To translate increased SNR into improved accuracy, the enhancement should be cali-

brated for the given setup in test measurements to evaluate efficiency and reproducibility for each metabolite. Magnetization transfer effects

observed between ATP phosphates have been attributed to homonuclear 31P-31P NOE as a result of dipolar cross-relaxation within the phos-

phate spin system of ATP, due to its transient binding to slowly-tumbling large molecules.35

1H decoupling: Phosphate spins in mono- and diester groups are J-coupled with protons, which causes splitting of their resonances in the

order of 7 Hz. As this splitting is not very well resolved it causes line broadening. By irradiation at the proper 1H frequency during acquisition it is

possible to eliminate this coupling, which is particularly useful at field strengths of 3 T or below, where linewidths are in the order of the J-

F IGURE 1 A typical 31P MR spectrum of the resting soleus muscle
of a healthy volunteer acquired at 7 T, with the region between 2.5 and
6 ppm enlarged (right). Signals of an extra Pi pool and phosphodiesters
(PDE) and phosphomonoesters (PME) are visible. Peak assignments:
two signals for inorganic phosphate (Pi and Pi2), glycero-
3-phosphocholine (GPC), glycero-3-phosphoethanolamine (GPE),
phosphocreatine (PCr), three signals for ATP and pyridine nucleotides
(NADPH/NADH). Data were acquired using a pulse-acquire sequence
with a block pulse of 200 μs with a 5-cm surface-coil (TR = 5 s,

bandwidth = 5 kHz, 2048 data points; 128 averages). Figure adapted
from50
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coupling. By 1H decoupling the signals of phosphocholine, phosphoethanolamine, GPC, GPE, α-ATP and NAD+ become much better detectable.36

1H decoupling requires hardware adaptations to avoid 1H irradiation spoiling reception of the 31P signals.

Localisation can be implicitly set by the RF coil or explicitly defined via pulse sequences. Muscle 31P MRS is commonly, but not

exclusively,37,38 performed with surface RF coils, which provide inherent localisation via the spatial profile of their RF (Tx and Rx) fields. Coil

placement merits attention for several reasons. Firstly, during limb exercise, activation is muscle-specific,34 depends on the exercise paradigm,39

and is heterogeneous along the length of the muscle.40 Secondly, in resting muscle, it is important to know which muscle the signal originates

TABLE 2 Typical 31P MRS skeletal muscle measurements. Metabolite quantities are reported as signal ratios and were acquired under fully
relaxed conditions or corrected for partial saturation

Measure

Reported mean values in healthy

cohorts * Possible deviations in disease and other comments †

Calf muscle

Resting muscle

PCr/ATP 4.23 ± 0.24 (8) [3.22–5.20] Large variation in both health and disease; can decrease by up to 50 % in

some diseases

Pi/ATP 0.56 ± 0.13 (8) [0.37–0.81] [0.75–0.85] in various diseases

PDE/ATP 0.12 ± 0.04 (5) [0.13–0.32] children
0.19 ± 0.05 (5) [0.07–0.43] adult

Increases with age; can increase in some diseases, as much as 2–3 times in

dystrophic muscle

Pi/PCr ‡ 0.13 ± 0.01 (8) [0.09–0.17] [0.18–0.20] in various diseases, e.g. high (~0.60) in dystrophic muscle

pH 7.03 ± 0.01 (10) [7.01–7.08] Increased (> 7.08) in some diseases e.g. up to 7.40 in dystrophic muscle

Post-exercise PCr recovery kinetics

τPCr (without acidification) § 41 ± 3 s (5) [31–50 s] Up to ~60 s in some diseases

Qmax 0.5–0.9 mM/s 14 Sensitive to model and assumptions underlying the calculation

Thigh muscle (quadriceps/hamstrings)

Resting muscle

PCr/ATP 4.48 ± 0.20 (9) [3.81–5.80] Large variation in health and disease

Pi/ATP 0.48 ± 0.05 (5) [0.33–0.60] [0.65–0.75] in various diseases

PDE/ATP 0.32 ± 0.11 (4) [0.09–0.65] adult
0.49± 0.14 (2) [0.18–0.80] elderly

Increases with age (up to 50 % increase between young adults and elderly);

can increase 25–40 % in some diseases

Pi/PCr ‡ 0.11 ± 0.01 (5) [0.09–0.13] [0.15–0.18], increased in some diseases, e.g. ~0.5 in dystrophic muscle

pH 7.05 ± 0.01 (8) [7.01–7.14] In patient groups > 7.08; can reach 7.40 in e.g. dystrophic muscle

Post-exercise PCr recovery kinetics

τPCr (without acidification) § 26 ± 1 s (6) [23–29 s] Up to ~50 s in disease without significant acidification during exercise

Qmax 0.5–0.9 mM/s 14 Sensitive to model and assumptions

Relaxation times of most abundant metabolites

1.5 T33 3 T32,33 7 T33,137

Metabolite T1/s T2/ms T1/s T2/ms T1/s T2/ms

PCr 5.7 ± 0.6 (5) 425 ± 1 (2) 6.6 ± 0.2 (2) 344 ± 14 (2) 4.0 ± 0.2 (2) 217 ± 14 (1)

γ-ATP
α-ATP
β-ATP

4.4 ± 0.3 (5)

3.4 ± 0.4 (5)

3.9 ± 0.3 (5)

93 ± 3 (1)

74 ± 1 (1)

75 ± 2 (1)

5.0 ± 0.7 (2)

3.0 ± 0.5 (2)

3.7 ± 0.3 (2)

70 ± 11 (2)

51 ± 6 (2)

55 ± 10 (1)

3.7 ± 0.6 (2)

1.8 ± 0.1 (2)

1.6 ± 0.3 (2)

29 ± 3 (1)

