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PREFACE 

This thesis is the result of my own work and includes nothing which is the outcome of work done in 

collaboration except as declared in the Preface and specified in the text. It is not substantially the 

same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or 

other qualification at the University of Cambridge or any other University or similar institution except 

as declared in the Preface and specified in the text. I further state that no substantial part of my thesis 

has already been submitted, or, is being concurrently submitted for any such degree, diploma or other 

qualification at the University of Cambridge or any other University or similar institution except as 

declared in the Preface and specified in the text. It does not exceed the prescribed word limit for the 

relevant Degree Committee. 

This thesis consists of seven chapters structured around two main research projects. The first project, 

which is described in Chapter 2, characterised the metabolic changes associated with long-term 

weight gain and identified small molecules that are likely candidates that could mediate the 

association between weight gain and the risk of incident type 2 diabetes. The second project, which is 

described in Chapters 3-6, phenotypically characterised variation at genes known to cause rare 

(Mendelian) metabolic disorders, also known as ‘Inborn Errors of Metabolism’, or IEMs.  

The work described in this thesis is my own and was carried out independently unless otherwise 

stated. I used results from the largest existing genetic association study (GWAS) of untargeted 

metabolites to identify and prioritise ‘IEM gene-linked loci’ and the collaborative nature of large-scale 

GWAS meant that several elements of my work had to be conducted in close collaboration with others 

(see details below). Also, for the first project, collaborators at Metabolon Inc. (Morrisville, North 

Carolina, USA) performed the structural characterisation of a metabolite with hitherto unknown 

identity, X-12063. This was found to be strongly associated with weight gain in my work (Chapter 2, 

Section 2.4.3.5.) and the collaboration was initiated by myself. For this work, Dr. Maik Pietzner helped 

to estimate associations of candidate mediators I had identified with 27 incident diseases in the EPIC-

Norfolk cohort, as well as the contributions of genetic and non-genetic factors to the variance in 

candidate mediator levels (Chapter 2, Section 2.4.3.3.). I have written up and submitted Chapter 2 for 

publication. During the process, I have received comments from all co-authors and these have been 

incorporated into a revised chapter version.  

As mentioned above, all later chapters built on results from the Metabolon mGWAS consortium, for 

which primary GWAS analyses had been performed by Drs. Isobel Stewart (MRC Epidemiology Unit) 

and Praveen Surendran (Cardiovascular Epidemiology Unit, University of Cambridge) (Chapter 3, 
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Section 3.4.3.1.-3.4.3.7.). As a member of the central analytical team and writing group, I 

independently prioritised metabolite-associated variants at IEM genes and systematically 

characterised their metabolic and phenotypic effects. This large-scale effort included several other 

collaborators from the University of Cambridge in the UK, the Helmholtz Zentrum Munich (Germany), 

Dr. Karsten Suhre, a professor of physiology and biophysics at Weill Cornell Medicine-Qatar (Qatar), 

and Dr. Eric Fauman, an employee of Pfizer Inc. (USA). Dr. Eric Fauman performed likely causal gene 

annotation (Chapter 3, Section 3.4.3.8.), provided an independent assessment of my mapping of 

metabolites to those known to be affected (or closely related) in the corresponding IEMs (Chapter 3, 

Section 3.4.3.10.) and helped to identify additional variants for phenotypic characterisation, as listed 

in Appendix Ch5_ST2. 

During my PhD, I have made substantial contributions to other collaborative research projects not 

included in this thesis, including scientific papers that are under review or published, as summarised 

in the Publications and Presentations section. 

Victoria Au Yeung 

January 2021



4 
 

ABSTRACT 
Common ‘Inborn Errors’ of Metabolism in the General Population, by Victoria Pui Wa Au Yeung 

Inborn errors of metabolism (IEMs) are a group of disorders characterised by the toxic accumulation 

or deficiency of circulating molecules (‘metabolites’) caused by rare genetic mutations. Previous 

studies have identified select examples where common variants at genes known to cause rare 

Mendelian diseases, including IEMs (e.g. LPL, DBH, PPM1K), are linked to phenotypic consequences in 

the general population that also occur in patients with the corresponding rare disease. Advances in 

genetic and metabolic profiling at an epidemiological scale now provide an opportunity to 

systematically identify such examples in the population and characterise their downstream effects on 

health. 

To assess the value of untargeted metabolomic profiling for the study of common complex diseases, I 

identified candidate mediators of the association between weight gain and future type 2 diabetes risk 

based on untargeted, large-scale metabolomic profiling of a large prospective cohort. Integration of 

metabolomics, genetic profiling and comprehensive longitudinal follow up for a range of diseases 

together with the application of Bayesian and genetic epidemiological methods enabled the 

identification of 20 candidate mediators. These reflected genetic susceptibility to adiposity and insulin 

resistance and explained most of the increased T2D risk associated with weight gain. 

To systematically characterise the phenotypic effects of variation at IEM-causing genes, I identified 

sentinel variants at these genes associated with plasma metabolites affected in the corresponding IEM 

across the genome. Of the 202 ‘IEM familiar’ variants (IFVs) detected, 187 at 89 loci were not 

previously reported as pathogenic for the corresponding IEM in ClinVar and 51 of these were 

associated with extreme metabolite levels (<2.5th or >97.5th percentile) or had non-additive effects on 

metabolite levels. Phenome-wide assessment identified 1,553 IFV-phenotype associations at 108 loci. 

Of the detected associations, 703 at 54 loci were of particular interest as the phenotype related to a 

symptom of the corresponding IEM. At 24 of these 54 loci, genetic colocalisation detected shared 

genetic signals for IEM-related metabolites and phenotypes. For example, in line with norepinephrine 

deficiency causing dizziness on standing in severe cases of rare orthostatic hypotension (OMIM 

#223360), I identified a genetic signal at the dopamine beta hydroxylase (DBH) locus associated with 

decreased levels of the downstream catecholamine vanillylmandelate in the general population (IFV 

EAF=0.074). This signal was shared with that for lower risk of hypertension (based on 462,933 

participants in UK Biobank) and other blood pressure-related phenotypes with high posterior 

probability of colocalisation (PPcolocalisation=0.94, with >99% of the probability explained by the IFV). 

This work uses untargeted metabolomic profiling to identify underlying disease mechanisms and 

demonstrate the proof-of-principle that common variants can have similar health consequences to 

those caused by rare mutations at the same IEM gene.
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CHAPTER 1: OPPORTUNITIES TO STUDY COMPLEX DISEASE 

AETIOLOGY USING UNTARGETED METABOLOMIC PROFILING IN 

POPULATION COHORTS 

1.1 Introduction to the Metabolome 

1.1.1. The Metabolome in Health and Disease 

The human metabolome is the complete collection of small molecules, or ‘metabolites’, present within 

blood, saliva, urine or other fluid or tissue samples. Metabolites within the metabolome represent the 

downstream products of genes as well as substrates from the environment and thus represent a 

readout of the joint influences of genes as well as modifiable and non-modifiable factors. In human 

blood serum, as many as 25,424 metabolites have been detected, or are expected based on known 

gene functions and environmental sources1. 

The responsiveness of metabolites to genetic and non-genetic influences makes them useful as clinical 

markers for the diagnosis, prediction and prognosis of disease. For example, glucose is used as a 

source of energy by the human body and is an obligate fuel for the central nervous system1. Glucose 

is derived mainly from dietary intake of carbohydrates2, but under low blood glucose conditions can 

also be synthesised by the genetically-regulated breakdown of glycogen3 or of non-carbohydrate 

precursors such as lactate, amino acids and glycerol4. These different methods of acquiring glucose 

demonstrate independent effects of genetics and dietary behaviours as well as potential interactions 

that in combination result in the regulation of glucose synthesis and catabolism. Glucose is also an 

example of a metabolite that is an established clinical marker of disease, in this case, type 2 diabetes. 

Thus, glucose and other metabolites provide the opportunity to study ‘intermediate’ molecules that 

link genes and health-related behaviours to disease. 

1.1.2. Measurement of the Metabolome 

Metabolites are small molecules that are processed or produced during a metabolic reaction. Often, 

these metabolic reactions do not act in isolation, but instead take the products from an upstream 

reaction and convert them into other metabolites that are then used as substrates for another 

reaction. Metabolic reactions string together in this way to form metabolic pathways, and products 

from one pathway may be used as substrates for other metabolic pathways. For example, the 

molecule glucose is converted in one reaction into glucose-6-phosphate, which is then fed into 

another reaction to produce fructose-6-phosphate2. These reactions represent the start of the 

glycolysis pathway that cleaves glucose (a six -carbon molecule) into pyruvate (a three-carbon 

molecule) (Figure 1). Pyruvate is then fed into the tricarboxylic acid cycle with the aim of producing 

ATP to meet cellular energy requirements3 (Figure 1).  
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Metabolites can be measured in all biofluids, though saliva, blood, or urine are the most frequently 

measured. These media are easy to collect (as they are already sampled in clinical procedures) and 

cheap to sample compared to other bodily fluids such as cerebrospinal fluid. The blood metabolome, 

which forms the primary route of the circulatory system that connects organs and tissues, has the 

additional advantage of providing a comprehensive summary of the metabolic status of an individual.  

Figure 1: Overview of glycolysis and the tricarboxylic acid cycle. Production of ADP, ATP and cofactors 
including NADH and FADH are also shown. This figure was taken from a previous publication4. 
Abbreviations: Glucose-6-P, glucose 6-phosphate; Fructose-6-P, fructose 6-phosphate; Fructose -1,6-
bis-P, fructose 1,6-bisphosphate; Dihydroxyacetone-P, dihydroxyacetone phosphate; Glyceraldehyde-
3-P, glyceraldehyde 3-phosphate; 1,3-Bis-P-glycerate, 1,3-bisphosphoglycerate; 3-P-Glycerate, 3-
phosphoglycerate; 2-P-Glycerate, 2-phosphoglycerate; OXPHOS, oxidative phosphorylation.  

The large number of metabolites present in any given sample poses a challenge for measurement due 

to the widely differing chemical properties of metabolites (e.g. by polarity, molecular mass, or 

solubility). This hinders the development of biochemical assays to measure metabolites 

comprehensively and consistently across samples. Early studies thus aimed to measure defined sets 

of metabolites with known biological functions, such as amino acids or lipids. These ‘targeted’ profiling 
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approaches enabled characterisation of the measured metabolites but neglected the potential 

biological relevance of other unmeasured metabolites and of between-metabolite correlations.  

In recent years, high-throughput technologies leveraging the distinct chemical properties of 

metabolites have been developed to detect and identify as many metabolites within a sample as 

possible. In the field of biomedical research, gas or liquid phase chromatography coupled with mass 

spectrometry (GC-/LC-MS) is widely used for untargeted metabolomic profiling5. This method first 

separates molecules based on their solubility in a liquid or gas solvent called ‘chromatography’6. 

Separation alone is insufficient when there are thousands of molecules in a sample, as molecules may 

have the same molecular weight by chance. Therefore, after initial separation by chromatography, 

mass spectrometry separates molecules further based on their mass and charge. First, molecules are 

fragmented into positively-charged ions by an ioniser and then propelled towards a negatively-

charged plate at a speed that is proportional to the size of the ion7. Ions are detected as they pass 

through the detector, and the resulting spectrum can be analysed to identify composite molecules in 

a sample7. Other methods also exist to measure metabolite levels, though these are less relevant to 

the current thesis and are reviewed more comprehensively elsewhere8.  

Untargeted metabolomic profiling technologies have drastically improved metabolomic measurement 

compared to previous targeted approaches, with state-of-the-art techniques detecting over 1,000 

metabolites in a single sample of blood plasma9. Though this is still far from a comprehensive 

measurement of the metabolome, these technologies enable the consistent detection of metabolites 

across samples, the assessment of between-metabolite correlations, and the implementation of 

untargeted metabolomic profiling in population-based studies to identify distinct metabolic pathways 

that contribute to complex disease. 

1.2. Genetic Regulation of Metabolites 

1.2.1. Genetic Regulation of Metabolite Levels in Rare Disease Patients 

Much of the early understanding surrounding the genetic regulation of metabolite levels stems from 

patients with inborn errors of metabolism (IEMs) caused by rare mutations at a single gene resulting 

in the toxic accumulation or deficiency of metabolite levels that have severe phenotypic 

consequences10. The distinct and extreme metabolic and clinical consequences of IEMs have enabled 

their characterisation. This established IEM knowledge, combined with the burden imposed by IEMs 

on healthcare, enabled the development of newborn screening programmes to identify affected 

newborns and prevent disease onset11,12. One example of a gene known to cause an IEM is the 

phenylalanine hydroxylase (PAH) gene. PAH converts the amino acid phenylalanine into tyrosine13, 

and mutations in this gene can cause a loss of function protein, which leads to a toxic build-up of 
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phenylalanine. If untreated, this can lead to an IEM called phenylketonuria, which is characterised by 

intellectual disability, microcephaly and epilepsy14. Due to this inability to catabolise phenylalanine, 

individuals who are carriers of genetic risk variants for phenylketonuria are advised to avoid 

phenylalanine-rich foods such as milk, eggs, nuts and meat15.  

In recent years, rapid advances in genotyping and metabolomic profiling technologies have enabled 

the study of how genetic variation regulates metabolism in health and disease in population-based 

studies. These genome-wide associations studies (GWASs) of the metabolome16–21 have identified 

associations between more common variation at IEM genes, including variants at the PAH gene19–22, 

with metabolite levels known to be affected in the corresponding IEM. These findings suggest that 

more common variation at IEM genes may influence metabolite levels and have clinical consequences 

in the general population, though no systematic effort to date has been made to phenotypically 

characterise variants at IEM genes. 

1.2.2. Genetic Architecture of Metabolite Levels in Population-based Studies 

GWASs provide a robust and systematic method to characterise the genetic architecture underlying 

complex traits and diseases. In recent years, GWAS methodology, i.e. association analysis of genetic 

variants across the genome that are detected using genotyping arrays23, has been used to study the 

genetic architecture influencing the human metabolome. As of January 2021, a total of 56 

metabolome GWASs (mGWASs) had been published. A review of these studies is summarised here, 

and a comprehensive list of the mGWASs performed is available in previous publications and 

summaries24,25. 

Metabolome GWASs have provided novel insights into the regulation of metabolite levels by variation 

at IEM genes. Early studies, which performed targeted metabolomic profiling of amino acid and lipid 

species in cohorts with sample sizes of up to 5,000 participants, detected associations of variants at 

IEM genes known to affect amino acid and lipid metabolism, such as LIPC16, ACADS26, ACADM26, TAT27, 

and PPM1K26,27. These findings provided early evidence that common variants at IEM genes may 

influence levels of metabolites known to be affected in the corresponding IEMs. Furthermore, 

identification of these associations in cohorts of relatively modest sample size indicated that these 

variants could have large effect sizes on metabolite levels. 

While several mGWASs have specifically measured targeted sets of amino acids and lipids25, 16 have 

also successfully performed untargeted metabolomic profiling19,20,35–40,22,28–34. To date, untargeted 

metabolomic profiling methods have enabled the measurement of up to 644 unique metabolites20. In 

addition, increasing sample sizes, either from increased recruitment efforts or meta-analyses across 

cohorts or metabolomics measurement platforms, have enabled assessment of up to 80,000 
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participants21,41. Comprehensive measurement of the metabolome coupled with larger samples sizes 

have identified additional associations for variants at IEM genes and provided an opportunity to 

comprehensively assess the influence of variation at IEM genes on metabolic loci. In one study, 26 of 

84 novel mQTLs were in the vicinity of an IEM gene, suggesting that the pool of genes influencing 

metabolite levels is enriched for those known to cause IEMs19. Whole genome and exome sequencing 

studies have also identified low-frequency and rare variants at IEM genes20,22 that were associated 

with altered metabolite levels up to four standard deviations from the population mean. 

Other study designs have shed insight into the effects of genetic variation on metabolite levels in the 

general population. For example, studies performed in twins-based cohorts showed that a large 

proportion of detected metabolites are heritable, though this varies by metabolite class18,20,27. GWAS 

analyses typically assume that genotypes have linear, dose-responsive effects on metabolite levels, 

though it has also been shown that some variants at IEM genes, such as the ACADS variant rs3916 and 

the CPS1 variant rs715, display non-additive effects on metabolite levels that are also affected in the 

corresponding IEM21.  

GWASs of the metabolome have been conducted primarily in blood plasma samples, though emerging 

studies performed on urine and saliva samples have replicated many of the associations identified in 

blood17,37,42 and identified biofluid-specific associations. These findings show that while blood is useful 

as a broad representative of metabolic processes, other biofluids may prove useful for research 

questions targeted at specific organ systems (e.g. the urinary metabolome, which is more reflective 

of kidney function43). 

Variant-metabolite trait associations in GWASs often form clusters where genetic variants in high 

linkage disequilibrium (LD) are associated with metabolites that are functionally related, or which lie 

along the same metabolic pathway44. These clusters (‘genetically influenced metabotypes’; GIMs) 

have three properties24 in common: 1) the variance explained by common genetic variants is large, 

and variants often have large effect sizes; 2) GIMs can often be linked to an enzyme, transporter or 

metabolic regulator that is encoded at the genetic locus while the associated metabolites represent 

substrates or products of the encoded protein, and 3) GIMs are enriched for GWAS associations with 

clinical endpoints. These observations have been made in several metabolome GWASs16,17,19 and 

further highlight the potential clinical relevance of genetic influences on metabolite levels. 

While metabolome GWASs conducted to date provide much insight into the role of variation at IEM 

genes in influencing metabolite levels, a comprehensive identification of metabolite-associated 

variants at IEM genes has not been performed. In this thesis, I describe the results of a collaborative 

mGWAS effort performed in up to 20,000 participants with untargeted metabolomic profiling of 913 
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metabolites spanning eight metabolite classes, including structurally unidentified metabolites. This 

effort, which exceeds previous mGWASs in combining high metabolite coverage with large sample 

size, enables replication of previously reported variant-metabolite associations at IEM genes whilst 

providing an opportunity to identify additional, novel ones.  

1.2.3. Metabolic Effects of Variation at IEM Genes May Translate into Health-related Effects 

in the General Population 

GWASs of complex diseases and traits have identified specific instances where common variants in 

genes known to cause IEMs plausibly affect complex diseases and outcomes through smaller effects 

in the same metabolic pathway. For example, rare variants in the genes APOB, LDLR and LPL, which 

are involved in lipid metabolism, cholesterol biosynthesis and transport, can cause familial 

hypercholesterolemia, which is characterised by high circulating levels of cholesterol and other 

lipids45–47. GWAS studies have shown that common variants in these genes also lead to an increased 

risk of coronary artery disease, likely through milder effects on lipid metabolism48. The prevalence of 

variants at these genes, cost-effectiveness of genetic screening, and ability to treat have led NICE49 to 

propose familial cascade screening50 programmes to identify high-risk individuals for early prevention 

and management of these clinical outcomes. 

GWASs of the metabolome have also identified additional common variants at IEM genes that are 

associated with the same metabolites and phenotypes as those known to be affected in the 

corresponding IEM. One example of an IEM gene for which common variants are associated with a 

complex, polygenic trait is the PPM1K gene. This gene encodes a serine/threonine phosphatase that 

activates the breakdown of the branched-chain amino acids (BCAAs) leucine, valine and isoleucine51. 

Rare variants in PPM1K are known to cause reduced activity or loss of function in the enzyme, resulting 

in elevated circulating concentrations of BCAAs, psychomotor retardation and metabolic 

decompensation51. By comparison, common variants near the PPM1K gene have been shown to 

induce mildly elevated levels of BCAAs (compared to what is seen for the IEM) that lead to an increased 

risk of insulin resistance and type 2 diabetes52.  

Another example is the IEM gene GATM that regulates creatine biosynthesis53. Rare variants in GATM 

cause Fanconi renotubular syndrome I, a disease that is characterised by increased levels of creatine, 

reduced levels of guanidinoacetate, renal tubular acidosis and osteomalacia54. Common variants in 

GATM have also been associated with reduced levels of guanidinoacetate, glomerular filtration rate 

and an increased risk of chronic kidney disease55,56. Thus, common variants in GATM may exert weaker 

effects on guanidinoacetate and creatine levels that impair renal function and metabolic health 

similarly to what is seen for rare patients with Fanconi renotubular syndrome I. 
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The above examples suggest that the metabolic effects of common variation across IEM genes may 

translate into health-related effects in the general population, though this has not been assessed 

systematically. Phenotypic characterisation of metabolite-associated variants at IEM genes may be 

conducted using different approaches, as described in the next section. 

1.3. The Phenome 

1.3.1. Genetic Architecture of Complex Traits and Diseases 

While IEMs are caused by single or few mutations of large effect size at one gene, common diseases 

are driven by variants across multiple genes with small to moderate effect sizes57,58. Whether the 

majority of contributing variants are common (minor allele frequency (MAF)>0.05; the ‘Common 

Disease, Common Variant’ (CDCV) hypothesis)59 or rare (MAF≤0.05; the ‘Common Disease, Rare 

Variant’ (CDRV) hypothesis60,61) is an ongoing subject of debate, with both hypotheses being 

supported by evidence from GWASs62,63 and genetic linkage studies64–66, respectively. 

To date, GWASs provide a systematic and robust method for identifying genetic associations with 

disease. Despite this, an important caveat is that GWASs are more powered to identify common 

variant associations (due in part to their heavy multiple testing burden) and are therefore more likely 

to support the hypothesis that common diseases are driven by common variants. Whole genome and 

exome sequencing technologies, which are now being applied in population-based cohorts such as the 

UK Biobank67, may identify additional rare variant associations in complex disease. Although early 

studies using these resources have found a limited number of rare variant effects68,69, these 

technologies and methods will help to quantify the role of rare variation in complex disease in the 

future. 

1.3.2. Approaches to Map Rare Disease Symptoms to Phenotypically Similar Common 

Diseases That Could Share the Same Aetiological Origins 

A critical element of this thesis is the phenotypic characterisation of metabolite-associated variants at 

IEM genes. Although systematic phenotypic characterisation has not been performed to date, studies 

of rare and common diseases have shown that i) genetic loci associated with common diseases are 

significantly enriched for genes known to cause rare, Mendelian disorders70,71, and ii) rare and 

common diseases associated with the same locus are significantly more likely to be phenotypically 

similar than not71. These findings suggest that variation at the same gene can contribute to a 

phenotype with varying degrees of severity. 

One way of achieving systematic phenotypic characterisation is to conduct a phenome-wide 

association study (‘PheWAS’). PheWAS can be performed within a single study, as demonstrated 
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previously72, though such an approach would require comprehensive measurement of multiple 

phenotypes and disease outcomes. Another simpler and faster method of performing phenome-wide 

assessment is to leverage results from GWASs conducted across thousands of complex phenotypes, 

as reported in databases of GWAS summary statistics62,63,73,74. Assessing the most powered GWASs for 

each phenotype maximises the power to detect known and novel phenotypic associations at a given 

genetic locus. 

While phenome-wide assessment enables untargeted and comprehensive identification of phenotypic 

associations, it may also suffer from the detection of spurious associations. Specifically, ever-

increasing sample sizes used in GWASs may also increase the likelihood of observing a significant 

variant association at a given significance threshold by chance. This could in turn lead to the detection 

of coincidental, shared associations of metabolites and phenotypes with the same genetic variant. To 

address this potential limitation, associated phenotypes could be selected using the well-documented 

clinical presentations of IEMs. This targeted approach is supported by previous studies70,71 and enables 

the prioritisation of phenotypes that are likely to be driven by metabolite levels for downstream 

analyses. 

The availability of standardised disease diagnoses and translation mappings across disease code 

systems (such as the Human Phenotype Ontology (HPO)75 and International Classification of Disease 

Codes (ICD)76) enables an alternative approach to map rare disease symptoms to common diseases. 

In brief, phenotypes used to describe a rare disease are summarised into a single score known as a 

‘phenotype risk score’ (PheRS)77. This approach has been used to identify the effects of rare variants 

at genes known to cause rare, Mendelian disorders on clinical endpoints in a hospital-based cohort77 

and is a strategy that I also explore in this thesis. 

1.4. Challenges and Opportunities of Assessing the Effects of Changing Metabolite Levels on 

Complex Disease 

In previous sections, I discussed how metabolites can be clinical biomarkers of prediction, diagnosis 

or prognosis of disease. Metabolomic profiling technologies have already provided opportunities to 

study the metabolome within large population-based cohorts. Challenges remain regarding the 

assessment of directions of association and causal effects, though these may be addressed by recently 

available datasets as well as methodological advances. 

One challenge is that metabolite levels are regulated by genetic and environmental influences as well 

as other modifiable and non-modifiable risk factors. For example, high-calorie diets and sedentary 

lifestyles can lead to excess adiposity and to type 2 diabetes78,79. Environmental influences may also 

interact with genetic influences to modify disease risk. For example, genetic variation can alter where 
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fat is stored in the body (for example, under the skin, around the waist area or around the 

gluteofemoral area)80–82, the resulting differences of which have been shown to modulate the risk of 

type 2 diabetes83. The large number of potentially contributing factors makes it difficult to distinguish 

cause from effect in observational and prospective cohort studies, even when using statistical 

methods and adjusting for potential confounders. This challenge can now be addressed with the 

integration of genetics data with metabolomics and phenotypic data within the context of a single 

study, as genetics-based approaches have been shown to effectively assess directions of association 

as well as causal effects84. 

The importance of integrating genetic, metabolomic and phenotypic data is further emphasised when 

considering the strong correlations between genetic variation and metabolite levels. For example, 

mGWASs have shown that genetic loci may be specifically associated with one metabolite (e.g. UMPS 

locus with orotate levels18) or be highly pleiotropic (e.g. the FADS1 locus, which has been associated 

with metabolite levels spanning diverse pathways of lipid metabolism16). The non-specificity displayed 

by loci such as the FADS1 locus may hinder the mapping of metabolic changes, as well as downstream 

phenotypic consequences, to variant and gene function. Furthermore, metabolite levels are highly 

inter-correlated due to their connection via metabolic reactions and pathways, which limits the 

identification of representative metabolic pathways linking risk factors to disease. Yet these 

challenges can be countered with the systematic identification of genetic variants that independently 

co-regulate sets of correlated metabolites44 as well as novel statistical methods that account for 

between-metabolite correlations85,86. Finally, the established metabolic and clinical sequelae of IEMs 

may help to map genetic variation to metabolic and phenotypic consequences with a high degree of 

confidence. 

1.5. Thesis Overview 

In this Chapter, I have summarised the opportunities presented by comprehensive metabolomic 

profiling in large-scale population-based cohorts or studies. Advances in untargeted metabolomic 

profiling technologies have enabled the successful characterisation of genetic associations across 

thousands of complex phenotypes as well as metabolic changes associated with disease. The research 

performed in this thesis aimed to link genetic, environmental, modifiable and non-modifiable risk 

factors to metabolic mechanisms contributing to complex disease.  

In Chapter 2, I aimed to identify metabolic pathways linking weight gain to the development of type 

2 diabetes. In this study, I combined genetic, metabolomic and phenotypic data with Bayesian 

statistical methods in a population cohort and case-cohort settings to establish directions of 

association and account for between-metabolite correlations. This integrative study design also 
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enabled the assessment of genetic and environmental influences on levels of identified metabolic 

mediators of the association between weight gain and type 2 diabetes. 

In subsequent chapters, I tested the hypothesis that variation at IEM genes have metabolic and health 

consequences mimicking those observed for rare mutations at the same genes (Figure 2). 

Understanding of the metabolic and phenotypic consequences of variation at genes known to cause 

IEMs is unknown and therefore requires detailed systematic characterisation. Therefore, this study is 

divided across several chapters.  

 

 

 

 

 

 

Figure 2: Summary of Garrod’s hypothesis2. Rare, IEM-causing variants have large metabolic effects 
that cause the IEM, yet the clinical consequences of identified variation at IEM genes in metabolome 
GWAS studies remain unknown. This hypothesis is tested in this thesis. 

In Chapter 3, I aimed to systematically identify and quantify the extent to which variation at IEM genes 

affect metabolite levels. For this study, I used the largest known mGWAS to date, which measured 913 

metabolites spanning eight metabolite classes and structurally unidentified metabolites in up to 

20,000 participants. Here, I used comprehensive causal gene annotation of metabolic loci and 

integrated IEM knowledge to systematically quantify the contribution of variation at IEM genes to 

metabolite levels. I also prioritised variants at these genes that were associated with metabolite levels 

known to be affected in the corresponding IEMs for in-depth metabolic and phenotypic 

characterisation. 

Rare mutations are known to cause IEMs through extreme effects on metabolite levels. To test 

whether some of the variants prioritised in Chapter 3 had large metabolic effects that could translate 

into observable phenotypes, I characterised them in terms of a) the proportions of variance on IEM-

related metabolite levels explained, b) variant function, as predicted by the Ensembl Variant Effect 

Predictor (VEP)87 annotation tool, c) effects on “extreme” metabolite levels (defined by reference 

guidelines88–90 as the top or bottom 2.5th percentiles of the metabolite distribution), and d) non-

additive effects on metabolite levels. These analyses, which were performed in Chapter 4, characterise 
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the metabolic effects of prioritised variants according to characteristics that have previously been 

observed for rare mutations known to cause IEMs.  

In Chapter 5, I further hypothesised that in-depth phenotypic assessment of the prioritised variants 

from Chapter 3 could detect associated health effects in the general population. To test this, I 

performed a phenome-wide assessment using publicly available GWAS summary statistics to 

phenotypically characterise prioritised variants. Though this approach maximised the power to detect 

phenotypic associations, assessment of GWAS results across thousands of phenotypes could increase 

the likelihood of detecting a false positive association. To increase the specificity of the analysis, I 

prioritised phenotypes that were phenotypically similar to symptoms of the IEM that was implicated 

by the variant and its linked gene. The use of GWAS summary statistics for phenome-wide assessment 

also neglects the possibility that secondary causal signals could exist within the genetic region and 

drive phenotype associations independently of metabolic associations. Therefore, I used statistical 

colocalisation methods to test for shared genetic signals between IEM-related metabolic and 

phenotypic traits at genetic regions. 

Rare disease symptoms can also be mapped to complex diseases using standardised disease codes 

and summarised in a score77. In Chapter 6, I therefore applied this approach in a population-based 

cohort setting and estimated the associations of prioritised variants from Chapter 3 with the odds of 

having a high score for the corresponding IEM. To assess the role of IEM-related metabolite levels in 

significant variant-score associations, I also estimated the association between genetically-predicted 

levels of IEM-related metabolites with the corresponding scores. 

Finally, in Chapter 7 I discuss the strengths and limitations of the approaches I use in this thesis and 

discuss how my findings could translate into future clinical applications. 
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CHAPTER 2: IDENTIFICATION OF WEIGHT GAIN-ASSOCIATED 

METABOLIC PATHWAYS AND THEIR CUMULATIVE EFFECT ON 

INCIDENT TYPE 2 DIABETES RISK 

2.1. Abstract 

Background Weight gain and obesity lead to systemic metabolic changes that drive the global 

epidemic of type 2 diabetes (T2D). Here, I applied Bayesian methods to comprehensive profiling of the 

molecular blood signature of weight gain to systematically identify pathways that link weight gain to 

T2D development.  

Methods I assessed 697 metabolites commonly-detected in baseline samples (1993-97) of a) 

randomly selected subcohort participants (n=11,972, 54% women) and b) a non-overlapping T2D case-

cohort (n=1,503, 45% cases, 51% women) nested within the EPIC-Norfolk study. Bayesian variable 

selection identified independent candidate mediators significantly associated with weight gain before 

baseline and incident T2D. Prentice-weighted Cox regression was used to estimate the attenuation of 

candidate mediators to the weight gain-T2D association. I identified pathways indicated by candidate 

mediators using a data-driven metabolic network and test for genetic differences in adiposity-related 

traits to assess their functional role in T2D. 

Results Average annual weight increased by 0.34 kg/year (standard deviation 0.27kg/year)between 

age 20 and baseline (mean age 60 years), with 93% subcohort participants gaining weight over time. 

Plasma levels of 529 metabolites (76%) were significantly associated with weight change. The 

strongest association was for an unknown molecule, X-12063 (beta±S.E.=0.37±0.01, p<1x10-300), which 

we structurally identified as a steroid and named ‘metabolonic lactone sulfate’. Of the 131 metabolites 

also significantly associated with incident diabetes, 20 were selected as candidate mediators (Bayes 

Factor>10) covering diverse biochemical pathways. Candidates reflected genetic susceptibility to 

adiposity and insulin resistance and individually accounted for little, but cumulatively for most of the 

increased risk of T2D associated with weight gain (T2D Hazard Ratio (95% CI) per 1-SD weight gain 2.79 

(2.29;3.40) before versus 1.42 (1.13;1.79) after accounting for metabolite levels).  

Conclusion Comprehensive untargeted metabolomic profiling identifies metabolic perturbations that 

may translate weight gain to T2D risk, including pathways affected by genetic susceptibility to 

adiposity and insulin resistance. 
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2.2. Introduction 

Type 2 diabetes (T2D) is most commonly caused by weight gain and obesity and represents one of the 

largest health challenges globally91. Although over 90% of individuals with T2D are overweight or 

obese92, the mechanisms through which weight gain and obesity lead to T2D are incompletely 

understood.  

Recent advances in high-throughput profiling have enabled in-depth characterisation of the broad 

metabolic signature of obesity on small molecules circulating in human plasma, highlighting potential 

roles of lipids, aromatic and branched-chain amino acids9,93–97. Although these and other obesity-

related metabolites have been related to T2D in independent studies98–106, until now the systematic 

identification of metabolic pathways that are perturbed by weight gain and obesity and affect 

development of T2D has been difficult. This is because comprehensive untargeted profiling had not 

been performed at scale in prospective studies that assessed weight gain and were of sufficient size 

and duration to follow up for future T2D. Opportunities have arisen through the coming together of 

developments in a) high-throughput untargeted metabolomic technologies, b) statistical methods 

that account for metabolite correlation structures86, c) the implementation/application of data-driven 

methods for pathway prioritisation85, and d) genetic approaches to infer directions of effect and 

influence of T2D endophenotypes on identified molecular traits or signatures. 

Here, I used untargeted profiling of the circulating plasma metabolome to identify pathways that link 

weight gain to future development of T2D. The context of a large-scale prospective population-based 

cohort enables assessment of specificity by integrating data on 27 incident diseases and to evaluate 

the role of genetic susceptibility to T2D endophenotypes on prioritised metabolic pathways. 

2.3. Aim and Objectives 

The aim of this study was to characterise the metabolic pathways mediating the association between 

weight gain and T2D. This aim was achieved through the following objectives: 

1. To systematically characterise the metabolic profile of weight gain and of T2D; 

2. To identify candidate mediators of the association between weight gain and T2D, and 

3. To perform an in silico functional characterisation of candidate mediators. 

2.4. Methods 

2.4.1. Study design and participants 

The European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk study is a prospective 

cohort study of 25,639 individuals aged 40-79 years at baseline and recruited from 35 general 
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practitioner practices across Norfolk in 1993-1997107. The study was approved by the Norfolk Research 

Ethics Committee (ref. 98CN01) and all participants gave signed informed consent.  

The current study was designed to include two non-overlapping sets of EPIC-Norfolk participants: a) a 

subcohort of 11,972 participants drawn from EPIC-Norfolk participants with stored blood plasma 

sample who were not part of the T2D case-cohort study described below, and b) a T2D case-cohort 

nested within the EPIC-Norfolk cohort study, as previously been described in detail107. In brief, it 

includes 1,503 individuals (45% cases) ascertained using self-report, linkage to primary and secondary 

care, drug register, hospital admission, and mortality data108.  

2.4.2. Measurements 

Weight at age 20 years (‘initial weight’) was based on self-reports at baseline. Height and weight were 

measured at baseline according to a standard protocol107. Weight change was calculated as the 

average annual difference between measured weight at recruitment (40-79 years of age) and self-

reported weight at age 20 years and is referred to as weight gain for simplicity (see Results). 

I selected non-fasted baseline plasma samples of 11,966 individuals (54% women) with a mean age of 

60 years (SD: 6 years) for untargeted metabolomic measurement in a quasi-random design distributed 

across two equally sized measurement batches and of 1,503 participants from the T2D case-cohort 

(see Appendix Supplementary Information). Samples were selected and shipped for untargeted 

metabolite profiling using the Metabolon Inc. (Morrisville, North Carolina, USA) DiscoveryHD4TM liquid 

chromatography tandem mass spectrometry (LC-MS/MS) platform, which measured up to 1,504 

metabolites across 8 distinct metabolite classes in three batches. Of these, 697 metabolites that were 

commonly-detected (defined as being present in >85% of participants) were log-transformed, 

winsorised to five SDs to minimise the effect of outliers, and standardised (mean 0, SD 1) for analysis.  

EPIC-Norfolk participants were genotyped using the Affymetrix UK Biobank AxiomTM Array 

(ThermoFisher Scientific, Waltham, MA) and imputed to the Haplotype reference consortium v1.1109, 

the 1000 Genomes project Phase 3110 and UK10K111 reference panels.  

2.4.3. Statistical analysis 

2.4.3.1. Exclusions 

I included up to 10,666 and 1,344 (44% cases) participants of the subcohort and T2D case-cohort who 

had information on metabolite and covariate measurements, respectively (Figure 1). 
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Figure 1: Study design. The number of individuals and commonly-detected metabolites present in 
each of the study cohorts, as well as analyses performed, are shown. 

2.4.3.2. Association analysis of metabolites with weight gain and with T2D 

To estimate the associations of weight gain (exposure) with plasma level of each metabolite (outcome) 

in subcohort participants, I used linear regression models adjusted for age, sex and weight at age 20 

years. I used a linear regression model with the same covariates to estimate the association of baseline 

body mass index (BMI) with each metabolite and calculated the correlation between the estimated 

effect sizes. 

In the non-overlapping EPIC-Norfolk T2D case-cohort, the association of metabolite levels (exposure) 

with incident T2D (outcome) was estimated using Cox regression models with age as the underlying 

scale and adjusting for sex, weight gain and initial weight.  
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I accounted for multiple testing by controlling the false discovery rate (FDR) at 5% using the Benjamini-

Hochberg method112. 

2.4.3.3. Identification and assessment of candidate mediators 

To identify a minimal set of informative metabolites out of 131 associated with weight gain, I used a 

Bayesian variable selection (BVS) procedure that combines multivariable logistic regression with a 

Prentice-weighted Cox regression86 in the T2D case-cohort. The method does not allow for missing 

data and we therefore imputed missing values by replacement with a random number between zero 

and the lowest-measured intensity of the metabolite (zero-to-minimum value imputation). Imputed 

metabolite levels were then log-transformed, winsorised and standardised. 

Multivariable logistic regression was performed using the R package R2BGLiMS v0.1-08-11-201986 with 

incident T2D as the outcome, adjusted for mean-centered age, sex, height, weight gain and initial 

weight. Metabolites with a Bayes Factor (BF) above a strong threshold of ten were defined as 

candidate mediators. Robustness to metabolite selection through BVS was tested by assessing 

metabolite sets that were prioritised using different methods: a) prioritisation using a nominal 

significance threshold with T2D, b) removing one metabolite from pairs of highly-correlated (R2>0.8) 

metabolites, and c) using BMI- and T2D-associated metabolites. 

Prentice-weighted Cox models were used to assess the separate and cumulative attenuation of BVS-

selected candidate mediators on the weight gain-T2D association, with age as the underlying time 

scale and adjusting for sex, height, and weight at age 20 years. Metabolites were sequentially entered 

into the model in order of highest to lowest BF to assess the effect of individual and cumulative 

adjustment for these candidate mediators. Analyses were repeated separately in men (n=648, 53% 

cases) and women (n=695, 35% cases) to assess potential sex differences. To assess whether candidate 

mediators were most effective at attenuating the weight gain-T2D association, I compared the 

obtained HR from this model with the mean HR across 10,000 equivalent models adjusting for 22 

randomly selected metabolites that were significantly associated with weight gain and with incident 

T2D risk. Comparison was performed using a one-sample t-test.  

2.4.3.4. Characterisation of candidate mediators 

To investigate the specificity of candidate mediators and X-12063 for T2D, metabolite associations 

with the risk of 26 incident diseases (in addition to T2D) and all-cause mortality (defined in the 

Appendix Supplementary Information) were estimated using Cox regression models with age as the 

underlying time scale adjusting for sex in the EPIC-Norfolk subcohort. Significance in these analyses 

were assessed using a Bonferroni-corrected threshold adjusting for 21 assessed metabolites 
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(p<2.4x10-3) to minimise the chance of false negatives as we were interested in any possible overlap. 

The proportion of variance explained for each metabolite by 49 prevalent diseases, anthropometric, 

lifestyle or biomarker measurements was also calculated using data from EPIC-Norfolk subcohort, as 

previously described113.  

2.4.3.5. Genetic risk score association analyses 

I constructed genetic risk scores (GRS) from genetic variants (or their proxies R2>0.8) known to be 

associated with T2D endophenotypes or risk factors, including insulin resistance (adjusted and 

unadjusted for BMI)114, BMI115, waist-to-hip ratio116, body fat percentage117, liver fat118, waist and hip 

circumference81 for 8,787 unrelated participants with available genotype data. Of the 2,323 variants 

considered across eight scores, one was not captured and no proxy (R2≥0.8) could be identified. Linear 

regression models were used to estimate the association with plasma levels of candidate mediators 

as well as X-12063 adjusted for age, sex and the first four principal components (Bonferroni p=2.4x10-

3). The zero-to-minimum value imputed dataset used to identify candidate mediators was also used 

for this analysis. 