-

-

Pi 4.3 ± 0.6 (5) 223 ± 25 (2) 6.1 ± 1.2 (2) 151 ± 4 (2) 6.5 ± 1 ** (2) 109 ± 17 (1)

PDE - - 8.6 ± 1.2 (1) 414 ± 128 (1) 5.7 ± 1.5 (1) 314 ± 35 (1)

PME - - 8.1 ± 1.7 (1) - 3.1 ± 0.9 (1) -

*The values in this column are the mean ± SEM in (n) studies [range of means], given as an indication of consensus. In the majority of these studies, data

were acquired under similar conditions (surface coils, no echo-time), and all were corrected for metabolite T1, if applicable.
†This column aims to give an approximate indication, where possible, of how abnormal the different measurements can be in various disease states, and in

which direction; the actual abnormalities in any measurement will of course depend on the particular pathophysiology.
‡When not reported this was calculated from the study mean Pi/ATP and PCr/ATP. Absolute concentrations often are calculated assuming constant [ATP]

with the standard value of 8.2 mM, rather than being measured directly.
§Halftime and rate constant of PCr recovery can be calculated from this as inTable 1.
**For the alkaline inorganic phosphate component Pi2 attributed to a mitochondrial origin shorter T1 of 1.4 ± 0.5 s was reported.50
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from, as muscles may be affected differently in disease41,42 and may have different fibre-type compositions.43 Thirdly, because partial saturation

depends on flip angle (which may vary over the sensitive volume), metabolite-specific T1, and TR, partial saturation may complicate (even relative)

quantification of spectra; this can be remedied by localised acquisition schemes. Finally, when classical RF pulses are transmitted with surface

coils, signal from superficial tissue may be partially suppressed when adjusting optimal excitation to deeper regions. Similarly, when employing adi-

abatic pulses to enlarge the effective region of optimum excitation to deeper regions, superficial regions are also excited at the nominal flip angle,

which may be undesirable. When large coils that encompass several muscle groups are used, at least simple localisation should be applied44,45 to

distinguish e.g. flexors from their antagonists (gastrocnemius and soleus vs. tibialis anterior in lower leg or the quadriceps and hamstrings in thigh)

and muscles within a group that differ in fibre composition and contribute differently to exercise (like gastrocnemius and soleus in the calf).39 Sev-

eral single-voxel34,45 and multi-voxel localisation approaches39,42,46,47 are available, each with specific advantages and drawbacks related to

localisation power, time resolution, SNR, and ease of implementation. However, this is not required if the heterogeneity of the contributing tissue

does not influence the interpretation of data and maximum SNR is critical,48 e.g. for PDE detection in small residual muscles of dystrophic

patients.49 Optimal choice hence depends on the scientific question: see the following paragraphs on static and time-resolved dynamic MRS, and

the scheme in section 2.4, Figure 4, for sensible combinations of techniques. In any case, realistic estimates of sensitive volume, contamination,

and/or point spread function are necessary when designing a study.

2.2.2 | Studies in the resting state

At rest, longer acquisition times result in higher SNR, which allows detection of species with low abundance and visibility such as PME, PDE, a

recently identified alkaline Pi2 peak,
49,50 NAD(P)+/NAD(P)H and, indirectly, Mg2+ 48. It also allows higher-precision quantification of ATP, as a ref-

erence standard for absolute quantification in the analysis of a subsequent exercise bout. Resting state measurements can use localisation

methods like ISIS or classical spectroscopic imaging (MRSI), which are available on most clinical MR scanners but require relatively long acquisition

times, and are hence unsuitable for dynamic experiments. Care should be taken to choose sufficiently large matrix sizes (minimum recommended:

8 x 8) and appropriate Hamming weighting51 to minimise contamination, and the field-of-view should be large enough to avoid aliasing, viz.

approx. 20 × 20 cm for the leg.

2.2.3 | Studies using magnetisation transfer

Magnetisation transfer (MT) experiments concern the selective perturbation of the equilibrium magnetisation of one or more spin systems of

metabolite nuclei and detecting the transfer of this perturbation by chemical spin exchange to the same nuclei in other metabolites. Transfer can

also occur by cross-relaxation to nuclei at other positions in the same metabolite (i.e. homonuclear Overhauser effect). Selective perturbation can

be performed by either spin saturation (saturation transfer, ST) or inversion (inversion transfer, IT), after which the transfer is monitored on the

resonances of the exchanging nuclei. In 31P MRS, saturation transfer has been most widely employed,52 typically to measure Pi $ ATP and PCr

$ ATP exchange fluxes by saturating the γ-ATP spin pool and detecting differences in the signal of either PCr or Pi (Figure 2).

To quantify the Pi $ ATP exchange, the pseudo first-order rate constant (k’), which can be derived from the Bloch equations incorporating

chemical exchange, can be calculated as k’ = (M0 − MZ) / (M0 T1
*). In the case of measuring the Pi ! ATP flux, Mz and M0 are the equilibrium

F IGURE 2 Spectra showing the principles of
the saturation transfer experiment. In this
example saturation of the γ-ATP resonance (A,

lower) yields a reduction in the signals of Pi (and
PCr) due to chemical spin exchange during the
indicated reaction, as shown in detail for Pi in the
insert (B), when compared to control conditions
(A, upper); the difference Δ is then used to
quantify Pi ! ATP flux (see text). Figure adapted
from54 which is licensed under CC-BY 3.0
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magnetisation of Pi under conditions of γ-ATP saturation and control respectively, and T1
* is the apparent T1 of Pi in the presence of γ-ATP

saturation, which generally has to be measured in vivo in an additional experiment. The Pi ! ATP flux is then estimated by multiplying k’ by the

concentration of Pi. Analogously, substituting for PCr signals and T1
* in the equations yields an estimate of the PCr ! ATP flux. For implementa-

tion, the selective saturation of γ-ATP is best achieved using a long, low-power, frequency selective pulse; however, when MR hardware

precludes a long (many seconds) continuous pulse, as can be the case with clinical scanners, a train of shorter pulses with minimal inter-pulse delay

is effective if the saturation profile is carefully optimised.52,53 Signal saturation is verified by checking nulling of the saturated resonance in spectra

acquired in vivo (see Figure 2). Off-resonance effects of the saturation pulse have to be taken into account,52 e.g. by alternating this pulse

between being centred on the γ-ATP resonance and at a frequency equidistant to Pi (or PCr), i.e. ‘mirrored’ around the resonance of interest.

As spectra are typically acquired using surface coils, B1 insensitive excitation and saturation pulses are preferred,52 and TR should be long

enough to prevent artefacts arising due to differences in metabolite T1 values between conditions of control and saturation of γ-ATP. Many

averages are generally required to accurately determine signal changes. Measurements in human skeletal muscle have typically been made during

resting conditions, although the Pi ! ATP flux has also been determined during steady-state exercise.54,55

In the interpretation of ST results the potential involvement of small pools of metabolites, competing exchange reactions and homonuclear

NOE may have to be considered.56,57 For instance, effects on the signal of β-ATP after saturating γ-ATP were not due to chemical exchange, but

were found to be an intramolecular 31P-31P NOE, which was assigned to the transient binding of ATP to large molecular structures in muscle

cells.35 Furthermore, Pi $ ATP exchange may have multiple origins in the cell.58 To tackle the potential problem of analysing multiple (competing)

reactions the saturation of multiple resonances in ST and wide band inversion in IT have been implemented.52,59,60

Although the potential of ST to detect exchange of small metabolite pools is of interest, it may be desirable to be sure that only MT effects

among large pools are detected, which is achieved with IT methods. IT experiments have some advantages compared to ST experiments (e.g. no

long saturation pulses, simultaneously measurable forward and reverse reactions), but the technique poses other challenges (e.g. T2 relaxation dur-

ing the inversion pulse). The application of ST at 3 T turned out to be more robust than the applied IT method.53 Both ST and IT techniques are

further developed to make them more efficient.52,61

2.2.4 | Dynamic (i.e. exercise/recovery) studies

Metabolic changes in muscle that can be observed with dynamic 31P MRS either occur on the time scale of a few seconds, such as pH at the onset

and after cessation of exercise, or they have time constants of the order of half a minute, e.g. depletion of PCr during exercise and its post-

exercise recovery, which can often be modelled as a mono-exponential function, or may have even longer time-courses e.g. post-exercise pH

recovery. Hence, to capture changing pH and to reliably fit the PCr evolution with sufficient data points throughout exercise and recovery, the

time resolution of repeatedly-acquired 31P spectra should be ~10 s or better. This temporal resolution necessitates shortening TR to the order of

metaboliteT1 values and accepting partial saturation.

Choice of voxel size or coil should minimise signal contamination from adjacent non-exercising muscle tissue, taking account of the point

spread function and expected SNR (and hence feasible time resolution). Temporal SNR, the ratio of the mean signal amplitude over time to its

standard deviation, is more important in dynamic studies than the SNR of each individual acquisition. A smaller sensitive volume generally gives

narrower lines, improving SNR and unique identification of peaks; inclusion of inactive muscle tissue will impair quantification of exercise-related

changes in PCr breakdown and pH (which may also become ambiguous due to Pi splitting, as demonstrated in Figure 3). Strictly, such partial vol-

ume effects should not affect measured τPCr (this being independent of absolute concentrations).‡

Practical aspects of exercising muscle in the scanner are considered later.

2.3 | Data processing

2.3.1 | Preprocessing

When pulse-acquire techniques are used, the acquisition window may start too late to capture the first time points of the FID, especially when

phase encoding gradients are following the excitation pulse or at higher field strengths where limited B1
+ results in longer excitation pulses. This

should be accounted for in post-processing, by adjusting the first order phase (or ‘begin time’ in time domain) before fitting. The nominal resolu-

tion of frequency spectra can be increased via ‘zero-filling’, i.e. appending nulls to the acquisition vector, although anything beyond doubling the

‡That is, if signal-contributing tissue is either equally exercising and has identical oxidative capacity (Qmax), or is not exercising at all, and thus is not contributing to the depleted PCr signal.
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vector size brings no real benefit, merely improving spectral appearance. Spectral SNR can be enhanced and baseline oscillations (from truncated

FIDs) can be reduced by apodisation, at the cost of increased linewidth. Optimal SNR improvement is achieved with a ‘matched filter’, i.e. one that

corresponds to the natural linewidth.

2.3.2 | Spectral fitting

Numerous tools are available for fitting 31P MRS data in time and frequency domains; however, few are well-suited to application to the large

time-series of dynamic datasets. Popular software packages include jMRUI, OXSA, LC Model, TARQUIN and ACD Spectrus Platform.62-65 Impor-

tant considerations when selecting a spectral fitting method for 31P MRS are its capacity for batch processing, ability to handle baseline problems,

output format of results, and reported error estimates. The AMARES fitting algorithm provided in the jMRUI and OXSA platforms is readily

applied in batch mode.66 Error estimates, particularly the Cramér–Rao lower bound, permit additional quality control of metabolite fits, though

these should be interpreted with care.67

2.3.3 | Quantifying concentrations

In 31P MRS, there are several means of quantifying concentrations (cf. Table 4 and the footnotes therein) of phosphorus metabolites, including

absolute quantification using internal and external references, and relative methods using metabolite ratios. In relative methods, metabolite con-

centrations are commonly represented by ratios to ATP or (less usefully, because this changes during exercise) PCr, or to total phosphate (the

sum of all quantifiable phosphorus resonances in the 31P spectrum, which remains near-constant during typical exercise). ATP is most frequently

used as an ‘internal’ concentration reference standard, as [ATP] is relatively consistent between individuals and differs relatively little between

fibre types in humans; a normal resting ATP concentration of 8.2 mM is conventionally assumed.29 In the quantification of time-series data,