2.4.3.6. Structural and functional assessment of X-12063 

To achieve full structural characterisation of this unknown compound, X-12063 was isolated from 40 

litres of human plasma. Approximately 25-50 µg of purified compound was obtained and analysed by 

LC-MS/MS and nuclear magnetic resonance spectroscopy (NMR) to generate a candidate structure. A 

synthetic route was devised to produce enough of the candidate compound (211-023) for full analysis 

by LC-MS/MS and NMR. Detailed description of the extraction, purification, analysis and structural 

elucidation of X-12063 are available on request. To gain additional structural insights, we further 

assessed the correlations of X-12063 with other compounds that shared associations with genetic 

regions encoding metabolic enzymes19,20 and on location in data-driven metabolic networks29. These 

methods were performed by Metabolon Inc. (Morrisville, North Carolina, USA). 

Results from published GWAS studies of the metabolome were used to identify the metabolic 

reactions that X-12063 was involved in19,20. Metabolites sharing variant associations with X-12063 in 

these studies were also tested for correlation with X-12063.  

2.4.3.7. Gaussian graphical model (GGM) construction 

To calculate a data-driven network, I used the R package mice version 3.6.0 to impute missing values 

for 697 metabolites present in the random subcohort with the multiple imputation by chained 

equations method119 to preserve cross-metabolite dependencies. Mean partial correlations were 

calculated across each of 20 imputed datasets using the R package GeneNet v1.2.14120–122, 
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transformed using Fisher’s z transformation using the R package psych v1.9.12.31123, pooled using 

Rubin’s rules124, meta-analysed using the R package meta v4.12-0125 and then back-transformed. P-

values were calculated using the Fisher’s z transformed partial correlations. We declared significant 

edges connecting metabolites as those passing a stringent Bonferroni-corrected p-value (p≤2.1x10-7) 

and having an absolute partial correlation >0.1. We visualised the network using Cytoscape v3.6.1126. 

We computed node degree and node centrality using the R package igraph (v1.2.6)127 and compared 

these metrics between candidate mediators and other metabolites in the network using a Kruskal-

Wallis test.  

All statistical analyses and graphics were performed and produced using R version 3.5.3.128 and STATA 

version 14.2129. 

2.5. Results 

2.5.1. Metabolites Associated With Weight Gain 

A total of 9,899 subcohort participants (93%) gained weight over time (mean annual change ± 

SD=0.34±0.27 kg/ year). Weight change was similar in the cohort portion of the T2D case-cohort 

(0.34±0.28 kg/year, p=0.59) (Figure 2), but higher in incident cases, i.e. individuals who later 

developed T2D (0.53±0.35 kg/year, p=3x10-33).  

Of 697 metabolites commonly-detected in the subcohort, plasma levels of 529 metabolites across all 

eight biochemical classes were significantly associated with weight gain, including 306 positive and 

223 inverse associations (Figure 3). The strongest association with weight gain by far was identified 

for a hitherto unknown metabolite X-12063 (beta±SE=0.37±0.01, p<1x10-300). Associations observed 

between weight gain and metabolites were strongly correlated with those observed for baseline BMI 

(Appendix Ch2_Fig1), indicating that attained BMI strongly reflects weight gain (R2=0.99, p<2.2x10-16). 
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Figure 2: Distributions of weight change (kg per year) across the subcohort, T2D case-cohort 
controls, and cases. Sex-combined and sex-stratified distributions of weight change are also shown 
by cohort. 

2.5.2. Discovery of Metabolites Associated With T2D 

A total of 188 metabolites were associated with incident T2D (FDR<0.05) (Figure 3); of these, mannose 

(HR (95% CI)= 3.21 (2.57;4.01), p<1x10-300) and (random) glucose (HR (95% CI)= 2.37 (1.93;2.91), 

p=2.2x10-16) were most strongly-associated. Of the 188 metabolites, 131 had concordant directions of 

association between weight gain and T2D and were assessed as potential mediators (Figure 3). 
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Figure 3: Metabolite associations with weight gain and with T2D (FDR<0.05). Large points in the 
upper right and lower left quadrants represent metabolites associated with both measures that have 
concordant directions of effect while smaller points represent those associated with only one 
measure. 

2.5.3. Candidate Mediators Strongly Attenuated the Association of Weight Gain With Incident 

T2D 

Of 131 considered metabolites, 20 were prioritised as candidate mediators of weight gain and T2D 

(BF≥10) (Table 1). These originate from diverse pathways including carbohydrate metabolism 

(mannose, erythronate* and lactate), proteinogenic amino acids (glutamate, histidine), N-acetylated 

amino acids (N-acetylglycine, N-acetylaspartate, N-acetylmethionine, N-trimethyl-5-aminovalerate), 

vitamin C catabolism (threonate), (lyso)phospholipid metabolism (2-linoleoyl-GPC (18:2)*, 1-

palmitoyl-2-linoleoyl-GPE (16:0/18:2)), triglyceride degradation (1-palmitoylglycerol (16:0)), fatty acid 
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metabolism (2-hydroxystearate, 2-hydroxypalmitate), steroid metabolism (pregn steroid 

monosulfate*) and purine metabolism (xanthine), as well as one unknown compound, X-21258, with 

less obvious references to biological pathways. Results were robust to changes in metabolite sets 

(Appendix Ch2_ST1). 

Weight gain was associated with an increased risk of T2D over the follow up time (Hazard Ratio (HR) 

95% Confidence Interval (95% CI) per SD weight change/year 2.79 (2.29;3.40), p=1.7x10-24). 

Individually, 20 candidate mediators accounted for little (Appendix Ch2_Fig2), but cumulatively for 

most of this increased risk (HR (95% CI) 1.42 (1.13;1.79), p=2.5x10-3 after adjustment for the strongest 

18 metabolites) (Figure 4). The cumulative attenuated HR was significantly lower than the mean HR 

obtained across 10,000 models adjusting for randomly selected sets of 20 T2D- and weight gain-

associated metabolites (mean HR (95% CI) 2.06 (2.056;2.063), p≤2.2x10-16). In women, the association 

between weight gain and T2D was not significant after accounting for all candidate mediators (HR 

(95% CI) 2.41 (1.89;3.07), p=1.2x10-12 before versus 1.28 (0.96;1.69), p=0.09 after adjustment). In men, 

corresponding associations were 3.57 (2.78;4.57), p=1x10-23 before versus 1.60 (1.15;2.23), p=5.5x10-

3) after adjustment for all candidate mediators (Appendix Ch2_Fig3). Similar results were obtained for 

BMI instead of weight gain (Appendix Ch2_ST1d; Ch2_Fig4-5). 
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Table 1: Summary of candidate mediators. *metabolite assignment was made with high confidence 
but is not definite. 

Metabolite Pathway Class Bayes Factor 

Mannose 
Fructose, Mannose and 
Galactose Metabolism 

Carbohydrate Inf 

N-acetylglycine 
Glycine, Serine and 

Threonine Metabolism 
Amino Acid 43536 

1-palmitoylglycerol (16:0) Monoacylglycerol Lipid 8842 

2-hydroxystearate 
Fatty Acid, 

Monohydroxy 
Lipid 1239 

Glutamate Glutamate Metabolism Amino Acid 675 

N-acetylaspartate (NAA) 
Alanine and Aspartate 

Metabolism 
Amino Acid 106 

N-delta-acetylornithine 
Urea cycle; Arginine 

and Proline 
Metabolism 

Amino Acid 68 

X - 21258 Unknown Unknown 66 

N-acetylmethionine 
Methionine, Cysteine, 

SAM and Taurine 
Metabolism 

Amino Acid 54 

Lactate 
Glycolysis, 

Gluconeogenesis, and 
Pyruvate Metabolism 

Carbohydrate 37 

Pregn steroid monosulfate* Steroid Lipid 36 

Pyroglutamine* Glutamate Metabolism Amino Acid 26 

Erythronate* 
Aminosugar 
Metabolism 

Carbohydrate 21 

1-palmitoyl-2-linoleoyl-GPE 
(16:0/18:2) 

Phospholipid 
Metabolism 

Lipid 16 

Threonate 
Ascorbate and Aldarate 

Metabolism 
Cofactors and 

Vitamins 
15 

2-linoleoyl-GPC (18:2)* Lysolipid Lipid 15 

Xanthine 
Purine Metabolism, 

(Hypo)Xanthine/Inosine 
containing 

Nucleotide 15 

2-hydroxypalmitate 
Fatty Acid, 

Monohydroxy 
Lipid 13 

N-trimethyl 5-aminovalerate Lysine Metabolism Amino Acid 11 

Histidine Histidine Metabolism Amino Acid 10 
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Figure 4: Sex-combined, cumulative metabolite adjustment of a Prentice-weighted Cox regression 
model of the effects of weight gain on T2D risk. 

2.5.4. Genetic and Other Non-modifiable and Modifiable Factors Influenced Metabolite Levels 

Genetic susceptibility to T2D endophenotypes and risk factors had strong influences on metabolite 

levels. For example, GRSs for BMI and insulin resistance were strongly associated with seven candidate 

mediators, including inverse associations with amino acids such as N-acetylglycine and a positive 

association with mannose (Figure 5; Appendix Ch2_Fig6). Plasma levels of X-12063 were significantly 

higher in individuals with increased genetic risk for higher BMI, WHR and insulin resistance (Figure 5). 
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Plasma levels of glutamate were also positively associated with increased genetic risk for higher waist 

and hip circumference (Appendix Ch2_Fig6). 

I found that biomarkers of lipid metabolism, liver and renal function explained a significant proportion 

of the variance in metabolite levels (p-values≤2.4x10-3) (Figure 6). Many of these pointed to a role for 

specific lifestyle behaviours. For example, 58.7% of threonate was explained by plasma vitamin C 

levels, highlighting the strong influence of modifiable behaviours. Notably, apart from mannose, 

plasma levels of none of the candidate mediators were considerably explained by markers of glucose 

metabolism, highlighting the diverse and complementary nature of the identified pathways. 

 

Figure 5: Associations of genetic scores for BMI, waist-to-hip ratio (adjusted for BMI) and insulin 
resistance (adjusted and unadjusted for BMI) with candidate mediators. X-12063 is included as a 
metabolite of interest. Significant associations (p≤2.4x10-3) are filled in while non-significant 
associations are empty. 
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Figure 6: Proportion of variance in metabolite levels explained by 49 biomarkers, anthropometric 
measures and prevalent diseases. The number at the end of each row represents the maximum 
proportion of variance explained for any of the assessed metabolites, with the sign indicating direction 
of effect. X-12063 is included as a metabolite of interest. CHD=coronary heart disease; PAD=peripheral 
artery disease; COPD=chronic obstructive pulmonary disorder; TG=triglycerides; 
SBP/DBP=systolic/diastolic blood pressure; ALT=alanine aminotransferase; AST=aspartate 
aminotransferase; GGT=gamma-glutamyltransferase; AP=alkaline phosphatase; CRP=C-reactive 
protein; WBC=white blood cell count; HGB=haemoglobin; PLT=platelets. 

2.5.5. Candidate Mediators Reflected Specific and Non-specific Pathways in T2D and 

Cardiometabolic Disease 

Considering 26 incident diseases in addition to T2D and all-cause mortality, higher levels of candidate 

mediators were significantly associated with an average of 5.1 diseases (range: 0-10 diseases) 

(p≤2.4x10-3) (Figure 7). I found plasma levels of 2-hydroxystearate, lactate, X-21258, and xanthine to 

be most specific for T2D, whereas other candidate mediators, and X-12063, were associated with 

several other cardiometabolic outcomes such as liver disease, heart failure and coronary heart disease 
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(Figure 7). Threonate was the most pleiotropic candidate mediator and was inversely associated with 

the risk of ten diseases. 

Figure 7: Significant associations of candidate mediators and X-12063 with 27 incident diseases and 
all-cause mortality in 11,966 EPIC-Norfolk cohort participants (p≤2.4x10-3). The y-axis represents the 
number of diseases associated with each metabolite. Directions of effect are indicated by the sign in 
each box. 

2.5.6. X-12063 Represented Steroid Modification and Clearance Pathways in Cardiometabolic 

Disease 

The top weight gain-associated metabolite, X-12063, was also associated with T2D (HR (95% CI)=1.38 

(1.16-1.65), p=3.4x10-4), renal disease (beta±SE=0.12±0.036, p<8.2x10-4), coronary heart disease 

(beta±SE=0.097±0.024, p<4x10-5), peripheral artery disease (beta±SE=0.13±0.034, p<1.4x10-4), asthma 

(beta±SE=0.14±0.045, p<1.3x10-3) and endometrial cancer (beta±SE=0.49±0.13, p<2.3x10-3) (Figure 8).  

To identify the molecular identity of X-12063, structural profiling was performed in collaboration with 

Metabolon Inc. Analysis of the accurate mass data showed that X-12063 had a molecular formula of 

C22H36O6S, with a negative ion accurate mass of 427.2161 m/z ± 5ppm and a characteristic neutral loss 

of a sulfate moiety, but little other structural information that allowed a match to a known compound. 

The low signal intensity of this sulfated compound in healthy individuals indicated that X-12063 was 

normally present at very low levels in plasma. Though the stereochemistry of endogenous X-12063 
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(Figure 8) could not be synthesised, a similar compound differing by one stereoisomer was produced 

to permit confirmation of proposed candidate structure. Given its structural identity, X-12063 was 

named as ‘metabolonic lactone sulfate’, and is hereafter referred to as such. 

 

 

 

 

 

Figure 8: Structure of compound 233-023, which differs from the structure of X-12063 by only one 
stereoisomer. 

I obtained support for this structural profiling from genome-wide metabolomic profiling association 

studies19,20. In these studies, genetic variants near genes known to be involved in sulfation or 

glucuronidation of steroid and bile acid species (SLCO1B1, CYP3A5, CYP3A7) were associated with 

plasma levels of metabolonic lactone sulfate. Accordingly, the highest correlation coefficients of 

metabolonic lactone sulfate were seen for steroid products of these genes (Appendix Ch2_ST2)29.  

2.5.7. Metabolic Network Visualisation Highlighted Dietary Origins of Candidate Mediators 

With Unidentified Chemical Identity 

I created a data-driven metabolic network including 684 metabolites connected by 1,769 edges 

(Appendix Ch2_Fig7). Candidate mediators were distributed widely across the network and did not 

represent hotspots within the network as neither node degrees (p=0.44) nor centrality measures 

(p=0.54) differed from the distribution across all metabolites in the network. The network helped to 

narrow down potential pathways that candidate metabolites may represent. For example, X-21258 

belonged to a cluster of metabolites including 4-allylphenol sulfate, of likely exogenous origin. 

Metabolonic lactone sulfate also clustered with steroid metabolites such as glycocholenate sulfate* 

and 16α-hydroxy DHEA 3-sulfate (Appendix Ch2_Fig7), corroborating its structural elucidation. 

2.6. Discussion 

2.6.1. Summary of Findings 

Here I presented a systematic investigation into pathways that could potentially mediate the effects 

of weight gain on incident T2D risk. Integration of genetic, metabolomic and incident disease data 

within the context of a single large and prospectively designed cohort is a clear strength of this work, 

together with the opportunity to test specificity of associations across 27 incident diseases. Using BVS, 
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I prioritised 20 “independent” candidate mediators that cumulatively accounted for most of the 

increased T2D risk associated with weight gain. I distinguished associations that are specific for T2D 

from those that show associations with other diseases and may be responsible for the broader 

detrimental health effects of weight gain that lead to obesity-associated multimorbidity. Candidate 

mediators were significantly more effective at attenuating the association between weight gain and 

incident T2D risk than randomly selected sets of metabolites but did not represent connection hubs 

in the metabolic network. I thus propose that identified candidate mediators represent specific yet 

diverse metabolic pathways that best capture the underlying pathology of T2D risk induced by weight 

gain. 

2.6.2. Novelty of Findings 

By integrating multiple layers of data, I identified pathways and certain domains of health at the 

intersection between weight gain and T2D onset. Amongst the 20 candidate mediators highlighted, I 

identified some that were well known (such as mannose, N-acetylglycine and glutamate95,101,130), but 

also others that were novel and some of which were specifically associated with incident T2D.  

Candidate mediators represented metabolic pathways reflecting the diverse mechanisms underlying 

the effects of weight gain on T2D pathogenesis. Increased plasma levels of N-acetylated amino acids 

emerged as a hallmark of multiple cardiometabolic outcomes, and I identified N-acetylmethionine to 

exhibit an unexpected pattern, being inversely associated with T2D but positively with cardiovascular 

outcomes such as coronary heart disease. While the latter association may well relate to the 

accumulation of small molecules with impaired kidney function, the relation of N-acetylmethionine 

with T2D might be of hepatic origin, where it can be used as an alternative methyl donor for the 

generation of gluthathione. This action mimics the clinical application of N-acetylmethionine during 

liver toxicity caused by poisoning with acetaminophen or bromobenzene131,132 and is in line with the 

inverse association seen with incident liver disease. Few metabolites or pathways they represent were 

specific for T2D with one of the exceptions being 2-hydroxystearate, which has been suggested as a 

proxy for de novo lipogenesis133. 

Several candidate mediators, such as N-acetylaspartate, N-delta-acetylornithine and erythronate, 

have been associated with glomerular filtration rate and kidney disease in other studies134,135 and thus 

represent markers of kidney function. These associations are corroborated by the findings, which 

showed that variance in levels of these metabolites is explained in part by prevalent kidney disease, 

glomerular filtration rate and urate, another molecular marker of kidney function. Previous studies 

have suggested that elevated erythronate levels may be driven by the breakdown of glycated proteins 

or by vitamin C intake134,135, though vitamin C did not explain a significant proportion of variance in 
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erythronate levels in the current study. All three metabolites associated with kidney function were 

associated with cardiometabolic outcomes in this study, supporting previous findings that declining 

kidney function could be an early marker of cardiometabolic disease136,137. 

Strong genetic and other non-modifiable and modifiable determinants of candidate mediators were 

also identified. These determinants explained a large proportion of variance in candidate mediator 

levels and provided insight into directions of effect and potential strategies for behavioural and 

pharmacological interventions targeting these pathways. Specifically, several candidate mediators 

could be attributed to health-related behaviours that have been associated with incident T2D, 

including proxies for fruit consumption such as vitamin C intake138 and vegetable and fibre intake139,140. 

Inclusion of dietary behaviours in lifestyle guidelines and T2D prevention programmes remains under 

discussion141. This evidence reinforces the narrative that while some metabolic pathways (e.g. amino 

acid metabolism, bile acid metabolism) are in part regulated by genetic variation, many of the effects 

of weight gain on T2D are still modifiable through changes in lifestyle and behaviour. 

Shifts in the microbial composition of the gut microbiome in response to weight gain are also well-

documented142; accordingly, I detected candidate mediators that may represent such changes in 

circulation. For instance, the metabolite N-trimethyl 5-aminovalerate represents the obligate 

synthesis of trimethylated amino acids by the gut microbiota143. Elevated levels of N-trimethyl 5-

aminovalerate have been associated with increased risk of liver steatosis143 and with other incident 

diseases in this study. N-acetylglycine, which is a known candidate mediator, has also been associated 

with fibre intake and is produced by gut microbiota144.  

In this study, a repeatedly observed but hitherto unknown metabolic surrogate of adiposity, namely, 

metabolonic lactone sulfate, was structurally identified. Steroid metabolites are synthesised from 

cholesterol by multiple enzymes, including those encoded by genes linked to this metabolite in 

previous GWASs19,20. The effect of overall adiposity on metabolonic lactone sulfate levels may also be 

explained by steroid sulfatase and oestrogen sulfotransferase, which have been shown to affect 

adipocyte turnover and regulate energy and glucose homeostasis145,146. Although metabolonic lactone 

sulfate was not selected as a candidate mediator, it may well relate to other T2D-associated 

comorbidities including kidney disease and endometrial cancer. The identification of metabolonic 

lactone sulfate as a sulfated steroid derivative reiterates previous research highlighting shifts in 

steroid and closely related bile acid metabolism as a hallmark of obesity-induced deteriorations of 

metabolism with systemic consequences for multiple endocrine signalling systems. The identification 

of pregn steroid monosulfate* as a candidate mediator also supports the role of steroid sulfation and 

bile acid signalling in T2D pathogenesis, as reviewed elsewhere145–147. 
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2.6.3. Study Strengths and Limitations 

Untargeted metabolomic profiling in a large population cohort setting enabled the systematic 

characterisation of shared metabolomic changes between weight gain and T2D. Bayesian feature 

selection methods robustly accounted for between-metabolite correlations, identifying a set of 

candidate mediators that best explained the effects of weight gain on incident T2D risk. These 

methods, coupled with the prospective nature of the population cohort study design, provide 

preliminary insight into causal directions of effect that should be validated with formal statistical 

frameworks such as mediation analysis148 and Mendelian randomisation149. Additional 

incorporation of multiple layers of data enabled the comprehensive study of complex genetic and 

lifestyle behaviours that candidate mediators likely represent. 

This study had some limitations. Weight gain was calculated based on self-reported data before 

baseline, which might be affected by reporting bias. However, associations of weight gain on 

metabolites were highly-correlated with those observed cross-sectionally for measured BMI, 

suggesting that the effect of current BMI on metabolites likely captures previous weight trajectories. 

In this study, I showed that the 20 candidate mediators identified explained more of the association 

between weight gain and incident T2D risk than randomly selected “control” sets of metabolites. 

Nevertheless, a residual “unexplained” association remained. This may be due to several reasons. One 

possible reason is the presence of measurement and quantification errors during metabolomic 

profiling. Such errors could occur from differences in chemical properties between metabolites, 

despite the adaptability of LC-MS technologies to measure different classes of metabolites at scale. 

Furthermore, weight at age 20 years was self-reported and not explicitly measured. Although the 

calculated measure of average annual weight change replicated several metabolite associations for 

BMI and weight change9,96,97, potential reporting bias may also account for the residual association. 

Another possible reason is that non-fasted plasma samples were not immediately analysed on 

collection but instead stored at -175oC until shipping for analysis, when they were then temporarily 

stored at -70oC (Appendix Supplementary Information). Storage at this low temperature would 

reduce, but not eliminate, the degradation of specific metabolites in the sample150. Another potential 

factor is that blood represents systemic changes in metabolism and not tissue-specific effects151,152. 

2.6.4. Conclusions 

By integrating comprehensive metabolomic profiling with data-driven Bayesian methods I identified 

metabolic perturbations that link weight gain and T2D risk and have not previously been described. 

Identified mediators were driven by genetic susceptibility to endophenotypes known to cause T2D, 
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such as adiposity and insulin resistance, as well as modifiable risk factors, opening direct opportunities 

for prevention.
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CHAPTER 3: SYSTEMATIC IDENTIFICATION OF THE METABOLIC 

EFFECTS OF VARIANTS AT IEM GENES 

3.1. Abstract 

Background Previous metabolome GWASs have identified examples of variants at IEM genes that 

influence metabolite levels in the general population. Systematic metabolomic characterisation of 

these variants will enable causal assessment of their effects on metabolic pathways and clinical 

outcomes in the general population. 

Methods A metabolome GWAS was conducted in the EPIC-Norfolk and INTERVAL prospective cohorts 

for 17 million genotyped and imputed variants and 913 metabolites detected in plasma (discovery: 

14,296 participants; validation: 5,698 participants). Metabolic loci were defined and conditionally 

independent signals were identified. To test for enrichment of metabolic loci for IEM genes, metabolic 

loci were assigned to genes based on the biochemical literature, physical proximity (±5kb) and varying 

locus intervals and tested for enrichment for IEM genes (as identified by the database Orphanet) using 

a binomial two-tailed test. Conditionally independent variants at metabolic loci linked to IEM genes 

were prioritised if they were associated with a metabolite affected in IEM pathology or a related one 

(as identified by the databases IEMBase or OMIM).  

Results Metabolic loci demonstrated significant and robust enrichment for IEM genes (fold-change 

enrichment: 8.44, binomial p=3.98x10-61). I identified 241 variants at 108 loci that were linked to likely 

causal IEM genes annotated by the biochemical literature and/or physical proximity (±5kb), of 791 

conditionally independent variants at 320 loci. Of the 241 variants, 202 at 90 loci were associated with 

a metabolite implicated in IEM aetiology or a related one. Absolute per allele effect sizes and minor 

allele frequencies for the 187 variants not reported pathogenic for the IEM ranged from 0.063-2.75 

per 1-SD metabolite difference and 0.0009-0.495. 

Conclusions Untargeted metabolomic profiling identified variants at IEM genes that cause differences 

in plasma metabolites in the general population with effects that are specific to metabolites affected 

in the corresponding IEMs. 
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3.2. Background 

The clinical importance of studying disease mechanisms is well illustrated using IEMs. IEMs, such as 

phenylketonuria and maple syrup urine disease, are caused by rare and heritable genetic mutations 

that lead to the toxic accumulation of molecules along a single metabolic pathway10. IEMs are 

individually rare but collectively common; although the prevalence of a given IEM ranges from one in 

2,500 to one in 100,000, as many as one in every 784 newborns are affected by an IEM153,154. The 

molecular mechanisms of IEMs are well understood due to their extreme metabolic and phenotypic 

consequences. This enables the development of cost-effective prevention screening programmes for 

select IEMs in newborns155, with opportunities of expansion to cover additional IEMs under constant 

review11,156. 

Evidence based on rare disease patients suggests that more common variation at IEM genes may also 

influence metabolite levels in the general population. For example, common variants (MAF>0.05) at 

the genes APOB, LPL and LDLR are associated with elevated cholesterol levels, reflecting extreme cases 

of hypercholesterolemia and hyperlipidemia caused by rare mutations at the same genes45–47. In this 

particular example, elevated levels of cholesterol caused by common variants also predispose carriers 

to coronary artery disease, necessitating the development of a genetic screening programme157 to 

identify high-risk individuals and prevent or manage disease risk. 

Additional metabolic effects of variation at IEM genes have been detected in population-based studies 

by GWASs of the metabolome16,18–21. One such identified example is the CPS1 gene, which catalyses 

the first step of ammonia catabolism in the urea cycle158. Rare mutations in CPS1 cause CPS1 

deficiency, an IEM characterised by toxic accumulation of ammonia, cerebral damage, developmental 

delay and coma159. In recent GWASs of the metabolome (mGWASs), a detected CPS1 variant was 

associated with higher glycine levels18,19. Glycine is an important source of ammonia through the 

ammonia-glycine cleavage complex, suggesting that the CPS1 variant reduces the flux of ammonia 

catabolism through the urea cycle, leading to increased flux via the ammonia-glycine cleavage 

complex instead160. Metabolome GWASs performed using larger cohorts have also shown that 

metabolic loci are also more likely to be IEM genes than expected by chance19,21. Metabolomic 

profiling combined with whole genome and exome sequencing data20,22 have also identified low-

frequency variants at IEM genes that are associated with metabolite levels up to four standard 

deviations from the population mean. However, no study to date has adopted a systematic approach 

to characterise the metabolic and phenotypic effects of variants across IEM genes.  

Here, I used findings from the largest mGWAS (hereafter referred to as the ‘Metabolon mGWAS’161) 

to date, which measured 913 metabolites across eight metabolite classes as well as chemically 
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unidentified metabolites in up to 20,000 cohort participants. The breadth of metabolite levels 

measured and large sample size used in this mGWAS enables replication of previous associations as 

well as the potential identification of novel ones. To assess the enrichment of metabolic loci for IEM 

genes, different approaches were used to assign likely causal genes to variant-metabolite associations. 

Previous mGWASs have assigned candidate genes using one or more of the following approaches: a.) 

physical location of the variant relative to genes in the region16; b.) manual assessment of the 

biochemical literature19, c.) integration of gene expression and epigenomic data20, or d.) a combination 

of these methods21. Each approach has advantages and disadvantages, as explored in this Chapter. 

Finally, the metabolic consequences of IEMs have been systematically recorded in the database 

IEMBase162, enabling an assessment of how specific metabolic associations for variants at IEM genes 

are for metabolite levels affected in the corresponding IEM.  

3.3. Aim and Objectives 

The aim of this study was to systematically identify variants at IEM genes that influence levels of 

corresponding IEM-affected metabolites in the general population (Figure 1). The focus of this study 

was to identify variants not previously reported to cause the relevant IEM, although the role of 

detected pathogenic variants on metabolite levels in the general population was also considered. The 

objectives of the study were to: 

1. Assess metabolic loci for enrichment of genes known to cause IEMs. 

2. Identify variants at IEM genes that are associated with a metabolite affected in the 

corresponding IEM. 

 

 

 

 

 

Figure 1: Overview of the study aim. The aim of this study (highlighted in the red box) was to 
systematically identify variants at IEM genes that influence levels of corresponding IEM-affected 
metabolites in the general population. 
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3.4. Methods 

3.4.1. Study design and participants 

The European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk107 study is a 

prospective cohort study of 25,639 individuals aged 40-79 years at baseline and recruited from 35 GP 

practices across Norfolk in 1993-1997. The study was approved by the Norfolk Research Ethics 

Committee (ref. 98CN01) and all participants gave signed informed consent. This study comprises of 

data measured in two non-overlapping sets of participants: 

Type 2 diabetes (T2D) case-cohort - the design of the EPIC-Norfolk nested T2D case-cohort study, 

including ascertainment and verification of incident T2D cases, has previously been described in 

detail108. In brief, it includes 1,503 individuals (45% cases) ascertained using self-report, linkage to 

primary and secondary care, drug register, hospital admission, and mortality data108. 

Subcohort – a subcohort was drawn from all EPIC-Norfolk participants who were not part of the T2D 

case-cohort study. For metabolite measurements (see Section 3.4.2.2. below), participants were 

measured in two sets, each comprising of approximately 6,000 participants. 

Participants were also included from the INTERVAL163,164 study, which aims to determine the optimal 

frequency at which individuals can donate blood and comprises of 45,265 whole blood donors 

recruited between 2012 and 2014.  

3.4.2. Phenotypic measurements 

3.4.2.1. Genetic profiling 

Genetic processing protocols were similar between studies. Participant genomes were genotyped 

using the UK Biobank Affymetrix Axiom Array and imputed using the Haplotype Reference 

Consortium109 as well as the combined UK10K111/1000 Genomes110 imputation panels in EPIC-Norfolk 

and to the UK10K/1000 Genomes imputation panel in INTERVAL. Genetic variants were excluded if 

the imputation quality INFO score was <0.4 in EPIC-Norfolk or <0.3 in INTERVAL. Where possible, 

genotyped values of SNPs were used instead of imputed dosages, though the latter were tested to 

ensure they met standard quality control parameters (e.g. no deviation from Hardy-Weinberg 

equilibrium).  

3.4.2.2. Metabolomic profiling 

In both studies, metabolomic profiling was performed on non-fasted citrate plasma samples obtained 

at baseline using LC-MS/MS in the untargeted Metabolon HD4 DiscoveryTM platform. In EPIC-Norfolk, 

samples for metabolomic profiling were selected in the order in which they were stored at baseline 
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(quasi-random selection). Prior to GWAS, metabolites yielding measurements in less than 100 samples 

were excluded in EPIC-Norfolk and INTERVAL. Median-normalised and natural log-transformed values 

of metabolite levels within each batch were used, and values that were >5 standard deviations from 

the mean metabolite value were winsorised to avoid variation due to extreme values. Metabolite 

residuals after adjusting for batch, age and gender were standardised to a mean of zero and a standard 

deviation of one. In INTERVAL, metabolite levels were also regressed by recruitment centre, plate 

number, appointment month, lag time between the blood donation appointment and sample 

processing, and the first five ancestry principal components. 

3.4.3. Statistical analysis 

3.4.3.1. Exclusions 

Due to differences between studies, GWAS analyses were performed separately within each study and 

then meta-analysed. Participants who were not part of the subcohort of the T2D case-cohort of EPIC-

Norfolk were excluded. In INTERVAL, participants with measurements for fewer than 300 metabolites 

were also excluded. Additionally, participants who had one or more of high rates of missing metabolite 

measurements or incomplete genotype data were excluded. This left 5,841 and 8,455 participants 

from EPIC-Norfolk and INTERVAL respectively for the GWAS discovery analysis and a non-overlapping 

set of 5,698 participants from EPIC-Norfolk for validation analysis. 

3.4.3.2. Genome-wide association analysis 

The Metabolon mGWAS, overseen by researchers at the University of Cambridge, comprises of the 

largest known metabolome GWAS with untargeted metabolomic profiling to date with meta-analyses 

of genetic and metabolomic profiling data performed in 14,296 participants across the EPIC-Norfolk 

and INTERVAL cohorts. 

After data processing, linear mixed models (LMMs) were used to perform univariate linear regression 

of the standardised residuals. LMMs can be used to jointly model all genotyped markers and are useful 

for GWAS studies because they effectively account for potential confounding due to population 

stratification165,166 and hidden relatedness167. Therefore, all individuals of EPIC-Norfolk were included, 

and the model accounted for population structure based on autosome-wide genotyped SNPs. The 

software BOLT-LMM v2.2 was used to enable rapid computation of LMMs and retention of statistical 

power168. In some cases, BOLT was unable to compute LMMs because heritability estimates were 

extremely high or low. In these cases, an alternative software that uses Bayesian and frequentist 

methods to calculate associations called SNPTEST v2.5.2169 was used to analyse individuals who were 

no more than second-degree or third-degree related to each other. In SNPTEST models, the first four 
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principal components were included in the EPIC-Norfolk cohort to account for variation due to 

population sub-structure. No principal components were included in models for the INTERVAL cohort, 

as these had already been adjusted for when calculating residuals of metabolite levels as described in 

Section 3.4.2.2. 

3.4.3.3. Meta-analysis of GWAS results 

Prior to meta-analysis, duplicated variants, copy number and insertion or deletion variants for which 

alleles were not known were excluded. Variants that had implausible parameters were also excluded 

(specifically, if one or more of the following was true: a.) where absolute effect size was greater than 

10; b.) standard error was less than zero or greater than 10; c.) imputation quality INFO score was less 

than 0.3 based on the full dataset analysed and complete phenotype data, or d.) Hardy-Weinberg 

equilibrium p≤1x10-6 based on unrelated individuals). A total of 913 metabolites that were available 

in both studies and detectable in at least 100 individuals within each study were taken forward for 

meta-analysis. 

Meta-analysis between studies was performed using a fixed effects model that calculates the mean of 

effect sizes across studies, inversely weighting study contribution based on the estimated standard 

error170,171. A z-score statistic of the combined mean divided by the estimated standard error was then 

calculated to derive p-values that determined the statistical significance of the overall measure. In this 

study, the software, METAL172, was used to perform inverse-variance weighted meta-analysis. 

3.4.3.4. Locus definition 

Variants that had a.) a meta-analysed p-value less than 5x10-8; b.) a minor allele count greater than 

ten in both studies; c.) same directions of effect for the reference allele, and d.) a p-value less than 

1x10-2 in both studies prior to meta-analysis were considered. For each metabolite, the strongest-

associated variant was selected. Variants that were associated with the same metabolite and in LD (R2 

> 0.1) with this variant were clumped. Variants across different metabolites were also clumped if they 

existed in LD (R2≥0.6) with each other. Subsequently, variants within a 500kb window flanking the 

variant with the strongest association for any metabolite were distance pruned in order of smallest to 

largest p-value, and the locus coordinates were expanded to -250kb from the variant at the start of 

the locus and +250kb from the variant at the end of the locus.  

3.4.3.5. Validation and conditional analysis 

Validation was performed by meta-analysing discovery results with GWAS results from a non-

overlapping subset (n=5,698) of the EPIC-Norfolk cohort. The strongest variant-metabolite 
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associations for each locus were taken forward for analysis if they were either significant in the 

combined discovery and validation set or if the metabolite was only present in the discovery set but 

was significant. Genetic associations were significant at Bonferroni-corrected threshold (p≤5.48x10-11, 

i.e. 5x10-8 correcting for 913 metabolites tested).  

To identify additional metabolite-associated variants within loci, conditional analysis was performed 

in SNPTEST 2.5.1 using combined genetic and phenotypic data from the discovery set (n=14,296), 

residuals for each metabolite in the locus, study and the first five principal components of genetic 

ancestry as fixed effects. In this step, variants with p-values meeting a threshold of 1.25x10-8 

(correcting for the maximum number of metabolites and variants across tested regions) were 

considered. The variant with the smallest p-value for any metabolite within a locus was conditioned 

on, and the next most strongly associated variant was retained if it was still significant with a p-value 

smaller than 1.25x10-8. This step was repeated, leaving a final fitted model that included all selected 

variants and excluding any variants that were no longer significant in that model. 

3.4.3.6. Definition of genetically influenced metabotypes 

Conditional analysis was performed by selecting variants using association p-values for a reference 

metabolite at each locus. This accounted for LD between variants associated with the same 

metabolite, but not for LD between variants associated with different metabolites in the same locus. 

To effectively account for the latter, genetically influenced metabotypes (GIMs), which are minimal 

variant sets that best represent signals across metabolites within a locus24,44, were defined. GIM 

definition was performed as outlined in Figure 2.  

It should be noted that initial locus definition (Section 3.4.3.4.) identified 330 loci. However, at ten 

loci it was subsequently found that the comprising GIMs were not independent of those at 

neighbouring loci. These GIMs and loci were therefore dropped, leaving 320 loci (which is reported in 

the Results).  



56 
 

Figure 2: Example illustrating how GIMs are defined. Numbers in boxes represent -log10(P-values), 
and a -log10(P-value) of 7.30 is considered significant in this example. In this example, Variant1 is in 
high LD with Variant2; as Variant1 has the strongest association in the locus, it is selected to represent 
the metabolite associations of Variant2, which is subsequently dropped from the GIM. Variant3 is not 
in high LD with either Variant1 or Variant2 but is also associated with Met2 and Met3; therefore, it is 
included in the same GIM as Variant1. 

3.4.3.7. Definition of novelty 

At the time of writing, the definition of what constitutes a ‘novel’ GIM or variant-metabolite 

association was still being revised for the Metabolon mGWAS manuscript (in preparation). For 

pragmatic purposes, the novelty of associations was therefore defined in this thesis by comparing 

associations against reported associations in the two largest published mGWASs19,20. All lead variants 

or proxies (R2≥0.1) and their metabolite associations were queried at study specific p-value thresholds 

(1.03x10-10 and 1.9x10-11, respectively19,20) and considered novel if they had not previously been 

reported. 
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3.4.3.8. Likely causal gene annotation 

In the Metabolon mGWAS, likely causal genes were assigned to 791 conditionally independent 

variants using the biochemical literature. The automated step leverages the rich history of 

biochemistry available in the literature and biochemical databases. Briefly, this pipeline works by 

exploiting overlaps in the names of the metabolites and the names of the proteins acting on them, as 

well as the genes encoding those proteins and rare diseases caused by those genes. For example, the 

enzyme phenylalanine-4-hydroxylase encoded by the phenylalanine hydroxylase (PAH) gene is the 

genetic cause of hyperphenylalaninemia, and the gene overlaps the strongest GWAS signal for 

circulating phenylalanine levels. Therefore, a fuzzy text similarity metric (pair coefficient) encoded in 

the ruby gem ‘fuzzy_match’ software was used to compare metabolite names to gene and protein 

names across resources from the Human Metabolome Database (HMDB)1, Online Mendelian 

Inheritance in Man (OMIM)173, UniProt174, Ensembl175, Gene Ontology176,177 and the Kyoto 

Encyclopaedia of Genes and Genomes178. A score >0.5 was considered a match, and all automated hits 

were manually reviewed for plausibility.  

The 20 genes closest to each of the variants with the strongest metabolite associations within each 

GIM were manually reviewed as the likely causal gene using the biochemical literature. Likely causal 

gene annotation was then reviewed based on other associated metabolites with the variant under 

consideration and within the GIM. Other genes were also considered if the Entrez gene or UniProt 

description of the gene suggested it could potentially be related to the metabolite. If experimental 

evidence could be found linking one of the 20 closest genes to the metabolite, or more (as was 

commonly observed for paralogs with similar molecular functions), all genes were selected as the 

biologically most likely causal genes. If no existing evidence was found, no causal gene was manually 

selected. For each manually selected causal gene, the earliest experimental evidence linking the gene 

(preferably the human gene) to the metabolite was identified.  The median publication year for the 

identified experimental evidence was 2000. 

To complement the above methods of causal gene annotation, I used Ensembl VEP87 and SNiPA179 

annotations to identify the closest genes (±5kb) of variants or their proxies (R2>0.6). These methods 

of likely causal gene annotation provide a conservative list of genes mapping to metabolic loci and 

assume that the gene driving the signal is one near the lead SNP. To test the robustness of enrichment 

to the number of genes mapped, I also mapped variants to genes using more relaxed locus definitions: 

i.) gene location within a wider 500kb window, and ii.) the Metabolon mGWAS locus (as defined in 

Section 3.4.3.4.). Genes located within a 500kb window of the conditionally independent variant were 
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identified using a list of protein-coding genes obtained from the human reference annotation 

database, GENCODE180. Table 1 provides a summary and comparison of the different locus definitions. 

Table 1: Summary and comparison of methods used to map genes to metabolic loci. 

Method Description Advantages Disadvantages 

Biochemical 

literature 

The 20 protein-coding 

genes closest to a lead 

variant were assessed 

using the biochemical 

literature, previous 

GWAS annotations 

and a semi-automated 

pipeline.  

This method is highly 

specific. Likely causal 

gene annotations using 

this method are more 

certain than those from 

other methods. 

Much of the biochemical 

literature is established 

from known IEM 

associations. This method is 

therefore likely to be biased 

towards detecting IEM gene 

enrichment. 

Closest 

gene(s) 

Loci were annotated 

with all genes within 

5kb of the lead SNP or 

a linked one (R2 > 0.6) 

using the VEP and 

SNiPA software. 

This method provides a 

conservative list of genes 

mapped to metabolic loci.  