F IGURE 3 Time series of pulse-
acquire spectra (A) measured at 7 T
during rest, plantar flexion exercise and
post-exercise recovery with a 10-cm
surface coil placed below the calf and
using a pulse-acquire scheme (250 μs
block pulse) without further localisation
(left) compared to semi-LASER single
voxel localised MRS (TE = 23 ms) from the

gastrocnemius medialis muscle (right).
Both series: TR = 6 s, bandwidth = 5 kHz,
2048 data points; no averaging, 30 Hz
apodisation. Non-localised spectra show
higher SNR with broader linewidths but
reflect less PCr depletion, as indicated by
the arrows and visible in the time series of
fitted PCr signal amplitudes (B). The
inorganic phosphate peak is clearly
detectable in all non-localised spectra,
even at rest and during recovery, but is
contaminated by signals from inactive
tissue with neutral pH or shows a split
peak (A), leading to ambiguous pH
quantification during exercise and
recovery (C). Figure adapted from,44

which is licensed under CC-BY-NC 2.5
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normalising concentration to a low-SNR metabolite such as ATP can introduce more error than it is worth: it is better to assume constant [ATP]

and either reference to ATP signal acquired with high SNR at rest, or to assume approximately constant total 31P signal.§ Most internal-reference

methods have used 1H-MRS-measured tissue water as a reference standard, after correcting for sensitivity differences between 31P and 1H chan-

nels.‖ External-reference methods have used standards like phenylphosphonic acid, monopotassium phosphate or hexamethylphosphorous

triamide (tris (dimethylamino)phosphine).68 These have been applied either in the same experiment, or in separate experiments with the same vol-

ume of interest; this necessitates matching coil-loading between muscle and a phantom, an external reference to account for load differences, or

use of a B1 field map. An approach to account for varying coil-loading and receiver gains is to insert a synthetic reference signal via radiation

(‘electronic reference to access in vivo concentrations’, ERETIC69) or inductive coupling.70 Taking full account of the many confounding factors

makes absolute quantitation technically demanding.71 Because T1 and T2 differ between metabolites (see Table 2), all quantification strategies

require correction for saturation effects (unless acquired under fully relaxed conditions) and for T2 (and J modulation of ATP) with echo-based

acquisitions. Saturation correction can be done by taking the flip-angle dependent steady-state longitudinal magnetisation into account, using

Mz(α, TR) / (1 - e-TR/T1) / (1 – cos α � e-TR/T1). While the correction for exponential T2-decay is straightforward (/ e-TE/T2), the signal evolution with

J depends on the pulse sequence and can be more complex than the cosine modulation applicable for a spin-echo sequence.

2.3.4 | Fitting time-series

Several approaches to quantifying mitochondrial oxidative capacity depend on fitting the PCr resonance during recovery from exercise, and thus,

on determining the time or rate constant of PCr resynthesis. Robust fitting necessitates precise determination of the end of exercise, and assign-

ment of spectra to the correct time points in case of time-averaged data. Including differently active muscle groups inside the field-of-view may

lead to mixed, multicomponent recovery curves. Acidosis has a complex retarding effect on PCr recovery, leading to a multi-exponential presenta-

tion if signals from regions of tissue exercised at different extent are mixed. We recommend evaluating pH for all time points in the exercise inter-

val; if the measured pH deviates by an amount greater than about 0.1–0.2 units from baseline (in practice this is impossible to define more

closely), results should be interpreted with caution. In well-localised data, a mono-exponential fit is recommended (see Table 1), although in the

presence of significant pH changes this no longer represents the underlying data well. Some investigators have proposed the use of bi-exponential

or Weibull functions in these instances72,73 to extract the ‘early-recovery’ component, but these methods are not definitive.

2.4 | Recommended combinations of instrumentation and RF pulse sequences

The technical requirements on 31P MRS data follow from the research question or application. Given that, different combinations of MRS meth-

odologies can be recommended, within the constraints imposed by the available instrumentation (field strength, available RF coils) and, to a

lesser extent, pulse sequences. Figure 4 gives an overview of recommended combinations for studies of resting muscle and for dynamic studies.

Different quality in terms of SNR and hence feasible time resolution is to be expected from the different setups. The RF coil and its sensitive

volume, voxel size and position, i.e. relative distance to the coil, have a strong influence on SNR with localising sequences, and some pulse

sequences like classical MRSI with Cartesian read-out or 3D ISIS may not provide the required time resolution for dynamic acquisitions using

standard exercise protocols, although a gated 31P 2D MRSI protocol has been implemented with repeated rapid dynamic contractions.46,74 Fur-

ther influences are TR, TE, readout bandwidth and post-processing steps like the algorithm for combination of signals from different coil chan-

nels. Generally, the larger the signal-contributing volume, the larger is the SNR but besides the introduction of partial volume effects, linewidth

increases. In Figure 4 coil types are separated into surface and volume coils, while array coils can fall into either of these categories. An array

coil can provide the high SNR of surface coils or better, with a big field of view and homogeneous excitation via (static) B1
+ shimming,

depending on the coil design.

2.5 | Typical values of measurements

As a practical guide to help in assessing implementation of experimental protocols, Table 2 gives typical values of some measured and calculated

quantities in human skeletal muscle.

§Any substantial change in total phosphate (or in the sum of the concentrations of the two major components, Pi and PCr, which change in a near-equimolar fashion in opposite directions during

exercise and recovery) suggests signal loss or gain due e.g. to coil movement.

‖This can be thought of as a special case of relative method, with tissue water as the reference ‘metabolite’.
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2.6 | Reporting in publications

When reporting results it is important to consider what information is required for others to understand and follow to replicate the acquisition

and quantification protocol. Not all parameters or equations need to be reported in the main text of every manuscript; referencing or inclusion as

supplementary material is recommended.

Table 3 summarises the essential information that we recommend should be reported, and Table 4 gives the units in which the quantified

metabolic parameters should be reported in publications, to allow straightforward comparison with the published literature.

3 | MR AND NON-MR TECHNIQUES COMPLEMENTARY TO 31P MRS

Several techniques can help 31P MRS demarcate physiology from pathophysiology by providing information about blood flow and oxygen del-

ivery/utilisation. Near-infrared spectroscopy (NIRS) can assess relative concentration changes in oxygenated, deoxygenated and total haem.

Unfortunately, the NIRS signals from (intracellular) myoglobin (Mb) and (intravascular) haemoglobin (Hb) overlap. Conventional analysis attributed

the muscle signal to Hb.75 Recent work combining NIRS with 1H MRS, which can distinguish Mb and Hb signals, has now clarified these contribu-

tions: NIRS mainly reports the oxygenation of Mb.76-78 Combining NIRS and 31P MRS offers an opportunity to better understand adaptation and

capacity in contracting muscle.79

The use of simultaneous measures of electromyography and 31P MRS can be used to identify the mechanisms of muscle fatigue in vivo and

improve interpretation of the metabolic responses to incomplete voluntary activation of skeletal muscle.80

Arterial spin labelling (ASL) MRI assesses blood perfusion81 and blood oxygen level dependent (BOLD) imaging can monitor regional oxygen

changes.82 Interpreting BOLD requires caution, because many confounding factors can affect theT2
* weighted images,83 notably pH change.84 To

reduce potential confounding variables, protocols consisting of brief contractions have been developed.85

F IGURE 4 The figure shows
combinations of RF coil and pulse
sequence which are likely to be useful at
different scanner field strengths
(indicated by colour: see key).
Requirements, and therefore
recommendations, are different for static
(left) and dynamic acquisitions (right).
‘Surface coil’ designates loop coils and coil

arrays that provide some degree of
localisation via their sensitive volume,
while ‘volume coil’ designates birdcage
coils and similar designs that can
encompass e.g. a limb comprising several
muscles or muscle groups. Parentheses
indicate possible, but less favourable,
combinations. The diagram should be read
as follows: Dynamic studies employing
localisation schemes are possible with
sufficient SNR at high and ultra-high
fields, preferably employing surface coils
or arrays; at lower fields, employing a
pulse-acquire scheme providing high SNR
is preferable, relying on a surface coil for
localisation. For studies of resting muscle,
differentiation of individual muscles may
be less critical, allowing for large volumes
to contribute to the signal with large
surface or volume coils, for high SNR,
even at low fields
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TABLE 4 Recommended forms of the quantified metabolic measurements

Measurement Units to be reported

Measured concentrations of Pi, PCr, ATP, Mg2+, PDE, (PME) mM *

Calculated concentration of free ADP † μM

PCr recovery time constant τPCr or halftime t1/2 s

Exchange rate constants k, PCr recovery rate constant kPCr s−1

Initial PCr recovery rate VPCr mM/s

Mitochondrial oxidative capacity Qmax mM/s

Metabolic fluxes mM/s

*Metabolite concentrations in mmol/l cytosolic water are sometimes written as mmol/l or simply mM. Also mmol/kg wet tissue is used in the literature, but

this should be defined if used. We use mM in the sense mmol/l cytosolic water for the flux measurements later in the table. The relation between these

units is described elsewhere.29 To what extent 31P MR-detectable metabolites are straightforwardly free in cytosolic aqueous solution is an empirical

question,138 although for practical purposes is often simply assumed.
†As the calculation is based on a cytosolic equilibrium assumption, it is natural to use cytosolic water as the denominator.

TABLE 3 Minimum requirements for reporting acquisition and data processing parameters

General parameters

Hardware • MR scanner: field strength, gradient strength and slew rate if appropriate.

• RF coil type, size and geometry

• RF coil transmit B1 and estimated sensitive volume (with technique used to measure/simulate B1
+ and determine

excitation flip angle)

• Any additional equipment e.g. ergometer, 2nd RF (Tx/Rx) channel

VOI, positioning and

shim

• If a localisation sequence is used: the position and size of the VOI

• Otherwise: the position of the RF coil in relation to muscle anatomy

• The point spread function (which influences contamination from surrounding tissue, and thus the effective VOI size)

• Method of B0 shimming (including e.g. VOI size)

Acquisition sequence • Type of sequence

• Sequence timings, e.g. TR, TE, TM

• Number of averages, acquisition bandwidth, vector size (and resulting total acquisition duration)

• Shape, duration and effective flip angle of all relevant pulses along with (or allowing for calculation of) the bandwidth as

well as potential chemical shift displacement artefact

Data exclusion criteria e.g. SNR, linewidth or minimum change in metabolite concentration

Data quantification • Processing steps and parameters: zero-filling, truncation, apodisation function

• Type of fitting algorithm/software used, fitted line shape (e.g. Lorentzian or Gaussian)

• Prior knowledge used (if applicable)

• If absolute quantification of metabolite concentrations was performed, what was used as internal/external reference

• Correction for partial saturation (saturation correction factors)

Additional parameters for dynamic examinations

Temporal resolution • Related to acquisition and whether data averaging was used

Exercise task and study

protocol

• Duration of exercise and recovery blocks

• Type and intensity of the exercise

• Additional information about calibration of workload e.g. what percentage of maximum voluntary contraction (MVC)

force or power, also how MVC was determined

• Technique for exercise and acquisition synchronisation

Participant preparation e.g. through detailed description, separate study day visit or a video