This method assumes that 

the gene driving the signal is 

the one closest to the lead 

or proxy variant. The 5kb 

distance threshold may be 

overly conservative. 

500kb 

window 

Genes within 500kb 

window of the lead 

SNP were identified 

using GENCODE. 

This method provides a 

wider distance interval to 

assess potential causal 

genes. This method is 

easy to implement. 

This method does not 

consider gene annotations 

for variants in LD and may 

not identify the causal gene 

as accurately.  

Metabolon 

mGWAS 

Locus 

Genes within the 

defined loci (Section 

3.4.3.4) of each lead 

SNP were identified 

using GENCODE. 

This method accounts for 

LD between variants 

associated with the same 

metabolite and more 

likely to identify the likely 

causal gene more 

accurately than the 500kb 

window method. 

This method is sensitive (as 

some loci such as the FADS1 

locus are very large), but 

less specific and thus more 

likely to produce a 

conservative estimate of 

enrichment. 

 

3.4.3.9. Enrichment assessment 

Enrichment of metabolic loci detected in the Metabolon mGWAS for IEM genes was assessed using a 

two-tailed binomial test. As IEM genes are usually protein-coding genes, estimates of the number of 

protein-coding genes (19,817)180 and IEM genes (785; 4%)181 across the genome were used to calculate 

the expected proportion of IEM genes in a test sampling of genes. 
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3.4.3.10. Identification of variants at IEM genes associated with corresponding IEM-related 

metabolite(s) 

In the rest of this chapter, the term ‘IEM gene-linked variant’ is used to refer to variants at metabolic 

loci that are mapped to IEM genes. These variants may or may not be associated with the same 

metabolites affected in the relevant IEM or be pathogenic for the IEM they are linked to 

(Abbreviations and Terminology; Figure 2). 

To prioritise a set of variants at IEM genes for clinical follow up in subsequent chapters, metabolites 

associated with IEM gene-linked variants were annotated based on their relevance to the 

corresponding IEMs. Databases of rare Mendelian disorders can be leveraged to achieve this purpose. 

For example, the Online Inheritance in Man (OMIM) database173 curates symptoms based on case 

reports and molecular studies in the literature. More recently, the IEMBase database162 integrates 

expert-compiled information across 530 IEMs to highlight clinical symptoms and metabolites affected 

in IEMs, making it an ideal resource for systematic assessment of the metabolic and phenotypic 

consequences of variation at IEM genes. 

To prioritise IEM gene-linked variants that were associated with metabolites affected in the 

corresponding IEMs, associated metabolites were compared to those reported as affected in the 

corresponding IEMs by OMIM and IEMBase. Variants for which one or more associated metabolites in 

the GIM were present in the biochemical testing panel for the relevant IEM, or reported as being 

altered in case reports, were prioritised. Identified variants were termed ‘IEM familiar variants’ (IFVs) 

based on their link to the IEM gene and their similar metabolite associations mimicking those of the 

corresponding IEMs (Abbreviations; Figure 3). Where possible, HMDB IDs were used to compare 

across non-standardised metabolite names. 
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Figure 3: Schematic of terminology used in this thesis. A.) The three criteria defining IFVs: 1.) the 
variant is conditionally independent and one where the annotated likely causal gene is known to cause 
an IEM; 2.) the variant is associated with one or more metabolites that belong to metabolic pathways 
regulated by the linked IEM gene, where one or more of the associated metabolites is 3.) dysregulated 
by loss of function mutations in the gene and either causes the IEM or reflects the underlying 
metabolic mechanism causing it. B.) Venn diagram demonstrating relationships between 
terminologies used in the thesis. IEM gene-linked variants form a subset of all variants detected in the 
Metabolon mGWAS and are located at loci for which the likely causal gene is known to cause an IEM. 
IFVs are the subset of IEM gene-linked variants which are also associated with metabolites known to 
be dysregulated in IEM aetiology. IEM gene-linked variants satisfy criterion 1 of Figure 3A while IFVs 
and their associated metabolites satisfy all criteria in Figure 3A. 

3.4.3.11. ClinVar annotation of IFVs 

IFVs reported pathogenic for the corresponding IEM were identified using the ClinVar182 database 

(https://www.ncbi.nlm.nih.gov/clinvar/, last downloaded in October 2019). Evidence for variants 

annotated as ‘likely-pathogenic’ or ‘pathogenic’ for the corresponding IEM or those with conflicting 

interpretations of pathogenicity were manually curated to confirm or review their likely effect. 

All statistical analyses and graphics were performed and produced using R version 3.5.3.128, Excel 

(Microsoft Office 16) and STATA version 14.2129. 

3.5. Results 

3.5.1. A Total of 1,847 Locus-metabolite Associations Across 330 Loci and 646 Metabolites 

Were Identified in the Metabolon MGWAS 

The Metabolon mGWAS covered 913 plasma metabolites across eight broad classes including lipids 

(n=301), amino acids (n=153), xenobiotics (n=92), nucleotides (n=23), peptides (n=20), carbohydrates 

(n=19), cofactors or vitamins (n=17) and energy-related metabolites (n=7). In addition, 281 detected 

metabolites of unidentified chemical structure were assessed. Discovery and validation identified 

https://www.ncbi.nlm.nih.gov/clinvar/
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1,834 regional associations across 320 loci and 646 metabolites (p≤5.48x10-11) (Figure 4, Box 1). The 

320 loci contained 423 GIMs, 304 of which had not been identified previously in the two largest 

published mGWAS studies19,20. 

 

Figure 4: Flowchart summarising results from analyses performed in this Chapter. In Box 2, the 
number of IEM genes corresponds to the number identified based on the biochemical literature and 
closest gene(s) methods. Numbers in red signpost relevant boxes in the main text. 

3.5.2. Metabolic loci in the Metabolon mGWAS are enriched for IEM genes 

Of the 320 loci detected, 216 were annotated with 253 individual likely causal genes or gene sets 

based on the biochemical literature. These gene sets comprised of 290 unique genes that were used 

as the sample size for enrichment analysis. Of these 290 genes, 97 have been reported to harbour 

mutations that cause an IEM, representing significant enrichment of metabolic loci for IEM genes 

(fold-enrichment: 8.44, binomial p=3.98x10-61). Evidence of enrichment was still present in sensitivity 

analyses using other locus definitions (Table 2).  
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Table 2: Evidence of enrichment was robust against different methods of causal gene annotation 
and varying locus definitions. Analysis was performed against a background of 19,817 protein-coding 
genes (4% IEM). 

Method 
Total number of 

genes 
Number known 
to cause an IEM 

Fold-change 
enrichment 

Two-tailed 
binomial p-value 

Biochemical 
literature 

290 97 8.44 3.98x10-61 

Closest gene(s) 964 117 3.06 1.67x10-26 

500kb window 3441 195 1.43 7.84x10-7 

Metabolon 
mGWAS locus 

5187 261 1.27 7.94x10-5 

 

3.5.3. A Total of 202 of 241 Variants (84%) at Loci Linked to IEM Genes Were Associated With 

a Metabolite Implicated in IEM Aetiology 

A total of 241 variants at 108 loci and 100 GIMs were linked to an IEM gene by the biochemical 

literature and/or closest gene(s) methods (Figure 4, Box 2). Of these variants, 85 were associated with 

a metabolite implicated in IEM aetiology where the association represented the strongest association 

at a GIM within that locus (Figure 4, Box 3).  

When considering additional associations within GIMs, a further 117 variants had metabolite 

associations that mimicked metabolic consequences of the IEM (Figure 4, Box 4). The strongest 

variant-metabolite association was also one reflecting metabolic consequences of an IEM at all but 

ten of these GIMs, for which seven were due to the metabolite in the strongest association being 

chemically unidentified. This resulted in a total of 202 IFVs located within GIMs and conditionally 

independent of one another. 

Altogether, 202 of 241 (84%) conditionally independent variants at 90 IEM gene-linked loci were 

associated with the same or related metabolite implicated in IEM aetiology (Figure 4, Box 5; Figure 5). 

Of these IFVs, 55 (27%) were flagged only by the biochemical literature (which is expected given that 

likely causal gene annotation was based on metabolite association) and 144 (71%) were identified 

using both the closest gene(s) and biochemical literature methods. Of the 632 IEM-specific variant-

metabolite associations for the 202 IFVs, 520 (82.3%) were not reported in the two largest published 

mGWASs to date19,20. 
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Figure 5: Metabolite matching of 241 conditionally independent variants within GIMs at IEM gene-
linked loci. Yellow bars represent variants with the strongest metabolite association at the GIM while 
blue bars represent secondary associations. Assessment of these variants was performed based on 
likely causal IEM gene annotation by the closest gene(s) (CG) and/or biochemical literature (BL) 
annotation methods. 

3.5.4. IFVs have large effect sizes on metabolite levels 

Of the 202 conditionally independent variants specifically associated with corresponding IEM 

metabolites, 15 variants at 13 IEM genes were reported directly or by a linked variant (R2≥0.6) to be 

likely-pathogenic or pathogenic for the corresponding IEM in ClinVar (0.0009≤MAF≤0.079) (Appendix 

Ch3_ST1). The clinical significance of these variants was also supported by VEP87, which annotated ten 

of these as missense, two as splice donor/acceptor variants, two as intronic and one as a non-coding 

transcript exon variant. Of the 10,581 unrelated participants of European ancestry that were present 

in the EPIC-Norfolk cohort and had metabolomic data, 3,063 (29%) were heterozygote carriers and 88 

(0.83%) were homozygote carriers for at least one pathogenic-predicted IFV. 

Meta-data from the EPIC-Norfolk cohort indicated that three participants with metabolomic data were 

diagnosed with disease codes roughly corresponding to IEMs caused by PAH (E70.1 – ‘Other 

hyperphenylalaninemias’), FMO3 (E72.5 – ‘Disorders of glycine metabolism’) and LIPC (E78.4 – ‘Other 

hyperlipidemia’). Although it is possible that these three individuals may have been carriers of the 

corresponding IFVs, the corresponding genotype data could not be retrieved due to low numbers of 

affected individuals and risk of de-anonymisation. 
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Of the remaining 187 IFVs, per allele absolute effect sizes and minor allele frequencies ranged from 

0.063-2.75 per 1-SD metabolite difference and 0.0009-0.495. A total of 68 of all 202 strongest IFV-

metabolite associations exceeded the large average effect size of FTO variants on BMI (0.35 kg/m2 per 

allele)183 (Figure 6). This is similar to what was observed in terms of frequencies and effect sizes for all 

identified metabolite-associated variants, i.e. including those at other genes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Absolute effect size (per allele per 1-SD relative concentration of metabolite) by minor 
allele frequency. Data for the most IEM-specific metabolite associations of each variant are shown. 
Pathogenic IFVs (n=15): dark red; IFVs not reported pathogenic for the IEM (n=187): red; variants at 
other genes (n=589): black. The horizontal black line represents the average reported effect size (per 
allele) of variants at the FTO gene and BMI.  

3.6. Discussion 

3.6.1. Summary of Findings 

Systematic quantification and identification of IFVs in this study revealed two key findings, the first of 

which is that variation at IEM genes contributed substantially to metabolite levels in the general 

population. This was supported by the increase in identified locus-metabolite associations discovered 

in the Metabolon mGWAS that, combined with known loci, still showed enrichment for IEM genes19,21. 

The second key finding is that 84% of conditionally independent variants at IEM gene-linked loci were 

associated with a metabolite affected in the corresponding IEM or with a related one. For the 
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strongest metabolite association, 68 of the 202 IFVs had effect sizes surpassing that of the large 

average effect size of FTO variants on BMI (0.35 kg/m2 per allele)183. However, only 15 of these were 

previously reported to be pathogenic for the relevant IEM.  

3.6.2. Novelty of Findings 

These findings, which built on results from previous mGWASs19,20, provide evidence to support the 

speculation that IEMs represent ‘extreme examples of metabolic variation, probably everywhere 

present in minor degrees’10. Already, previous mGWASs have identified select examples where 

common variants at IEM genes are linked with metabolic effects also observed in the rare disease. 

One example is the identification of variants at genes known to cause familial dyslipidemia; in the 

general population, common variants at these genes were also associated with cholesterol and other 

lipid species21. Another example is the association of a CPS1 variant, rs1047891, with higher levels of 

glycine, as previously discussed (Chapter 3, Section 3.2.)18,19,158–160. In addition to replicating 112 

examples previously reported in the two largest mGWAS studies published19,20 at the time of writing, 

an additional 520 previously unreported metabolite associations for IFVs were identified. These novel 

associations increase the likelihood of detecting previously unreported genotype-metabolite-

phenotype links in downstream variant characterisation (see Chapters 4-6). 

In this study, I identified 15 IFVs that were common enough to be detected in the general population 

and reported to be potentially pathogenic for the corresponding IEM in ClinVar. Almost 30% of 

unrelated participants of European ancestry in the EPIC-Norfolk cohort were carriers of at least one 

of these IFVs, yet only three participants were diagnosed with corresponding IEMs. Due to data privacy 

concerns, it is unclear whether these three participants are indeed carriers of the corresponding 

pathogenic-predicted IFVs or whether their IEMs are caused by other mutations.  

3.6.3. Study Strengths and Limitations 

Strengths of this study included the use of untargeted metabolomic profiling and the definition of 

GIMs, which together enabled the detection of metabolic consequences of variation at IEM genes with 

high confidence. Another strength of this study was the comprehensive annotation of likely causal 

genes for independent variants, which enabled the systematic prioritisation of variants linked to IEM 

genes at scale.  

Yet another strength of this study was the systematic comparison between metabolites associated 

with variants linked to IEM genes and those known to be affected in the corresponding IEM. Previous 

studies16–21 have indicated select examples where variants at IEM genes are associated with 

metabolite levels that reflect more extreme metabolic sequelae linked to rare mutations at the same 

genes. However, this study is the first, to my knowledge, to use genotypic and untargeted 
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metabolomic profiling data to formally quantify and demonstrate the striking similarities of metabolic 

consequences between common polymorphisms and rare, IEM-causing mutations at the same gene.  

The novel associations detected in this study could contribute to a more systemic understanding of 

how genetic variation affects metabolic pathways. For example, cholesterol and triglyceride levels are 

known to be associated with variants at genes known to cause familial dyslipidemia. Yet in this study, 

associations for variants at these genes were also observed for other lipid species such as 

sphingomyelins and plasmalogens. While the genetic basis of familial dyslipidemia is relatively well-

established in screening programmes, further assessment of the metabolic effects of IFVs at these 

genes may help to characterise the role of diverse lipid species in cholesterol metabolism and disease 

aetiology. 

There were also limitations to this study. One was that the study was highly reliant on likely causal 

gene annotations from the biochemical literature. The biochemical literature is biased towards 

mapping loci to IEM genes, as much of the knowledge regarding biochemical genetics is derived from 

the study of IEMs. This limitation was addressed by testing for enrichment using more sensitive locus 

definitions, the results of which still indicated robust evidence of enrichment of metabolic loci for IEM 

genes. 

During likely causal gene annotation, some variants were annotated with multiple paralogs of a gene 

or with multiple genes using methods based on the biochemical literature or on the closest gene. In 

these cases, variants were considered as linked to an IEM gene if at least one of the causal gene 

annotations was known to cause an IEM. Consideration of all potential likely causal gene annotations 

may have biased the estimate of enrichment or increased the likelihood of finding a variant at an IEM 

gene that was associated with IEM-related metabolite levels. However, variants at metabolic loci were 

more likely to be annotated with non-IEM genes in this study, which would have led to an under-

estimation of enrichment. The significant enrichment detected despite this limitation therefore speaks 

to the growing body of evidence demonstrating that variation at genes known to cause IEMs can also 

influence metabolite levels in the general population.  

Another limitation was that metabolites could be referred to using different names in the literature, 

making comparison difficult. Although efforts have been made to document different metabolite 

names and provide links across databases1,184,185, these efforts remain limited for metabolites that are 

only recently detectable due to advances in LC-MS/MS technologies. I therefore used HMDB IDs1 to 

identify metabolites across databases where possible and performed careful review of relevant 

literature sources and molecular structures to address this limitation.  
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In this study, up to 30% participants in the EPIC-Norfolk cohort were identified as carriers of at least 

one of the 15 pathogenic IFVs detected. However, the numbers of heterozygote and/or homozygote 

carriers for each IFV would likely be too low to detect biologically meaningful effects. Cohorts of rare 

disease patients with whole genome sequencing data, such as Genomics England186, may have larger 

numbers of carriers and thus be better powered to assess the clinical consequences of these IFVs. 

3.6.4. Conclusions 

Metabolic loci are enriched for IEM genes and variation at these genes contributes to inter-individual 

differences in metabolite levels also affected in the corresponding IEM. The large effects of IFVs on 

metabolite levels may indicate that these variants could also have health or health-related effects. 

Therefore, further characterisation of these variants as well as phenotypic assessment, which are 

performed in the following two chapters, may help to identify genetic subgroups of disease for 

targeted screening and risk management. 
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CHAPTER 4: CHARACTERISATION OF METABOLITE-ASSOCIATED 

VARIANTS AT IEM GENES 

4.1. Abstract 

Background Rare mutations known to cause IEMs have large effects on metabolite levels, but the 

effects of more frequent, and even common, variation at such genes is poorly described. This study 

aimed to systematically assess whether metabolite-associated variants at IEM genes demonstrate 

similarly strong metabolic effects to those described in the corresponding IEM. 

Methods Characterisation of the associations of IEM-affected metabolites with 202 variants at IEM 

genes in the Metabolon mGWAS was performed based on a) proportion of variance in metabolite 

levels explained, b) variant function, c) likelihood of carriers being in the highest or lowest 2.5th 

percentile of the population distribution of the tested metabolite, and d) presence of non-additive 

effects on metabolite levels. Genetic variants causing an IEM according to the ClinVar database were 

excluded. Analyses were performed in up to 10,581 participants of the EPIC-Norfolk cohort and 

adjusted for age, sex, four principal components and measurement batch. To prioritise variants with 

metabolic effects most likely to translate into downstream clinical consequences, a subset of variants 

that were either associated with extreme metabolite levels or displayed non-additive effects were 

queried in databases for previously reported phenotypic associations.  

Results Most of the identified IFVs (187 of 202) were not included in the ClinVar database as 

pathogenic for the corresponding IEM. These 187 IFVs varied widely in terms of the variance they 

explained, from the extreme (38.7%) to very small (8.5x10-5%) genetic contributions. A total of 48 of 

the 187 IFVs were significantly associated with extreme metabolite levels (Bonferroni-corrected 

p≤4.9x10-5) and seven had additional, significant (Bonferroni-corrected p≤1.5x10-4) non-additive 

effects on associated metabolite levels. Variants consistently highlighted in these analyses such as the 

CPS1 variant rs1047891, the ACADS variant rs2014355 and the UGT1A1 variant rs1976391, were 

associated with clinical outcomes similar to those observed in the corresponding IEM.  

Conclusion Variants mapping to known IEM genes in the general population demonstrated strong 

effects on metabolite levels that could be linked to clinical phenotypes, justifying in-depth and 

systematic phenotypic characterisation across metabolite-associated variants at IEM genes. 
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4.2. Background 

In Chapter 3 of this thesis, I leveraged knowledge of the metabolic effects of IEMs to show that 

common variants at the corresponding, causative genes can affect similar changes in levels of IEM-

affected metabolites. Assessment of the absolute effect sizes of detected variants at IEM genes 

showed that many had large metabolic effects. Further systematic, in-depth characterisation of 

metabolite-associated variants at these genes could identify those that have metabolic effects large 

enough to potentially translate into phenotypic consequences.  

Systematic metabolic characterisation may be guided by knowledge of how rare mutations known to 

cause IEMs affect metabolite levels. For example, rare mutations known to cause IEMs also affect 

metabolite levels with specific patterns of association that can be used to guide the systematic 

characterisation of IFVs prioritised in Chapter 3. For example, extreme metabolic perturbations 

caused by rare, IEM-causing mutations have been used to infer that rare mutations explain large 

proportions of variance in metabolite levels. Indeed, sequencing studies of IEMs have also identified 

more common variants at IEM genes that exhibit intermediate yet tangible effects on protein activity 

and metabolite levels. One example is the DBH variant rs1611115 (GnomAD187 MAF=0.19). While rare 

mutations at DBH can cause extremely low levels of DBH activity, leading to sympathetic 

noradrenergic dysfunction (OMIM #223360)188,189, rs1611115 has been shown to account for 

substantial variance (35-52%) in DBH activity levels in a group of healthy individuals190.  

Rare mutations are also often located in protein-coding regions of the genome and thus affect protein 

function. Variant annotation tools such as VEP87 enable functional prediction of genetic variants based 

on aligned mRNA sequences, genomic location and homology across species. These tools can be used 

to test whether more common variation at IEM genes also affect protein function by affecting the 

amino acid sequence of the protein or instead regulate protein activity. 

The extreme effects of rare mutations on metabolite levels also suggests that common variants at the 

same gene may also predispose carriers to more extreme levels of metabolites affected in the 

corresponding IEMs. For IEMs, the definition of ‘extreme’ metabolite levels is typically based on 

reference values measured in children, as IEMs often manifest in early life191. Despite this challenge, 

access to individual-level metabolomic data enables the measurement of population distributions for 

metabolite levels. This data can be used to define ‘extreme’ metabolite levels, the thresholds of which 

are recommended to be the extreme 2.5th percentiles of the population distribution88–90. 

Rare, IEM-causing mutations are also known to have non-additive effects on metabolite levels, which 

in part account for autosomal dominant or recessive modes of inheritance of IEMs. Findings from a 
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previous mGWAS have also shown that more common variants at IEM genes may also display non-

additive effects on metabolite levels (such as the ACADS variant rs3916 on butyrylcarnitine levels and 

the CPS1 variant rs715 on glycine levels)21.  

In this study, I used individual-level genetic and metabolomic data from the EPIC-Norfolk population 

cohort to systematically characterise the metabolic consequences of variants at IEM genes identified 

in the previous chapter based on a) variant function, b) the proportions of variance of metabolite 

levels explained, c) association with extreme levels of IEM-affected metabolites, and d) evidence for 

non-additive effects on metabolite levels. If demonstrated, these characteristics may highlight 

common variants that contribute to downstream phenotypic consequences. 

One important caveat is that metabolic effects may not manifest as clinical outcomes. At the variant 

level, this could be due to the inhibitory effects of a genetic variant on another (‘epistasis’) that may 

be detected indirectly by modelling genotypes in dominant or recessive models192. At the metabolite 

level, other metabolic pathways may be up- or down-regulated to compensate for potentially 

deleterious perturbations along one pathway (‘metabolic canalisation’193). Despite this, phenotypic 

assessment of genetic variants can be performed using publicly available GWAS summary statistics to 

test whether variants displaying similar characteristics to IEM-causing mutations at the same genes 

have detectable clinical consequences.  

4.3. Aim and Objectives 

The aim of this study was to identify and describe characteristics of the identified variant-metabolite 

associations for IFVs. The objectives of this study were to: 

1. Estimate the proportions of variance in metabolite levels explained by associated genetic 

variants, individually and cumulatively; 

2. Characterise variant function; 

3. Estimate the association of IFVs with extreme metabolite levels; 

4. Estimate non-additive effects of IFVs on metabolite levels, and 

5. Assess the clinical consequences of IFVs with large metabolic effects, as characterised in the 

previous objectives. 
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Figure 1: Overview of the study aim. With the identification of IFVs in the previous chapter, the aim 
of this study (highlighted in the red box) was to systematically characterise their metabolic 
associations. 

4.4. Methods 

4.4.1. Study Design and Participants 

The European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk107 study is a 

prospective cohort study of 25,639 individuals aged 40-79 years at baseline and recruited from 35 

practices across Norfolk in 1993-1997. The study was approved by the Norfolk Research Ethics 

Committee (ref. 98CN01) and all participants gave signed informed consent. The EPIC-Norfolk 

comprises of two non-overlapping sets of participants (total n=13,475): 

Type 2 diabetes (T2D) case-cohort - the design of the EPIC-Norfolk nested T2D case-cohort study, 

including ascertainment and verification of incident T2D cases has previously been described in 

detail108. In brief, it includes 1,503 individuals (45% cases) ascertained using self-report, linkage to 

primary and secondary care, drug register, hospital admission, and mortality data108. 

Subcohort – a subcohort of 11,972 participants who were not part of the T2D case-cohort was drawn 

from all EPIC-Norfolk participants.  

4.4.2. Measurements 

4.4.2.1. Genetic profiling 

Participant genomes were genotyped using the UK Biobank Affymetrix Axiom Array and imputed using 

the Haplotype Reference Consortium109 as well as the combined UK10K111/1000 Genomes110 

imputation panels. Genotypes were used where possible; otherwise, imputed dosages that were 

converted to hard-calls (controls: dosage ≤ 0.2, heterozygotes: 0.9 ≤ dosage ≤ 1.1, homozygotes: 

dosage ≥ 1.8) were used. In Section 4.4.3.2., the 202 IFVs identified in Chapter 3, Section 3.5.4. were 

used while in Sections 4.4.3.3. and Sections 4.4.3.5. only the 187 IFVs that were not previously 

reported to cause an IEM in ClinVar were included in analysis (Chapter 3, Section 3.5.5.). 
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4.4.2.2. Metabolomic profiling 

Metabolomic profiling was performed on non-fasted citrate plasma samples obtained at baseline 

using LC-MS/MS in the untargeted Metabolon HD4 DiscoveryTM platform. Samples for metabolic 

profiling were selected in the order in which they were stored at baseline (quasi-random selection). 

Measurement was performed in three stages, one for the T2D case-cohort and for two for roughly 

equal sets of 6,000 participants in the subcohort. Metabolite levels were log-transformed, winsorised 

to 5 SDs of the mean and standardised. Residuals of metabolite levels adjusted for age, sex and the 

first four principal components were then calculated.  

4.4.2.3. Exclusions 

Eight participants with high rates of missing metabolite measurements and 645 participants who were 

T2D cases not in the subcohort fraction of the T2D case-cohort study were excluded. In addition, 1,286 

participants without genotypic data and 955 participants who were related to other participants in 

EPIC-Norfolk were excluded, leaving 10,581 participants in the EPIC-Norfolk subcohort and the 

subcohort fraction of the T2D case-cohort for statistical analysis. Levels of 646 metabolites that were 

associated with at least one conditionally independent lead variant in the Metabolon mGWAS 

(Chapter 3) were included in analysis. 

4.4.3. Statistical Analysis 

4.4.3.1. Estimate of proportions of variance explained by genetics on plasma metabolite levels  

Variants explaining large proportions of variance on metabolite levels were hypothesised to be more 

likely to contribute to more distal complex phenotypes or diseases. To estimate the proportion of 

variance explained by genetics for plasma levels of 237 IEM-related metabolites, linear regression and 

ANOVA models were used, and the proportions explained by the 202 IFVs individually and 

cumulatively were quantified. Analyses were adjusted for age, sex, measurement batch and the first 

four principal components of genetic ancestry. A binomial test for enrichment was used to test for 

differences in metabolite class membership between metabolites for which over half of the genetics-

explained variance was driven by IFVs and those explained by other variants (Bonferroni significance 

p=0.05/8 metabolite classes=0.00625). 

4.4.3.2. Functional variant annotation and enrichment assessment 

The most severe predicted functional effect for each IFV and variants in LD (R2≥0.95) was identified 

using Ensembl Variant Effect Predictor (VEP)87 Build 37 (downloaded May 2020). VEP annotates 

functional consequences by integrating information from aligned mRNA sequences from the NCBI 
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Reference Sequence Database RefSeq, genomic location and homology across species. Functional VEP 

categories were tested for enrichment for IFVs compared to metabolite-associated variants at other 

genes (detected in the Metabolon mGWAS) using a Fisher’s test (significant p≤0.05). 

4.4.3.3. Association with extreme metabolite levels (metabolite extremes assessment) 

One-tailed logistic models were used to test whether carriers of candidate IFVs (Chapter 3, Section 

3.5.5.) were more likely to be associated with extremes of the population distribution of metabolite 

levels compared to non-carriers, as would be expected from the IEM. The outcome was ‘extreme 

metabolite level’, which was defined as being below the 2.5th or above the 97.5th percentiles of the 

population distribution, as recommended by previous publications88–90. The direction of effect 

assessed was based on the direction of effect of the associated variant. Thus, an one-tailed logistic 

regression test estimating the likelihood of carriers having extreme metabolite levels compared to 

controls was performed for variant-metabolite pairs with at least five individuals in all strata. Models 

were performed separately for each measurement batch and adjusted for age, sex and the first four 

principal components of genetic ancestry, then meta-analysed using a fixed effects model in the R 

package metafor (v2.4-0). Significant associations were identified based on consistency with mGWAS 

direction of effect and on a Bonferroni-corrected threshold (0.025/512 independent tests). 

4.4.3.4. Estimate of non-additive effects of IFVs on associated metabolite levels 

Previous studies have shown that rare variants causing IEMs display non-additive effects on 

metabolite levels194. Therefore, it was hypothesised that some of the IFVs identified in Chapter 3 could 

have non-additive effects on metabolite levels. For any association where the metabolite was 

implicated in IEM aetiology, non-additive effects were estimated in a linear regression model using 

metabolite residuals as the outcome and a recessively coded genotype as the exposure, adjusting for 

effects due to an additively coded genotype. Only variants with at least five homozygous carriers of 

the minor allele were considered. Models were performed separately for each measurement batch 

and adjusted for age, sex and the first four principal components of genetic ancestry, then meta-

analysed using a fixed effects model in the R package metafor (v2.4-0). Significance was assessed at 

Bonferroni-corrected threshold (p≤0.05/334 independent tests). 

4.4.3.5. Phenome-wide assessment of variants with large metabolic effects 

To assess whether IFVs with large metabolic effects could be linked to phenotypic associations, 

phenotypic assessment was performed on the subset of variants that either i.) were significantly 

associated with extreme metabolite levels in a direction consistent with that observed in the 

Metabolon mGWAS (Section 4.4.2.3.) or ii.) had non-additive effects on metabolite levels (Section 

4.4.2.4.). Queries were performed in search engines such as Google Scholar 
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(https://scholar.google.com/) and NCBI PubMed (https://pubmed.ncbi.nlm.nih.gov/) as well as in the 

publicly available databases GWAS Catalog62, PhenoScanner73, OpenGWAS63, and OpenTargets74. 

Variants in LD (R2≥0.8) were also queried, and associations that met a relaxed significance threshold 

of p=1x10-5 were assessed for relevance to corresponding IEM symptoms. A more comprehensive 

description of the phenome-wide assessment of these variants, and others, is available in Chapter 5. 

All statistical analyses and graphics were performed and produced using R version 3.5.3.128 and STATA 

version 14.2129. 

4.5. Results 

4.5.1. IFVs Accounted for Substantial Proportions of Variance in Metabolite Levels Explained 

by Genetics 

The 202 IFVs were associated with 237 unique metabolites known to be affected in the corresponding 

IEMs. Individual variants accounted for a median of 0.46% (range: 8.5x10-5;38.7%) proportion of 

variance in corresponding metabolite levels. Common variants explained a median of 0.48% variance 

(range 8.5x10-7;38.7%) compared to low-frequency (0.42% (0.023;23.4%)) and rare (0.35% (6.3x10-

6;4.8%)) variants. 

IFVs cumulatively explained over half of the total variance explained by genetics in 127 of 237 (53.6%) 

associated metabolite levels (Figure 2). The cumulative proportion of variance explained by the 791 

independent mGWAS detected variants on associated metabolite levels had a median of 2.23% with 

a range of 0.082% (docosahexanoate) to 46.8% (ethylmalonate). In the most notable example, 96% of 

the variance in ethylmalonate levels explained by genetics (total percentage variance explained = 

46.8%) could be attributed to IFVs (Figure 2). When considering individual proportions of variance 

explained for ethylmalonate, 82.7% of the variance attributable to genetic variation could be 

explained by the ACADS IFV rs2014355 (MAF=0.25) alone. Metabolites for which over half of the 

proportion of variance explained by genetics was accounted for by IFVs were significantly enriched for 

all classes (p≤0.00625) compared to metabolites driven by other variants except for energy 

metabolites, which were depleted, and lipids and xenobiotics, which were not significant (p>0.00625). 

However, these results may be unreliable due to the small numbers of metabolites present in many 

of the metabolite classes. 

4.5.2. IFVs May Alter Metabolite Levels Through Effects on Protein Activity or mRNA Splicing  

Of the 187 IFVs not previously reported to cause an IEM, 41.7% were predicted to be intronic (Figure 

3). A further 10.6% had intergenic, up- or downstream gene, regulatory region, transcription factor 

binding site or non-coding transcript exon annotations, all of which are predicted to have regulatory 

or modifier effects in Ensembl (Figure 3). In addition, 27.2% IFVs were missense, suggesting that they 
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alter the protein-coding sequence, and 12.9% were loss of function (including splice region, 5’/3’ 

untranslated region, frameshift or stop gained/lost variants). No evidence of enrichment of IFVs within 

any VEP category was found compared to metabolite-associated variants at other genes (Fisher’s 

p>0.05 for all categories tested) (Figure 3). 

4.5.3. A Total of 48 of 187 IFVs Were Associated With Extreme Metabolite Levels 

Of the strongest metabolite associations for the 187 variants, 11 had an absolute effect size ≥0.5 (per 

allele per 1-SD metabolite difference). The number of associations with absolute effect size ≥0.5 

increased to 75 when also considering additional conditionally independent associations.  

A total of 104 of 512 assessed variant-metabolite pairs were significantly associated (p≤4.9x10-5) with 

higher or lower odds for extreme metabolite levels. Of these, 101 (representing 48 IFVs) had 

consistent directions of effect with the corresponding Metabolon mGWAS association. Of the 48 IFVs 

associated with extreme metabolite levels, 19 also had an absolute effect size ≥0.5. 

The median OR of having extreme metabolite levels was 2.62 (range: 1.71-76). The maximum 

observed odds ratio was for the rare missense DMGDH variant rs145258663 (MAF=0.0050); despite 

wide confidence intervals, carriers had a 76-fold higher likelihood of having dimethylglycine levels in 

the 90th percentile of the distribution (OR (95% CI) = 76 (48.3;119), p=1.1x10-78) (Figure 4). Other rare, 

conditionally independent variants at DMGDH had large ORs in this analysis: rs142181836 

(MAF=0.0011) and rs184410852 (MAF=0.0014) with extremely high dimethylglycine levels (OR (95% 

CI) = 41.3 (15.3;112), p=2.5x10-13 and OR (95% CI) = 41 (11.6;142), p=6.7x10-9, respectively). No ClinVar 

annotations were found for rs145258663, rs142181836, rs184410852 or their proxies. 

Several variants at the common end of the frequency spectrum also conferred risk of having extreme 

metabolite levels. Examples included the ACADS variant rs2014355 (MAF=0.25) with extremely high 

levels of ethylmalonate (OR (95% CI) = 23.5 (11;50.5), p=5.3x10-16) and butyrylcarnitine (OR (95% CI) = 

23.8 (11;51), p=4.1x10-16) and the UGT1A1 variant rs1976391 (MAF=0.31) with extremely high bilirubin 

levels (Z,Z) (OR (95% CI) = 18.5 (8.2;42.1), p=3.2x10-12) (Figure 4). Both variants were predicted directly 

or through a linked variant (R2≥0.6) to be benign for the corresponding IEMs in ClinVar. 
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Figure 2: Cumulative proportion of variance explained across 237 metabolites associated with at 
least one IFV. Each pie chart represents one metabolite, with size corresponding to the number of 
associated variants. Metabolite levels for which >30% proportion of variance were explained by 
genetics are labelled. Yellow represents variance explained by IFVs while blue represents variance 
explained by variants at other genes. Lighter shadings represent low-frequency or rare variants. 

 



77 
 

 

Figure 3: Most severe variant consequence annotations by Variant Ensembl Predictor across 187 
IFVs and 589 metabolite-associated variants at other genes. Fifteen IFVs annotated as likely-
pathogenic or pathogenic for the IEM in ClinVar were excluded from this comparison. The ‘loss of 
function’ category includes splice region, donor or acceptor variants, 5’/3’ UTR variants, frameshift 
variants and stop gained or lost variants. The ‘regulatory’ category includes up- or downstream gene, 
regulatory region, transcription factor binding site or non-coding transcript exon variants. 
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Figure 4: Carrier means plotted onto non-carrier metabolite level distributions for the top three 
strongest variant-extreme metabolite level associations (p≤4.8x10-5) by allele frequency category. 
Carriers include homozygotes and heterozygotes. Common: MAF≥0.05; Low-frequency: 
0.01≤MAF<0.05; Rare: MAF<0.01. 
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The association of several IFVs with extreme metabolite levels suggested the presence of non-additive 

effects on metabolite levels. Broad assessment identified 20 associations for which 7 IFVs displayed 

significant non-additive effects across 17 metabolites (p≤1.5x10-4). In 18 (90%) of these associations, 

the IFV was also significantly associated (p≤4.8x10-5) with extreme levels for that metabolite, although 

associations for the UGT1A1 variant rs201829156 were directionally inconsistent to what was 

expected from the Metabolon mGWAS (Figure 5). Of the two that were not associated with extreme 

metabolite levels, the GCDH variant rs8012 (MAF=0.45) was associated with extremely low 

glutarylcarnitine levels at nominal significance but did not reach Bonferroni-corrected significance (OR 

(95% CI) = 2.0 (1.4;3), p=2.8x10-4). The other (LCT variant rs4988235 (MAF=0.30)) could not be tested 

due to a lack of power (i.e. <5 controls with metabolite levels in the extreme 97.5th percentile of the 

population in any tested subcohort).  

Of the seven variants with non-additive effects on metabolite levels, five were associated with an even 

greater increase in metabolite levels compared to what would be expected under an additive model 

(Figure 5). In contrast, two variants (the LCT variant rs4988235 and the CPS1 variant rs1047891) were 

associated with a lower increase compared to that expected under an additive genetic model (Figure 

5). Accounting for non-additive effects in the computation of metabolite variance explained an 

additional median variance of 1.22% (range: 0.21;13.7%) across the 17 assessed metabolites.  
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Figure 5: Strongest variant-metabolite associations displaying significant departure from linearity at 
Bonferroni significance (p≤1.5x10-4). The dashed grey line represents the expected trend under a 
linear model while the dashed red line represents the observed trend. UGT1A1 and other UGT 
paralogs are mapped to the locus containing variants rs1976391 and rs201829156 but here labelled 
as ‘UGT1A1’ for brevity. 
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4.5.4. IFVs With Phenotypic Consequences That Could Plausibly Arise from Their Metabolic 

Effects 

Of the 187 IFVs assessed, 51 were either significantly associated with an increased likelihood of having 

extreme metabolite levels or had non-additive effects on metabolite levels. For 21 of the 51 assessed 

variants, phenotype associations in GWAS studies (p≤1x10-5) that were related to one or more 

symptoms of the corresponding IEM were identified, indicating a need for further testing of a shared 

genetic signal at the corresponding loci. Three of the most notable examples are highlighted here, and 

the rest are summarised in the full phenome-wide assessment in Chapter 5 (Appendix Ch5_ST4).  

4.5.4.1. The CPS1 variant rs1047891 indicates a role of ammonia and glycine metabolism in chronic 

kidney disease 

The association of the CPS1 variant rs1047891 with glycine levels serves as a prime example for which 

health consequences in the general population have been identified. The CPS1 gene encodes 

carbamoyl phosphate synthetase, which catalyses the first step of ammonia catabolism in the urea 

cycle158. Rare CPS1 mutations can lead to CPS1 deficiency (OMIM #237300) and hyperammonemia in 

the blood, which in turn results in vomiting, muscle weakness and psychomotor delay if left 

untreated159. Although ammonia was not detected in the Metabolon mGWAS study, an association 

was detected between the A-allele of the CPS1 variant rs1047891 (effect allele frequency (EAF)=0.32) 

with elevated plasma levels of glycine (beta±S.E.=0.53±0.013, p=6.9x10-385), which is interconverted 

with ammonia through several pathways through the glycine cleavage complex160. The association of 

rs1047891 with glycine has also been identified in previous mGWASs18,19. Metabolic characterisation 

of rs1047891 effects on glycine showed that rs1047891 is associated with extremely high glycine levels 

(OR (95% CI): 14.6 (8.5; 25.0), p=3.3x10-22) and had non-additive effects on glycine that reduced the 

expected effects under an additive model (beta±S.E.=-0.51±0.057, p=7.47x10-9) (Figure 5).  

In an independent GWAS study, the same glycine-elevating allele of rs1047891 was associated with 

an increase in chronic kidney disease risk, as measured by a decrease in estimated glomerular filtration 

rate56,195. There is a plausible link between CPS1 gene function, glycine and chronic kidney disease. 

The variant rs1047891 could reduce the efficiency of CPS1 in breaking down ammonia, which in turn 

could drive the conversion of ammonia to glycine as an alternative route of catabolism (Figure 6A). 

Chronic exposure to elevated ammonia levels in the blood may be linked to reduced ammonia 

excretion, which in turn could lead to reduced kidney function and chronic kidney disease196,197. This 

example shows how severe metabolic dysregulation and mild, longer-term changes in the same 

metabolic pathway may lead to impaired organ function. While current evidence suggests that 
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rs1047891 is the likely causal variant for glycine and chronic kidney disease associations within the 

locus, this has not been experimentally validated. 

Figure 6: Comparison of metabolic and phenotypic consequences caused by rare mutations and 
more common variants at the CPS1 and ACADS genes. (A) Identification of associations of the CPS1 
variant rs1047891 with glycine levels and chronic kidney disease that could potentially reflect long-
term effects of dysregulated ammonia catabolism in CPS1 deficiency (OMIM #237300). (B) 
Identification of associations of the ACADS variant rs2014355 with butyrylcarnitine and ethylmalonate 
levels as well as with years of educational attainment, which could potentially reflect dysregulated 
short-chain acylcarnitine catabolism and developmental delay in SCAD deficiency (OMIM #201470). In 
both examples, a causal pathway from variant to metabolite to trait or disease is plausible but has not 
been experimentally validated or tested using causal inference methods. 