Data quantification How was recovery fitted and what model was used to calculate Qmax

Additional parameters for saturation transfer (ST) examinations

ST at rest • Saturation pulse/train length and bandwidth

• Saturation frequency of the saturation and control experiment

• Method used for T1 measurement

ST during exercise • Timing of the acquisition: how soon after exercise onset was the ST acquisition; performed within one or split over

several exercise bouts
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Acquiring simultaneously or interleaved 1H MR and 31P MR signals enables the capture of complementary metabolic information during a

single exercise bout.83 Studies have combined 31P MRS with 1H MR to measure BOLD signals,82,86 perfusion,87-89 Mb and intracellular

O2,
76,87,90 lactate87,91 and most recently carnosine.92 Such interleaved measurements require modification of pulse programs and sometimes

hardware.89,93

Finally, metabolite-specific 31P MRI can localise metabolite signals and pH within a tissue region,47,94 and new ideas such as fingerprinting

and artificial intelligence-based approaches for 31P and metabolite kinetics are being developed, but this topic extends beyond the present scope.

4 | IMPORTANT NON-MR FACTORS IN DYNAMIC MUSCLE 31P MR STUDIES

4.1 | Muscle, muscle size, mode of exercise

The choice of muscle will determine the choice of exercise and vice versa. Different ways to apply exercise load range from simple rubber bands,

through lifting of weights, to highly sophisticated ergometers.95,96 A factor to consider in the interpretation is the size of the recruited muscle

affecting the observed metabolic signals ([CO2], [H
+], lactate, [O2], free radicals) involved in the homeostatic cardiovascular and ventilatory

responses.97 Another is the degree of eccentric vs. isometric/concentric exercise, as their molecular mechanisms differ,98 which results in differ-

ent haemodynamic and metabolic responses.99

Determining contraction intensity is a pre-requisite for in-magnet exercise studies, especially those that relate intensity to changes in PCr or

similar measurements. On-line monitoring of the subject's activity and storage of these motion data is desirable, as it allows monitoring the sub-

ject's compliance to the protocol, ensures correct assignment of exercise and recovery phases, and identifies motion artefacts, all of which helps

to improve data quality. However, accurate load measurement in the MR environment via sensors capturing force and motion is not trivial, and

requires dedicated MR-compatible systems (e.g. optical equipment). The heterogeneity of muscle recruitment needs to be considered in the inter-

pretation of exercise-induced metabolic changes, as it can be highly inhomogeneous, e.g. even among plantar flexors39 and along muscles,40,89 as

recent localised 7 T experiments have shown. The scope for extraneous movements must be minimised. Comfortable yet tight fixation and careful

reproduction of the positioning between subjects in longitudinal studies will contribute to reliability. Exact adherence to exercise timing is crucial

(e.g. a ‘clean’ cessation for measurement of PCr recovery kinetics). Better protocol adherence can be obtained with electrostimulation; however,

temporal and spatial recruitment differ substantially from voluntary contractions and result in different haemodynamics and metabolic perturba-

tions. While motor nerve stimulation can activate all motor units, it can be problematic (activating antagonists, being painful or increasing risk of

injury). In contrast, motor point stimulation activates only a portion of the muscle.

4.2 | PCr recovery kinetics

Mono-exponential PCr recovery12 is less dependent on exact exercise intensity than methods that study the PCr decrease or Pi increase as a

function of load. To measure PCr recovery kinetics, the exercise bouts must be intense enough to induce a substantial (30–40 %) PCr depletion

while pH should not decrease more than 0.1 – ~0.2 units, as this complicates the kinetics and interpretation of PCr recovery (see above).14 To

achieve this, a preliminary incremental/ramp protocol can be used to determine the workload corresponding to the onset of acidosis100; alterna-

tively, each subject's maximum voluntary force may be determined to scale the workload, though this may not be feasible in some patient

populations. Use of relatively brief, maximal voluntary contractions ensures that all motor units are activated while keeping acidosis to a mini-

mum.101 A different approach to measuring PCr recovery kinetics without complicating pH change is to use brief ‘pulses’ of muscle stimulation,

multiply-averaged to improve SNR (usefully, this also allows estimation of ATP usage rate during the stimulation (exercise) period).46 Reproducibil-

ity of PCr recovery kinetics can be optimised with some warm-up exercise.102

It is important that the experimental setup is not allowed to influence muscle blood flow (e.g. hindering it by fixed joint position or

isometric/eccentric load). In the extreme case, stoppage of blood flow by cuff ischaemia will completely stop PCr recovery.103

4.3 | Recommended steps of a dynamic MR examination

For a dynamic MR examination we recommend evaluating the clinical status of the subjects and their ability to undergo the exercise. Next con-

sider the choice of parameters that can be measured using an available ergometer. Finally, adjust the dynamic protocol (i.e. with both concentric

and eccentric phases) to suit the subjects and the available ergometer.

It is desirable that a test–retest should be performed and reported for each specific protocol.95,104
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Reliable examinations depend critically on a reproducible setup, standardised preconditioning of the subject, and control of potential difficul-

ties. Table 5 lists some relevant considerations and potential confounders; these may be unavoidable, but should be documented in ‘Material and

Methods’ or the ‘Discussion’ section.

5 | DATA INTERPRETATION

5.1 | Interpreting resting data

In general the resting values of quantities measured by 31P MRS are set by an interacting combination of mechanisms including the kinetic proper-

ties of transmembrane transport of Pi, creatine, and H+, and the regulation of basal ATP synthesis rate.14,105,106 Any of these might differ between

fibre types, with training state or age, and in disease.

Resting metabolite concentrations differ between myofibre subtypes (more so in rodents than human),29 and so inferences about fibre-type

composition have been made on the basis of resting PCr/Pi and PCr/ATP ratios, albeit with differing findings.107,108

The lower PCr/ATP and PCr/Pi ratios and higher Pi/ATP seen in resting muscles of patients with genetic defects in mitochondrial oxidative

ADP phosphorylation109 can largely be explained in terms of the primary pathology.14 In muscular dystrophies elevated resting intramuscular

pH 110,111 probably relates to membrane leakage and sodium accumulation with associated ‘compensatory’ proton extrusion; in some patients,

multiple Pi resonances suggest pH heterogeneity.49 Increased PDE/ATP ratios in muscular dystrophy,38,111 fibromyalgia109,112 and the elderly113

are thought to reflect elevated membrane turnover and disturbed phospholipid metabolism.114 Free intramuscular Mg2+ concentration is

decreased in Duchenne muscular dystrophy,48 a likely consequence of membrane leakiness.

5.2 | Interpreting PCr kinetics during exercise and recovery: Mitochondrial function

The simplest cases of exercise protocols are ‘pure oxidative’ exercise at constant power, or recovery from such exercise, where the rate constant

of the change in PCr (decrease during exercise, resynthesis during recovery) is proportional to the mitochondrial capacity measured in various

other ways.115-117 This interpretation is complicated when there is pronounced pH change during exercise due to significant non-oxidative glyco-

lytic contribution to ATP synthesis. Kinetics of PCr change during exercise then become an unreliable quantitative guide to mitochondrial function

(although impaired mitochondrial function is likely to lead, other things being equal, to greater changes in PCr during exercise). Furthermore, in

recovery from exercise with a physiologically significant pH decrease (say >0.2), the interactions between pH, ADP and PCr concentrations via

the CK equilibrium result in a relationship between end-exercise pH and PCr recovery kinetics (lower pH, slower recovery), independent of

changes in mitochondrial capacity.118-120 Various ways, with some theoretical support and proven empirical utility, have been devised to correct

for this effect.14 Some of these methods of calculation and interpretation yield estimates of mitochondrial capacity in units of absolute metabolic

flux, but their relationship to measures made by invasive physiological or ex vivo biochemical measurements is not yet completely understood.14

Conducting the exercise so as to minimise muscle acidification allows simply using the rate constant of PCr recovery as a measure of whole-

muscle oxidative capacity, rather than ‘mitochondrial capacity’, per se.121 This is a system property with contributions from a number of factors

TABLE 5 Necessary considerations for experimental design and potential confounders to be documented in publication

Factors to consider in the experimental design

Muscle size and metabolic characteristics

Concentric vs. eccentric workload = different energy demand

Isometric vs. isotonic workload = different energy demand (also prolonged isometric exercise may compromise vascular O2 supply.)

Exercise intensity and exercise timing – Maximum voluntary force

Potential confounders

Muscle(s) recruited during the movement or activated by the stimulated nerve (i.e. proportion of active versus inactive muscle contributing to spectra)

Extraneous movement (adapted positioning/fixation)

Changes in sensitive volume due to motion

Quantification of mechanical work missing or attribution to individual muscles uncertain

Load- and pH-dependent PCr recovery kinetics

Influence of O2 availability on recovery (vascular disease, eccentric workload)

Other biological confounders (e.g. health/disease, diet, medication, regular/exceptional physical activity, training status)
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including the number of mitochondria, the amount and the activity per mitochondrion of respiratory chain components and enzymes of fat and

carbohydrate oxidation, but also the vascular supply of O2, and the diffusion of O2 across the capillary wall and through the myocyte to the mito-

chondria. A slow PCr recovery may reflect impairment of any of these processes.14 Situations in which O2 availability is changed, such as in

peripheral vascular disease,122 reactive hyperaemia,123 experimental hypoxia in untrained subjects,124 and chronic obstructive pulmonary

disease,125 are particularly likely to be confounded. However, in the submaximal exercise typically used in 31P MRS work, one would not

(in normoxia) expect whole-body cardiovascular or respiratory function to affect 31P MRS measures of mitochondrial function, and the relevant

factors are distal to the artery supplying the muscle studied.14

5.3 | Interpreting other features of dynamic 31P MRS studies

The assessment of contractile cost from the initial rate of PCr depletion using exercise is reasonably uncontroversial, providing a reliable measure

of mechanical output is available. This is an interesting and potentially useful physiological property,46 but relatively under-studied.

Changes in pH during exercise and recovery depend on passive buffering processes, the acidifying effect of glycolytic ATP synthesis

(an accompaniment of lactate production) and the pH-restoring effects of processes of acid efflux. Although the principles are reasonably

clear,106 the quantitative details are not necessarily well understood, and physiological validation by other methods is rare. In some cases the

(patho)physiological interpretation is straightforward. For example, if glycogenolysis is absent, as in the metabolic disorder McArdle's disease

(muscle glycogen phosphorylase deficiency), exercise produces a characteristic and quantifiable pattern of 31P MRS abnormalities.126 If more sub-

tle changes in glycogenolysis are of interest, it makes sense to study the muscle in ischaemic exercise, where there is no oxidative contribution to

ATP synthesis.26 Another simple example: when peripheral vascular disease impairs the ability to clear acid from the muscle cell, pH recovery after

exercise is slowed,122 pH and PCr recovery kinetics can be used to estimate absolute rates of post-exercise acid efflux14,21 but this has rarely

been exploited in disease.

In acidifying exercise the presence of different-pH components as ‘splitting’ of the cytosolic Pi resonance may be an index of different

responses by the various myofibre types,127,128 provided localisation is adequate to ensure that the heterogeneity is within a single muscle.44,129

Inference must be very cautious here.