4.5.4.2. The ACADS variant rs2014355 is associated with ethylmalonate and with educational 

attainment, which may reflect symptoms of developmental delay in SCAD deficiency 

Metabolite associations of the missense ACADS variant rs2014355 demonstrate how IFVs may affect 

complex phenotypes that reflect specific symptoms of the corresponding IEM. The ACADS gene 

encodes mitochondrial short-chain acyl-CoA dehydrogenase, which breaks down short-chain fatty 

acids in fatty acid oxidation198. The ACADS enzyme preferentially takes butyryl-CoA as its substrate, 

therefore, rare mutations causing protein inactivity result in elevated levels of metabolic by-products 

from alternative routes of butyryl-CoA catabolism including butyrylcarnitine and ethylmalonate199 

(Figure 6B). Accordingly, the C-allele of the ACADS variant rs2014355 (EAF=0.25) was significantly 

associated with elevated levels of these by-products in the Metabolon mGWAS. Furthermore, 

rs2014355 was associated with extremely high levels of ethylmalonate (OR (95% CI):23.5 (11.0;50.5), 

p=5.3x10-16) and butyrylcarnitine (OR (95% CI): 23.8 (11.1;51.0), p=4.1x10-16) (Figure 4). Significant 
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non-additive effects were also observed for these associations, suggesting that the large metabolic 

effects observed at the ACADS locus could translate into downstream health consequences (Figure 5). 

In the IEM, SCAD deficiency (OMIM #201470), common symptoms include vomiting, failure to grow 

at the expected rate, muscle wasting, seizures and developmental delay198. In GWAS studies, the C-

allele of rs2014355 (also the butyrylcarnitine/ethylmalonate raising allele) is significantly associated 

with a decrease in years of educational attainment (p=4.99x10-6, N=293,723)200, a cognitive phenotype 

that may in part reflect delayed speech and language development201. The potential relevance of these 

phenotypes and their link to metabolite levels warrants further phenotypic assessment. 

4.5.4.3. Strong effects of UGT1A1 variants on bilirubin metabolism are reflected in IEM-related 

outcomes and drug response phenotypes 

The conditionally independent variants rs1976391 and rs201829156 are located at a locus containing 

the IEM gene UGT1A1 (as well as other paralogs) and represent another notable example where 

phenotypic associations in the literature mimic those of the IEM. The UGT1A1 gene belongs to a family 

of UDP-glucuronosyltransferases and encodes the only enzyme in the family that can glucuronidate 

bilirubin202. Rare mutations in UGT1A1 can result in two IEMs, Gilbert syndrome (OMIM #143500) and 

Crigler-Najjar syndrome type I (OMIM #218800). These IEMs are distinct in clinical presentation, 

though symptoms of hyperbilirubinemia, jaundice and liver dysfunction are observed in both203–205. In 

the Metabolon mGWAS, the G-allele of rs1976391 (EAF=0.31) was positively associated with biliverdin 

and the ‘E’ and ‘Z’ isomers of bilirubin while the deletion allele of rs201829156 (EAF=0.35) was 

negatively associated with these metabolites. Both variants were associated with extreme metabolite 

levels (Figure 4) and had non-additive effects on metabolite levels (Figure 5). In VEP, the most severe 

consequence predicted based on linked variants was non-coding transcript exon variant for rs1976391 

and missense variant for rs201829156. However, the most severe consequence based on the exact 

variant was ‘intron’, indicating that these variants may have regulatory effects on mRNA processing. 

Variance in bilirubin (Z,Z) levels was predominantly explained by rs1976391 and rs201829156, which 

cumulatively accounted for 80-90% of the 25% estimated variance explained by genetics (i.e. ~2% total 

variance in bilirubin (Z,Z) levels explained). Although only rs1976391 was directionally consistent with 

the mGWAS direction of effect, associations for both this variant and rs201829156 showed significant 

departure from linearity.  

Though not previously reported to cause Gilbert syndrome or Crigler-Najjar syndrome type I, the 

bilirubin-raising allele of rs1976391 is in strong LD (R2>0.8) with the T-allele of the lead SNP in the 

region, rs887829, which is associated with increased self-report of biliary or pancreas problems in UK 

Biobank (p=1.7x10-9, n=337,159). In another study, rs1976391 also had a high posterior probability of 
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risk association with the ICD-10 code E80 (‘Disorders of porphyrin and bilirubin metabolism’) 

(PPrisk=0.80), K80 (‘Cholelithiasis’) (PPrisk=0.83), R17 (‘Unspecified jaundice’) (PPrisk=0.32) and all 

daughter categories206 (Figure 7). This same study showed that rs201829156 had a strong posterior 

probability of risk (PPrisk=0.90) association with the ICD-10 code E80 (‘Disorders of porphyrin and 

bilirubin metabolism’)206 (Figure 7). All of these phenotypes closely mimic symptoms of the IEMs, with 

cholelithiasis being a direct consequence of hyperbilirubinemia. 

The metabolic effects of IFVs may be large enough to cause differential efficacy or toxicity responses 

to drugs in carriers compared to non-carriers. For example, atazanavir is a drug used to treat human 

immunodeficiency virus (HIV) infections, and previous studies have shown that atazanavir inhibits 

UGT1A1 activity in a concentration-dependent manner, increasing total bilirubin levels as a result. HIV 

patients who carry one or both copies of the T-allele of the rs887829 variant (which is in LD with the 

bilirubin-raising allele of rs1976391) are at an increased risk of developing hyperbilirubinemia when 

taking atazanavir207. It has also been shown that pre-screening for rs887829 genotype could markedly 

reduce the rate of bilirubin-related side effects as well as the rate at which patients discontinue 

atazanavir treatment208. 

The UGT1A1 example highlights two key messages about common variation at IEM genes: 1.) that 

common variation can mimic phenotypic consequences resulting from rare mutations in the same 

gene, and 2.) that in some cases such as this one, the metabolic consequences of genetic variation can 

be large enough to impact response phenotypes to medications.  



85 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Association of the UGT1A1 variants rs1976391 and rs201829156 with ICD-10 codes in the 
UK Biobank, as calculated using the TreeWAS method206. ‘Δp’ refers to the difference in posterior 
probability of risk and posterior probability of protection. 

4.6. Discussion 

4.6.1. Summary of Findings 

Systematic and comprehensive characterisation revealed the large effects of some IFVs on metabolite 

levels, reflecting patterns of association seen for rare, IEM-causing mutations. Specifically, IFVs 

individually and cumulatively explained large proportions of variance, and 51 of the 187 assessed IFVs 

were associated with increased odds of having extreme metabolite levels (<2.5th or >97.5th percentile 

of the population metabolite distribution) and/or had non-additive effects on metabolite levels. These 

results showed that several of the detected IFVs have large metabolic effects, warranting further 

phenotypic assessment. 
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4.6.2. Novelty of Findings 

Here, I observed wide variation in the proportions of variance explained by genetics on plasma 

metabolite levels. The proportions of variance estimated for 153 of the 237 assessed metabolites were 

similar to those calculated in a previous study20 and provide confidence in the estimates of other 

previously unassessed metabolites presented here. For many metabolites such as ethylmalonate, 

estimates of proportion of variance explained are considered large compared to those for more distal 

complex phenotypes (for example, 3,290 near-independent SNPs associated with the highly-heritable 

height trait cumulatively explain 24.6% variance)115. 

I also observed that 41% of the 187 assessed IFVs were predicted to be intronic variants. Intronic 

variants are known to regulate gene expression by altering mRNA splicing209. An additional 10.6% were 

predicted to have variant effects relating to the regulation of gene expression. These observations 

contrasted with the knowledge that IEM-causing mutations often directly affect the protein-coding 

sequence, instead aligning with previous observations that complex trait-associated variants in GWAS 

studies are often located in non-coding regions and have regulatory functions210. 

In this study, I also assessed IFVs for association with ‘extreme’ metabolite thresholds, which were 

defined using individual-level data. This analysis showed that homozygote and heterozygote carriers 

of 48 IFVs were significantly more likely than controls to have extreme metabolite levels. Of these 

IFVs, 19 also had large absolute effect sizes (≥0.5 per 1-SD allele per 1-SD change in metabolite level) 

for one or more corresponding IEM-related metabolites. Another variant at the UGT1A1 gene, 

rs201829156, was also associated with extreme levels of bilirubin, but with contrasting direction of 

effect to what was observed in the Metabolon mGWAS.  

In GWAS studies, it is common practice to model genetic effects using an additive model, ignoring 

potential effects such as dominance or epistasis. Despite this, many disease-causing variants display 

non-additive genetic effects, making the detection of such effects useful for identifying variants with 

potential health consequences. In this study, non-additive effects were detected for seven variants, 

five of which were also associated with extreme metabolite levels. The UGT1A1 variant rs201829156 

was also one of the five variants, suggesting that non-additive effects could account for the different 

direction of effect observed in the additive model assessed in the Metabolon mGWAS. These results 

show that modelling non-additive genetic effects could be useful to identify variants with potential 

health consequences as a downstream analysis to initial GWAS discovery efforts. 

For the other two variants with non-additive effects (the LCT variant rs4988235 and the CPS1 variant 

rs1047891), the degree of increase with two copies of the metabolite-raising allele was lower than 

that expected under an additive genetic model. This could be accounted for by two explanations. One 
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explanation is that epistatic effects (i.e. interactions where the effects of a genetic variant are 

suppressed by another) may exist to suppress the metabolic effects of these variants. Another 

potential explanation is metabolic canalisation, whereby the effects of one gene are buffered by the 

effects of other genes with similar function or by alternative routes of metabolism193. However, these 

explanations would suggest a lack of phenotype resulting from these variants, an expectation that is 

countered in the case of the CPS1 variant rs1047891 (Chapter 4, Section 4.5.4.1.).  

4.6.3. Study Strengths and Limitations 

A strength of this study was the use of specific characteristics of variant-metabolite associations (such 

as the explanation of large proportions of variance in metabolite levels, association with extreme 

metabolite levels and display of non-additive genetic effects) to prioritise variants with the greatest 

likelihood of leading to potential downstream health effects. Another strength of this study was the 

access to individual-level data in a cohort of up to 10,581 participants. This enabled the development 

of a systematic definition for ‘extreme’ metabolite level thresholds that i) follows recommended 

guidelines to define extreme thresholds as being in the lowest or highest 2.5th percentiles of the 

population distribution88–90, and ii) can be used instead of reference ranges that are typically measured 

in children (as IEMs often manifest in early life191). The resulting analysis was both comprehensive and 

robust, enabling the assessment of multiple variants at scale and consistently identifying variants of 

interest. Indeed, 21 of the 51 variants that were either significantly associated with extreme 

metabolite levels or displayed non-additive effects were also associated with phenotypes that were 

similar to those observed in the corresponding IEM. These findings provide evidence to support 

further assessment of whether these metabolite levels could translate into observable health 

consequences in the general population.  

Despite the systematic and rigorous approach used, there were also some caveats to this study. One 

was that the proportions of variance in metabolite levels estimated do not account for environmental 

factors, which are also known to affect metabolite levels. This is especially true given that non-fasted 

plasma samples were used for metabolite measurement that systematically increase the effects of 

external factors such as diet on metabolite levels. This could lead to greater uncertainty in estimates 

of association between genetic variants and metabolite levels. Despite this, the similarity of metabolic 

consequences of genetic variants to those known to cause IEMs at the same gene, as well as detection 

of IEM-related phenotypic consequences for some of these variants, suggests that these associations 

are not wholly confounded by non-genetic factors.  

Another limitation is that the use of only one of the two cohorts analysed in the Metabolon mGWAS 

greatly reduced the power to detect effects for low-frequency and rare variants (MAF≤0.05). Despite 
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this, some of the strongest associations with extreme metabolite levels were observed for rare IFVs, 

in line with previous observations that rare variants exert larger effects than common ones. 

Furthermore, the rare IFVs detected in the Metabolon mGWAS were validated using sequencing data, 

suggesting that their presence, as well as their metabolic effects, are real. 

Finally, the metabolite levels used in this study were log-transformed and normalised by Metabolon. 

These measurements therefore do not represent raw measurements and cannot be used to infer 

potential clinical effects. Nevertheless, standardisation of metabolite levels was necessary to enable 

direct comparison across individuals and to define ‘extreme’ metabolite levels based on the 

population distribution. 

4.6.4. Conclusions 

This study showed that several of the tested IFVs have extreme and non-additive metabolic effects 

and are associated with clinical consequences in GWAS summary statistics. These findings necessitate 

systematic phenotypic characterisation across IFVs as well as assessment of the shared genetic signals 

between metabolic and phenotypic traits associated at the same locus. 
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CHAPTER 5: PHENOTYPIC EFFECTS OF COMMON ‘INBORN ERRORS’ 

OF METABOLISM 

5.1. Abstract 

Background IFVs have been shown to exert strong effects on metabolite levels in the general 

population and are associated with several complex traits and phenotypes in other studies. To 

systematically test whether IFVs are also associated with phenotypes similar to those seen in patients 

with the respective IEM, I developed a pipeline leveraging large-scale data repositories. 

 

Methods Published associations (p≤1x10-5) were obtained for loci harbouring IFVs and their proxies 

(R2≥0.8) from the publicly available databases GWAS Catalog, OpenGWAS, OpenTargets and 

PhenoScanner. This list was pruned to include phenotypes mapping to the respective symptoms of 

the IEM, as reported by the rare disease databases IEMBase, Orphanet and OMIM. Significant (p≤1x10-

5) phenotype associations in this list were then tested for evidence of a shared genetic signal with IEM-

related metabolite associations using statistical colocalisation. 

 

Results A total of 108 loci harbouring 132 IFVs were associated with 1,553 distinct phenotypes with 

system-wide effects ranging from cancer to neurological, cognitive and psychosocial outcomes. Of 

these, 45 loci had IEM-related phenotypic associations and were tested for evidence of a shared 

genetic signal. At 24 loci, metabolic and phenotypic traits had high posterior probabilities of a shared 

genetic signal (regional posterior probability ≥ 0.7, alignment posterior probability ≥ 0.7). One example 

was for a signal at DBH (rs6271 T/C, EAF=0.074) driving increased 3-methoxytyrosine and dopamine 

sulfate (2) levels and higher pulse rate (PPregional=0.97, PPalignment=0.97, >99% likely explained by rs6271), 

in line with effects on catecholamine biosynthesis and autonomic dysfunction seen in patients with 

orthostatic hypotension (OMIM #223360). 

 

Conclusion Variation at IEM genes can have metabolic and health consequences mimicking those 

caused by rare mutations at the same gene. This study identified genetic subgroups underlying 

complex traits and clinically manifest outcomes and highlighted metabolites as potential biomarkers 

in disease pathogenesis. 
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5.2. Background 

The identification of genetic variation at IEM genes with large effects on metabolites (Chapters 3 and 

4) gives rise to the question of whether these same variants contribute to complex traits and diseases 

in the general population. Understanding the phenotypic consequences of these variants may help to 

prioritise biomarkers along mechanistic pathways that aid the identification of subgroups among 

certain complex diseases, i.e. those which have a similar aetiology to the IEM phenotype, and hence 

tailor diagnosis and possibly treatment. 

The distinctive clinical presentations of IEMs could be used to estimate the complex phenotypes 

resulting from less severe genetic variation (Figure 1). Support for this approach is provided by a 

previous study, which showed that GWAS gene sets for complex traits are more likely to contain 

signals for phenotypically similar rare diseases than for phenotypically unmatched ones71. Mendelian 

loci have also been shown to be enriched for complex disease genome-wide association signals70. 

Indeed, several independent GWAS studies have identified examples where the metabolic and 

phenotypic consequences of common variants mimic those induced by rare, IEM-causing variants at 

the same gene (Table 1). These findings strengthen the rationale for using IEM knowledge as a 

framework to map IEM-affected metabolites to complex disease traits. 

 

 

 

 

 

Figure 1: Overview of the study aim. The aim of this study (highlighted in the red box) was to assess 
whether the strong metabolic effects of IFVs lead to clinical outcomes, and if so, to what extent they 
reflect symptoms observed in the corresponding IEM. 

Genome-wide association signals mapping to IEM genes are known to affect disease endpoints by 

disrupting intermediary metabolic pathways that are known to cause the toxic accumulation or 

deficiency of metabolites (Table 1). In the case of genes known to cause familial dyslipidemia, common 

variants at these genes are known to result in hyperlipidemia, which is a major risk factor of coronary 

artery disease211. Over time, these effects have been demonstrated as frequent and widespread 

enough to necessitate a family-targeted screening programme212,213. The efficacy of this intervention 

is further facilitated by the known mechanisms of action of these genes as well as the accessibility to 

statins and other cholesterol lowering medications. 
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To investigate the clinical consequences of more common variation at IEM genes, I leveraged the 

widespread availability of summary statistics across GWAS studies. Summary statistics have been 

made publicly available in databases and record billions of variant-phenotype associations across 

thousands of traits and diseases62,63,73,74. Different databases enable the systematic identification and 

assessment of robust findings as part of this ‘phenome-wide’ approach.  

The unprecedented wealth of available GWAS summary statistics enables the identification of 

phenotypic associations as well as their linkage to metabolites associated with the same variant. 

However, large sample sizes of GWASs increase the likelihood of observing a significant variant-

phenotype association at any given threshold by chance. This can increase the chance of coincidental 

overlap of genetic signals between metabolic and phenotypic traits, leading to the identification and 

interpretation of spurious variant-metabolite-phenotype associations. The importance of assessing 

the statistical likelihood of true ‘sharedness’ of a genetic signal is exemplified by findings from a 

phenotypic assessment of protein quantitative trait loci, where only 10% of the phenotype 

associations identified had an estimated posterior probability indicating that the queried variant was 

also the same signal for protein levels214. Testing for a shared genetic signal between two traits can be 

performed using statistical colocalisation methods. Colocalisation methods are usually implemented 

in a Bayesian framework to yield a posterior probability of whether the traits at a given locus are 

caused by a shared genetic signal or driven by two distinct signals for each trait within the region215. A 

recent extension of this method is colocalisation across more than two traits (‘multi-trait 

colocalisation’), which can identify multiple trait clusters that are driven by different causal variants in 

a region216,217. Colocalisation methods can also perform multi-trait fine-mapping to identify a 

candidate causal SNP that explains the largest proportion of posterior probability of 

colocalisation215,217.  

In this study, I performed phenome-wide assessment followed by multi-trait colocalisation to 

systematically test for shared genetic signals between IEM-affected metabolic and phenotypic traits 

across multiple loci. Findings from this research may help to identify genetic subgroups underlying 

complex disease outcomes and provide preliminary evidence to assess their clinical applicability.  



92 
 

Table 1: (Non-exhaustive) summary of examples where the metabolic and phenotypic consequences of common variants mimic those of rare, IEM-causing 
variants at the same gene. The associated metabolite is either directly related to disease development or reflects the underlying disease mechanism. DOE: 
Direction of Effect 

IEM 
gene 

IEM 
(OMIM#) 

Affected 
metabolites 

(DOE) 
IEM symptoms (DOE) 

Example of 
common 

variant (EA/OA, 
EAF) 

Link to IEM gene 
(Pubmed ID) 

Associated 
metabolites 

(DOE) (Pubmed 
ID) 

Associated 
complex 

traits/diseases 
(Pubmed ID) 

APOB 

Familial 
dyslipidemias 

(144010, 
615558) 

Cholesterol (+) 
Triglycerides (+) 

Hypercholesterolemia (+) 
Xanthomas (+) 

Coronary artery disease (+) 

rs934197 (A/G, 
0.33) 

*APOB is the closest 
gene to rs934197 and 

encodes 
apolipoprotein B 

which is involved in 
LDL cholesterol 
metabolism218. 

Cholesterol (+) 
(Metabolon 

mGWAS) 

Coronary artery 
disease (+)219 

HAL 
Histidinemia 

(235800) 

Histidine (+) 
Trans-

urocanate (-) 

No clinical presentation 
aside from elevated 

histidine levels, though 
trans-urocanate is thought 

to be involved in skin 
response to UV light220 

rs3213737 
(G/A, 0.48) 

rs3213737 was linked 
to the HAL gene based 
on annotation by the 
software SNiPA37,179.  

Trans-urocanate 
(+)37 

Skin cancer (-)37 

DBH 
Orthostatic 

hypotension 
(223360) 

Dopamine (+) 
Norepinephrine 

(-) 

DBH protein activity (-) 
Sympathetic noradrenergic 

function (-) 
Orthostatic hypotension (+) 

rs6271 (T/C, 
0.074) 

*The DBH gene 
encodes the enzyme 

dopamine beta 
hydroxylase, which 

converts dopamine to 
norepinephrine. 

Norepinephrine is the 
precursor for 

vanillylmandelate. 

Vanillylmandelate 
(-) (Metabolon 

mGWAS) 

Blood pressure 
(-)221 

*Annotation is based on likely causal gene annotation using the biochemical literature in the Metabolon mGWAS (Chapter 3, Section 3.4.3.8.). 
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5.3. Aim and Objectives 

The aim of this study was to systematically characterise the phenotypic consequences of IFVs. This 

was achieved through the following objectives: 

1. Perform a phenome-wide analysis of IFVs using summary statistics from UK Biobank, GWAS 

consortia and publicly available databases; and 

2. Test whether associations of IEM-related metabolites and phenotypes at a locus are driven by 

the same genetic signal and whether the IFV is the likely causal variant. 

5.4. Methods 

5.4.1. Studies and Measurements 

5.4.1.1. Metabolites 

Summary statistics for 182 metabolites were obtained from the Metabolon mGWAS (n=14,296) that 

was performed in the EPIC-Norfolk and INTERVAL cohorts. A description of these prospective cohorts, 

as well as protocols for metabolite measurement and processing and GWAS analysis, have been 

described previously in Chapter 3, Sections 3.4.1.-3.4.3.  

5.4.1.2. Phenotypes 

GWAS summary statistics taken from the UK Biobank and from other GWAS consortia were used in 

this study. The UK Biobank is a prospective population cohort of 500,000 participants with measured 

genetic and phenotypic data, as described previously67. Briefly, participants underwent interviews and 

filled in questionnaires pertaining to socio-demographic and lifestyle factors at baseline and 

undertook a physical check to take anthropometric measurements such as blood pressure, hand grip 

strength and cardiorespiratory fitness. Additional phenotypic measurements were taken at follow up, 

either during in-person health checks or by web-based questionnaires. Electronic medical records 

from the death and cancer registries, hospital inpatient data and primary care data were also linked 

to participants’ records. 

In this study, 29 other phenotypes measured in different cohorts were used. These measurements are 

listed in the Appendix Ch5_ST1. 

5.4.1.3. Access to GWAS summary statistics 

GWAS summary statistics for 128 phenotypes (82.3% continuous traits, 17.2% clinical outcomes) were 

taken from the latest release of UK Biobank from the UK Biobank website (http://www.nealelab.is/uk-

http://www.nealelab.is/uk-biobank
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biobank) and from the MRC IEU OpenGWAS database63, which harmonises GWAS summary statistics 

from UK Biobank and other GWAS consortia for rapid access in a high performance computing 

environment. In this study, the databases GWAS Catalog, PhenoScanner, OpenGWAS and 

OpenTargets were queried. A brief overview of these databases is provided in Table 2. 

Table 2: Overview of databases recording variant-phenotype associations reported in GWAS or 
population-based studies. 

 

UK Biobank is powered to assess continuous traits at scale. However, participants in the UK Biobank 

have a lower prevalence and incidence of disease compared to what is observed in the general 

population222, making this resource potentially underpowered to detect associations for disease 

outcomes or traits that are not easily measured in a large population cohort. Therefore, GWAS 

summary statistics for 29 phenotypes (79% continuous traits, 21% clinical outcomes) were also 

obtained from GWAS case-control studies using consortia websites and from the databases GWAS 

http://www.nealelab.is/uk-biobank
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Catalog and OpenGWAS. These phenotypes are listed in the Appendix Ch5_ST1, with further details 

of their measurement in comprising cohorts available in the references. The cohorts in which these 

phenotypes were measured were predominantly of European ancestry. 

5.4.2. Statistical Analysis 

5.4.2.1. Inclusions 

For this study, 187 IFVs not previously reported as pathogenic for the corresponding IEM in ClinVar 

(Chapter 3) were assessed as well as 24 IFVs identified in other GWASs that were identified using the 

same protocol described previously (Chapter 3, Section 3.4.3.8.). The 24 additional IFVs are 

summarised in the Appendix Ch5_ST2. 

5.4.2.2. Phenome-wide assessment 

The databases GWAS Catalog, PhenoScanner, OpenGWAS and OpenTargets were queried for 

phenotypic associations (significant p≤1x10-5) of the 187 IFVs and their proxies (R2≥0.8). Simultaneous 

query across these databases enabled comprehensive detection of associations that may only be 

present in one of these databases. Associated phenotypes recorded in the GWAS databases range 

from intermediate molecular phenotypes, such as ‘Eosinophil percentage of granulocytes’223, to self-

reported (e.g. ‘Self-reported: Asthma’) and clinically diagnosed (e.g. ‘Diagnoses - main ICD-10: I20 

Angina pectoris’) outcomes in UK Biobank67. All associations were aligned to the metabolite-raising 

effect allele of the corresponding IFV and the association with the strongest p-value was reported. 

To summarise the associations obtained across databases and assess their potential clinical relevance, 

associations with clinical outcomes or diseases that could be mapped to ICD-10 codes were reported 

separately from other phenotypes. Phenotypes that differed by small differences in description (e.g. 

‘Atherosclerosis’ and ‘Coronary atherosclerosis’), study design or data collection (e.g. ‘Self-reported: 

Asthma’ and ‘Diagnosed by doctor: Asthma’) were mapped to common terms to reduce redundancy 

(e.g. ‘Atherosclerosis’ and ‘Asthma’, respectively). Phenotypes were then assigned to categories that 

were developed on an ad hoc basis. This resulted in 15 categories: ‘Anthropometry’, ‘Medication’, 

‘Lifestyle’, ‘Bone’, ‘Hematological’, ‘Respiratory’, ‘Renal’, ‘Eye’, ‘Reproductive and urinary’, 

‘Gastrointestinal (GIT)’, ‘Inflammatory’, ‘Endocrine and Metabolism’, ‘Cancer’, ‘Cardiovascular’, 

‘Neurological, cognitive or behavioural’. An additional ‘Miscellaneous’ category was used for 31 

phenotypes that did not fall into the above categories, making a total of 16 categories.  

 

 



96 
 

5.4.2.3. Prioritisation of IEM-related phenotypes 

To assess whether IEM-related metabolic effects could lead to IEM-related health effects at the same 

genetic locus, associated phenotypes identified in phenome-wide analysis were pruned to include only 

IEM-related phenotypes. Phenotypes were assessed based on their phenotypic similarity with 

symptoms observed in patients with the IEM corresponding to the associated IFV, as reported in 

IEMBase162 and other relevant literature. Evidence supporting the prioritisation of phenotypes for 

variants at a given IEM gene was given for all prioritised phenotypes. Evidence statements for 

phenotypes that were followed up in colocalisation analysis are provided in Appendix Ch5_ST3. 

Some late-onset clinical outcomes such as cancer are unlikely to share symptoms with IEMs due to 

their complex clinical presentations, though this study provided an opportunity to investigate their 

underlying metabolic mechanisms. In the absence of similar clinical presentation, these outcomes 

were also prioritised if they had been associated with at least one corresponding IEM-affected 

metabolite. This step was only applied in exceptional cases to minimise the risk of detecting spurious 

associations and only ten associations prioritised using this method were tested for colocalisation 

(Appendix Ch5_ST3).  

5.4.2.4. Multi-trait colocalisation 

In the UK Biobank, GWAS summary statistics with fewer than 100 cases were excluded. Amongst the 

210 prioritised phenotypes, 62 for which summary statistics had i) fewer than 1,000 SNPs in the region 

of interest; ii) incomplete information on chromosome, position, effect allele, other allele, effect sizes, 

standard errors or p-values; iii) position coordinates not reported in The Genome Reference 

Consortium Human Build 37, or iv) primarily non-European ancestry, were excluded. A further six were 

excluded due to poor (e.g. ‘NET100 0056’, with no additional information in the corresponding 

publication) or non-specific (e.g. ‘Heart function tests’) phenotype descriptions. Phenotypes relating 

to measurements of levels of gene expression, metabolites or proteins were also excluded, leaving 

142 distal complex traits and disease outcomes with available and complete GWAS summary statistics 

for analysis. Each prioritised phenotype was represented by the largest GWAS study (number of cases 

for binary traits or total number of participants otherwise) with a significant association in the locus.  

Multi-trait colocalisation analysis (referred to hereafter as ‘colocalisation’), was performed to identify 

metabolic and phenotypic traits that share a common causal variant and to identify clusters of traits 

driven by the lead variant at the locus. I used the method HyPrColoc217, which iterates over scenarios 

of colocalisation using a Bayesian approach, using the R package ‘hyprcoloc’ (v1.0). Loci defined in the 
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Metabolon mGWAS study (Chapter 3, Section 3.4.3.4.) were used for IFVs; otherwise, 500Kbp regions 

surrounding the lead variant were used. 

HyPrColoc was run using the following settings: 1.) prior probability that a variant is associated with a 

single trait (prior1) = 1x10-4, and 2.) the prior probability that a variant is associated with one trait, 

given it is already associated with another (prior2) = 0.98. A regional threshold of 0.5 was used, 

denoting the prior probability that all traits share an association with one or more variants in the 

region. To estimate the prior probability that all traits align and share a single causal variant, regional 

and alignment prior probabilities of 0.5 were used. These settings, while less stringent than those 

recommended217, are compensated for by the high prior probability based on IEM knowledge. Cluster 

stability was assessed by using more stringent prior2 values (0.99, 0.999) and regional and alignment 

threshold values (0.6, 0.7, 0.8, 0.9). Only variants present in all included traits were considered for a 

given locus and any variants with a standard error of zero were removed. To provide HyPrColoc with 

sufficient information to assess colocalisation while allowing for the inclusion of multiple traits for 

testing, colocalisation was performed if there were more than 1,000 variants present across all 

included traits at the locus. For loci with fewer than 1,000 variants in a region after including all 

prioritised phenotypes, colocalisation was performed using only clinical outcomes and IEM-affected 

metabolites. Exceptions to this were as follows: 

• At the APOE locus, the clinical outcome ‘Myocardial infarction’ was also excluded to obtain 

≥1,000 variants in the region.  

• At the DDC locus, only associations for body fat measurements were present; therefore, the 

representative measures of ‘Comparative height at age 10’, ‘Height’, ‘Weight’ and ‘Body mass 

index’ were tested.  

If multiple signals were present on visual inspection of regional plots, colocalisation was repeated by 

focusing on two traits (one metabolite, one phenotype that was preferably a disease outcome) in the 

cluster and applying a ‘masking’ approach. Briefly, this approach identifies lead SNPs in the region, 

and for each lead SNP in turn, calculates the residual association of variants in LD while ignoring 

variants that are in LD with other lead SNPs224. Masking colocalisation was implemented using the R 

package ‘coloc’215 (v4.0-4), which calculates a posterior probability of colocalisation (PPcoloc), at which 

a threshold of 0.70 was considered strong evidence of colocalisation. At some loci (e.g. OPLAH – 

Chapter 5, Results 5.5.3.2.), colocalisation was first assessed using HyPrColoc and then on a narrowed 

region excluding other lead SNPs using coloc. 
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For practical implementation in colocalisation analysis, measurements that were continuous were 

specified as ‘continuous’ while phenotypes that were binary, categorical or ordinal were specified as 

‘binary’. 

Colocalising clusters were retained if they i.) contained both metabolite and phenotypic traits, where 

ii.) there was strong evidence of a signal in the region across traits (regional posterior probability 

(PPregional) ≥0.7)) and lead signals in the region were aligned (alignment posterior probability (PPalignment) 

≥0.7)). Novel, colocalising clusters were annotated based on novelty of the variant-to-phenotype 

association, metabolite-to-phenotype association, or on novel synthesis of the link between the IEM 

gene with the variant-metabolite-phenotype association. 

5.4.3. Annotation of Gene-drug and Variant-drug Interactions 

To determine the therapeutic potential of variants at IEM genes, IEM genes assigned to IFVs were 

annotated for druggability. At the variant level, variant-gene-drug annotations were downloaded from 

the database PharmGKB225 in March 2020. Downloaded annotations contained 6,971 variant-drug 

pairs reported in the literature (53% significant), as well as a ranked assessment of the evidence 

supporting clinical relevance. Evidence for clinical relevance was categorised as tier 1 (high: based on 

guidelines from the Clinical Pharmacogenetics Implementation Consortium or known clinical 

implementation), tier 2 (moderate: variant is in a (pharmaco)gene known to be associated with drug 

toxicity, metabolism, pharmacokinetics or efficacy), tier 3 (low: based on a single significant and 

unvalidated study, or annotation for a variant-drug combination evaluated in multiple studies but 

lacking clear evidence of association) and tier 4 (preliminary: based on a single case report, non-

significant study or in vitro, molecular or functional assay evidence only). 

Druggable genes, as defined by Finan et al. (2017)226, were also annotated in this study. Briefly, 

druggable genes were identified by their association with licensed first-in-class drugs from 2005, drug 

targets in late phase clinical development, pre-clinical phase small molecules with protein-binding 

measurements and genes that encode potential protein drug targets226. Based on these criteria, a total 

of 4,479 (22%) of roughly 20,300 protein-coding genes were estimated to be druggable226. 

All statistical analyses and graphics were performed and produced using R version 3.5.3.128 and STATA 

version 14.2129. 
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5.5. Results 

5.5.1. IFVs Are Associated With a Broad Range of Complex Phenotypes in the General 

Population 

Phenome-wide assessment identified 1,553 associations between 108 loci harbouring 132 IFVs and 

393 phenotypes (p≤1x10-5) (Figure 2A). Phenotypes spanned across 16 categories including ‘Lifestyle’ 

(16%), ‘Neurological, cognitive or behavioural’ (14%) and ‘Hematological’ (13%). When considering 

only clinical outcomes (i.e. phenotypes that could be mapped to a disease code from the International 

Classification of Diseases, 10th Revision (ICD-10)), 274 associations between 48 loci harbouring 75 IFVs 

and 87 clinical outcomes were found (Figure 2B). Associated clinical outcomes predominantly 

belonged to ‘Cardiovascular’ (23%), ‘Cancer’ (17%) and ‘Inflammatory’ (15%) categories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Summary of distinct, unique phenotypes associated with IFVs (p≤1x10-5) across GWAS 
databases. A.) All distinct traits and outcomes (n=393); B.) Subset of distinct clinical outcomes (n=87). 
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Of the 1,553 associations detected, 703 were identified as being reflective of symptoms observed in 

the corresponding implicated IEM (Figure 2). These prioritised associations represented 212 

phenotypes (28% clinical outcomes) at 54 IEM gene-linked loci (Figure 3; Appendix Ch5_Fig1). 

Of the 703 associations at 54 IEM gene-linked loci that were prioritised for colocalisation, 137 could 

not be tested either due to missing or unavailable GWAS summary statistics or to low SNP coverage 

in the region (number of variants < 1,000). This left 566 associations at 45 loci (containing 62 IFVs) for 

colocalisation analysis.  

 

 

Figure 3: Summary of IFV associations (p≤1x10-5) with 87 clinical outcomes. Filled in, coloured circles 
represent prioritised phenotypes while empty, grey circles represent associated but non-prioritised 
phenotypes. Strongest p-value associations for each distinct phenotype are shown.  

5.5.2. Colocalisation Analysis Validated Known Metabolic Contributions of Known IFVs to 

Complex Traits and Diseases 

At 24 of the 45 tested loci, colocalising clusters containing metabolites and phenotypes (PPregional≥0.7, 

PPalignment≥0.7) were detected. All 25 clusters detected at these loci were expected based on IEM 

knowledge and included 11 clusters at 11 loci that were novel. Amongst the 24 loci were seven that 

contained nine of 51 IFVs previously identified as having large and/or non-additive effects on 
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metabolite levels (Chapter 4, Section 4.5.4). Of the nine IFVs at the seven loci, four (the OPLAH variant 

rs3935209, the CPS1 variant rs1047891, the APOE/APOC2 variant rs7412 and the PCSK9 variant 

rs11591147) were identified as the candidate causal variant driving signals at the locus, either directly 

or by a proxy variant (R2>0.8). 

Novel examples of interest at the DBH, TH, OPLAH and ARG1 loci are covered in subsequent sub-

sections, and other novel examples are briefly summarised in Appendix Ch5_ST4. 

5.5.2.1. Variation across two IEM gene-linked loci implicated dopamine metabolism in blood 

pressure regulation 

The DBH gene converts dopamine to norepinephrine and regulates sympathetic noradrenergic 

function227. Rare mutations at the DBH gene are known to cause blood pressure dysregulation, 

resulting in dizziness upon standing (‘orthostatic hypotension’) (OMIM #223360)227. In this study, I 

found that the T-allele of the DBH variant rs6271 (EAF=0.074) was the shared signal between 

decreased levels of a downstream catecholamine, vanillylmandelate (beta±SE: -0.16±0.023, p=8x10-

13) and decreased self-report of hypertension in 462,933 participants in UK Biobank63 (beta±SE: -

0.013±0.0017, p=1x10-14), amongst other blood pressure and blood pressure-related phenotypes 

(Figure 4, Appendix Ch5_ST3-ST4). Strong evidence of colocalisation was detected for these 

phenotypes (PPregional=0.97, PPalignment=0.97), with the variant rs6271 predicted to explain >99% of the 

colocalisation probability. 

The role of dopamine and catecholamine metabolism in autonomic function was supported by 

another identified example at the tyrosine hydroxylase (TH) locus. The TH gene encodes an enzyme 

that lies upstream of the DBH gene and catalyses the rate-limiting step of converting tyrosine to 

levodopa (DOPA), which in turn is converted by other enzymes into other catecholamines228. Rare 

mutations in the gene can lead to the IEM Segawa syndrome (OMIM #605407); in severe cases, 

autonomic dysfunction (symptoms of which include orthostatic hypotension, dysregulation of pulse 

rate and sweating abnormalities) may occur229. Hypotonia, which decreases muscle tone, is also 

observed in less severe cases of Segawa syndrome229.  

In this study, the A-allele of the TH variant rs10840516 (EAF=0.24) was significantly associated with 

increases in levels of the catecholamines 3-methoxytyrosine (beta±SE: 0.18±0.014, p=4.8x10-36) and 

dopamine sulfate (2) (beta±SE: 0.094±0.014, p=2.4x10-11) and with increased pulse rate measured in 

436,424 participants in UK Biobank63 (beta±SE: 0.012±0.025, p=1.1x10-6), reflecting autonomic 

dysfunction in the more severe form of Segawa syndrome (Figure 4A). Colocalisation analysis showed 

that levels of 3-methoxytyrosine and dopamine sulfate (2) shared a genetic signal with pulse rate in 
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the region (PPregional>0.99, PPalignment=0.79). A variant in high R2 with rs10840516, rs11564705 

(MAF=0.24, R2=0.98), was predicted to explain 36% of the colocalisation probability. The variant 

rs10840516 was also significantly associated with measures of muscle mass in UK Biobank (Appendix 

Ch5_ST3), reflecting symptoms of hypotonia observed in Segawa syndrome. However, these 

phenotypes did not colocalise with catecholamine levels and were driven by a variant independently 

of rs10840516 (rs35506085, MAF=0.19, R2=-0.10) (Appendix Ch5_ST4). 

 

Figure 4: Comparison of metabolic and phenotypic consequences caused by rare mutations and 
more common variants at the DBH and TH loci. A) Summary of the metabolic and phenotypic 
consequences of the DBH variant rs6271 (EAF=0.074) and the TH variant rs10840516 (EAF=0.24). 
Arrows representing observed directions of effect are colour-coded based on metabolic and 
phenotypic consequences specifically related to orthostatic hypotension (OMIM #233360) or Segawa 
syndrome (OMIM #605407). Metabolites that are underlined were measured in the Metabolon 
mGWAS, while those not underlined were not detected. B) Stacked regional plots demonstrating 
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alignment of select metabolites and blood pressure and blood pressure-related phenotypes at the 
DBH locus.  

5.5.2.2. The OPLAH locus suggests that homeostasis of 5-oxoproline levels is linked to cognitive 

performance 

The 5-oxoprolinase (OPLAH) gene encodes an enzyme that converts 5-oxoproline (also known as 

pyroglutamate) to L-glutamate230. Mutations at the OPLAH gene can cause 5-oxoprolinase deficiency 

(OMIM #260005), which is characterised by toxic accumulation of 5-oxoproline levels. Elevated 5-

oxoproline levels are thought to induce oxidative stress in the cerebral cortex and inhibit synaptic cleft 

transmission, leading to psychomotor and mental retardation as well as vomiting and nausea231,232. 

In the Metabolon mGWAS, the G-allele of the OPLAH variant rs3935209 (EAF=0.082) was associated 

with decreased levels of 5-oxoproline (beta±SE: -0.36±0.022, p=6.6x10-63), increased levels of the 

downstream metabolite 6-oxopiperidine-2-carboxylic acid (beta±SE: 0.50±0.022, p=8.1x10-116) and 

with decreased cognitive performance (beta±SE: -0.024±0.0053, p=5.4x10-6)233 and performance in 

intelligence tests (beta±SE: -0.021±0.0047, p=1.0x10-5)234. Cognitive performance and performance in 

intelligence tests could reflect symptoms of mental retardation234 in 5-oxoprolinase deficiency (Figure 

5A). The directions of effect observed in this study contrasted with those expected from IEM 

knowledge, suggesting that homeostasis, rather than direct levels of 5-oxoproline, is important. 