5.4 | Interpreting magnetisation transfer measurements

Pi ! ATP flux measured by MT in resting muscle has been suggested to reflect mainly oxidative ATP synthesis, on the two assumptions that this

is unidirectional (so that exchange flux ≈ net rate of ATP synthesis) and that other contributions (e.g. near-equilibrium exchange via the glycolytic

enzymes GAPDH and PGK) are relatively small.130 However, observed rates of Pi ! ATP flux are much larger than known rates of oxidative ATP

synthesis in resting muscle, so one or both assumptions must be wrong.58 Recent measurements of Pi ! ATP flux during steady-state exercise in

human muscle show that this discrepancy is approximately independent of ATP turnover.54 Despite these physiological uncertainties, which argue

against any simple conceptual relationship between the two quantities, resting Pi ! ATP flux was previously proposed to be an indirect measure

of mitochondrial capacity. It is unsurprising that some studies show no empirical relationship between them. More puzzlingly, some studies do

show some interesting correlations between resting Pi ! ATP flux and measures of resting ATP turnover and mitochondrial capacity131; the phys-

iological basis of these remains unexplained.54

6 | CONCLUSIONS

Skeletal muscle 31P MR spectroscopy can provide insights, not otherwise available non-invasively, into the regulation and pathophysiology of

what may be summarised as cellular energy metabolism or ‘bioenergetics’: the production and use of ATP. Most common is the use of voluntary

exercise or electrical stimulation as a dynamic probe to assess the metabolic response to increased workload. The post-exercise kinetics of PCr

resynthesis offer the most straightforward way of quantifying the rate and capacity of mitochondrial ATP synthesis, best considered as a system

function of the organ and its blood supply. Changes in cytosolic pH reflect the balance of anaerobic glycolytic ATP synthesis and the processes of

acid efflux. The use of 31P MRS in resting muscle can profit from increased SNR due to longer acquisition times, which allows relatively easy appli-

cation of localisation schemes. This has been exploited particularly for studying various diseases. Combining 31P MRS with other methods can add

valuable complementary information on O2 delivery, amongst other things.

The recommendations given here, of which the most important ones are listed inTable 6, are intended to guide those who have experience in

general MRS to the special application of 31P MRS in skeletal muscle, covering the practicalities of acquisition and exercise as well as the physio-

logical interpretation of the measurements.
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TABLE 6 Summary of main recommendations. This table is intended to guide scientists experienced in MRS to the specific application of 31P
MRS in skeletal muscle. It deals with the most important, or least obvious, aspects of data acquisition and post-processing, and gives practical
advice on equipment setup, preparation of subjects and performance of exercise. For details, further recommendations and aspects of
physiological interpretation, see main text of the indicated sections

Problem/field Recommendation Refer to

Choice of sequence,

parameters and

instrumentation

• The scientific question determines the metabolites of interest, minimum required SNR,

volume of interest, and time resolution (in dynamic studies); tailor technique accordingly,

considering parameter space and boundary conditions.

• Prioritise: optimise important measurements, avoid unnecessary ones (e.g. [ATP] when the

focus is on kinetics).

Section 2,

esp. 2.2, 2.4

SNR and temporal resolution • Use appropriate combination of coil, field strength, sequence and parameters, e.g.

measurement volume, TR, flip angle.

Section 2.2,

Figure 4

Use of NOE • Perform calibration measurements per metabolite in vivo. Section 2.2

Partial volume effects • Localise by sufficiently small surface coil (correct placement, superficial muscles),

single-voxel or MRSI.

• Make realistic estimates of sensitive volume.

• Consider which muscles are exercising or affected by disease.

Section 2.2

MRSI acquisition • Use minimum matrix size for acceptable resolution, spatial response function, partial volume

effects, SNR/measurement time.

Section 2.2.2

Magnetisation transfer • Ensure adequate saturation, sufficient TR, high-quality T1 measurements.

• Account for off-resonance effects, competing exchange reactions and metabolite pools.

Section 2.2.3

Acquisition of PCr recovery

data

• Ensure sufficient PCr depletion (depending on time-series SNR) and time resolution (≤ 10 s).

• If using first-order model to quantify mitochondrial function (τPCr, halftime or rate constant)

keep exercise pH change small (≲ 0.2 units).

Section 4,

esp. 4.1

Quantification of spectra • Quantify spectra as area of peak (fit in time- or frequency-domain or integrate peaks).

• Correct for saturation.

• Use ATP from high-SNR (resting) spectra as internal reference.

• Detect and fit split resonances (Pi) and multiplets (ATP) for accurate pH quantification and

fit fidelity.

Sections 2.2.1,

2.3.3, Table 2

Quantifying recovery kinetics • Correctly define end-exercise time point and timing of averaged blocks.

• If exercise pH change ≳ 0.2 units, take account by appropriate model/calculation (e.g. Qmax).

Section 2.3.4

Exercise design • Consider prescription and monitoring of exercise type, timing and force.

• Standardise preconditioning and feedback to subject during exercise.

Section 4,

esp. 4.3,

Table 5

Confounders for exercise

protocols

• Document confounders, e.g. heterogeneity of recruitment, extraneous movement, pH drop,

limited O2 supply.

Section 4,

esp. 4.3,

Table 5

Restricted blood supply,

oxygenation effects

• Choice of exercise regime e.g. dynamic rather than isometric.

• Consider concurrent measurement of haemodynamic parameters with complementary

methods, e.g. NIRS, (interleaved) 1H MR quantifying perfusion, dMb, T2
* contrast; caveat:

BOLD and pH-driven effects.

Section 3

Reporting in studies • Report all acquisition parameters and results (also of relevant intermediate steps) necessary

to understand and replicate the acquisition and quantification protocol; include coil type

and size, flip angle, TR, exercise type and duration.

Section 4,

esp. 4.1,

Table 3
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