Specifically, toxic accumulation of 5-oxoproline levels observed in 5-oxoprolinase deficiency and other 

IEMs (e.g. glutathione synthetase deficiency (OMIM #266130)) has been shown to cause oxidative 

stress and impair neurological function235,236. Conversely, low levels of 5-oxoproline have been 

observed in individuals with age-related cognitive decline and impairment237,238, indicating that 5-

oxoproline is involved in maintaining neurological function. 

Despite the regional plot strongly indicating a shared causal signal across all traits (Figure 5B), 

HyPrColoc identified two colocalising clusters due to a second lead signal in the region for cognitive 

performance and intelligence at rs2721173 (R2=0.033 with rs3935209). To account for multiple signals 

in the region, I focused on the traits ‘Cognitive performance’ and ‘5-oxoproline’ and used a ‘masking’ 

approach224 that assumes all lead SNPs are in linkage equilibrium (Chapter 5, Methods 5.4.3.). This 

approach did not identify evidence for colocalisation (PPcoloc=0.039). However, narrowing the region 

to exclude rs2721173, as well as the region depleted of SNPs (Figure 5B), identified strong evidence 

of rs3935209 as the candidate causal SNP in HyPrColoc (PPregional=0.95, PPalignment=0.90, PPexplained>0.99) 

and in the masking approach (PPcoloc=0.87). By contrast, narrowing the region to include only 

rs2721173 led HyPrColoc to detect two independent signals, one driving metabolite levels and another 

driving phenotypes. 
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While cognitive performance is a broad phenotype that is affected by genetic as well as environmental 

factors, the results of this study are supported by a Mendelian randomisation study that demonstrates 

a positive, causal effect of 5-oxoproline levels on performance in intelligence tests239. These results 

would benefit from further validation, as plasma levels of 5-oxoproline are also reflective of dietary 

and drug intake240,241 and may not reflect 5-oxoproline levels in cerebrospinal fluid that are elevated 

in OPLAH deficiency. 

 

Figure 5: Comparison of metabolic and phenotypic consequences caused by rare mutations and 
more common variants at the OPLAH locus. A) Summary of the metabolic and phenotypic 
consequences of the OPLAH variant rs3935209 (EAF=0.082). Levels of 5-oxoproline are thought to 
directly impact both IEM and complex trait phenotypes through reduced synaptic cleft transmission 
and impaired synthesis of essential lipids in the brain. The variant rs3935209 was also associated with 
increased levels of 6-oxopiperidine-2-carboxylic acid, which corroborates the direction of association 
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as a downstream metabolite of 5-oxoproline. B) Stacked regional plots demonstrating alignment of 
metabolites and phenotypes at the OPLAH locus. 

5.5.2.3. A novel polymorphism at the ARG1 locus links arginine levels with type 2 diabetes risk 

The arginase (ARG1) gene encodes an enzyme that catalyses the conversion of arginine to ornithine 

in the final step of the urea cycle242. ARG1 mutations can cause argininemia (OMIM #207800), which 

is characterised by high arginine levels that result in feeding difficulties, seizures, spastic paraplegia 

and severe mental retardation243,244. In the Metabolon mGWAS, an ARG1 variant, rs71753454, was 

detected at which the insertion allele (EAF=0.22) was significantly associated with an increase in 

arginine levels (beta±SE: 0085±0.014, p=2.97x10-9) and with 12 body fat composition measures (one 

of which is shown in Figure 6B), which could reflect changes in body fat composition resulting from 

feeding difficulties in ARG1 deficiency (Appendix Ch5_ST3). The ARG1 variant rs71753454 was also 

associated with an increase in type 2 diabetes risk (aligned association for proxy variant rs3756784 

(R2=0.82), beta±SE: 0.051±0.01, p=2.6x10-8)245, which could be a long-term consequence of altered 

body fat composition. 

At the ARG1 locus, strong colocalisation between arginine levels, type 2 diabetes and other body fat 

composition phenotypes was observed (PPregional>0.99, PPalignment=0.95) (Figure 6B; Appendix 

Ch5_ST4). Sensitivity analysis demonstrated that arginine and type 2 diabetes colocalised across all 

tested configurations in a highly stable cluster. At this locus, the variant rs2781668 (MAF=0.17), which 

is in moderate LD with rs71753454 (R2=0.6), was highlighted as the candidate causal variant 

(PPexplained=0.94). The direction of association observed at this locus contrasts with that reported in 

observational studies, which suggest that arginine supplementation can reduce the risk of type 2 

diabetes by improving glucose clearance and reducing oxidative stress246–249. This discrepancy suggests 

that a) arginine levels are driven by genetic and environmental factors, and b) the effects of 

rs71753454 on arginine levels and type 2 diabetes may be locus-specific. 
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Figure 6: Comparison of metabolic and phenotypic consequences caused by rare mutations and 
more common variants at the ARG1 locus. A) Summary of the metabolic and phenotypic associations 
of the ARG1 variant rs71753454 (EAF=0.22). B) Stacked regional plots demonstrating alignment of 
arginine, type 2 diabetes and trunk fat mass (representative of other body fat composition 
phenotypes) at the ARG1 locus. The candidate causal variant rs2781668 (MAF=0.17), which is in 
moderate LD with the IEM metabolite-associated variant rs71753454 (R2=0.6), is labelled. Variant 
rs71753454 is not present in the dataset. 
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5.5.3. Variant-drug and Gene-drug Annotations of IFVs and Their Mapped IEM Genes 

In PharmGKB, eleven IFVs at the CTH, DPYD, UGT1A1, SLCO1B1/SLCO1B3, APOC1, APOE and MTHFR 

genes were associated with drug responses in PharmGKB. Drug responses primarily represented 

toxicity responses to warfarin, statins and agents such as mycophenolate mofetil (Appendix Ch5_ST5). 

Of the 11 variants with detailed drug annotations, only three (SLCO1B1/SLCO1B3 variant rs4149056 

with simvastatin and DPYD variants rs3918290 and rs67376798 with toxicity of capecitabine, 

fluorouracil and pyrimidine analogues, which are used to treat neoplasms) were annotated in medical 

society-endorsed guidelines (PharmGKB tier 1) and one (the variant rs7412) which was located at a 

known, important, pharmacogene APOE2 (PharmGKB tier 2) (Appendix Ch5_ST5). The rest were 

associated in lab-based assays or unreplicated studies (PharmGKB tiers 3 and 4) (Appendix Ch5_ST5). 

A total of 56 of 103 IEM genes (containing 111 of 211 assessed IFVs) were classified as druggable 

according to Finan et al. (2017)226 (Table 3).  

Table 3: Druggable IEM genes assigned to loci with metabolite-phenotype clusters specific for the 
relevant IEM. Categories as defined according to Finan et al. (2017)226. 

Nature of drug-gene association Number of IEM genes 

Tier 1: Gene encodes an efficacy target of approved small molecules, 

biotherapeutic drugs and clinical phase drug candidates 
28 

Tier 2: Gene encodes targets with known bioactive drug-like small 

molecule binding partners, including those with ≥50% identity (over 

≥75% of the sequence) 

14 

Tier 3: Gene encodes members of key druggable gene families not 

already included in Tiers 1 or 2 or demonstrate some similarity with 

approved drug targets 

14 

 

5.6. Discussion 

5.6.1. Summary of findings 

A phenome-wide approach was used to systematically characterise the phenotypic associations of 

IFVs. Careful and systematic comparison of the phenotypes with each IFV showed that 212 of the 393 

(54%) complex traits and disease outcomes were related to one or more manifest symptoms of the 

corresponding IEMs and prioritised. Colocalisation analysis, which was performed on IEM-related 

metabolite and phenotype associations, detected shared genetic signals for clusters of these traits at 

24 of the 45 assessed loci. This systematic, data-driven approach successfully demonstrated the proof-

of-principle that common variation at IEM genes contributes to phenotypic consequences in the 

general population and identified genetic subgroups affecting complex metabolic diseases. 
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At some loci, genetic influences on metabolite levels were found be large enough to cause inter-

individual differences in drug response. Using the PharmGKB database, 11 of the 187 IFVs at seven 

IEM genes were reportedly associated with differential efficacy or toxicity responses to drugs that 

treat several conditions. A total of 56 of the 103 IEM genes harbouring IFVs were encoded enzymes 

or solute transporters that could be targetable by drugs, highlighting metabolic pathways that could 

potentially be assessed in drug safety evaluations. 

5.6.2. Novelty of findings 

Previous studies have identified select examples of variants at IEM genes with IEM-related metabolic 

and phenotypic consequences19,21,37,46,250, and one study21 has used a similar approach to that 

described in this Chapter. However, none of these prior studies have achieved the same extent of 

systematic characterisation across variants at IEM genes as this study has. One key characteristic that 

determined the success of the approach highlighted in this study was the integration of GWAS 

summary statistics from case-control studies. Many of the GWAS summary statistics are derived from 

the population-based UK Biobank cohort. Although this cohort has a large sample size, it is over-

representative of healthy volunteers222, and thus the prevalence and incidence of diseases in the UK 

Biobank are lower than those observed in the general population. The inclusion of summary statistics 

from better powered case-control studies of disease outcomes therefore maximises the detection of 

phenotypic associations. The inclusion of results from a mGWAS that used untargeted metabolomic 

profiling also enabled the detection of additional variant-metabolite associations and increased the 

number of IFVs and associated metabolic pathways identified for downstream analysis. As a result, 

this approach successfully identified independent loci, such as the TH and DBH loci, that linked the 

same metabolic pathway to the same phenotypic outcomes.  

In Chapter 4, I identified 51 IFVs with large metabolic effects, yet only four of these IFVs were 

identified in this chapter as candidate causal signals for metabolic and phenotypic associations within 

the locus. This could be due to biological reasons such as the mode of inheritance; IEMs are usually 

inherited in an autosomal recessive manner251,252, therefore, carriers of common variants at IEM genes 

may not have observable phenotypic effects. This could also lead to a ‘threshold’ effect, where 

metabolite levels have undetectable phenotypes within a physiologically normal range and a ‘full’ 

phenotype beyond that range. While some metabolites are thought to have linear effects on traits 

(e.g. LDL cholesterol with blood pressure253), threshold effects have also been observed in other cases 

(e.g. iron levels on hepatic inflammation254). Lack of observable phenotype could also be due to 

metabolic canalisation, where potentially deleterious metabolic perturbations are buffered by the 

effects of other genes with similar function or by alternative routes of metabolism193. 
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The effects of drugs on metabolic pathways linked to IFVs indicated common pathways of drug 

metabolism and excretion rather than phenotypic effects relating to those seen in the corresponding 

IEM. In this study, drug response annotations were identified for 11 of the IFVs, four of which were 

annotated in medical society-endorsed guidelines or had moderate evidence for association 

(Appendix Ch5_ST5). In this study, I also used a literature and database-curated set of ‘druggable 

genes’226 to identify 56 IEM genes encoding proteins that can or have been used as drug targets. This 

preliminary evidence suggested that the metabolic effects of these IFVs were large enough to affect 

the efficacy or toxicity of drugs, which was expected since IEM knowledge facilitates the development 

and study of drugs that target affected metabolic pathways. Additional evidence would be required 

to validate these associations and test the importance of IFVs in predicting drug response for 

pharmacogenetic screening.  

5.6.3. Study strengths and limitations 

A primary strength of this study was the data-driven approach used that consisted of many elements 

contributing to its success: a) phenome-wide assessment, which used multiple databases to 

systematically incorporate findings from UK Biobank and other GWAS consortia and thus maximise 

the number of phenotypic associations detected; b) the use of IEM knowledge to select phenotypes 

that were likely to share a genetic signal with IEM-related metabolites, increasing the study’s power 

to detect biologically relevant associations, and c) colocalisation analysis, which was used to account 

for potential secondary signals in a given genetic region. The systematic nature of the approach also 

enabled the detection of loci that independently implicated the same genetic, metabolic, and 

phenotypic traits (e.g. the DBH and TH loci), increasing confidence in the accuracy of the findings and 

of the study approach. 

Another strength is that the current study approach leverages data that is publicly available (excepting 

GWAS metabolite summary statistics taken from the Metabolon mGWAS, though this data is in 

preparation for publication and other summary statistics for metabolite levels also exist). Therefore, 

this approach can be adapted to fit broader research purposes. For example, the prioritisation of 

phenotypes based on previously demonstrated metabolite-phenotype links instead of on IEM 

knowledge enabled the detection of unanticipated variant-metabolite-phenotype links. 

Another strength of this study is the flexibility of the approach used to phenotypically characterise 

genetic variants. For example, genes known to cause rare, Mendelian disorders not classified as IEMs 

have also been shown to be enriched in GWAS loci for complex traits and diseases70,71. Although the 

phenotypic consequences of rare mutations are also well described for these diseases, the metabolic 

mechanisms underpinning them are less well known. This gap in knowledge could also benefit from 
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the application of the current study’s approach. The molecular mechanisms underlying detected 

variant-phenotype associataions could be investigated by also including GWASs of gene expression 

and epigenetic data that are reported in many of the GWAS databases used in this study (Table 2). 

This study also had some limitations. One was the inability to characterise phenotypic associations for 

low-frequency and rare IFVs. These variants were detected using advanced genotyping and imputation 

methods in the Metabolon mGWAS and validated using sequencing data. Yet despite these efforts, 

phenotypic characterisation of these variants was limited by GWASs of complex traits and diseases, 

many of which were performed using older genotyping and imputation methods and therefore limited 

in terms of variant coverage.  

In this study, I maximised the robustness of colocalisation results by only including summary statistics 

from GWASs of large sample size that had high-quality genotyping within the assessed region and by 

performing sensitivity analyses. Despite these rigorous efforts, the results of coloc and HyPrColoc 

algorithms may still have been affected by factors such as small cohort sample size, SNP density, LD 

structure, and the presence of multiple causal variants in the region, especially when these variants 

explained similar proportions of trait variation215,217. Colocalisation using conditional summary 

statistics may help to identify additional colocalising signals at these loci, though current methods to 

achieve this are either time-consuming, require full genome-wide summary statistics (which are not 

accessible from databases like OpenGWAS63,255), or are undergoing refinement224. 

Systematic integration of GWAS summary statistics detected 1,553 associations for consideration, yet 

only half of these were prioritised for colocalisation. Phenotype prioritisation was necessary to reduce 

the number of traits considered in colocalisation analysis and increase the power to detect biologically 

relevant variant-metabolite-phenotype associations, but at the cost of missing less obvious yet 

biologically relevant associations. A previous study has shown that in some cases, genes may cause 

rare and common diseases that are phenotypically dissimilar71, which could speak to an incomplete 

understanding of rare disease biology. In the future, the use of improved genotyping methods in 

GWASs of complex phenotypes and refinement of colocalisation methods to handle multiple causal 

signals within a region could enable assessment of these associations as well. 

The use of IEM knowledge and systematic assessment of shared genetic signals across loci increased 

confidence in the results of this study, as evidenced by the corroboration of findings at the OPLAH 

locus239 and by variant-metabolite-phenotype links implicated by independent loci. Yet despite the 

high degree of confidence in the findings based on IEM knowledge, colocalising trait clusters only 

provided evidence of a shared genetic signal, but not of a causal relationship between metabolite 

levels and complex phenotypes. This was well illustrated by the DBH example: although 
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vanillylmandelate levels colocalised with hypertension in the current study, it is more likely that 

vanillylmandelate is a biomarker of DBH protein activity, the loss of function which causes orthostatic 

hypotension, rather than the causal metabolite (Dr. Eric Fauman, personal comms.). In recent years, 

Mendelian randomisation (MR) has become a popular method for assessing causality between an 

exposure and an outcome variable of interest256,257. MR uses independent genetic variants that are 

associated with both the exposure and outcome as instrumental variables to test whether a 

genetically-predicted increase in the exposure significantly affects the outcome. Recent efforts have 

made it possible to perform MR using GWAS summary statistics40,239,255, making it a feasible approach 

to test for causal relationships at loci where colocalising metabolite-phenotype clusters were 

detected.  

5.6.4. Conclusions 

This study presented a rigorous approach that utilised large-scale GWAS summary statistics and IEM 

knowledge to show that the metabolic effects of common variants at IEM genes can translate into 

similar health effects as those seen in patients with the corresponding IEM. The approach outlined 

here can be extended and adapted to assess the metabolic and phenotypic effects of variants at genes 

known to cause other rare, Mendelian disorders to enable further identification of genetic subgroups 

of complex disease. 
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CHAPTER 6: IEM FAMILIAR VARIANTS AND THEIR ASSOCIATION 

WITH IEM-RELATED DISEASE PROFILES 

6.1. Abstract 

Background Mendelian disorder-related symptoms combined into a disorder-specific score 

(‘phenotypic risk score’, or ‘PheRS’) have been used to identify rare variant effects in a hospital patient 

cohort with whole exome sequencing data. The aim of this chapter was to assess the utility of PheRSs 

in a healthy volunteer cohort setting and test for association of IFVs with IEM-specific disease profiles. 

Methods Genotypic and electronic health record data from 351,987 European, unrelated participants 

in the UK Biobank cohort were used. PheRSs were constructed for each participant by summing the 

observed number of disease-related symptoms, each weighted inversely by their frequency in the 

cohort. Carriers of IFVs were then compared with homozygous non-carriers for association with a high 

corresponding rare disease PheRS value (defined as a score above the median PheRS value or above 

the 95th percentile). Associations reaching significance (FDR≤0.05) using both PheRS definitions were 

prioritised for downstream assessment. Genetically-predicted levels of 50 IEM-related metabolites 

linked to PheRS-associated IFVs were also tested for association with the corresponding high PheRS 

using logistic regression. The contribution of the IFV to the corresponding metabolite-PheRS 

association was also assessed by the IFV’s inclusion or exclusion in the genetic risk score. Models were 

adjusted for age, sex and the first ten principal components of genetic ancestry. 

Results Nine variants at seven IEM genes were associated with high PheRS for nine rare diseases 

(FDR≤0.05), replicating known associations for variants at genes known to cause familial forms of 

dyslipidemias, Alzheimer’s disease and hyperbilirubinemias. Genetically-predicted levels for IEM-

related metabolites were significantly associated with high PheRS in 125 of 167 tested cases 

(Bonferroni-corrected p≤3x10-4). The UGT1A1 variant rs1976391 was solely responsible for the 

association between genetically-predicted levels of bilirubin and bilirubin derivatives with high PheRSs 

for ‘Crigler-Najjar syndrome, type I’ and ‘Gilbert syndrome’ that are characterised by 

hyperbilirubinemia and jaundice. 

Conclusion This study shows that PheRSs can be used to replicate known variant-PheRS associations 

and highlight specific variant effects on IEM-related disease profiles. PheRS application in population 

cohorts with higher incidences of rare disease may enable the additional identification of novel variant 

associations. 
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6.2. Background 

Integration of untargeted metabolomic profiling and GWAS summary statistics with IEM knowledge 

in Chapter 5 showed that in some cases, variants at IEM genes may exert metabolic and phenotypic 

consequences mimicking those caused by rare, IEM-causing variants. Yet despite highlighting novel 

insights into the potential phenotypic consequences of variants at IEM genes, this framework cannot 

be used to test whether variation at IEM genes may lead to the increased incidence of phenotypes 

that together represent the clinical presentation of an IEM.  

In a previous study77, researchers developed a method that combines the observed incidence of 

multiple phenotypes relating to a rare disease into a summary score. These rare disease-specific 

‘phenotype risk scores’ (PheRSs) were then applied in the BioVU258 (hospital-based) cohort to detect 

the effects of rare variants at genes known to cause those rare diseases. 

PheRS methodology presents a novel approach by which the effects of IFVs on disease profiles can be 

studied. This approach, which relies on disease codes, can now be adopted in population cohorts with 

electronic health record (EHR) data using published mappings across different disease code systems. 

To date, disease mappings have been developed for the Human Phenotype Ontology (HPO)259, which 

contains terms to describe rare diseases and rare disease symptoms, the International Classification 

of Diseases version 10 (ICD-10) codes, which is used to assign billing codes in hospitals, and iii) 

phecodes, which were created by aggregating ICD-9 codes72 and have been shown to describe clinical 

phenotypes more accurately for research purposes compared to codes from other systems260.  

Here, I tested for effects of IFVs and genetically-predicted levels of corresponding IEM-related 

metabolites on IEM-related disease profiles in the UK Biobank67. The use of PheRSs in a population-

based cohort with genotypic and phenotypic data enables large-scale assessment of variant effects on 

disease profiles mimicking those observed in the corresponding IEM or rare disease. 

6.3. Aim and Objectives 

In this study, the PheRS approach was applied as a complementary method to the bespoke framework 

with the aim of systematically estimating the effects of IFVs on IEM-related disease profiles. The 

objectives of this study were to: 

1. Estimate the association of IFVs with PheRSs for linked IEMs or rare diseases reported in 

Orphanet and OMIM; 

2. Test whether the IEM-related metabolic effects of IFVs confer additional risk, beyond a 

polygenic background, of having a high PheRS for the corresponding IEM.  
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6.4. Methods 

6.4.1. Study Design and Participants 

The UK Biobank67 is a prospective cohort of 500,000 participants aged between 40 and 69 years who 

were recruited between the years 2006-2010. Recruitment was performed at 22 assessment centres 

that were designed for the purpose and located across the United Kingdom261. Participants provided 

electronic signed consent at recruitment and ethics approval for the UK Biobank study was obtained 

from the North West Centre for Research Ethics Committee (11/NW/0382). 

6.4.2. Measurements and Exclusions 

6.4.2.1. Genetic profiling 

Genetic profiling conducted in the UK Biobank has been described previously67. Briefly, blood samples 

were collected from participants at recruitment, and DNA was extracted within 18 months of 

collection. Samples were then genotyped using the Affymetrix GeneTitan Multi-Channel Instrument 

and genotypes were called from the array intensity data. Poor quality markers that were affected by 

batch effects, plate effects, departures from Hardy-Weinberg equilibrium, sex effects, array effects 

and discordance across control replicates were set to missing in the measurement batch. If there was 

evidence that a marker was not reliable across batches, genotype calls were excluded from data 

altogether. Genotypes of all 500,000 samples were imputed to the Haplotype Reference 

Consortium109 reference panel using an updated version of IMPUTE267,262.  

6.4.2.2. Electronic health record data 

EHR data containing disease codes from the International Classification of Diseases version 10 (ICD-

10) from the UK Biobank cohort were used. This data comprises of disease codes from the death 

registry, cancer registry and hospital inpatient episodes data across the UK (Table 1). ICD-10 codes are 

coded with an alphabetical character followed by digits, with longer strings of following digits 

corresponding to increasing specificity of the phenotype. For example, the ICD-10 code ‘E78.0’ 

corresponds to ‘Pure hypercholesterolemia’ while ‘E78.01’ corresponds to the more specific 

‘Hypertriglyceridemia, Familial’. In UK Biobank, ICD-10 codes are specified to three digits (e.g. ‘E78.0’).  
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Table 1: Types of linked electronic health records in UK Biobank263.  

Type of data 
External 
provider 

Region Period of data available 

Deaths 
HSCIC  

ISD 
England and Wales 

Scotland 
April 2006 onwards 

Cancer 
registrations 

HSCIC 
ISD 

England and Wales 
Scotland 

Since inception – 1980s 
Since inception – 1950s 

Hospital 
inpatient 
episodes 

HES (HSCIC) 
PEDW (SAIL) 

SMR 

England 
Wales 

Scotland 

Since inception – 1997 
Since inception – 1999 
Since inception – 1981 

HES: Hospital Episode Statistics; HSCIC: Health and Social Care Information Centre; ISD: Information 
Services Department; PEDW: Patient Episode Data for Wales; SAIL: Secure Anonymised Information 
Linkage; SMR: Scottish Morbidity Records 

6.4.2.3. Identification of ICD-10 codes corresponding to IEMs 

ICD-10 codes for IEMs linked to significant variant-PheRS associations were identified using the rare 

disease database Orphanet181. In cases where Orphanet did not have a code or provided a more 

specific code than that available in UK Biobank, an approximate ICD-10 code was identified in OMIM173 

or using the website ‘www.icd10data.com’. For example, ‘Hypertriglyceridemia, Familial’ was coded 

as ‘E78.01’ in Orphanet, but due to UK Biobank only specifying ICD-10 codes to three digits was instead 

approximated as ‘E78.0’ (‘Pure hypercholesterolemia’). No ICD-10 code was found for 

‘Hyperlipoproteinemia, Type V’ amongst sources; therefore, the ICD-10 code ‘E78.5’ (‘Hyperlipidemia, 

unspecified’) was approximated.  

6.4.2.4. Exclusions 

Of 486,954 UK Biobank participants in the dataset, 134,937 that were non-European or related 

individuals were excluded. An additional 30 participants that subsequently withdrew from the study 

were excluded, leaving 351,987 participants for analysis.  

For this study, 187 IFVs not previously reported as pathogenic for the corresponding IEM in ClinVar 

(Chapter 3) were assessed as well as 24 IFVs identified in other GWASs that were identified using the 

same protocol described previously (Chapter 3, Section 3.4.3.8.). The 24 additional IFVs are 

summarised in the Appendix Ch5_ST2. 

6.4.2.5. Construction of PheRSs 

The HPO database (https://hpo.jax.org/app/, last accessed August 12, 2020) was used to identify HPO 

terms that describe the IEMs and rare diseases linked to 124 IEM genes that harboured IFVs. The HPO 

database is linked to disease IDs recorded in the rare disease databases Orphanet181 and OMIM173 and 

may thus contain multiple disease IDs for the same rare disease, which increases the multiple testing 

burden. To minimise the multiple testing burden, I queried the HPO database for Orphanet IDs 

https://hpo.jax.org/app/
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corresponding to IEMs and rare diseases, and in the absence of results for the Orphanet ID queried 

the corresponding OMIM ID instead. HPO terms and individually diagnosed ICD-10 codes in UK 

Biobank corresponding to the disease IDs detected were then converted into phecodes using 

previously published disease code mappings77,264 to generate PheRSs. 

PheRS generation was performed as previously described77 in UK Biobank. Briefly, a PheRS is a 

summary measure of all disease codes that are related to an IEM or rare disease and are observed in 

an individual77. Disease codes frequently observed in the population are less likely to be specific to 

one disease; therefore, each code was weighted by the log-inverse of its observed frequency in the 

population (Figure 1A). Weighted disease codes were then summed to give the PheRS of an individual 

(Figure 1B). Diseases which had fewer than three describing phecodes present in at least one 

participant in UK Biobank, or for which less than half of all descriptive HPO terms could be translated 

into phecodes observed in UK Biobank, were excluded. 

  

 

 

 

Figure 1: Summary of PheRS generation for a specific IEM or rare disease. A.) The weight of a 
phenotype, wp, is the log of the phenotype’s observed frequency in the population of N individuals 
divided by the number of individuals with phenotype p, np. B.) For an individual i, the PheRS for an 
IEM or rare disease, as defined by m phecodes, is calculated as the sum of the observed weighted 
phecodes. Equations are taken from the original publication77. 

6.4.3. Statistical Analysis 

6.4.3.1. Association testing of IFVs with PheRSs for linked IEMs and rare diseases 

In this study, I tested whether carriers of IFVs were more likely to have a high PheRS value for the 

corresponding IEM or rare disease compared to non-carriers. To assess this systematically, I 

performed logistic regression with variant carrier status as the exposure and a ‘high’ PheRS (defined 

as a value above the median PheRS of participants carrying at least one relevant disease code) as the 

outcome, adjusting for age, sex, the first ten principal components of genetic ancestry and recruitment 

centre. This study design took three considerations into account: 

1. Participants often had discrete numbers of phecodes across the distribution, creating a non-

normally distributed PheRS outcome. The logistic regression model and ‘high PheRS’ 

definition based on the median account for this observation. 
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2. For each PheRS, most UK Biobank participants did not have corresponding phecodes (Figure 

3B), often reducing the median to zero. To increase the statistical power to detect 

associations, the median value was calculated using only participants with non-zero value 

PheRSs. 

3. PheRSs describe a single IEM or rare disease; therefore, IFVs were only tested for association 

with PheRSs for the corresponding IEM or rare disease to reduce multiple testing burden. 

Imputed dosages were used and hard-call genotypes coding for the metabolite-raising effect allele 

were generated with controls having a dosage ≤ 0.2, heterozygotes having a dosage between 0.9-1.1, 

and homozygotes having a dosage ≥ 1.8. Associations with fewer than five individuals in any stratum 

were excluded. Significance was assessed at FDR threshold of p=0.05. Phecode compositions of 

controls, heterozygotes and homozygotes were qualitatively assessed and frequency information of 

phecodes was obtained from Orphanet (downloaded December 2018). 

To test the robustness of associations, analyses were repeated using an extreme PheRS (defined as 

having a score in the 95th percentile when excluding participants with no observed PheRS-related 

phecodes). Analyses were also repeated excluding participants in UK Biobank that were diagnosed 

with the corresponding IEMs and assessed at p≤0.05. 

6.4.3.2. Phecode enrichment assessment 

A chi-squared test was performed to identify which phecodes were responsible for the observed 

association between the UGT1A1 variant rs1976391 with high PheRSs for ‘Crigler-Najjar Syndrome 

Type 1’ and ‘Gilbert syndrome’ as well as between the APOE variants rs429358 and rs204474 with high 

PheRSs for ‘Alzheimer Disease 2’ and ‘Alzheimer Disease 4’. For each of the phecodes contributing to 

these PheRSs, the proportion of heterozygotic or homozygotic carriers with the phecode was 

compared with that of non-carriers (significant p≤0.05).  

6.4.3.3. Weighted metabolite GRS-PheRS association analysis 

A total of 52 metabolites were significantly associated with IFVs after conditional analysis (p≤5x10-8), 

of which two were excluded due to association only with the CYP7A1 IFV rs4738684. Standardised 

weighted GRSs for each metabolite were generated using results from the Metabolon mGWAS by 

summing the observed numbers of alleles for each variant weighted by that variant’s effect size on 

the metabolite. Of the 178 conditionally independent variants considered across 50 metabolite scores, 

nine were not captured and no proxy (R2≥0.8) could be identified. Logistic regression was then 

performed with weighted metabolite GRS as the exposure and the corresponding PheRS as the 

outcome adjusting for age, sex, the first ten principal components of genetic ancestry and recruitment 
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centre. To estimate the contribution of IFVs to the corresponding metabolite GRSs, models using 

genetic risk scores excluding the corresponding IFV of interest as the exposure and high PheRS as the 

outcome were tested. Significance was assessed at a Bonferroni-corrected threshold (p=0.05/167 

independent tests=3x10-4). 

All statistical analyses and graphics were performed and produced using R version 3.5.3.128 and STATA 

version 14.2129. 

6.5. Results 

6.5.1. Suitability of UK Biobank for PheRS Application 

Of 162 rare diseases linked to 124 IEM genes and 211 IFVs, 161 were successfully queried in the HPO 

database (Figure 2, Boxes 1-2). In UK Biobank, PheRSs were constructed for 125 rare diseases, 

enabling association testing for 254 variant-disease pairs (Figure 2, Box 3).  

A total of 371 phecodes were required to describe the 125 PheRSs; of these, 336 (91%) were present 

in at least one participant of UK Biobank (Figure 3A). The maximum PheRS that could be theoretically 

reached, based on the relevant, observed phecodes and weights in UK Biobank, was moderately and 

positively correlated (R2=0.50, p=2.3x10-9) with the number of participants with at least one of the 

relevant phecodes (Figure 3B). However, many of the phecodes contributing to a PheRS were 

infrequently observed across participants in UK Biobank, as the maximum theoretical weighted PheRS 

was much larger than its corresponding unweighted value (Figure 3C). This was irrespective of the 

specificity of the code for the rare disease. For example, the IEM ‘Crigler-Najjar syndrome, type I’ is 

characterised primarily by hyperbilirubinemia. The corresponding phecode for this symptom in the 

PheRS, ‘Disorders of bilirubin excretion’ (phecode #277.4), had a weighting of 2.95. However, 

weightings for five other symptoms that were less specific to the IEM had stronger weightings (e.g. 

‘Mental retardation’ (phecode #315.3) with a weighting of 3.77) in the PheRS, indicating the low 

observed frequency of IEM-related symptoms in the UK Biobank cohort. 
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Figure 2: Study design. Rare diseases includes IEMs. Numbers in red reference boxes in the main text. 
Unless specified otherwise, ‘Variants’ refers to the number of corresponding IFVs. 
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Figure 3: Diagnostic plots of 125 PheRSs. A.) The number of phecodes used to describe a disease 
compared to the number available in UK Biobank for PheRS generation. B.) The proportion of UK 
Biobank participants with at least one phecode for a given PheRS increases with the number of 
phecodes used to describe it. C.) The range of observed PheRSs in UK Biobank compared to the 
theoretical unweighted maximum PheRS. The maximum theoretical unweighted PheRS refers to the 
maximum PheRS attainable through diagnosis with all contributing phecodes observed in UK Biobank. 
PheRSs that could be described by at least three phecodes and that were observed in participants in 
UK Biobank were included for analysis. 

6.5.2. PheRS Analysis Replicated Known Associations for Genes Linked to Familial Forms of 

Dyslipidemia, Hyperbilirubinemias and Alzheimer’s Disease 

Of the 254 tested variant-PheRS associations, 12 significant associations (FDR≤0.05) were identified 

across nine variants (seven IEM genes) with high PheRSs for nine IEMs. In addition to identifying 

associations for variants at genes known to cause familial dyslipidemias with related PheRSs, an 
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association for the G-allele of the UGT1A1 variant rs1976391 (MAF=0.31) with high PheRS for ‘Crigler-

Najjar syndrome type I’, an IEM characterised by hyperbilirubinemia and jaundice203–205, was also 

replicated (OR (95% CI): 1.10 (1.06, 1.15), FDR-adjusted p=3x10-4) (Figure 4). For this association, the 

phecode ‘Disorders of bilirubin metabolism’ was significantly enriched in carriers compared to 

controls (fold-enrichment: 42.73, ꭓ2=3.16, p=8.8x10-72) (Figure 5). Association analysis using a more 

extreme PheRS (defined as having values in the 95th percentile) as an outcome replicated 11 of the 12 

associations. The 20 associations with the largest log-transformed odds ratios (regardless of 

significance) had large effect sizes but also had large confidence intervals due to low numbers of 

participants in one or more strata (Appendix Ch6_ST1). 

Mutations at the UGT1A1 gene are also known to cause a milder and commonly observed form of 

inherited hyperbilirubinemia called Gilbert syndrome (OMIM #143500); however, this IEM was only 

recorded in the OMIM database (and therefore missed in initial analysis using Orphanet database IDs). 

Association analysis of IFVs at the UGT1A1 gene with high PheRS for Gilbert syndrome identified a 

significant association for the variant rs1976391 (OR (95% CI): 1.23 (1.16, 1.30), p=1.4x10-11) that was 

primarily driven by enrichment of the phecodes ‘Disorders of bilirubin excretion’ and ‘Jaundice (not of 

newborn)’ in carriers compared to non-carriers (Appendix Ch6_Fig1). 

Associations of the APOE variants rs429358 and rs204474 with high PheRSs for ‘Alzheimer Disease 2’ 

and ‘Alzheimer Disease 4’ were also observed (Figure 4). These associations were primarily driven by 

enrichment of the phecodes ‘Alzheimers disease’ and ‘Dementias’, as well as other phecodes (such as 

‘Amyloidosis’ and ‘Mild cognitive impairment’), in carriers compared to non-carriers (Appendix 

Ch6_Fig2-4). 
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Figure 4: Summary of significant IFV-PheRS associations (FDR≤0.05). Odds ratios represent the per 
allele change in risk of having a PheRS where coded alleles represent alleles associated with increasing 
levels of the most specific IEM-related metabolite. 
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Figure 5: Enrichment assessment (ꭓ2 p≤0.05) of phecodes contributing to the PheRS for ‘Crigler-
Najjar syndrome, Type 1’ in heterozygote and homozygote carriers compared to homozygotic non-
carriers of the G-allele of the UGT1A1 variant rs1976391. Phecodes in bold are observed in 80-99% 
observed IEM cases while other phecodes are observed in 5-29% IEM cases, as reported in the 
Orphanet database181.  

6.5.3. Eight of 12 Significant Variant-PheRS Associations Were Not Due to Participants 

Diagnosed With the Corresponding IEM 

The nine IEMs and rare diseases identified were linked to ICD-10 codes in Orphanet and other 

databases. ‘Hypertriglyceridemia, Familial’ was assigned to disease code E78.0 (‘Pure 

hypercholesterolemia’) (Table 2). As no ICD-10 code was found for ‘Hyperlipoproteinemia, Type V’ in 

Orphanet or OMIM, the disease code E78.5 (‘Hyperlipidemia, unspecified’) was assigned instead. IEMs 

or rare diseases and their mapped ICD-10 codes are listed in Table 2. 
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Table 2: IEMs linked to significant variant-PheRS associations and mapped to ICD-10 codes, as 
reported in Orphanet or OMIM. Farthest right column shows the number of UK Biobank participants 
(total N=351,987) that were diagnosed with the IEM. 

IEM 
gene 

IEM or rare disease 

ICD-10 
diagnosis code 
for the IEM or 
rare disease 

Notes 

Number of 
UK Biobank 
participants 
with ICD-10 

code 

UGT1A1 
Crigler-Najjar syndrome 

type I 
E80.5 N/A 0 

UGT1A1 Gilbert syndrome E80.4 N/A 372 

LPL 
Hyperlipidemia, Familial 

Combined, 3 
E78.3 N/A 9 

LDLR 
Homozygous familial 
hypercholesterolemia 

E78.0 N/A 33,308 

CYP7A1 
Hypercholesterolemia 

due to cholesterol 7alpha-
hydroxylase deficiency 

E78.0 N/A 33,308 

APOE Dysbetalipoproteinemia E78.2 N/A 143 

APOE Alzheimer Disease 4 G30.0 N/A 80 

APOE Alzheimer Disease 2 G30.0 N/A 80 

APOB 
Homozygous Familial 
Hypercholesterolemia 

E78.01 

UK Biobank ICD-10 codes 
are not as specific; 

therefore, this IEM was 
assigned ‘E78.0’ (‘Pure 
hypercholesterolemia’) 

instead  

33,308 

APOA5 
Hypertriglyceridemia, 

Familial 
E78.01 

UK Biobank ICD-10 codes 
are not as specific; 

therefore, this IEM was 
assigned ‘E78.0’ (‘Pure 
hypercholesterolemia’) 

instead  

33,308 

APOA5 
Hyperlipoproteinemia, 

Type V 
E78.5 

No ICD-10 code was 
found in Orphanet or 
OMIM, so the ICD-10 

diagnosis was 
approximated to be 

E78.5 (‘Hyperlipidemia, 
unspecified’) 

5,116 

 

A total of 36,138 of 351,987 participants in UK Biobank were diagnosed with at least one IEM 

corresponding to a PheRS significantly associated with an IFV (Table 2). Eight of the 12 tested 

associations remained significant (p≤0.05) after excluding participants who were diagnosed with the 

ICD-10 code for the corresponding IEM (Figure 2, Box 5). The four non-significant associations (p>0.05) 

were those for which the closest corresponding ICD-10 code was E78.0 (‘Pure hypercholesterolemia’).  
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No diagnoses were identified for ‘Crigler-Najjar syndrome type I’. However, complete attenuation was 

observed after the exclusion of 372 participants diagnosed with Gilbert syndrome (Table 2) for 

associations of the IFV rs1976391 with high PheRSs for ‘Crigler-Najjar syndrome type I’ (OR (95% CI): 

1.10 (1.06, 1.15), p=3x10-4 before vs 1.02 (0.97; 1.06), p=0.43 after exclusion) and for ‘Gilbert 

syndrome’ (OR (95% CI): 1.23 (1.16, 1.30), p=1.4x10-11 before vs 1.06 (1.00, 1.13), p=0.068 after 

exclusion). 

The remaining associations retained similar odds ratios and p-values as in the main analysis (Figure 2, 

Box 5). However, the association of the APOE variant rs429358 with high PheRS for 

‘Dysbetalipoproteinemia’ was almost completely attenuated after exclusion of participants with the 

ICD-10 code E78.2 (‘Mixed hyperlipidemia’; n=143) (OR (95% CI): 1.08 (1.06-1.10), FDR-adjusted 

p=3x10-14 vs 1.02 (1.00, 1.05), p=0.048 before and after exclusion).  

6.5.4. Significant Variant-PheRS Associations Implicated Metabolites in Disease and Highlight 

the Specific Effects of UGT1A1 Variant Rs1976391 on Bilirubin Levels 

The nine IFVs highlighted in significant variant-PheRS associations were associated with 50 

metabolites in the Metabolon mGWAS for which GRSs could be constructed (Figure 2, Box 6). Aside 

from three bilirubin derivatives, which are cofactors or vitamins, all other metabolites were lipid 

species. Metabolite GRSs comprised of a median of 17 variants (range: 3; 36), and 167 weighted 

metabolite GRS-PheRS pairs available for testing. 

In 125 of 167 tested cases, genetic susceptibility for increased metabolite levels was significantly 

associated with high PheRS (Bonferroni p≤3x10-4). Association analysis repeated after excluding the 

corresponding IFV resulted in complete attenuation in 45 of the 125 cases. Of these 45 associations, 

30 1-SD increases in GRSs for lipid species with high PheRS for ‘Alzheimer Disease 4’ and ‘Alzheimer 

Disease 2’ were completely attenuated after excluding the APOE variant rs429358 from the GRS. Lipid 

species in these associations comprised of 18 of the 31 distinct lipid species that rs429358 was 

associated with. In three other cases, 1-SD increases in GRSs for bilirubin (Z,Z), bilirubin (E,E) and 

biliverdin with high PheRS for ‘Crigler-Najjar syndrome type I’ were completely attenuated after 

excluding the UGT1A1 variant rs1976391 (Figure 6). The UGT1A1 variant rs1976391 was also solely 

responsible for the association between genetically-predicted levels of bilirubin metabolites and high 

PheRS for Gilbert syndrome (Figure 6). 
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Figure 6: Association of 1-SD increases in weighted metabolite GRSs with the odds of having high 
PheRS for ‘Crigler-Najjar Syndrome, Type I’ and ‘Gilbert Syndrome’. Black bars represent the score 
including all associated, conditionally independent variants. Red bars represent the association when 
the GRS does not include the UGT1A1 variant rs1976391. 

6.6. Discussion 

6.6.1. Summary of Study Findings 

I presented a novel application of the PheRS in a large population cohort to characterise variant effects 

on rare disease-related profiles. Systematic construction of PheRSs across 125 rare diseases in the UK 

Biobank showed that PheRSs can detect common variant effects on disease, as evidenced by the 

replicated associations at genes known to cause familial forms of dyslipidemias, Alzheimer’s disease 

and hyperbilirubinemias. I also demonstrated that IEM-related metabolite levels associated with these 

variants were also associated with corresponding PheRSs. Notably, associations of bilirubin levels with 

PheRS for Crigler-Najjar syndrome I and for a less severe form of hyperbilirubinemia, Gilbert syndrome 

were driven entirely by the UGT1A1 IFV rs1976391, whereas associations of many lipid species with 

PheRSs for familial dyslipidemias and Alzheimer’s disease were driven by variants at several 

independent loci. These findings suggest that PheRSs can be used to detect common variant 

associations with IEM-related disease profiles and assess the relative contributions of individual 

variants to metabolite and disease profile associations. 

6.6.2. Novelty of Findings 

PheRSs complemented the phenome-wide approach outlined in Chapter 5 by enabling assessment of 

common variant associations with disease diagnoses that in combination relate to a specific, rare, 

Mendelian disorder. In contrast to previous studies, which have only tested PheRSs for up to 16 

Mendelian disorders to date77,250, I developed PheRSs for 125 IEMs and rare diseases and assessed 

their utility in the UK Biobank population cohort. Specifically, the large sample size of UK Biobank 
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provided good coverage (91%) of the phecodes required across rare diseases. Furthermore, the 

replication of known variant-disease associations in this study demonstrated the proof-of-concept 

that PheRSs are also sensitive to variant effects in a population cohort setting. Of the 12 associations 

detected, four were driven by participants who had been diagnosed for the IEM ‘Pure 

hypercholesterolemia’. This attenuation may be conservative as the corresponding ICD-10 code was 

highly non-specific, though used in the absence of more specific ICD-10 codes for the corresponding 

IEMs. Associations of the UGT1A1 variant rs1976391 with high PheRS for ‘Crigler-Najjar syndrome, 

Type I’ and ‘Gilbert syndrome’ were also attenuated after excluding 372 participants diagnosed with 

Gilbert syndrome. Gilbert syndrome is a less extreme form of hyperbilirubinemia than Crigler-Najjar 

syndrome265, suggesting that PheRS for the latter captures information about the former as expected. 

Association of the APOE variants rs429358 and rs204474 with high PheRSs for ‘Alzheimer Disease 2’ 

and ‘Alzheimer Disease 4’ were detected. Common variants at the APOE gene, including rs429358, are 

known to predispose carriers to Alzheimer’s disease and dementia266. The association of rs429358 

with high PheRS for ‘Alzheimer Disease 4’ is notable since Alzheimer Disease 4 is usually attributed to 

mutations in the PSEN2 gene267. PSEN2 encodes a subunit protein of gamma-secretase that cleaves 

amyloid precursor proteins, the products of which are known to contribute to Alzheimer’s disease 

development268. The variant-PheRS associations detected, as well as the enrichment of the phecodes 

‘Amyloidosis’ in the PheRS for ‘Alzheimer Disease 4’ in carriers compared to non-carriers of the variant 

rs429358 (Appendix Ch6_Fig3), suggests that APOE variants may either affect risk of ‘Alzheimer 

Disease 4’ alone or alongside variation at the PSEN2 gene, as has been suggested by a previous 

study268. 

Despite successfully replicating known associations between genetic variants and PheRSs for rare 

diseases, I was unable to identify additional novel examples. I expected to identify more novel 

associations, given several new variant-metabolite-phenotype links were identified using the 

phenome-wide approach in Chapter 5 and previous studies had also reported large overlap between 

genetic loci associated with rare, Mendelian disorders and complex diseases70,71.  

The lack of detected associations in this study suggests a lack of study power, one potential reason for 

which is the choice of cohort used. In a previous study, five PheRSs were developed and applied within 

a hospital-based cohort to identify rare variant associations with PheRSs as well as clinical endpoints 

likely resulting from these rare variants77. This is in contrast with my approach, which developed and 

applied PheRSs for 125 IEMs and rare diseases in the population-based cohort UK Biobank. Despite 

the large sample size, the UK Biobank is comprised of participants who are shown to represent a 

healthier demographic222,269. This means that there is a lower prevalence and incidence of disease in 
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UK Biobank compared to what is observed in the general population. This was supported by Figure 3, 

which showed that up to 80% UK Biobank participants do not carry corresponding phecodes used to 

construct a given PheRS.  

Lack of study power may also arise from the fact that symptoms frequently observed in the clinical 

presentation of a rare, Mendelian disorder often occur in early life. According to the Orphanet 

database, six conditions are observed in 80-99% patients suffering from Crigler-Najjar syndrome type 

I: ‘Disorders of bilirubin excretion’, ‘Biliary tract abnormality’, ‘Isoimmunization of fetus or newborn’, 

‘Abnormality of the liver’ and ‘Perinatal jaundice’ (Figure 5). However, in this study diagnoses were 

only observed for ‘Disorders of bilirubin excretion’, the enrichment of which appeared to drive the 

observed variant-PheRS association (Figure 5). Similarly, associations between APOE variants 

rs429358 and rs204474 with high PheRSs for familial forms of Alzheimer’s disease were primarily 

driven by phecodes for ‘Alzheimers disease’ and ‘Dementias’ (Appendix Ch6_Fig2-4). These examples 

suggest that the UK Biobank may be unsuitable for constructing PheRSs for diseases characterised by 

extreme, early-onset symptoms. 

Another difference between the current study and previous ones is that this study used genotyping 

data to assess the effects of common variants while previous studies focus on the detection of rare 

variant effects using whole exome sequencing77. It is possible that the associations detected in the 

current study tag the effects of multiple rare variants (i.e. ‘synthetic associations’). This was not tested 

due to the lack of sequencing data at the time of analysis, though the recent availability of whole 

exome sequencing68 in the UK Biobank can be combined with previously published methods270 to test 

for synthetic associations.  

Using metabolomic data from the Metabolon mGWAS, I also showed that IFVs could be used to infer 

associations between corresponding metabolite levels and PheRSs. Notably, I showed that variants 

driving metabolite-PheRS associations could be attributed to the effects of one variant, such as the 

variant rs1976391 at the UGT1A1 gene on bilirubin levels. I also found that metabolite-PheRS 

associations could also be driven by variants at many loci, as evidenced by association analyses of lipid 

species with PheRSs for familial dyslipidemias. The APOE variant rs429358 was the primary genetic 

signal driving the associations of several lipid species with PheRSs for Alzheimer’s disease but not for 

others, suggesting that this variant could have pleiotropic effects. These results, which have not been 

similarly assessed or replicated elsewhere to my knowledge, suggest that PheRSs capture the 

metabolic effects of genetic variation that lead to clinically manifest outcomes. 
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6.6.3. Study Strengths and Limitations 

A strength of this study was the novel adaptation of the PheRS approach to assess variant effects on 

disease in a population-based cohort at scale. Testing of this approach enabled the characterisation 

of PheRSs at scale in the UK Biobank and assessment of its feasibility. In this study, PheRSs were easy 

to develop at scale and were successfully used to replicate known variant-disease associations, thus 

demonstrating their ability to complement the assessment of individual phenotypes in Chapter 5. 

PheRS construction was also facilitated using standardised disease code systems as well as access to 

mappings across these systems, enabling replication of the current study’s results in any cohort. 

Another strength of this study was the integration of results from the Metabolon mGWAS to estimate 

the associations of IEM-related metabolites with corresponding PheRSs. This effort revealed that lipid 

species driven by genome-wide polygenic effects can predispose individuals to increased morbidity of 

familial dyslipidemia-related symptoms, in contrast to the rs1976391-specific effects on bilirubin 

levels and PheRS for Crigler-Najjar syndrome type I. Thus, I showed that the integration of 

metabolomics data can be used to assess the relative contributions of individual genetic variants and 

to assess the genetic architecture underlying disease profiles related to rare, Mendelian disorders. 

In addition to its strengths, this study also had limitations. During this study, it became apparent that 

the UK Biobank cohort does not capture diagnoses related to extreme, early-onset symptoms of IEMs 

because of the cohort’s over-representation of healthy participants. This remains the likeliest reason 

for the lack of novel associations identified despite measures taken to increase study power (such as 

the testing of IFVs with PheRSs for diseases known to be caused by the corresponding IEM gene). 

Therefore, this study could be replicated in other population-based cohorts with genotypic and EHR 

data such as the Precision Medicine Initiative ‘All of Us’ research programme271,272. For common 

diseases that are usually followed up in secondary care, hospital-based cohorts such as the BioVU 

cohort258 may also be useful for testing for additional associations. 

Other limitations of this study were related to the method by which PheRSs are constructed. For 

example, PheRSs were developed and deployed within the same cohort. This could have caused the 

analysis to detect cohort-specific effects, however, the lack of novel associations detected suggests 

that this was not a problem with the current study. Another limitation was that the set of disease 

codes used to describe rare diseases, while completely derived from the HPO database, could differ 

depending on whether the Orphanet ID or the OMIM ID for the disease was queried. To address this 

limitation, I queried Orphanet IDs first and only used OMIM IDs if a search result was missing for the 

former to obtain one PheRS per rare disease and only constructed PheRSs for which enough 

descriptive phecodes were available. These approaches helped to reduce the multiple testing burden 
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of the study. However, a comparison of PheRSs derived from different database IDs for the same 

disease would be required to facilitate robust PheRS construction and assessment.  

Other limitations of the PheRS methodology included i) translation across HPO terms, phecodes and 

ICD-10 codes, which enabled PheRS construction in any cohort at the cost of translation inaccuracies 

and loss of information, and ii) phecode weights calculated based on population frequency and not on 

their specificity to a given disease. Yet despite these methodological limitations, previous studies have 

shown that PheRSs developed for select rare diseases consistently distinguish Mendelian disorder-

diagnosed cases from controls77,250. Work to incorporate disease specificity of the symptom into 

phecode weights is ongoing (Dr. Stefanie Müller, personal comms).  

6.6.4. Conclusions 

This work showed that IFVs may affect IEM-related disease through their effects on IEM-related 

metabolites. These findings suggested that knowledge of rare, Mendelian disorders can be used to 

identify clinical endpoints that result from the metabolic effects of common variants at the relevant 

genes. 
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CHAPTER 7: GENERAL DISCUSSION 

7.1. Summary of Findings 

In this thesis, application of Bayesian methods successfully identified 20 candidate metabolite 

mediators of the association between weight gain and T2D (Chapter 2). Candidate mediators 

individually accounted for little, but cumulatively for much of the association between weight gain 

and T2D. They were also shown to represent the combined contribution of genetic, modifiable and 

non-modifiable factors (such as genetic risk for increased visceral adiposity, vitamin C intake, and 

measures of kidney function) on metabolite levels contributing to T2D risk. Whilst highlighting 

potential biomarkers of disease risk linked to obesity and weight gain, this study demonstrates that 

individual contributions of multiple risk factors can now be assessed within the context of a single 

study. 

Here, I also applied an IEM-centric approach to results from large-scale genotypic, metabolomic and 

phenotypic datasets to prioritise and phenotypically characterise variants associated with metabolite 

levels in the general population (Chapters 3-6). In the largest GWAS metabolome to date, I showed 

that variants at IEM genes make a large contribution to metabolite levels despite IEM genes only 

accounting for 4% of all protein-coding genes in the human genome and identified variants at IEM 

genes that were specifically associated with metabolites linked to the corresponding IEM (Chapter 3). 

In-depth assessment of IFV characteristics showed that many explained large proportions of variance 

in metabolite levels, were associated with ‘extreme’ metabolite levels or had non-additive effects on 

metabolite levels (Chapter 4). Rigorous colocalisation analysis demonstrated shared genetic signals 

for metabolic and phenotypic consequences linked to the corresponding IEM at a large proportion of 

assessed loci (Chapter 5). In Chapter 6, I also replicated established associations for IFVs at genes 

known to cause forms of familial dyslipidemias, Alzheimer’s disease and hyperbilirubinemias with high 

corresponding values of PheRSs. Furthermore, integration of findings from the Metabolon mGWAS 

showed that PheRSs may reflect the metabolic effects of variation at one gene or at multiple genes. 

These results highlight genetic subgroups that may benefit from targeted disease prevention and 

management strategies and show that rare disease knowledge can be used to guide the identification 

of potential metabolic and health consequences of variation at IEM genes. 

The discussions of individual chapters have already outlined the findings, strengths, and limitations of 

specific studies. Here, I elaborate on the strengths and limitations that are important to the overall 

research conducted in this thesis and consider the clinical implications of my findings. 
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7.2. Strengths 

The timeliness of the research performed in this thesis is highlighted by the utilisation of large-scale 

datasets and methods that have only recently been made available. Chief among the opportunities 

leveraged in this thesis were the availability of untargeted metabolomic profiling data from the largest 

mGWAS to date as well as the recent availability of large-scale GWAS summary statistics from 

population-based and case-control consortia that enabled phenome-wide assessment of variants of 

interest. Another opportunity was the development of methods such as BVS in the weight gain study 

and colocalisation in the IEMs study. These unprecedented opportunities enabled the integration of 

findings from large-scale genetic, metabolomic and phenotypic datasets into a single study. Thus, the 

set of related investigations conducted and outlined in this thesis have important strengths that 

extend beyond earlier investigation in terms of linking genetics, modifiable and non-modifiable risk 

factors to metabolite levels and disease pathogenesis.  

One specific advantage was the study design used in the study of weight gain and T2D (‘weight gain 

study’; Chapter 2). The EPIC-Norfolk cohort is a large population-based cohort with long-term follow 

up, which enabled the calculation of a measure of weight change that could be assessed and compared 

with the more widely used measure of BMI. This study design also enabled the sequential 

measurement of weight change, metabolite levels and incident T2D, which follows the study’s purpose 

to identifying potential mediators of weight change and incident T2D risk. The integration of 

untargeted metabolomics profiling and Bayesian methods enabled comprehensive identification of 

candidate mediators while accounting for between-metabolite correlations. The additional 

integration of data-driven approaches with genetic and phenotypic data enabled in-depth 

characterisation of candidate mediators and the genetic and environmental risk factors they 

represent, all within the context of a single study. 

The primary advantage of the study of genetic overlap between IEMs and complex traits and diseases 

(the ‘IEMs’ study; Chapters 3-6) was the approach used. The use of findings from the largest 

metabolome GWAS (the ‘Metabolon mGWAS’) to date, which also used untargeted metabolomic 

profiling, enabled the prioritisation of 202 IFVs, for which over 80% metabolite associations had not 

been reported in the previous two largest GWAS efforts19,20. Furthermore, advanced chip-based 

genotyping technologies and imputation methods in the Metabolon mGWAS enabled the detection 

of low-frequency and rare variants that were also validated using sequencing data. Many of these rare 

variants had large metabolic effects that were detected in this work, enabling their detection for 

phenotypic characterisation. Access to individual-level data within one of the cohorts included in the 

Metabolon mGWAS, as well as GWAS summary statistics from population-based and case-control 
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studies, enabled powered and systematic assessment of the metabolic and phenotypic consequences 

of variation at IEM genes at a scale that no other study has previously achieved. 

Associations in GWAS summary statistics are reported without the context of other variants in LD, 

neglecting the possibility that traits associated with the same region may be driven by distinct causal 

variants or by secondary signals. Therefore, the use of colocalisation methods in the IEMs study to test 

for shared genetic signals was useful for implicating the phenotype association as a potential 

consequence of variant influences on metabolite levels. Furthermore, knowledge of the metabolic and 

phenotypic consequences of IEMs was used to guide the selection of genetic variants as well as IEM-

related locus-metabolite and locus-phenotype associations. This reduced the likelihood of detecting 

false positives, which was a risk based on the large number of associations reaching significance within 

GWASs conducted across multiple phenotypes and cohorts. 

Another advantage of the IEMs study was the adaptation of a method within the UK Biobank cohort 

to test for variant associations with clusters of symptoms and conditions that collectively describe a 

rare, Mendelian disorder. This application differs from that of previous studies by using a population-

based cohort instead of a hospital-based one, thus enabling the assessment of whether such a method 

could be useful for identifying variant effects on disease profiles. 

Finally, the findings of this thesis were replicated by many studies in other cohorts, indicating their 

generalisability. For example, candidate mediators identified in the weight gain study of weight gain 

study have been associated with BMI and with T2D in previous observational studies (Chapter 2, 

Section 2.5.3.). In the IEMs study, I also replicated select examples highlighted in previous GWASs. 

Integration of multiple layers of data in the IEMs study also enabled the detection of novel examples, 

including loci that independently validated the association of metabolic and phenotypic consequences 

(e.g. the DBH and TH loci). In addition, the novel example detected at the OPLAH locus was supported 

by findings from a Mendelian randomisation study, which used an instrumental variable containing a 

variant in LD with the corresponding IFV to show that 5-oxoproline levels were causal for performance 

in intelligence tests. In the IEMs study, most of the resources used are publicly available, enabling 

adaptation of the approaches outlined for use in other studies with similar research purposes. 

7.3. Limitations 

7.3.1. Generalisability of Findings 

Despite the replication of findings of this thesis in other studies, the research described in this thesis 

was performed primarily within cohorts of European ancestry to avoid spurious findings based on 

population differences. Although some associations were replicated in populations of ancestries, such 

as that of the UGT1A1 variant rs1976391 with bilirubin levels and cholelithiasis273,274, further work 
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would be required to demonstrate the generalisability of this study’s findings to other ancestries. 

Furthermore, genetic variants may have sex-specific effects on metabolite levels. Although examples 

of sex-specific metabolic effects were detected in the Metabolon mGWAS, their phenotypic 

assessment was beyond the scope of this research, which aimed to systematically test whether the 

metabolic effects of variants at IEM genes have observable phenotypic effects. Furthermore, 

systematic phenotypic assessment of sex-specific associations are difficult to perform at scale as 

GWAS summary statistics usually report results for sex-combined analyses. 

7.3.2. Use of GWAS Summary Statistics to Assess Rare Variant Effects on Metabolites and 

Phenotypes 

The large sample size, use of chip-based genotype sequencing, and integration of sequencing data in 

the Metabolon mGWAS enabled the rigorous detection and validation of low-frequency and rare 

variants. Despite these efforts, the IEMs study used GWAS summary statistics that may have been 

performed using older genotyping and imputation methods. Many of these phenotypic datasets were 

also based on genotyping rather than sequencing data. Thus, despite the rigorous detection and follow 

up of rare variants and their metabolic effects in the Metabolon mGWAS, this study lacked the 

information and power to detect and assess phenotypic associations for low-frequency and rare 

variants. The advent of larger cohort sample sizes, improved genotyping quality in GWASs, and 

availability of whole genome and exome sequencing data (such as in the UK Biobank68), will facilitate 

the detection of rare variant associations with complex traits and diseases. 

7.3.3. Suitability of Population-based Cohorts to Assess Variant Effects on IEM-related 

Conditions 

Although EPIC-Norfolk and UK Biobank provide outstanding and large-scale research resources with 

very detailed phenotyping, their study designs presented some limitations in the context of the 

research described in this thesis. For example, the EPIC-Norfolk cohort is representative of an older 

demographic of the population67,107. The prevalent diseases present within this demographic could 

therefore mask genetic effects on metabolite levels, though the prioritisation of genetic effects based 

on the known metabolic effects of corresponding IEMs reduced the likelihood that these associations 

were purely driven by prevalent disease.  

In the IEMs study, phenotypic assessment was primarily performed using summary statistics and 

phenotypic data from the UK Biobank. Previous assessment has shown that the UK Biobank suffers 

from the ‘healthy volunteer’222 bias, therefore reducing the prevalence and incidence of diseases in 

this cohort compared to that observed in the general population as well as the power to detect 

phenotypic associations for disease outcomes. This limitation was addressed by supplementing GWAS 
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summary statistics from UK Biobank with more powered findings from GWASs performed in case-

control studies in Chapter 5 and by only testing IFVs for association with phenotypic scores for the 

corresponding IEMs to reduce multiple testing burden in Chapter 6. 

7.3.4. Reverse Causality As a Possibility in the Absence of Formal Mediation and Causality 

Assessment 

Despite the rigorous study design and approaches used across studies, no formal assessment of 

mediation (in the weight gain study) or causality (in the IEMs study) could be performed. In the weight 

gain study, formal mediation analysis using survival data was not performed due to the complexity of 

integrating results across a case-cohort and a randomly selected subcohort nested within EPIC-

Norfolk. To mitigate this, events of weight gain, metabolite level measurements and T2D incidence 

occurred sequentially, and regression models were performed according to the mediation guidelines 

set out by Baron and Kenny148. In the IEMs study, low numbers of genetic variants that were commonly 

associated with traits of interest across loci would have provided unreliable results in causal 

assessment using Mendelian randomisation256. Therefore, I used prior IEM knowledge to prioritise 

phenotypes that were likely to be a cause of genetic effects on metabolite levels. In addition, statistical 

colocalisation methods were used to rule out the possibility that multiple associations at a locus were 

merely due to linkage.  

7.3.5. Relative Importance of Genetic and Non-genetic Influences on Metabolite Levels and 

T2D Risk 

In the weight gain study, evidence suggested that genetic and other modifiable and non-modifiable 

risk factors contributed to events of weight gain, changing metabolite levels and altered T2D risk. This 

finding was achieved by integrating layers of genetic and phenotypic data to perform comprehensive 

characterisation of candidate mediators that is difficult to achieve in a single study. Despite these 

advantages, the risk factors were assessed separately, as described in the genetic risk score approach 

and the variance decomposition analysis (Chapter 2, Section 2.5.4.). This analysis therefore precluded 

a comparison of the relative importance of each risk factor in contributing to changes in metabolite 

levels, which could be used to identify the most important risk factors to address in T2D prevention 

programmes. 

7.4. Future Work 

7.4.1. Replication of Analyses in Populations of Different Ancestry and Assessment of Sex-

specific Effects 

To increase the generalisability of this study’s findings to other cohorts, the analyses performed in this 

thesis may be replicated within populations of different ancestries. GWASs of several complex 
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phenotypes and disease outcomes have already been performed in Asian and African populations as 

well as in multi-ethnic cohorts275–277. As these efforts continue, greater coverage of phenotypes 

assessed within these populations will facilitate phenome-wide assessment and enable the 

identification and assessment of ancestry-wide and ancestry-specific effects of variation at IEM genes. 

In addition, sex-specific effects of genetic variants on metabolite levels, which have been identified in 

the Metabolon mGWAS, may also be characterised for well-powered, health-related, complex 

phenotypes where sex-specific differences in genetic effects have been reported, such as BMI278 

(which is a major risk factor of T2D), kidney function279 (which is used to diagnose chronic kidney 

disease), and glycaemic traits280. 

7.4.2. The Need for Additional Studies and Genetic Sequencing Technologies to Characterise 

Rare Variant Effects 

This work identified phenotypic effects for more common IFVs based on the use of GWAS summary 

statistics, however, emerging opportunities may help to phenotypically characterise low-frequency 

and rare IFVs detected in the Metabolon mGWAS. For example, new GWASs of phenotypes using 

improved genotyping and imputation panels may enable greater discovery of phenotypic associations 

for low-frequency and rare variants. Furthermore, the recent release of whole exome sequencing data 

for up to 200,000 participants of the UK Biobank cohort provides new opportunities to test for health-

related consequences of such variants. As the power to detect phenotypic effects decreases with MAF, 

rare variants within genes are often collapsed and then tested for association with a phenotype of 

interest using burden or SKAT tests281–283. These methods have been used in a whole exome-

sequencing study to identify rare variant effects and demonstrate the significant contribution of 

singletons (variants present in only one individual in the test population) in complex disease283. The 

PheRS approach, which has previously been used to detect rare variant effects on clinical endpoints 

in a hospital-based cohort77, could also be used to test for rare variant effects on disease profiles linked 

to the corresponding IEM.  

7.4.3. Replication of Analyses in Cohorts With Larger Genotypic, Metabolomic and Phenotypic 

Datasets 

As discussed in Chapter 5, the metabolic effects of IFVs may not have translated into phenotypic 

effects for biological reasons as well as other analytical reasons. Although little can be done to address 

the biological reasons, the methodological limitations of this research can be addressed with better 

powered GWASs of complex phenotypes. Increasing study power can be achieved by applying better 

genotyping and imputation methods, leveraging newly available whole genome and exome 
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sequencing data resources, and increasing the number of disease cases analysed for disease 

outcomes, either by increasing recruitment of cases or by performing meta-analyses across cohorts. 

Analyses performed in Chapter 6 also highlight the potential of cohort-based studies with genotypic 

and EHR data to systematically assess the phenotypic effects of genetic variation. Different cohort 

study designs can be used to phenotypically assess different complex phenotypes. For example, the 

UK Biobank is a population-based cohort containing EHR data from primary and secondary care 

sources for healthy volunteers and may be useful for studying later-onset, common diseases such as 

coronary artery disease. Alternatively, EHR data in hospital-based cohorts such as BioVU258 could be 

used to study clinical endpoints that are treated in secondary care (e.g. severe cases of cholelithiasis 

that require surgery to treat).  

As mentioned in Chapter 4 and Chapter 5, metabolite levels associated with IFVs may reflect the 

underlying molecular mechanism but not be directly causal for the corresponding IEM. This could be 

due in part to lack of detection of metabolites that are believed to be causal, as observed in the DBH 

example (Chapter 5, Section 5.5.3.1.). This work could therefore be updated to identify additional 

variant-metabolite-phenotype links as well as biological insights with ongoing efforts to structurally 

identify hitherto unknown metabolites and improvements in untargeted metabolomic profiling 

technologies. 

7.4.4. The Need for Formal Mediation or Causal Inference Assessment to Establish the Role of 

Metabolite Levels in Disease Aetiology 

While replication of the findings using larger genotypic, metabolomic and phenotypic datasets would 

increase confidence in the accuracy and generalisability of this study’s findings, formal mediation or 

causality assessments would be required to assess the causal directions of effect implied by findings 

in this thesis. Recent Mendelian randomisation studies assessing the causal effects of metabolites on 

one to a few select disease outcomes have been met with early success40,284–287. Therefore, systematic 

mediation and causality assessment will be facilitated with GWAS summary statistics based on larger 

genotypic, metabolomic and phenotypic datasets. Other study designs such as randomised trials may 

be useful for assessing causal effects, though these are more time-consuming and expensive to 

perform than in silico approaches and may only be feasible for metabolites that could be clinically 

relevant to disease outcomes.  

7.4.5. The Need for Integrated Genetic and Phenotypic Information to Assess the Relative 

Importance of Genetic and Non-genetic Influences on Metabolite Levels and T2D Risk 

It has been shown that genetic variation and environmental risk factors studied independently of each 

other have effects on metabolite levels that are observable and may translate into complex metabolic 
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disease. One question arising from this work is whether these factors contribute to metabolite levels 

differentially. This could be investigated by expanding the variance decomposition approach applied 

in the weight gain study (Chapter 2, Section 2.5.4.) to include both genetic and non-genetic factors, 

thus enabling a comparison of the relative contributions of multiple associated risk factors to altered 

metabolite levels and incident T2D risk. 

7.4.6. Extension of the IEMs Study to Phenotypically Characterise Variants at Genes Known to 

Cause Other Rare, Mendelian Disorders 

In this thesis, I focused on variation at IEM genes due to their known metabolic consequences. 

However, the Metabolon mGWAS also detected variant-metabolite associations at genes known to 

cause other rare, Mendelian disorders. Phenotypic characterisation of these variants would also be 

beneficial, as other studies have shown that variants at these genes also affect complex traits and 

diseases62,70. The approach highlighted in the IEMs study could be extended to include variants at 

genes known to cause other rare, Mendelian disorders to systematically identify further examples of 

variant-metabolite-phenotype consequences. This could also help to characterise lesser-known 

metabolic mechanisms that affect rare, non-IEM Mendelian disorders. However, a stricter 

interpretation of the results would be required, as the metabolite associations in this extended study 

could not be used to identify variant- or gene-specific phenotypic consequences.  

7.5. Clinical Implications 

7.5.1. Potential Applications of Candidate Mediators As Biomarkers in T2D Diagnosis, 

Prevention and Management 

7.5.1.1. Aetiological understanding of T2D 

The 20 candidate mediators identified in the weight gain study represent metabolites that potentially 

lie along the causal pathway between weight gain and T2D. This is supported by the near-complete 

attenuation of candidate mediators of the association between weight gain and incident T2D risk. 

However, individual candidate mediators did not account for much of the association between weight 

gain and T2D risk and were not more likely to be centrally-connected metabolites in the data-driven 

metabolic network compared to other assessed metabolites (Chapter 2, Section 2.5.7.). These 

findings suggest that T2D is a heterogeneous disease caused by the dysregulation of multiple 

metabolic processes.  

Some of the candidate mediators selected in the weight gain study represented genetic risk for known 

T2D endophenotypes (such as metabolites belonging to amino acid and bile acid metabolism), while 

others represented markers of general wellbeing. One example of the latter is threonate, a metabolite 

derived from vitamin C. Previous studies provide some evidence to suggest that dietary vitamin C 
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intake can lower the risk of T2D by acting as an antioxidant288 and by lowering blood glucose 

levels138,289. The antioxidative properties of vitamin C have been suggested to be beneficial for other 

diseases including cardiovascular disease290 and asthma291. The estimation of an inverse association 

of threonate with the incidence of ten other diseases corroborated the role of vitamin C as a marker 

of a healthy lifestyle linked to obesity and weight gain (Chapter 2, Section 2.5.5.).  

7.5.1.2. Candidate mediators as biomarkers for T2D prevention and prediction 

Evidence in the weight gain study suggested that candidate mediators may capture additional 

information beyond traditional measures such as blood glucose and total cholesterol. Furthermore, 

their close link to genetic and behavioural influences may enable the development of targeted lifestyle 

interventions and public health guidelines. In addition to threonate, which represented vitamin C 

intake as a proxy for fruit consumption, other identified candidate mediators could be attributed to 

specific lifestyle behaviours associated with incident T2D risk including vegetable and fibre intake138–

140. Inclusion of these behaviours in lifestyle guidelines and T2D prevention programmes remains 

under discussion141. 

Although candidate mediators highlight potential risk factors of T2D, their predictive value beyond 

that provided by traditional clinical measures was not measured in this study. For example, some 

candidate mediators such as 2-hydroxystearate and 2-hydroxypalmitate may be difficult to measure 

in blood samples and, in a clinical setting, not be informative beyond traditional measures like total 

cholesterol. However, previous evidence suggests that the inclusion of metabolite levels could 

increase a model’s predictive value292.  

Candidate mediators may also represent the effects of additional risk factors of T2D. However, it is 

unclear whether direct measurement of these metabolites is more clinically informative than directly 

measuring the risk factors themselves. Using diet as an example factor, food frequency questionnaires 

or diaries are simpler and cheaper to implement than metabolite measurement. Furthermore, 

metabolite levels are often sensitive to a range of risk factors, which could confuse their 

interpretation. However, one could also argue that food frequency questionnaires introduce reporting 

biases and are thus less accurate than metabolite measurements. Close consideration of these points 

is required prior to any recommendation that candidate mediators should be used as biomarkers to 

predict or prevent incident T2D. 
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7.5.2. Future Potential Applications of Variant-metabolite-phenotype Maps Detected in the 

IEMs Study 

7.5.2.1. Aetiological understanding of complex diseases 

In demonstrating a shared genetic basis between IEMs and complex phenotypes, I identified metabolic 

pathways that potentially influence complex trait development, disease pathogenesis and even 

health-related behaviours in the general population. For example, I detected a shared genetic signal 

between 5-oxoproline levels and cognitive performance at the OPLAH locus (Chapter 5, Section 

5.5.2.2.). Although cognitive performance is influenced in part by non-genetic factors such as 

socioeconomic environment293,294, evidence from the current study suggests that cognitive 

performance can also be influenced by genetic factors. In this example, cognitive performance 

plausibly reflects the symptom of intellectual disability observed in OPLAH deficiency. Several other 

loci contained IEM-related phenotypes that could plausibly result from metabolic effects of the 

corresponding IFV (Appendix Ch5_ST3), suggesting that knowledge of the clinical sequelae caused by 

rare mutations can be used to estimate the metabolic and phenotypic consequences of common 

variants at the same gene. 

7.5.2.2. Prevention and management strategies to target genetic subtypes of disease 

Newborn screening programmes exist to detect and prevent IEMs in affected neonates11,12,156. In the 

UK, newborn screening programmes test for rare Mendelian disorders such as cystic fibrosis and sickle 

cell disease as well as IEMs such as phenylketonuria, glutaric aciduria type I and isovaleric acidemia295. 

Familial cascade screening50 is recommended by NICE49 to identify individuals with a high genetic risk 

of developing hypercholesterolemia and coronary artery disease.  

Systematic identification or screening of the population to identify “subtler” manifestations of 

variation at IEM genes could be an useful and cost-effective strategy. This is especially true for 

examples identified in this study (Chapter 5, Section 5.5.2.) that independently implicate the role of 

the same metabolic pathway in complex disease. However, demonstration of a genetic mechanism 

underlying disease is insufficient to predict the success of a genetic screening programme. In 1968, 

Wilson and Jungner296 proposed additional criteria that should be used to assess the feasibility and 

practicality of implementing a genetic screening programme. Examples of these criteria include the 

importance of the health problem, the availability of suitable tests and treatments and the economic 

feasibility of identifying, diagnosing and treating high-risk populations.  

Applying these criteria to the familial cascade screening programme mentioned above highlights the 

challenges of implementing an effective genetic screening programme. Already, the cascade screening 

programme achieves many of Wilson and Jungner’s criteria due to i) the prevalence of risk variants at 
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genes known to cause hypercholesterolemia46, ii) the socioeconomic and health burdens imposed by 

coronary artery disease297,298, iii) the availability of genetic screening and biochemical tests to identify 

risk variants299, and iv) the availability of statins such as simvastatin to treat disease157. Nevertheless, 

several challenges remain. For example, known mutations at the genes APOB, LDLR and PCSK9, while 

accounting substantially for familial hypercholesterolemia, do not account for all observed cases of 

the disease. Indeed, it is estimated that ~15% patients with familial hypercholesterolemia do not have 

a known mutation at any of these genes300. 

7.5.2.3. Drug and pathway discovery 

The mapping of metabolite levels and metabolic pathways to clinical phenotypes in the current study 

highlights potential metabolic biomarkers of complex disease, some of which may capture additional 

information compared to current clinical measures that are specific to the corresponding disease. For 

example, mutations at the CPS1 gene are known to cause hyperammonemia in the IEM CPS1 

deficiency159. In this study and in previous ones18,19, the variant rs1047891 at the CPS1 gene was 

robustly associated with increased levels of glycine and with an elevated risk of chronic kidney disease. 

This association can be explained by the breakdown of ammonia via the ammonia-glycine cleavage 

complex in lieu of its usual breakdown via the urea cycle160. While a previous study19 suggested a link 

between glycine levels and chronic kidney disease via this mechanism, the IEMs study was the first to 

demonstrate a shared genetic signal for these traits. Based on scientific evidence alone, glycine could 

be an useful biomarker for chronic kidney disease. Patients with chronic kidney disease who have 

elevated levels of glycine could also be referred for screening for variants at the CPS1 gene and benefit 

from recommended treatments used to manage CPS1 deficiency and other urea cycle-related 

disorders301. However, the feasibility and efficacy of these strategies must also be rigorously assessed 

using the criteria discussed in the previous section. 

In some cases, IFVs that had large metabolic effects were also associated with specific reactions to 

drug intake. One such example was the UGT1A1 variant rs1976391, which exerted large effects on 

bilirubin levels (Chapter 4). This variant was in LD with another variant that has been associated with 

adverse side reactions to atazanavir207, which is used to treat HIV infections. Initial trials assessing the 

impact of pharmacogenetic screening of these variants in high LD33,34 showed notable reductions in 

adverse reactions as well as improvements in clinical endpoints and improved perception of the drug 

in treatment compared to control groups. However, the rate of drug adherence remained unaltered 

between groups33,34. These results reflect growing public understanding and acceptance of diagnosis 

and treatment based on genetic screening methods but also demonstrate the existence of other 

complex factors that may limit the efficacy of such screening programmes, requiring further 

assessment. 
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7.6. Conclusions 

Metabolic processes in the human body are strongly influenced by variation in genetic and non-

genetic factors that contribute to health and disease. Here, I use data-driven approaches that combine 

comprehensive genetic and metabolomic profiling with phenotypic data to investigate the shared 

genetic basis underlying rare, Mendelian and complex polygenic diseases. Application of Bayesian 

methods to a prospective cohort study design enabled the identification of metabolites that mediate 

the known association between weight gain and T2D and assess the contributing modifiable and non-

modifiable risk factors. Future work building on these results may contribute towards an improved 

understanding of genetic subgroups and the relative contribution of genetic and health-related 

behaviours to metabolite levels in complex metabolic disease. 
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APPENDIX 

1. Supplementary Information 

Metabolomics measurement 

Samples for metabolomic profiling were selected in the order in which they were stored at baseline 

(quasi-random selection). Individuals were selected and profiled in two equally sized batches of ~6,000 

participants and all analyses performed separately in each batch and meta-analysed. Samples were 

also taken from 1,503 (45% cases) participants from the non-overlapping T2D case-cohort. Citrate 

plasma samples were collected at the baseline visit without requesting an overnight fast and stored 

at -175oC in the gas phase of liquid nitrogen until shipping for analysis, when they were stored in short-

term storage at -70oC.  

Model specification for multivariable logistic regression 

Multivariable logistic regression was performed using the R package R2BGLiMS v0.1-08-11-2019 86 

with incident T2D as the outcome, adjusted for mean-centered age, sex, height, weight gain and initial 

weight. For each metabolite, the prior odds of association was set to the inverse of the number of 

metabolites included (n=131), and 20 million Reversible Jump MCMC iterations were used to calculate 

the posterior probability (i.e. the proportion of models containing a given metabolite). 

Evaluation of candidate mediators 

To assess whether candidate mediators were most effective at attenuating the weight gain-T2D 

association, we compared the obtained HR from this model with the mean HR across 10,000 

equivalent models adjusting for 22 metabolites randomly drawn from the set of metabolites 

significantly associated with weight gain and with incident T2D risk. Comparison was performed using 

a t-test. 

Disease specificity of candidate mediators 

Censoring dates were defined for each disease separately based on electronic health records or death 

of participants. All available codes from hospital admission data were used to define disease onset; 

thus, such data may represent the more severe spectrum of each included disease. Causes of death 

were recorded according to ICD-9 and ICD-10 diagnostic codes and aligned afterwards, whereas 

disease codes obtained from hospital records were already coded based on the ICD-10 system. This 

study contains follow up information up to the 31st of March 2016. To investigate the specificity of 

candidate mediators and X-12063 for T2D, metabolite associations with the risk of 27 incident diseases 

and all-cause mortality using Cox regression models with age as the underlying time scale adjusted for 

sex in the EPIC-Norfolk subcohort. Further details and overviews of the 27 incident diseases assessed 

have been described elsewhere113.
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2. Supplementary Figures 

 

 

Ch2_Fig1: Comparison of metabolite associations with weight gain, BMI and incident T2D. A.) 
Overlap of significant metabolites associated with BMI and with T2D (FDR<0.05). Large points in the 
upper right and lower left quadrants represent metabolites associated with both measures while 
medium-sized points within the lines represent those associated with only one measure. Points in the 
lower right and upper left quadrants represent metabolites with discordant directions of effect 
between associations with weight gain and T2D. B.) Comparison of the effect sizes of weight gain on 
metabolites with effect sizes of BMI on metabolites (R2=0.99, p<2.2x10-16). 
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Ch2_Fig2: Individual candidate mediator adjustment of a Prentice-weighted Cox regression model 
of the effects of weight gain on T2D risk. The multivariate model is adjusted for sex, height and weight 
at age 20 years with age as the underlying scale. 
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Ch2_Fig3: Sex-stratified, cumulative adjustment of candidate mediators selected using weight gain 
and T2D in a Prentice-weighted Cox regression model of the effects of weight gain on T2D risk. The 
multivariate model is adjusted for sex, height and weight at age 20 years with age as the underlying 
scale. 
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Ch2_Fig4: Sex-combined, cumulative adjustment of candidate mediators selected using BMI and 
T2D in a Prentice-weighted Cox regression model of the effects of BMI on T2D risk. The multivariate 
model is adjusted for sex, height and weight at age 20 years with age as the underlying scale. 
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Ch2_Fig5: Sex-stratified, cumulative adjustment of candidate mediators selected using BMI and T2D 
in a Prentice-weighted Cox regression model of the effects of BMI on T2D risk. The multivariate 
model was adjusted for height, with age as the underlying timescale. 
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Ch2_Fig6: Associations of genetic scores for body fat percentage, liver fat, hip and waist 
circumference with candidate mediators. X-12063 is included as a metabolite of interest. Significant 
associations (p≤2.4x10-3) are filled in while non-significant associations are empty. 
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Ch2_Fig7: GGM of the metabolic network. The network comprises of 684 metabolites with abs(pcor) 
≥0.1 that represent 1,769 connections. Large circles represent candidate mediators, medium circles 
those significantly associated with weight gain and T2D (FDR<0.05) and small circles other 
metabolites. Dashed lines represent negative partial correlations. Inset: first and second order partial 
correlations for metabolonic lactone sulfate (X-12063). 
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Ch5_Fig1: Summary of IFV associations (p≤1x10-5) with 306 complex traits and phenotypes not 
classified as clinical outcomes. Filled in, coloured circles represent prioritised phenotypes while 
empty, grey circles represent associated but de-prioritised phenotypes. Strongest p-value associations 
for each distinct phenotype are shown.  
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Ch6_Fig1: Enrichment assessment (ꭓ2 p≤0.05) of phecodes contributing to the PheRS for ‘Gilbert 
syndrome’ in heterozygote and homozygote carriers compared to homozygotic non-carriers of the 
G-allele of the UGT1A1 variant rs1976391. This condition was only reported in the OMIM database, 
therefore, frequencies of these phecodes in reported cases of Gilbert syndrome were not available in 
Orphanet database.  
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Ch6_Fig2: Enrichment assessment (ꭓ2 p≤0.05) of phecodes contributing to the PheRS for ‘Alzheimer 
Disease 2’ in heterozygote and homozygote carriers compared to homozygotic non-carriers of the 
C-allele of the APOE variant rs429358. This condition was only reported in the OMIM database, 
therefore, frequencies of these phecodes in reported cases of Alzheimer Disease 2 were not available 
in Orphanet database.  
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Ch6_Fig3: Enrichment assessment (ꭓ2 p≤0.05) of phecodes contributing to the PheRS for ‘Alzheimer 
Disease 4’ in heterozygote and homozygote carriers compared to homozygotic non-carriers of the 
C-allele of the APOE variant rs429358. This condition was only reported in the OMIM database, 
therefore, frequencies of these phecodes in reported cases of Alzheimer Disease 4 were not available 
in Orphanet database.  
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Ch6_Fig4: Enrichment assessment (ꭓ2 p≤0.05) of phecodes contributing to the PheRS for ‘Alzheimer 

Disease 4’ in heterozygote and homozygote carriers compared to homozygotic non-carriers of the 

C-allele of the APOE variant rs204474. This condition was only reported in the OMIM database, 

therefore, frequencies of these phecodes in reported cases of Alzheimer Disease 4 were not available 

in Orphanet database.  
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3. Supplementary Tables 

Ch2_ST1: Candidate mediators selected using different metabolite sets prioritised for BVS analysis. 
Metabolite names followed by a ‘*’ are assignments made with high confidence but are not definite. 
Inf = Infinity 

a. Candidate mediators selected from 164 metabolites significantly associated with weight gain 
(FDR<0.05) and nominally associated with T2D (p<0.05). 

Metabolite Pathway Class Posterior probability Bayes Factor 

mannose 
Fructose, Mannose and 
Galactose Metabolism 

Carbohydrate 1 Inf 

N-acetylglycine 
Glycine, Serine and 

Threonine Metabolism 
Amino Acid 0.9984 102336 

1-palmitoylglycerol 
(16:0) 

Monoacylglycerol Lipid 0.9982 90947 

2-hydroxystearate Fatty Acid, Monohydroxy Lipid 0.9738 6096 

glutamate Glutamate Metabolism Amino Acid 0.782 588 

3-hydroxyoctanoate Fatty Acid, Monohydroxy Lipid 0.7054 393 

N-acetylaspartate (NAA) 
Alanine and Aspartate 

Metabolism 
Amino Acid 0.4756 149 

X - 21258   0.2934 68 

N-delta-acetylornithine 
Urea cycle; Arginine and 

Proline Metabolism 
Amino Acid 0.2696 61 

lactate 
Glycolysis, Gluconeogenesis, 

and Pyruvate Metabolism 
Carbohydrate 0.2286 49 

N-acetylmethionine 
Methionine, Cysteine, SAM 

and Taurine Metabolism 
Amino Acid 0.1992 41 

cysteine 
Methionine, Cysteine, SAM 

and Taurine Metabolism 
Amino Acid 0.1612 32 

pregn steroid 
monosulfate* 

Steroid Lipid 0.1318 25 

xanthine 
Purine Metabolism, 

(Hypo)Xanthine/Inosine 
containing 

Nucleotide 0.1266 24 

threonate 
Ascorbate and Aldarate 

Metabolism 
Cofactors and 

Vitamins 
0.1 18 

1-oleoylglycerol (18:1) Monoacylglycerol Lipid 0.0992 18 

erythronate* Aminosugar Metabolism Carbohydrate 0.0926 17 

pyroglutamine* Glutamate Metabolism Amino Acid 0.085 15 

N-trimethyl-5-
aminovalerate 

Lysine Metabolism Amino Acid 0.0708 12 

1-palmitoyl-2-linoleoyl-
GPE (16:0/18:2) 

Phospholipid Metabolism Lipid 0.0664 12 

DSGEGDFXAEGGGVR* Fibrinogen Cleavage Peptide Peptide 0.0656 12 

histidine Histidine Metabolism Amino Acid 0.0588 10 
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b. Candidate mediators selected from 529 metabolites significantly associated with weight gain 
(FDR<0.05). 

Metabolite Pathway Class 
Posterior 

probability 
Bayes Factor 

mannose 
Fructose, Mannose and 
Galactose Metabolism 

Carbohydrate 1 Inf 

N-acetylglycine 
Glycine, Serine and Threonine 

Metabolism 
Amino Acid 1 Inf 

1-palmitoylglycerol (16:0) Monoacylglycerol Lipid 0.9998 2644471 

2-hydroxystearate Fatty Acid, Monohydroxy Lipid 0.9934 79623 

N-acetylaspartate (NAA) 
Alanine and Aspartate 

Metabolism 
Amino Acid 0.9082 5234 

malate TCA Cycle Energy 0.8772 3779 

glutamate Glutamate Metabolism Amino Acid 0.7194 1356 

3-hydroxyoctanoate Fatty Acid, Monohydroxy Lipid 0.6292 898 

4-androsten-3beta,17beta-diol 
monosulfate (1) 

Steroid Lipid 0.2684 194 

glycerol 3-phosphate Glycerolipid Metabolism Lipid 0.2598 186 

dehydroisoandrosterone sulfate 
(DHEA-S) 

Steroid Lipid 0.1526 95 

X - 21258   0.08 46 

X - 11315   0.0758 43 

N-delta-acetylornithine 
Urea cycle; Arginine and Proline 

Metabolism 
Amino Acid 0.0756 43 

etiocholanolone glucuronide Steroid Lipid 0.0608 34 

1-methylhistidine Histidine Metabolism Amino Acid 0.0596 34 

N-acetylmethionine 
Methionine, Cysteine, SAM and 

Taurine Metabolism 
Amino Acid 0.0512 29 

xanthine 
Purine Metabolism, 

(Hypo)Xanthine/Inosine 
containing 

Nucleotide 0.0488 27 

cysteine 
Methionine, Cysteine, SAM and 

Taurine Metabolism 
Amino Acid 0.0472 26 

threonate 
Ascorbate and Aldarate 

Metabolism 
Cofactors and 

Vitamins 
0.0408 23 

erythronate* Aminosugar Metabolism Carbohydrate 0.0382 21 

X - 17337   0.0332 18 

1-palmitoyl-2-linoleoyl-GPE 
(16:0/18:2) 

Phospholipid Metabolism Lipid 0.0284 15 

pyroglutamine* Glutamate Metabolism Amino Acid 0.026 14 

histidine Histidine Metabolism Amino Acid 0.0252 14 

X - 24422   0.0246 13 

3-ureidopropionate 
Pyrimidine Metabolism, Uracil 

containing 
Nucleotide 0.0242 13 

1-oleoylglycerol (18:1) Monoacylglycerol Lipid 0.0234 13 

serine 
Glycine, Serine and Threonine 

Metabolism 
Amino Acid 0.0226 12 

pregn steroid monosulfate* Steroid Lipid 0.0224 12 

lactate 
Glycolysis, Gluconeogenesis, and 

Pyruvate Metabolism 
Carbohydrate 0.021 11 
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c. Candidate mediators selected from 122 metabolites significantly associated with weight gain 
(FDR<0.05) and with T2D (FDR<0.05) after excluding one metabolite from pairs of highly-correlated 
metabolite pairs (R2>0.8). 

Metabolite Pathway Class Posterior 
probability Bayes Factor 

mannose 
Fructose, Mannose and 
Galactose Metabolism 

Carbohydrate 1 Inf 

N-acetylglycine 
Glycine, Serine and Threonine 

Metabolism 
Amino Acid 0.9984 76128 

1-palmitoylglycerol 
(16:0) 

Monoacylglycerol Lipid 0.9884 10395 

2-hydroxystearate Fatty Acid, Monohydroxy Lipid 0.8686 806 

glutamate Glutamate Metabolism Amino Acid 0.8312 601 

N-acetylaspartate (NAA) 
Alanine and Aspartate 

Metabolism 
Amino Acid 0.4632 105 

N-delta-acetylornithine 
Urea cycle; Arginine and Proline 

Metabolism 
Amino Acid 0.3508 66 

X - 21258   0.3394 63 

N-acetylmethionine 
Methionine, Cysteine, SAM and 

Taurine Metabolism 
Amino Acid 0.313 56 

lactate 
Glycolysis, Gluconeogenesis, and 

Pyruvate Metabolism 
Carbohydrate 0.2394 38 

pregn steroid 
monosulfate* 

Steroid Lipid 0.2232 35 

pyroglutamine* Glutamate Metabolism Amino Acid 0.16 23 

erythronate* Aminosugar Metabolism Carbohydrate 0.1368 19 

2-hydroxypalmitate Fatty Acid, Monohydroxy Lipid 0.1318 19 

2-linoleoyl-GPC (18:2)* Lysolipid Lipid 0.1136 16 

1-palmitoyl-2-linoleoyl-
GPE (16:0/18:2) 

Phospholipid Metabolism Lipid 0.1088 15 

threonate 
Ascorbate and Aldarate 

Metabolism 
Cofactors and 

Vitamins 
0.106 14 

xanthine 
Purine Metabolism, 

(Hypo)Xanthine/Inosine 
containing 

Nucleotide 0.1044 14 

N-trimethyl-5-
aminovalerate 

Lysine Metabolism Amino Acid 0.0882 12 

histidine Histidine Metabolism Amino Acid 0.0758 10 
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d. Candidate mediators selected from 129 metabolites significantly associated with BMI (FDR<0.05) 
and with T2D (FDR<0.05). 

Metabolite Pathway Class Posterior probability Bayes Factor 

mannose 
Fructose, Mannose and 
Galactose Metabolism 

Carbohydrate 1 Inf 

N-acetylglycine 
Glycine, Serine and 

Threonine Metabolism 
Amino Acid 0.9956 29189 

1-palmitoylglycerol 
(16:0) 

Monoacylglycerol Lipid 0.987 9794 

2-hydroxystearate Fatty Acid, Monohydroxy Lipid 0.9244 1577 

lactate 
Glycolysis, 

Gluconeogenesis, and 
Pyruvate Metabolism 

Carbohydrate 0.6968 296 

glutamate Glutamate Metabolism Amino Acid 0.6312 221 

threonate 
Ascorbate and Aldarate 

Metabolism 
Cofactors and Vitamins 0.3922 83 

N-acetylaspartate 
(NAA) 

Alanine and Aspartate 
Metabolism 

Amino Acid 0.3798 79 

N-acetylmethionine 
Methionine, Cysteine, 

SAM and Taurine 
Metabolism 

Amino Acid 0.3202 61 

X - 21258 Unknown Unknown 0.3014 56 

2-linoleoyl-GPC (18:2)* Lysophospholipid Lipid 0.235 40 

pyroglutamine* Glutamate Metabolism Amino Acid 0.1348 20 

histidine Histidine Metabolism Amino Acid 0.129 19 

serine 
Glycine, Serine and 

Threonine Metabolism 
Amino Acid 0.1054 15 

sphingomyelin 
(d17:1/16:0, 
d18:1/15:0, 

d16:1/17:0)* 

Sphingolipid Metabolism Lipid 0.1004 14 

X - 15497 Unknown Unknown 0.0984 14 

1-palmitoyl-2-linoleoyl-
GPE (16:0/18:2) 

Phosphatidylethanolamine 
(PE) 

Lipid 0.0972 14 

X - 13729 Unknown Unknown 0.0946 13 

1-palmitoyl-2-
palmitoleoyl-GPC 

(16:0/16:1)* 
Phosphatidylcholine (PC) Lipid 0.092 13 

N-trimethyl 5-
aminovalerate 

Lysine Metabolism Amino Acid 0.0876 12 

asparagine 
Alanine and Aspartate 

Metabolism 
Amino Acid 0.0852 12 

1-myristoylglycerol 
(14:0) 

Monoacylglycerol Lipid 0.0824 12 

1-oleoylglycerol (18:1) Monoacylglycerol Lipid 0.082 12 

1-palmitoyl-2-
arachidonoyl-GPE 

(16:0/20:4)* 

Phosphatidylethanolamine 
(PE) 

Lipid 0.0816 11 

pregn steroid 
monosulfate 
C21H34O5S* 

Progestin Steroids Lipid 0.0762 11 

xanthine 
Purine Metabolism, 

(Hypo)Xanthine/Inosine 
containing 

Nucleotide 0.0734 10 
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Ch2_ST2: Pairwise partial correlations of X-12063 with metabolites that share genetic locus 
associations. Metabolites with shared genetic locus associations to X-12063 were reported in previous 
studies19,20 and partial correlations were calculated using the GGM method. Metabolites with partial 
correlations that were significant at Bonferroni-corrected threshold (p≤2.1x10-7) are in bold. 

Metabolite Partial correlation p-value 

androsterone sulfate 0.017 0.13 

dehydroisoandrosterone sulfate (DHEA-S) -0.035 0.0012 

taurocholenate sulfate 0.0069 0.51 

epiandrosterone sulfate 0.024 0.027 

tetradecanedioate 0.020 0.060 

hexadecanedioate -0.012 0.26 

5alpha-androstan-3alpha,17beta-diol monosulfate (1) 0.072 4.53x10-10 

5alpha-androstan-3beta,17beta-diol disulfate 0.035 0.0013 

4-androsten-3alpha,17alpha-diol monosulfate (3) 0.0020 0.85 

16a-hydroxy DHEA 3-sulfate -0.12 4.61x10-28 
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Ch3_ST1: IFVs reported to cause the corresponding IEM and common enough to be detected in this 
study. 

Variant Gene IEM 
Minor 
allele 

frequency 

Associated metabolite(s) with 
known structural identity 

rs28941785 CTH Cystathionase deficiency 0.0093 cystathionine 

rs77931234 ACADM 
Medium-chain acyl-CoA 

dehydrogenase deficiency 
0.0078 

hexanoylcarnitine, 
octanoylcarnitine, cis-4-decenoyl 

carnitine, decanoylcarnitine, 
hexanoylglycine 

rs72549326 FMO3 Trimethylaminuria 0.0033 S-methylcysteine 

rs121912698 ACY1 Aminoacylase 1 deficiency 0.0044 

acetylglutamate, N-
acetylthreonine, N-acetylleucine, 

N-acetylisoleucine, N-
acetylglycine, N-acetylhistidine 

rs121434346 SLC6A19 Hartnup disorder 0.005 
methionine sulfone, 3-

methoxytyrosine, N-delta-
acetylornithine, 1-methylhistidine 

rs77010315 SLC36A2 Iminoglycinuria 0.011 
pyroglutamine*, carnitine, 

acetylcarnitine 

rs5030858 PAH Phenylketonuria 0.0012 
phenylalanine, gamma-
glutamylphenylalanine 

rs5030861 PAH Phenylketonuria 0.0017 
phenylalanine, gamma-
glutamylphenylalanine, 

phenylpyruvate 

rs75193786 PAH Phenylketonuria 0.0009 
phenylalanine, gamma-
glutamylphenylalanine, 

phenylpyruvate 

rs1800556 ACADS 
Short-chain acyl-CoA 

dehydrogenase deficiency 
0.052 ethylmalonate, butyrylcarnitine 

rs113298164 LIPC Hepatic lipase deficiency 0.002 

1-palmitoyl-2-docosahexaenoyl-
GPE (16:0/22:6), 1-palmitoyl-2-

arachidonoyl-GPE (16:0/20:4), 1-
stearoyl-2-arachidonoyl-GPE 

(18:0/20:4), 1-stearoyl-2-
docosahexaenoyl-GPE (18:0/22:6) 

rs148686510 ACSF3 
Combined malonic and 
methylmalonic aciduria 

0.0082 ethylmalonate 

rs534908188 ACADVL 
Very long-chain acyl-CoA 

dehydrogenase deficiency 
0.0019 

myristoleoylcarnitine, 
laurylcarnitine 

rs117935223 PRODH Type 1 hyperprolinemia 0.079 proline 

rs143493067 UPB1 
Beta-ureidopropionase 

deficiency 
0.002 3-ureidopropionate 

*metabolite assignment was made with high confidence but is not definite 
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Ch5_ST1: Summary of phenotypes and the cohorts included in the discovery efforts of GWAS studies 
used in colocalisation analysis.  

Phenotyperef of GWAS study/studies used Cohorts included in GWAS at discovery stagerefs 

Alzheimer's disease302 
Psychiatric Genomics Consortium303, Alzheimer’s Disease Sequencing Project304, 

International Genomics of Alzheimer’s Project305, UK Biobank67 

Body mass index115 GIANT consortium80, UK Biobank67 

Breast cancer306,307 
African American Breast Cancer Consortium308, Triple-Negative Breast Cancer Consortium308, 

NCI Breast and Prostate Cancer Cohort Consortium309, Breast Cancer Association 
Consortium310, Non-Hispanic White women discovery set311 

Chronic kidney disease195,312 
See Pattaro et al. (2016)312 and Wuttke et al. (2019)195 for full description of 49 and 85 

cohorts included in meta-analysis, respectively 

Cognitive performance200 COGENT consortium313, UK Biobank67 

Glomerular filtration rate195,314 
UK Household Longitudinal Study314; see Wuttke et al. (2019)195 for full description of 85 

cohorts included in meta-analysis 

Granulocyte count223 UK Biobank67, UK BiLEVE study315, INTERVAL163 

Granulocyte percentage of myeloid white 
cells223 

UK Biobank67, UK BiLEVE study315, INTERVAL163 

Hippocampal volume316 Alzheimer's Disease Neuroimaging Initiative317 

Intelligence233 

COGENT consortium313, UK Biobank67, Rotterdam study318, Generation R study319, Swedish 
Twin Registry320, Spit for Science321, High-IQ/Health and Retirement study322, Twins Early 
Development study323, Danish Twin Registry324, IMAGEN325, Brisbane Longitudinal Twin 

Study326, Netherlands study of Cognition, Environment and Genes327, Genes for Good233, 
Swedish Twin Studies of Aging328 

Ischaemic stroke329 MEGASTROKE consortium329 

Mean corpuscular haemoglobin223 UK Biobank67, UK BiLEVE study315, INTERVAL163 

Mean corpuscular volume223 UK Biobank67, UK BiLEVE study315, INTERVAL163 

Mean platelet volume223 UK Biobank67, UK BiLEVE study315, INTERVAL163 

Multiple sclerosis330 International Multiple Sclerosis Genetics Consortium330 

Myeloid white cell count223 UK Biobank67, UK BiLEVE study315, INTERVAL163 

Myocardial infarction331 CARDIoGRAMplusC4D Consortium331 

Neutrophil percentage of white cells223 UK Biobank67, UK BiLEVE study315, INTERVAL163 

Optic disc area332 International Glaucoma Genetics Consortium332 

Platelet count223 UK Biobank67, UK BiLEVE study315, INTERVAL163 

Platelet distribution width223 UK Biobank67, UK BiLEVE study315, INTERVAL163 

Posterior cortical atrophy333 

Patients who were diagnosed to have posterior cortical atrophy by their doctors, had 
multidomain cognitive impairment fulfilling criteria for Alzheimer’s disease and dementia 
and who fulfilled at least one criterion in previously published posterior cortical atrophy 

diagnosis guidelines333 

Pulse pressure334 International Consortium for Blood Pressure335, UK Biobank67 

Pulse rate336 
CARDIoGRAMplusC4D Consortium331, International Stroke Genetics Consortium329, UK 

Biobank67 

QRS duration337 CHARGE EKG exome-chip consortium338 

Red blood cell count223 UK Biobank67, UK BiLEVE study315, INTERVAL163 

Red cell distribution width223 UK Biobank67, UK BiLEVE study315, INTERVAL163 

Reticulocyte count223 UK Biobank67, UK BiLEVE study315, INTERVAL163 

Reticulocyte fraction of red cells223 UK Biobank67, UK BiLEVE study315, INTERVAL163 
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Ch5_ST2: Additional 24 IFVs included in phenome-wide assessment, as identified in the literature. 
Chr = Chromosome, EAF = Effect allele frequency. 

Source  IEM gene IEM IFV Chr Position EA/OA EAF 
IEM-

associated 
metabolite 

pmid23824729 MTHFR 

Homocystinuria due 
to methylene 

tetrahydrofolate 
reductase deficiency 

rs1801133 1 11856378 A/G 0.34 
homo- 

cysteine 

biorxiv_660506
v1  

ALPL Hypophosphatasia rs3820293 1 21806621 G/T 0.45 phosphate 

biorxiv_660506
v1  

LDLRAP1 
Homozygous familial 
hypercholesterolemia 

rs586178 1 25747230 C/G 0.44 cholesterol 

pmid23824729 MMACHC 

Methylmalonic 
acidemia with 

homocystinuria, type 
cblC 

rs4660306 1 45978675 T/A/C 0.33 
homo-

cysteine 

pmid26025379 SLC30A10 

Cirrhosis-dystonia-
polycythemia-

hypermanganesemia 
syndrome 

rs1776029 1 220080028 A/G 0.18 manganese 

pmid23824729 MTR 
Methylcobalamin 

deficiency type cblG 
rs2275565 1 237048676 T/G 0.21 

homo-
cysteine 

biorxiv_660506
v1 

ABCB11 

Benign recurrent 
intrahepatic 

cholestasis type 2 | 
Progressive familial 

intrahepatic 
cholestasis type 2 

rs2287623 2 169830155 G/A 0.40 cholesterol 

pmid26068415 AGPS 
Rhizomelic 

chondrodysplasia 
punctata type 3 

rs7582179 2 178370631 A/G 0.17 PC ae C44:5 

pmid31959995 HIBCH 

Neurodegeneration 
due to 3-

hydroxyisobutyryl-
CoA hydrolase 

deficiency 

rs291468 2 191188119 A/G 0.4 
methyl-

malonate 

pmid26352407 AGXT 
Primary hyperoxaluria 

type 1 
rs6748734 2 241837452 A/G 0.29 

alpha-keto 
isovalerate 

pmid28263315 D2HGDH 
D-2-hydroxyglutaric 

aciduria 
rs6707874 2 242709363 A/G 0.64 

2-hydroxy 
glutaric acid 

pmid25352340 TF 
Congenital 

atransferrinemia 
rs8177240 3 133477701 T/G 0.67 transferrin 

biorxiv_660506
v1 

SLC2A2 
Glycogen storage 

disease due to GLUT2 
deficiency 

rs5400 3 170732300 A/G 0.12 glucose 

pmid23754956 MMAA 

Vitamin B12-
responsive 

methylmalonic 
acidemia type cblA 

rs2270655 4 146576418 G/C 0.94 vitamin B12 

pmid30275531 LCAT 

Familial LCAT 
deficiency | Fish-eye 

disease | LCAT 
deficiency 

rs56070533 16 67942320 A/G 0.15 
HDL 

cholesterol 

pmid19185284 BCO1 

Hereditary 
hypercarotenemia 

and vitamin A 
deficiency 

rs6564851 16 81264597 G/T 0.64 

carotenoid, 
tocopherol 

beta-
carotene 

pmid27005778 SLC13A5 

Amelocerebrohypohi
drotic syndrome | 

Pyridoxine-
dependent epilepsy | 
Undetermined early-

onset epileptic 
encephalopathy 

rs172642 17 6595398 C/A 0.48 citrate 

pmid23754956 CD320 

Methylmalonic 
aciduria due to 
transcobalamin 
receptor defect 

rs2336573 19 8367709 T/C 0.031 vitamin B12 
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pmid26401656 HLCS 
Holocarboxylase 

synthetase deficiency 
rs1571700 21 38336834 A/G 0.41 

2-hydroxy 
isovaleryl 
carnitine 

pmid24651765 CBS 
Classic 

homocystinuria 
rs234714 21 44488033 T/C 0.2 

homo-
cysteine 

post-
methionine 

load test 

pmid27005778 SLC25A1 
D,L-2-hydroxyglutaric 

aciduria 
rs2040771 22 19161935 T/C 0.48 citrate 

pmid23754956 TCN2 
Transcobalamin 

deficiency 
rs1131603 22 31018975 C/T 0.055 vitamin B12 

pmid28588231 SLC5A1 
Glucose-galactose 

malabsorption 
rs11708647

9 
22 32389342 G/A 0.06 

1,5-anhydro 
glucitol ea 

pmid29403010 SLC6A8 
X-linked creatine 

transporter deficiency 
rs5987107 23 152875584 A/G 0.33 creatinine 
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Ch5_ST3: Summary of phenotypes that were associated with loci containing IFVs and that were 
tested for a shared genetic signal using colocalisation. 

Gene (Locus 
chr:start-end) 

IFV/s 
(EA/OA; EAF) 

Trait Category Evidence sentence 
Evidence link or 

Pubmed ID 

ABCA1 
(9:107264123-

107915739) 

rs2575876 
(A/G; 0.25) 

Hip circumference Anthropometry 

ABCA1 deficiency is 
associated with 

hypercholesterolemia, which 
can increase lipid deposits in 
adipose tissue and increase 

body size 

pmid195100, 
pmid30881070 

Waist-to-hip ratio Anthropometry 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

ABCA1 deficiency is 
associated with 

hypercholesterolemia, which 
could require treatment 

pmid195100, 
pmid30881070 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Treatment with 
atorvastatin 

Medication 

ABCA1 deficiency is 
associated with 

hypercholesterolemia, which 
may be treated with statins 

pmid195100, 
pmid30881070 

Hypercholesterolemia Cardiovascular ABCA1 deficiency is 
associated with 

hypercholesterolemia 

pmid195100, 
pmid30881070 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

ACADS 
(12:119943590-

122716919) 

rs2014355 
(C/T; 0.25) 

Time to complete round 
Neurological, 
cognitive or 
behavioural 

ACADS deficiency is 
associated with 

developmental delay, which 
may affect educational 
attainment and 'time to 

complete round' of a 
cognitive function 

experiment 

Roe, C. R., Ding, 
J. Mitochondrial 

fatty acid 
oxidation 

disorders.In: 
Scriver, C. R.; 

Beaudet, A. L.; 
Sly, W. S.; Valle, 
D. (eds.) : The 
Metabolic and 

Molecular Bases 
of Inherited 

Disease. Vol. II. 
(7th ed.) New 

York: McGraw-
Hill (pub.) 2001. 
Pp. 2297-2326. 

ACADS 
(12:119943590-

122716919) 

rs2014355 
(C/T; 0.25) 

Red cell distribution 
width 

Hematological 

ACADS deficiency is 
associated with exercise 
intolerance, which could 

plausibly be explained by a 
lack of red blood cells to 
carry haemoglobin, or a 
reduced capacity of red 

blood cells to carry 
haemoglobin 

pmid30477112, 
pmid3891376, 
pmid10647532 

Mean sphered cell 
volume 

Hematological 

Mean reticulocyte 
volume 

Hematological 

Reticulocyte count Hematological 

Mean corpuscular 
volume 

Hematological 

Mean corpuscular 
haemoglobin 

Hematological 

Red blood cell count Hematological 

ACSF3 
(16:88668096-

90424092) 

rs36099289 
(A/C; 0.13) 

Leg fat-free mass Anthropometry 

ACSF3 deficiency is 
associated with muscular-

axial hypotonia and feeding 
difficulties, which may affect 

body fat and muscle 
composition 

pmid21841779 
rs72817435 
(A/G; 0.04) 

Arm fat mass Anthropometry 

Hip circumference Anthropometry 

Weight Anthropometry 

Trunk fat mass Anthropometry 

Leg fat mass Anthropometry 

Body fat percentage Anthropometry 

Arm fat percentage Anthropometry 

Body mass index Anthropometry 

Trunk fat percentage Anthropometry 

Whole body fat mass Anthropometry 
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ADSL 
(22:40507228-

41007228) 

rs8135371 
(C/A; 0.15) 

Comparative body size 
at age 10 

Anthropometry 
ADSL deficiency is associated 

with developmental delay 
and may also reduce growth 

pmid18830228 

ALPL 
(1:21535330-

22206759) 

rs1531829 
(A/G; 0.35) 

Heel quantitative 
ultrasound index (QUI), 

direct entry 
Bone Increased alkaline 

phosphatase levels are 
linked to osteomalacia, a 
disease characterised by 

softening of the bone. 
Osteomalacia/rickets are 

also accompanied by vitamin 
D and calcium deficiency 

pmid26823351 

Heel bone mineral 
density 

Bone 

Heel bone mineral 
density (BMD) T-score, 

automated 
Bone 

Heel broadband 
ultrasound attenuation 

Bone 

APOA5/APOA4/
APOA1/APOC3 
(11:116274569-

117470429) 

rs530885291 
(A/G; 0.0026) 

Mean corpuscular 
haemoglobin 

Hematological APOA1 deficiency is 
associated with visceral 

amyloidosis, which is also 
accompanied by coagulation 

factor abnormalities 

https://omim.org
/entry/105200, 
pmid16731289 

Platelet distribution 
width 

Hematological 

Mean sphered cell 
volume 

Hematological 

Red cell distribution 
width 

Hematological 

APOA1 deficiency is 
associated with visceral 

amyloidosis, which is also 
accompanied by red blood 

cell abnormalities 

https://omim.org
/entry/105200, 
pmid16731289 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 
Apolipoprotein gene 

deficiencies are associated 
with hypertriglyceridemia 

pmid610428, 
pmid29396262 

Treatment with ferrous 
salt product 

Medication 

Ferrous salt product is used 
to treat iron deficiency 

anemia; this may reflect 
abnormalities in red blood 

cell production 

pmid16731289 

rs964184 
(C/G; 0.87) 

Medication for pain 
relief, constipation, 
heartburn: aspirin 

Medication 
APOA1 deficiency is 

associated with coronary 
artery disease, which may 

induce heartburn and 
require aspirin 

pmid3089658, 
pmid29396262 

Treatment with aspirin Medication 

Coronary artery disease Cardiovascular 
APOA1 deficiency is 

associated with coronary 
artery disease 

pmid3089658, 
pmid29396262 

Medication use (agents 
acting on the renin-
angiotensin system) 

Medication 

APOA1 deficiency is 
associated with 

hypercholesterolemia and 
may cause hypertension, 
which can be treated with 

renin-angiotensin targeting 
drugs 

pmid29396262 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

APOA1 deficiency is 
associated with 

hypercholesterolemia, which 
can be treated with 
cholesterol lowering 

medications 

pmid29396262 

Medication use 
(antithrombotic agents) 

Medication 

Treatment with 
simvastatin 

Medication 

Fenofibrate | 
treatment/medication 

code 
Medication 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Rosuvastatin | 
treatment/medication 

code 
Medication 
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Lipitor 10mg tablet | 
treatment/medication 

code 
Medication 

Treatment with 
atorvastatin 

Medication 

Treatment with 
ezetimibe 

Medication 

Treatment with 
bezafibrate 

Medication 

Cheese intake Lifestyle 

APOA1 deficiency is 
associated with 

hypercholesterolemia, which 
may affect intake of high fat 

foods 

pmid3089658, 
pmid29396262 

Metabolic syndrome 
Endocrine and 

metabolism 

APOA1 deficiency is 
associated with 

hypercholesterolemia, which 
may lead to metabolic 

syndrome 

pmid29396262 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

APOA1 deficiency is 
associated with 

hypercholesterolemia 
pmid29396262 

Hypercholesterolemia Cardiovascular 

Reticulocyte fraction of 
red cells 

Hematological 

APOA1 deficiency is 
associated with visceral 

amyloidosis, which is also 
accompanied by red blood 
cell and coagulation factor 

abnormalities 

https://omim.org
/entry/105200, 
pmid16731289 

Platelet distribution 
width 

Hematological 

Mean platelet volume Hematological 

Platelet crit Hematological 

Reticulocyte percentage Hematological 

Reticulocyte count Hematological 

Red cell distribution 
width 

Hematological 

Mean reticulocyte 
volume 

Hematological 

Platelet count Hematological 

APOB 
(2:20893329-

21546682) 

rs934197 
(A/G; 0.33) 

Coronary artery disease Cardiovascular 

APOB deficiency is known to 
cause premature 

hyperlipidemia and 
cardiovascular disease 

pmid19200547, 
pmid7883971 

Treatment with 
ezetimibe 

Medication 

APOB deficiency is known to 
cause premature 

hyperlipidemia, which can be 
treated by statins or other 

cholesterol lowering 
medications 

pmid19200547, 
pmid18702965 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

Lipitor 10mg tablet | 
treatment/medication 

code 
Medication 

Treatment with 
atorvastatin 

Medication 

Rosuvastatin | 
treatment/medication 

code 
Medication 

Treatment with 
simvastatin 

Medication 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Yes, because of other 
reasons | major dietary 

changes in the last 5 
years 

Lifestyle 

APOB deficiency is known to 
cause premature 

hyperlipidemia, which may 
affect the consumption of 

high fat foods 

pmid19200547 

Hypercholesterolemia Cardiovascular APOB deficiency is known to 
cause premature 
hyperlipidemia 

pmid19200547 Self-reported high 
cholesterol 

Endocrine and 
metabolism 
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APOE/APOC/ 
APOC2/APOC4 
(19:45081103-

45922478) 

rs204474 
(T/C; 0.65) 

Alzheimer's disease 
Neurological, 
cognitive or 
behavioural 

APOE deficiency is associated 
with dementia, which may 
link to Alzheimer's disease 

pmid4194379 

Leg predicted mass Anthropometry APOE deficiency is associated 
with hyperlipidemia, which 

may increase body fat 
composition and size 

pmid27481046 
Weight Anthropometry 

Hip circumference Anthropometry 

Arm predicted mass Anthropometry 

rs429358 
(C/T; 0.15) 

Pulse rate Hematological APOE deficiency can lead to 
elevated cholesterol levels, 

which may cause 
hypertension 

pmid27481046 
Diastolic blood pressure Hematological 

Hippocampal volume 
Neurological, 
cognitive or 
behavioural 

APOE deficiency is associated 
with dementia and has been 
associated with hippocampal 

atrophy 

pmid15956166 

Time to complete round 
Neurological, 
cognitive or 
behavioural 

APOE deficiency is associated 
with dementia, which may 

affect cognitive performance 
pmid4194379 

Posterior cortical 
atrophy 

Neurological, 
cognitive or 
behavioural 

APOE deficiency is associated 
with dementia, which may 
link to Alzheimer's disease 

and posterior cortical 
atrophy 

pmid4194379 

Dementias 
Neurological, 
cognitive or 
behavioural 

APOE deficiency is associated 
with dementia, which may 
link to Alzheimer's disease 

pmid4194379 

Alzheimer's disease 
Neurological, 
cognitive or 
behavioural 

Cause of death: 
unspecified dementia 

Neurological, 
cognitive or 
behavioural 

APOE deficiency is associated 
with dementia 

pmid4194379 

Year ended full time 
education 

Neurological, 
cognitive or 
behavioural 

APOE deficiency is associated 
with dementia; earlier-onset 

effects may impact 
educational ability 

pmid4194379 

Medication for pain 
relief, constipation, 
heartburn: aspirin 

Medication 
APOE deficiency is associated 

with elevated cholesterol 
levels and coronary artery 
disease, which may cause 

hypertension and heartburn 
and require aspirin 

pmid27481046 

Treatment with aspirin Medication 

Salt added to food Lifestyle 

APOE deficiency is associated 
with elevated cholesterol 

levels that are responsive to 
cholesterol intake from diet; 
this may affect intake of high 

fat foods 

pmid7868975 

Butter/spreadable 
butter | spread type 

Lifestyle 

APOE deficiency is associated 
with elevated cholesterol 

levels that are responsive to 
cholesterol intake from diet; 
this may affect intake of high 

fat foods 

pmid7868975 

Cheese intake Lifestyle 

APOE deficiency is associated 
with elevated cholesterol 

levels that are responsive to 
cholesterol intake from diet; 
this may affect intake of high 

fat foods 

pmid7868975 

Other type of 
spread/margarine | 

spread type 
Lifestyle 

Non-butter spread type 
details: Flora Pro-Active 

or Benecol 
Lifestyle 

Oily fish intake Lifestyle 

Rosuvastatin | 
treatment/medication 

code 
Medication APOE deficiency is associated 

with elevated cholesterol 
levels, which may be treated 

by cholesterol lowering 
medications 

pmid27481046 Treatment with 
atorvastatin 

Medication 

Treatment with 
simvastatin 

Medication 
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Treatment with ezetrol 
10mg tablet 

Medication 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Treatment with 
ezetimibe 

Medication 

Lipitor 10mg tablet | 
treatment/medication 

code 
Medication 

Type 2 diabetes 
Endocrine and 

metabolism 

APOE deficiency is associated 
with elevated cholesterol 

levels, which may increase 
risk of type 2 diabetes 

pmid27481046 

Atherosclerosis Cardiovascular 

APOE deficiency is associated 
with elevated cholesterol 
levels, which may lead to 

adverse cardiovascular 
outcomes 

pmid27481046 

Major coronary heart 
disease event 

Cardiovascular 

Angina pectoris Cardiovascular 

Chronic ischaemic heart 
disease 

Cardiovascular 

Ischaemic heart disease Cardiovascular 

Myocardial infarction Cardiovascular 

Coronary artery disease Cardiovascular 

Hypercholesterolemia Cardiovascular 

Body fat percentage Anthropometry 

APOE deficiency is associated 
with elevated cholesterol 
levels, which may lead to 
obesity and increased fat 

mass 

pmid6261329 

Trunk predicted mass Anthropometry 

Trunk fat percentage Anthropometry 

Weight change 
compared with 1 year 

ago 
Anthropometry 

Leg fat percentage Anthropometry 

Weight Anthropometry 

Body mass index Anthropometry 

Arm fat percentage Anthropometry 

Whole body fat mass Anthropometry 

Leg fat mass Anthropometry 

Arm fat mass Anthropometry 

Waist circumference Anthropometry 

Arm predicted mass Anthropometry 

Leg predicted mass Anthropometry 

Waist-to-hip ratio Anthropometry 

Hip circumference Anthropometry 

Trunk fat mass Anthropometry 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

APOE deficiency is associated 
with elevated cholesterol 

levels 
pmid27481046 

Metabolic syndrome 
Endocrine and 

metabolism 

APOE deficiency is associated 
with hyperlipidemia, which 
increases risk of metabolic 

syndrome 

pmid6261329 

Monocyte count Hematological 
APOE deficiency is associated 

with splenomegaly, which 
can reduce the number of 
platelets and white blood 
cells in the bloodstream 

pmid4242937 

Sum basophil neutrophil 
counts 

Hematological 

Mean platelet volume Hematological 

Platelet crit Hematological 

Platelet count Hematological 

rs5112 (G/C; 
0.54) 

Treatment with 
atorvastatin 

Medication 

APOE deficiency is associated 
with elevated cholesterol 

levels, which can be treated 
with cholesterol lowering 

medications 

pmid27481046 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Arm predicted mass Anthropometry APOE deficiency is associated 
with elevated cholesterol 

pmid6261329 
Trunk predicted mass Anthropometry 
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Leg predicted mass Anthropometry 
levels, which may lead to 
obesity and increased fat 

mass 

Hypercholesterolemia Cardiovascular APOE deficiency is associated 
with elevated cholesterol 

levels 
pmid27481046 Self-reported high 

cholesterol 
Endocrine and 

metabolism 

Granulocyte count Hematological 
APOE deficiency is associated 

with splenomegaly, which 
can reduce the number of 

white blood cells in the 
bloodstream 

pmid4242937 

Monocyte count Hematological 

White blood cell count Hematological 

Sum neutrophil 
eosinophil counts 

Hematological 

Myeloid white cell count Hematological 

rs7412 (T/C; 
0.081) 

Pulse rate Hematological APOE deficiency can lead to 
elevated cholesterol levels, 

which may cause 
hypertension 

pmid27481046 
Pulse pressure Hematological 

Systolic blood pressure Hematological 

Alzheimer's disease 
Neurological, 
cognitive or 
behavioural 

APOE deficiency is associated 
with dementia, which may 
link to Alzheimer's disease 

pmid4194379 

Blood pressure 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 
APOE deficiency is associated 

with elevated cholesterol 
levels and coronary artery 
disease, which may cause 

hypertension and heartburn 
and require aspirin 

pmid27481046 

Medication for pain 
relief, constipation, 
heartburn: aspirin 

Medication 

Treatment with aspirin Medication 

Full cream | milk type 
used 

Lifestyle 

APOE deficiency is associated 
with elevated cholesterol 

levels that are responsive to 
cholesterol intake from diet; 
this may affect intake of high 

fat foods 

pmid7868975 

White | bread type Lifestyle 

Other type of 
spread/margarine | 

spread type 
Lifestyle 

Yes, because of other 
reasons | major dietary 

changes in the last 5 
years 

Lifestyle 

Butter/spreadable 
butter | spread type 

Lifestyle 

Non-butter spread type 
details: Flora Pro-Active 

or Benecol 
Lifestyle 

Treatment with ezetrol 
10mg tablet 

Medication 

APOE deficiency is associated 
with elevated cholesterol 

levels, which can be treated 
with cholesterol lowering 

medications 

pmid27481046 

Treatment with 
simvastatin 

Medication 

Lipitor 10mg tablet | 
treatment/medication 

code 
Medication 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Treatment with 
atorvastatin 

Medication 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

Rosuvastatin | 
treatment/medication 

code 
Medication 

Treatment with 
ezetimibe 

Medication 
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Medication use (agents 
acting on the renin-
angiotensin system) 

Medication 

APOE deficiency is associated 
with elevated cholesterol 
levels, which can lead to 

hypertension that is treated 
with aspirin/renin-

angiotensin targeting drugs. 
APOE deficiency is associated 

with elevated cholesterol 
levels, which may lead to 

adverse cardiovascular 
outcomes 

pmid27481046 
pmid27481046 

Medication use 
(antithrombotic agents) 

Medication 

Medication use (calcium 
channel blockers) 

Medication 

Ischaemic heart disease Cardiovascular 

Myocardial infarction Cardiovascular 

Hypercholesterolemia Cardiovascular 

Coronary artery disease Cardiovascular 

Angina pectoris Cardiovascular 

Hypertension Cardiovascular 

Diagnoses - secondary 
ICD10: Z95.5 Presence of 

coronary angioplasty 
implant and graft 

Cardiovascular 

Chronic ischaemic heart 
disease 

Cardiovascular 

Vascular or heart 
problems diagnosed by 

doctor: high blood 
pressure 

Cardiovascular 

Atherosclerosis Cardiovascular 

Weight Anthropometry 

APOE deficiency is associated 
with elevated cholesterol 
levels, which may lead to 
obesity and increased fat 

mass 

pmid6261329 

Trunk fat mass Anthropometry 

Leg fat mass Anthropometry 

Body fat percentage Anthropometry 

Arm fat percentage Anthropometry 

Whole body fat mass Anthropometry 

Leg predicted mass Anthropometry 

Trunk fat percentage Anthropometry 

Hip circumference Anthropometry 

Waist circumference Anthropometry 

Arm predicted mass Anthropometry 

Arm fat mass Anthropometry 

Body mass index Anthropometry 

Leg fat percentage Anthropometry 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

APOE deficiency is associated 
with elevated cholesterol 

levels 
pmid27481046 

Deep venous thrombosis Hematological 

APOE deficiency is associated 
with femoral bruits, which 
are indicative of high blood 

pressure in the leg. This may 
relate to deep venous 

thrombosis, which includes 
sudden hypertension, leg 

pain/swelling/redness/warm
th and leg blood clotting 

http://iembase.o
rg/app/#!/disord

er/507 

Eosinophil count Hematological 
APOE deficiency is associated 

with splenomegaly, which 
can reduce the number of 

red blood cells, platelets and 
white blood cells in the 

bloodstream 

pmid4242937 

Reticulocyte count Hematological 

Platelet crit Hematological 

Platelet count Hematological 

Sum basophil neutrophil 
counts 

Hematological 

Red blood cell count Hematological 

ARG1 
(6:131575856-

132147278) 

rs71753454 
(I/D; 0.22) 

Type 2 diabetes 
Endocrine and 

metabolism 

ARG1 deficiency is 
associated with 

feeding/protein aversion and 
vomiting, which could alter 
body fat composition and 

impact risk of type 2 
diabetes 

pmid27549856, 
pmid9762606 

Leg fat mass Anthropometry 
ARG1 deficiency is 

associated with 
feeding/protein aversion and 
vomiting, which could alter 

pmid9762606, 
pmid2246859 

Leg predicted mass Anthropometry 

Arm fat mass Anthropometry 

Trunk fat mass Anthropometry 

Body fat percentage Anthropometry 
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Waist circumference Anthropometry body fat composition and 
body size Arm fat percentage Anthropometry 

Hip circumference Anthropometry 

Weight Anthropometry 

Body mass index Anthropometry 

Whole body fat mass Anthropometry 

Leg fat-free mass Anthropometry 

ARG1 deficiency is 
associated with spastic 

diplegia, a symptom of which 
is hypotonia. Low muscle 
tone could affect muscle 

mass in the body 

pmid9762606, 
pmid2246859 

CETP 
(16:56689969-

57265091) 

rs12149545 
(A/G; 0.31) 

Treatment with 
simvastatin 

Medication 

CETP deficiency is associated 
with altered cholesterol 

levels, which may be treated 
with cholesterol lowering 

medications 

pmid168823, 
pmid3937535 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Metabolic syndrome 
Endocrine and 

metabolism 

CETP deficiency is associated 
with altered cholesterol 

levels, which may lead to 
metabolic syndrome 

pmid168823, 
pmid3937535 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

CETP deficiency is associated 
with altered cholesterol 

levels 

pmid168823, 
pmid3937535 

Coronary artery disease Cardiovascular 
CETP deficiency leads to 

increased HDL cholesterol 
and low levels of LDL 

cholesterol, which may lead 
to cardiovascular disease 

pmid168823, 
pmid3937535 

Myocardial infarction Cardiovascular 

CPS1 
(2:209335210-

212467075) 

rs1047891 
(A/C; 0.32) 

Operation code: 
cholecystectomy/gall 

bladder removal 

Endocrine and 
metabolism 

A case report of CPS1 
deficiency reports severe 
gallbladder wall oedema, 

which could indicate 
gallbladder injury over time 

that leads to gallbladder 
removal 

pmid27834067 

Systolic blood pressure Hematological 

CPS1 deficiency is associated 
with an increased risk of 

neonatal pulmonary 
hypertension, which affects 

systolic blood pressure 

pmid11407344, 
pmid17188582 

Height Anthropometry 
CPS1 deficiency is associated 
with developmental delay, 

which includes stunted 
growth 

https://ghr.nlm.n
ih.gov/condition/

carbamoyl-
phosphate-

synthetase-i-
deficiency 

Sitting height Anthropometry 

Pain type experienced in 
last month: headache 

Neurological, 
cognitive or 
behavioural 

CPS1 deficiency is associated 
with encephalopathy, a 

common symptom of which 
is headaches 

pmid19793055 

Glomerular filtration 
rate 

Renal 
CPS1 deficiency is associated 
with inefficient clearance of 

ammonia; this could 
plausibly accumulate in the 

kidneys over time and 
dysregulate renal function 

pmid20383146 

Chronic kidney disease Renal 

Hypertension Cardiovascular CPS1 deficiency is associated 
with neonatal susceptibility 
to pulmonary hypertension, 
symptoms of which include 

hypertension and high blood 
pressure 

pmid11407344, 
pmid17188582 

Vascular or heart 
problems diagnosed by 

doctor: high blood 
pressure 

Cardiovascular 

Leg fat mass Anthropometry 
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Whole body fat mass Anthropometry 

CPS1 deficiency is associated 
with poor feeding, which 

could affect body fat 
composition 

https://ghr.nlm.n
ih.gov/condition/

carbamoyl-
phosphate-

synthetase-i-
deficiency 

Arm fat-free mass Anthropometry 

Whole body fat-free 
mass 

Anthropometry 

Weight Anthropometry 

Hip circumference Anthropometry 

Leg predicted mass Anthropometry 

Body mass index Anthropometry 

Trunk fat-free mass Anthropometry 

Arm predicted mass Anthropometry 

Trunk predicted mass Anthropometry 

Leg fat-free mass Anthropometry 

Arm fat mass Anthropometry 

rs13411696 
(A/G; 0.44) 

Pain type experienced in 
last month: headache 

Neurological, 
cognitive or 
behavioural 

CPS1 deficiency is associated 
with encephalopathy, a 

common symptom of which 
is headaches 

pmid19793055 

Weight Anthropometry 
CPS1 deficiency is associated 

with poor feeding, which 
could affect body fat 

composition 

https://ghr.nlm.n
ih.gov/condition/

carbamoyl-
phosphate-

synthetase-i-
deficiency 

Leg fat mass Anthropometry 

Arm predicted mass Anthropometry 

Arm fat-free mass Anthropometry 

CPT2 
(1:53193901-

54025740) 

rs35316080 
(G/A; 0.36) 

Systolic blood pressure Hematological 

CPT2 deficiency is associated 
with ventricular hypertrophy 

and cardiomegaly, both of 
which are a result of high 

blood pressure 

pmid18550408, 
pmid1961225 

CYP7A1 
(8:59061697-

59661042) 

rs4738684 
(G/A; 0.66) 

Disorders of gallbladder, 
biliary tract and 

pancreas 

Endocrine and 
metabolism 

CYP7A1 deficiency is a 
metabolic disorder of 

gallbladder, biliary tract and 
pancreas 

NA 

Cholelithiasis and 
cholecystitis 

Endocrine and 
metabolism CYP7A1 deficiency is 

associated with an increased 
risk of gallstone formation 

pmid1682550 Operation code: 
cholecystectomy/gall 

bladder removal 

Endocrine and 
metabolism 

Hypercholesterolemia Cardiovascular 
CYP7A1 deficiency is 

associated with 
hypercholesterolemia and 

may increase risk of 
cardiovascular disease 

pmid29529257 
Self-reported high 

cholesterol 
Endocrine and 

metabolism 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

CYP7A1 deficiency is 
associated with 

hypercholesterolemia and 
may require cholesterol 

lowering treatment 

pmid29529257 

Treatment with 
atorvastatin 

Medication 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

DBH 
(9:135888765-

136851769) 

rs6271 (T/C; 
0.074) 

Medication use (calcium 
channel blockers) 

Medication 

DBH deficiency is associated 
with orthostatic 

hypotension, which is 
treatable by calcium channel 

blockers 

pmid3010116, 
pmid2300263, 
pmid1677640 

Pulse rate Hematological 

DBH deficiency is associated 
with orthostatic hypotension 

pmid3010116, 
pmid2300263, 
pmid1677640 

Diastolic blood pressure Hematological 

Systolic blood pressure Hematological 

Hypertension Cardiovascular 

Blood pressure 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 
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Vascular or heart 
problems diagnosed by 

doctor: high blood 
pressure 

Cardiovascular 

Treatment/medication 
code: amlodipine 

Medication 

DDC 
(7:50029382-

50891329) 

rs11771818 
(A/G; 0.11) 

Leg fat-free mass Anthropometry 

DDC deficiency is associated 
with both hyper- and 

hypotonia in different parts 
of the body; this can affect 

muscle mass 

pmid12891654, 
pmid9309516, 
pmid1700191, 
pmid1357595 

Waist circumference Anthropometry 

Arm fat-free mass Anthropometry 

Leg predicted mass Anthropometry 

Trunk predicted mass Anthropometry 

Arm predicted mass Anthropometry 

Weight Anthropometry 

Whole body fat-free 
mass 

Anthropometry 

Trunk fat-free mass Anthropometry 

Comparative height size 
at age 10 

Anthropometry 
DDC deficiency is associated 
with developmental delay, 

which may affect 
comparative height size 

pmid20505134 
Sitting height Anthropometry 

Height Anthropometry 

Whole body fat mass Anthropometry DDC deficiency is associated 
with poor feeding and 

swallowing difficulties, which 
may affect body fat 

composition and body size 

pmid12891654, 
pmid20505134 

Trunk fat mass Anthropometry 

Arm fat mass Anthropometry 

Leg fat mass Anthropometry 

Body mass index Anthropometry 

DPYD 
(1:97031198-

98484512) 

rs60392383 
(G/T; 0.20) 

Schizophrenia 
Neurological, 
cognitive or 
behavioural 

Although there is an unclear 
link between the IEM and 
outcome, DPYD deficiency 
can cause attention deficit 

disorder, which is highly 
comorbid with schizophrenia 

and may contribute to the 
latter's clinical presentation 

pmid27575859, 
pmid24459374 

Breast cancer Cancer 

DPYD metabolism may affect 
fluoropyrimidines and drug 

therapies used in breast 
cancer; therefore, this link 

may be due to effects along 
the same metabolic pathway 
rather than a direct effect of 
pyrimidine metabolism on 

breast cancer 

pmid29340111 

rs72977723 
(A/G; 0.11) 

Schizophrenia 
Neurological, 
cognitive or 
behavioural 

Although there is an unclear 
link between the IEM and 
outcome, DPYD deficiency 
can cause attention deficit 

disorder, which is highly 
comorbid with schizophrenia 

and may contribute to the 
latter's clinical presentation 

pmid27575859, 
pmid24459374 

ETFA 
(15:76247217-

77203256) 

rs2291449 
(G/A; 0.093) 

Alcohol intake frequency Lifestyle 

ETFA deficiency leads to fatty 
infiltration of the liver, which 

may affect alcohol intake 
frequency 

pmid514320, 
pmid16434667 

rs2959850 
(T/C; 0.46) 

Qualifications: None of 
the above 

Neurological, 
cognitive or 
behavioural 

ETFA deficiency is associated 
with congenital brain 

anomalies, which may have 
some impact on educational 

attainment 

pmid3754423 

Diverticulosis and 
diverticulitis 

GIT 

ETFA deficiency is associated 
with hepatomegaly, which 
presents as an abdominal 

mass and may increase risk 
of diverticulosis, as has been 
reported in one case report 

pmid6862997, 
https://www.jou
rnalagent.com/z4
/download_fullte
xt.asp?pdir=vtd&
plng=tur&un=VT

D-26535 

ETFDH 
(4:158816749-

159898596) 

rs67481496 
(T/A; 0.27) 

Breast cancer Cancer 

Although the link between 
the IEM and outcome is not 

clear, the associated 
metabolite carnitine and its 

pmid29445084, 
pmid32641979 
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derivatives are important in 
breast cancer by providing 

an increased supply of 
energy to cancer cells 

FMO3 
(1:170170833-

172080696) 

rs714839 
(T/C; 0.41) 

Mean platelet volume Hematological 

FMO3 deficiency is 
associated with defective 

membrane function in 
platelets, which may also 

indicate an effect on mean 
platelet volume 

https://omim.org
/entry/602079#1

1 

GATM 
(15:44859591-

46199886) 

rs1145091 
(C/T; 0.26) 

Chronic kidney disease Renal 
GATM deficiency can cause 
decreased solute and water 
reabsorption in the kidney, 

which can result in renal 
insufficiency 

pmid11090339 
Glomerular filtration 

rate 
Renal 

Arm predicted mass Anthropometry 

GATM deficiency is 
associated with failure to 
thrive, which may affect 

weight gain 

pmid20682460 

Whole body fat-free 
mass 

Anthropometry 

Arm fat-free mass Anthropometry 

Trunk fat-free mass Anthropometry 

Trunk predicted mass Anthropometry 

rs2486274 
(T/G; 0.38) 

Glomerular filtration 
rate 

Renal 
GATM deficiency is 

associated with renal 
acidosis and insufficiency 

pmid11090339 
Chronic kidney disease Renal 

GCDH 
(19:12246385-

13469265) 

rs56397034 
(C/G; 0.39) 

Breast cancer Cancer 

Although the link between 
the IEM and outcome is 
unclear, the associated 

metabolite glutarylcarnitine 
has been associated with 

mouse breast cancer tissues 
and has been listed as one in 

a panel of biomarkers 
selected to diagnose breast 

cancer in a patent 

pmid32641979, 
https://patents.g
oogle.com/paten
t/WO201603815

7A1/en (PCT 
WO2016038157

A1) 

Type 2 diabetes 
Endocrine and 

metabolism 

Although there is an unclear 
link between the IEM and 
outcome, glutarylcarnitine 

levels are known to be 
elevated in type 2 diabetes 

patients compared to 
controls 

pmid30423132, 
pmid23296094 Metformin | 

treatment/medication 
code 

Medication 

Height Anthropometry 

GCDH deficiency is 
associated with 

developmental delay, which 
may affect height 

pmid7564239 

rs8012 (G/A; 
0.55) 

Metformin | 
treatment/medication 

code 
Medication 

Although there is an unclear 
link between the IEM and 
outcome, glutarylcarnitine 

levels are known to be 
elevated in type 2 diabetes 

patients compared to 
controls 

pmid30423132, 
pmid23296094 

Type 2 diabetes 
Endocrine and 

metabolism 

Although there is an unclear 
link between the IEM and 

outcome, levels of the 
associated metabolite 

glutarylcarnitine are shown 
to be elevated in obese 

versus lean subjects and in 
type 2 diabetes patients 

pmid13990765, 
pmid15230623, 
pmid23296094 

Height Anthropometry 

GCDH deficiency is 
associated with 

developmental delay, which 
may affect height 

pmid7564239 

Leg fat-free mass Anthropometry 

GCDH deficiency is 
associated with dystonia, 
which may affect muscle 

mass 

pmid16602100 

Trunk predicted mass Anthropometry 

Leg predicted mass Anthropometry 

Whole body fat-free 
mass 

Anthropometry 

Trunk fat-free mass Anthropometry 



176 
 

HAL 
(12:95953054-

96683079) 

rs3213737 
(A/G; 0.57) 

Use of sun/uv protection Lifestyle 

HAL deficiency leads to a 
decrease in levels of trans-
urocanate, which modulate 

skin response to UV light 

pmid1943682 

Childhood sunburn 
occasions 

Lifestyle 

Ease of skin tanning Lifestyle 

rs61937878 
(T/C; 0.0066) 

Childhood sunburn 
occasions 

Lifestyle 

HPD 
(12:119943590-

122716919) 

rs11043222 
(T/C; 0.12) 

Sitting height Anthropometry 

HPD deficiency is associated with failure to thrive, 
which can impact height and weight gain. 

pmid1130176, pmid858207, pmid7278885 

Trunk fat-free mass Anthropometry 

Whole body fat-free 
mass 

Anthropometry 

Leg fat-free mass Anthropometry 

Trunk predicted mass Anthropometry 

Leg predicted mass Anthropometry 

Arm fat-free mass Anthropometry 

Height Anthropometry 

Weight Anthropometry 

Arm predicted mass Anthropometry 

Fluid intelligence score 
Neurological, 
cognitive or 
behavioural 

HPD deficiency is associated 
with mild mental retardation 

pmid11073718 

LCT 
(2:135169570-

136883771) 

rs4988235 
(A/G; 0.70) 

Bread intake Lifestyle LCT deficiency is associated 
with inability to digest 

lactose, which could reduce 
dairy consumption or 

products that are normally 
consumed with dairy (eg 

bread and butter) 

pmid22826639 

Cereal intake Lifestyle 

Cheese intake Lifestyle 

Milk added to cereal Lifestyle 

Never/rarely have milk | 
milk type used 

Lifestyle 

Leg fat mass Anthropometry 

LCT deficiency is associated 
with metabolic acidosis, a 

symptom of which is 
vomiting and poor feeding. 
These symptoms can affect 

weight 

pmid13565838 

Hip circumference Anthropometry 

Weight Anthropometry 

Arm fat mass Anthropometry 

Waist circumference Anthropometry 

Whole body fat mass Anthropometry 

Body fat percentage Anthropometry 

Arm fat percentage Anthropometry 

Trunk fat mass Anthropometry 

Body mass index Anthropometry 

Trunk fat percentage Anthropometry 

Leg fat percentage Anthropometry 

Forced vital capacity 
(fvc) 

Respiratory 
LCT deficiency is associated 

with metabolic acidosis, 
which causes rapid and 

shallow breathing. Metabolic 
acidosis may also lead to 
respiratory depression 

pmid26215149 Forced expiratory 
volume in 1-second 

(fev1) 
Respiratory 

LDLR 
(19:10939298-

11586444) 

rs118068660 
(T/C; 0.097) 

Ischaemic stroke Cardiovascular 

LDLR deficiency is associated 
with hypercholesterolemia 
and adverse cardiovascular 

outcomes 

pmid1301956 

Chronic ischaemic heart 
disease 

Cardiovascular 

Stroke Cardiovascular 

Ischaemic heart disease Cardiovascular 

Angina pectoris Cardiovascular 

Hypercholesterolemia Cardiovascular 

Major coronary heart 
disease event 

Cardiovascular 

Coronary artery disease Cardiovascular 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

Diseases of the 
circulatory system 

Cardiovascular 

Myocardial infarction Cardiovascular 

Atherosclerosis Cardiovascular 

Diagnoses - secondary 
ICD10: Z95.5 Presence of 

coronary angioplasty 
implant and graft 

Cardiovascular 

Weight Anthropometry 

LDLR deficiency is associated 
with hypercholesterolemia 
and may lead to increased 

weight 

pmid1301956 
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Non-butter spread type 
details: Flora Pro-Active 

or Benecol 
Lifestyle 

LDLR deficiency is associated 
with hypercholesterolemia, 
which may alter intake of 
high fat foods like butter 

pmid1301956 

Lipitor 10mg tablet | 
treatment/medication 

code 
Medication 

LDLR deficiency is associated 
with hypercholesterolemia, 

which may require 
cholesterol lowering 

treatments 

pmid1301956 

Treatment with aspirin Medication 

Rosuvastatin | 
treatment/medication 

code 
Medication 

Medication for pain 
relief, constipation, 
heartburn: aspirin 

Medication 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

Medication use (agents 
acting on the renin-
angiotensin system) 

Medication 

Treatment with 
atorvastatin 

Medication 

Number of 
treatments/medications 

taken 
Medication 

Treatment with 
simvastatin 

Medication 

Treatment with 
ezetimibe 

Medication 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Medication use 
(antithrombotic agents) 

Medication 

LIPC 
(15:58140540-

59642157) 

rs1077835 
(G/A; 0.21) 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

LIPC deficiency is associated 
with elevated cholesterol 

levels, which can be treated 
by HMG CoA reductase 

inhibitors 

pmid1883393 

Coronary artery disease Cardiovascular 

LIPC deficiency is associated 
with elevated cholesterol 
levels, which may lead to 
coronary artery disease 

pmid1883393 

Metabolic syndrome 
Endocrine and 

metabolism 

LIPC deficiency is associated 
with elevated cholesterol 
levels, which may lead to 

metabolic syndrome 

pmid1883393 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

LIPC deficiency is associated 
with elevated cholesterol 

levels 
pmid1883393 

rs12708454 
(C/A; 0.31) 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

LIPC deficiency is associated 
with hypercholesterolemia 

pmid1883393 

rs1601935 
(T/G; 0.65) 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

LIPC deficiency is associated 
with elevated cholesterol 

levels 
pmid1883393 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 
LIPC deficiency is associated 
with hypercholesterolemia, 
which may be treated using 

cholesterol lowering 
medication 

pmid1883393 
Medication use (HMG 

CoA reductase 
inhibitors) 

Medication 

Treatment with 
atorvastatin 

Medication 
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Metabolic syndrome 
Endocrine and 

metabolism 

LIPC deficiency is associated 
with hypercholesterolemia, 
which may increase risk of 

metabolic syndrome 

pmid1883393 

Atherosclerosis Cardiovascular 

LIPC deficiency is associated 
with hypercholesterolemia, 
which may lead to adverse 
cardiovascular outcomes 

pmid1883393 

Hypercholesterolemia Cardiovascular 
LIPC deficiency is associated 
with hypercholesterolemia 

pmid1883393 

rs35853021 
(T/G; 0.36) 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

LIPC deficiency is associated 
with elevated cholesterol 

levels, which may be treated 
using cholesterol lowering 

medication 

pmid1883393 

Treatment with 
atorvastatin 

Medication 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Metabolic syndrome 
Endocrine and 

metabolism 

LIPC deficiency is associated 
with elevated cholesterol 
levels, which may lead to 

metabolic syndrome 

pmid1883393 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

LIPC deficiency is associated 
with elevated cholesterol 

levels 
pmid1883393 

Atherosclerosis Cardiovascular 

LIPC deficiency is associated 
with hypercholesterolemia, 
which may lead to adverse 
cardiovascular outcomes 

pmid1883393 

Hypercholesterolemia Cardiovascular 
LIPC deficiency is associated 
with hypercholesterolemia 

pmid1883393 

LPL 
(8:19565852-

20190058) 

rs1441764 
(T/C; 0.32) 

Type 2 diabetes 
Endocrine and 

metabolism 

LPL deficiency is associated 
with hypercholesterolemia, 

which may lead to an 
increased risk of type 2 

diabetes 

pmid20301485 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

LPL deficiency is associated 
with hypercholesterolemia 

pmid20301485 

Waist-to-hip ratio Anthropometry 

LPL deficiency is associated 
with lipid accumulation and 

increased lipid storage in 
adipose tissue, which could 
lead to an increase in waist-

to-hip ratio 

pmid20301485 

Metabolic syndrome 
Endocrine and 

metabolism 

LPL deficiency is associated 
with lipid accumulation and 

increased lipid storage in 
adipose tissue, which could 
lead to metabolic syndrome 

pmid20301485 

Angina pectoris Cardiovascular 

LPL deficiency is associated 
with lipid accumulation and 

increased lipid storage in 
adipose tissue, which in turn 

has been associated with 
increased risk of adverse 
cardiovascular outcomes 

pmid20301485 

Ischaemic heart disease Cardiovascular 

Coronary artery disease Cardiovascular 

Myocardial infarction Cardiovascular 

Fenofibrate | 
treatment/medication 

code 
Medication 

Diseases of the 
circulatory system 

Cardiovascular 

Major coronary heart 
disease event 

Cardiovascular 

Treatment with aspirin Medication LPL deficiency is associated 
with lipid accumulation and 

increased lipid storage in 
adipose tissue, which in turn 

has been linked to 
hypercholesterolemia and 

need to treat 

pmid20301485 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 
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Treatment with 
atorvastatin 

Medication 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

Treatment with 
simvastatin 

Medication 

Medication for pain 
relief, constipation, 
heartburn: aspirin 

Medication 

rs15285 (T/C; 
0.29) 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

LPL deficiency is associated 
with hypercholesterolemia 

pmid20301485 

Waist-to-hip ratio Anthropometry 

LPL deficiency is associated 
with lipid accumulation and 

increased lipid storage in 
adipose tissue, which could 
lead to an increase in waist-

to-hip ratio 

pmid20301485 

Metabolic syndrome 
Endocrine and 

metabolism 

LPL deficiency is associated 
with lipid accumulation and 

increased lipid storage in 
adipose tissue, which could 
lead to metabolic syndrome 

pmid20301485 

Ischaemic heart disease Cardiovascular 

LPL deficiency is associated 
with lipid accumulation and 

increased lipid storage in 
adipose tissue, which in turn 

has been associated with 
increased risk of adverse 
cardiovascular outcomes 

pmid20301485 

Myocardial infarction Cardiovascular 

Angina pectoris Cardiovascular 

Major coronary heart 
disease event 

Cardiovascular 

Coronary artery disease Cardiovascular 

Atherosclerosis Cardiovascular 

Diseases of the 
circulatory system 

Cardiovascular 

Treatment with aspirin Medication 

LPL deficiency is associated 
with lipid accumulation and 

increased lipid storage in 
adipose tissue, which in turn 

has been linked to 
hypercholesterolemia and 

need to treat 

pmid20301485 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Treatment with 
simvastatin 

Medication 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

Treatment with 
atorvastatin 

Medication 

Fenofibrate | 
treatment/medication 

code 
Medication 

Medication for pain 
relief, constipation, 
heartburn: aspirin 

Medication 

Type 2 diabetes 
Endocrine and 

metabolism 

LPL deficiency is associated 
with lipid accumulation, 

which is linked to increased 
risk of type 2 diabetes 

pmid3552532, 
pmid18985010 

MTHFR 
(1:11356378-

12356378) 

rs1801133 
(A/G; 0.34) 

Multiple sclerosis Inflammatory 

MTHFR deficiency is 
associated with seizures and 
neuropathy, which may be 

reflected in multiple sclerosis 

pmid25024447 

NAGS 
(17:41860044-

42705022) 

rs860354 
(A/T; 0.64) 

Comparative height size 
at age 10 

Anthropometry 

NAGS deficiency is 
associated with 

developmental delay, which 
could affect relative height in 

childhood 

pmid1405478 

NT5C3A 
(7:32640237-

33645764) 

rs4316067 
(G/A; 0.30) 

Comparative body size 
at age 10 

Anthropometry 

NT5C3A deficiency is 
associated with 

developmental delay, which 
may affect comparative body 

size at age 10 

http://iembase.o
rg/app/#!/disord

er/156 
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Mean sphered cell 
volume 

Hematological 

NT5C3A deficiency is 
associated with hemolytic 

anemia with abnormal (non-
spherocytic) red blood cell 
shapes. This can affect the 

count, volume and shape of 
red blood cells 

pmid3352512, 
pmid4372252 

Red cell distribution 
width 

Hematological 

Reticulocyte fraction of 
red cells 

Hematological 

Haematocrit percentage Hematological 

Reticulocyte count Hematological 

Red blood cell count Hematological 

Reticulocyte percentage Hematological 

Mean corpuscular 
volume 

Hematological 

Mean corpuscular 
haemoglobin 

Hematological 

Mean reticulocyte 
volume 

Hematological 

OPLAH/CYC1 
(8:143909290-

146458377) 

rs3935209 
(G/T; 0.082) 

Cognitive performance 
Neurological, 
cognitive or 
behavioural 

OPLAH deficiency is 
associated with psychomotor 

retardation, which may 
impair cognitive function 

pmid7542714 

Intelligence 
Neurological, 
cognitive or 
behavioural 

PCCB 
(3:135676622-

136542036) 

rs645040 
(T/G; 0.77) 

Schizophrenia 
Neurological, 
cognitive or 
behavioural 

Late-onset PCCB deficiency is 
associated with psychosis, 

which is a symptom of 
schizophrenia 

pmid18174561 

Sleep duration Lifestyle 
PCCB deficiency is associated 

with anemia, which may 
affect sleep duration 

pmid30879957 

Medication for pain 
relief, constipation, 
heartburn: aspirin 

Medication 

PCCB deficiency is associated 
with cardiomyopathy and 

prolonged QT interval, which 
are often accompanied with 

hypertension and may 
require blood pressure 

lowering medication 

pmid30879957 

Treatment with aspirin Medication 

Blood pressure 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Medication use (agents 
acting on the renin-
angiotensin system) 

Medication 

Coronary artery disease Cardiovascular 
PCCB deficiency is associated 
with cardiomyopathy, which 

is directly related to 
coronary artery disease 

pmid30879957 
Ischaemic heart disease Cardiovascular 

Major coronary heart 
disease event 

Cardiovascular 

Myocardial infarction Cardiovascular 

Relative age of first 
facial hair 

Reproductive 
and urinary 

PCCB deficiency is associated 
with developmental 

retardation and may delay 
facial hair development in 

men 

pmid30879957 

Metabolic syndrome 
Endocrine and 

metabolism 

PCCB deficiency is associated 
with hyperglycinemia, 
anemia and metabolic 

decompensation, all of which 
may contribute to metabolic 

syndrome 

pmid30879957 

Time to complete round 
Neurological, 
cognitive or 
behavioural 

PCCB deficiency is associated 
with intellectual disability, 
which may affect 'time to 

complete round' in a 
cognitive function 

experiment 

pmid30879957 

Lymphocyte count Hematological PCCB deficiency is associated 
with leukopenia 

pmid6026548 
Monocyte count Hematological 

Pork intake Lifestyle PCCB deficiency is associated 
with metabolic acidosis and 

feeding difficulties, for which 
pmid25205257 Variation in diet Lifestyle 

Lamb/mutton intake Lifestyle 
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Beef intake Lifestyle 
treatment includes low 

protein intake and specific 
food formulas 

Forced expiratory 
volume in 1-second 

(fev1), predicted 
Respiratory 

PCCB deficiency is associated 
with metabolic acidosis, 

which can be caused by a 
build-up of carbon dioxide in 
the blood due to poor lung 

function 

pmid30879957 
Wheeze or whistling in 
the chest in last year 

Respiratory 

Neutrophil percentage Hematological 
PCCB deficiency is associated 

with neutropenia 
pmid6026548 Neutrophil percentage 

of white cells 
Hematological 

Vascular or heart 
problems diagnosed by 

doctor: high blood 
pressure 

Cardiovascular 

PCCB deficiency is associated 
with QT interval 

prolongation, which leads to 
a slower heart rate. A 

reduced risk of hypertension 
would be expected as a 

milder phenotype based on 
this symptom of the IEM 

pmid30879957 

Hypertension Cardiovascular 

Platelet crit Hematological PCCB deficiency is associated 
with thrombocytopenia, 

which is directly related to 
platelet crit (loss of total 

platelet mass) 

pmid6026548, 
pmid13693094 Platelet count Hematological 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

PCCB is involved in the 
breakdown of cholesterol, so 
deficiency would be linked to 

hypercholesterolemia 

https://raredisea
ses.org/rare-

diseases/propion
ic-acidemia/ 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

Treatment with 
simvastatin 

Medication 

Body fat percentage Anthropometry 

Symptoms of PCCB 
deficiency include feeding 

difficulties and 
metabolic/ketoacidosis, 

which could affect body fat 
composition and body size 

pmid30879957 

Body mass index Anthropometry 

Leg fat percentage Anthropometry 

Trunk fat mass Anthropometry 

Hip circumference Anthropometry 

Arm fat percentage Anthropometry 

Waist circumference Anthropometry 

Whole body fat mass Anthropometry 

Arm fat mass Anthropometry 

Weight Anthropometry 

Waist-to-hip ratio Anthropometry 

Arm predicted mass Anthropometry 

Leg fat mass Anthropometry 

PCSK9 
(1:55255647-

55755647) 

rs11591147 
(T/G; 0.018) 

Treatment with 
atorvastatin 

Medication 

High cholesterol caused by 
PCSK9 mutations are often 

treated with statins 
pmid16424354 

Medication use (HMG 
CoA reductase 

inhibitors) 
Medication 

Treatment with 
simvastatin 

Medication 

Cholesterol lowering 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

take exogenous 
hormones 

Medication 

Lipitor 10mg tablet | 
treatment/medication 

code 
Medication 

PCSK9 deficiency is known to 
cause early-onset 

hypercholesterolemia and 
coronary artery disease, 

requiring treatment 

pmid16424354 
Treatment with 

ezetimibe 
Medication 
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Medication for pain 
relief, constipation, 
heartburn: aspirin 

Medication 

Chronic ischaemic heart 
disease 

Cardiovascular 

PCSK9 deficiency is known to 
cause early-onset 

hypercholesterolemia and 
coronary artery disease 

pmid17435765 

Angina pectoris Cardiovascular 

Coronary artery disease Cardiovascular 

Self-reported high 
cholesterol 

Endocrine and 
metabolism 

Ischaemic heart disease Cardiovascular 

Myocardial infarction Cardiovascular 

Diseases of the 
circulatory system 

Cardiovascular 

Atherosclerosis Cardiovascular 

Hypercholesterolemia Cardiovascular 

Butter/spreadable 
butter | spread type 

Lifestyle 
PCSK9 deficiency is known to 

cause early-onset 
hypercholesterolemia and 
may reduce high fat food 

intake 

pmid17435765 Non-butter spread type 
details: Flora Pro-Active 

or Benecol 
Lifestyle 

PHGDH 
(1:119218284-

120594880) 

rs561931 
(G/A; 0.59) 

Haematocrit percentage Hematological 

Megaloblastic anaemia has 
been reported in some 
patients with PHGDH 

deficiency. This symptom 
causes the formation of 

larger than normal red blood 
cells and fewer red blood 

cells in total 

pmid21113737 

Red blood cell count Hematological 

Multiple sclerosis Inflammatory 

PHGDH deficiency is 
associated with 

microcephaly, a condition in 
which myelinating 

abnormalities have been 
observed. This may affect 

multiple sclerosis risk 

pmid8758134, 
pmid28007986, 
pmid28413018 

PPM1K 
(4:88255945-

89499444) 

rs10018448 
(G/A; 0.53) 

Type 2 diabetes 
Endocrine and 

metabolism 

PPM1K deficiency is 
associated with metabolic 
derangement and feeding 

difficulties, which may affect 
body fat deposition and type 

2 diabetes risk 

pmid14567968 

Waist circumference Anthropometry 
PPM1K deficiency is 

associated with metabolic 
derangement and feeding 

difficulties, which may affect 
waist circumference 

pmid14567968 

Leg fat percentage Anthropometry 

PSPH 
(7:55625223-

56388322) 

rs4470984 
(G/A; 0.76) 

Height Anthropometry 
PSPH deficiency is associated 

with growth retardation 
pmid9222972 

Sitting height Anthropometry 

RBP4 
(10:95110964-

95610964) 

rs10882283 
(C/A; 0.38) 

Optic disc area Eye 

RBP4 deficiency is associated 
with abnormal eye 

development, a symptom of 
which includes optic pit, a 
congenital protrusion or 

depression of the optic disc. 
This symptom may be 

reflected by variation in 
optic disc area 

pmid24168988 

SLC16A12 
(10:90972995-

91893687) 

rs7081788 
(A/G; 0.24) 

Breast cancer Cancer 

Although the link between 
the IEM and outcome is not 

clear, levels of the associated 
metabolite creatine are 
elevated in tumourous 

breast cancer tissue 
compared to adjacent non-

cancerous tissue 

pmid23613877 

SLC22A5 
(5:129311501-

132923264) 

rs538021413 
(D/I; 0.63) 

Blood pressure 
medication | medication 

for cholesterol, blood 
pressure, diabetes, or 

Medication 

Impaired fatty acid oxidation 
in heart muscle due to 

SLC22A5 deficiency may 
cause an accumulation of 

pmid12210323 
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take exogenous 
hormones 

lipids in blood vessels that 
may lead to hypertension 

and a need to treat Diastolic blood pressure Hematological 

Vascular or heart 
problems diagnosed by 

doctor: high blood 
pressure 

Cardiovascular 

Impaired fatty acid oxidation 
in heart muscle due to 

SLC22A5 deficiency may 
cause an accumulation of 
lipids in blood vessels that 
may lead to hypertension 

and cardiomyopathy 

pmid12210323 

Hypertension Cardiovascular 

Forced expiratory 
volume in 1-second 

(fev1), predicted 
Respiratory SLC22A5 deficiency can lead 

to cardiovascular 
abnormalities and irregular 

respiration 

pmid9634512 
Forced expiratory 

volume in 1-second 
(fev1) 

Respiratory 

Glomerular filtration 
rate 

Renal 

SLC22A5 deficiency can lead 
to increased urinary 

carnitine excretion, which 
may indicate defects in renal 

carnitine reabsorption 

pmid7131143 

Weight Anthropometry 

SLC22A5 deficiency can 
reduce lipid stores in muscle 
tissue, which leads to known 

symptoms of skeletal 
myopathy 

pmid4687787, 
pmid4414743, 
pmid123043 

Leg predicted mass Anthropometry 

Arm predicted mass Anthropometry 

Leg fat-free mass Anthropometry 

Trunk predicted mass Anthropometry 

Trunk fat-free mass Anthropometry 

Whole body fat-free 
mass 

Anthropometry 

Arm fat-free mass Anthropometry 

SLC25A19 
(17:71599741-

74891603) 

rs7222784 
(A/T; 0.68) 

Height Anthropometry SLC25A19 deficiency can 
cause developmental delay, 

which may affect height 
pmid20583149 Comparative height size 

at age 10 
Anthropometry 

SLC5A1 
(22:31889342-

32889342) 

rs117086479 
(G/A; 0.06) 

Type 2 diabetes 
Endocrine and 

metabolism 

SLC5A1 deficiency is 
associated with 

glucose/galactose 
malabsorption, which may 

contribute to type 2 diabetes 

pmid20486940 

SLC7A9 
(19:32932750-

34004548) 

rs7247977 
(C/T; 0.39) 

Chronic kidney disease Renal 

SLC7A9 deficiency is 
associated with the 

formation of renal calculi as 
a result of low renal 

reabsorption ability of 
cystine, which can lead to 

chronic kidney disease 

pmid21255007 

Glomerular filtration 
rate 

Renal 

SLCO1A2/ 
SLCO1B1/ 
SLCO1B3 

(12:20367806-
23013636) 

rs4149056 
(C/T; 0.15) 

Daytime dozing / 
sleeping (narcolepsy) 

Neurological, 
cognitive or 
behavioural 

Although the link between 
the IEM and outcome is not 

clear, hyperbilirubinemia has 
been shown to affect sleep-

wake cycles of affected 
newborns 

pmid28072860 

TF 
(3:132977701-

133977701) 

rs8177240 
(T/G; 0.67) 

Red blood cell count Hematological TF deficiency is associated 
with anemia, which may 

affect the volume and size of 
red blood cells 

pmid11110675 Mean corpuscular 
volume 

Hematological 

Mean corpuscular 
haemoglobin 

Hematological 

TF deficiency is associated 
with anemia, which may be 

defined as reduced 
haemoglobin content 

pmid11110675, 
pmid21694802 

TH 
(11:1735287-

2479759) 

rs10840516 
(A/G; 0.24) 

Years of schooling 
Neurological, 
cognitive or 
behavioural 

Case reports have identified 
siblings with severe 

intellectual disability as well 
as other symptoms 
compatible with TH 

deficiency 

pmid21937992 

Pulse rate Hematological 
TH deficiency is associated 

with autonomic dysfunction, 
which may affect pulse rate 

pmid22815559 

Arm fat-free mass Anthropometry 
pmid22815559 

Weight Anthropometry 
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Arm predicted mass Anthropometry 

TH deficiency is associated 
with hypotonia, which 
decreases muscle tone 

Leg fat-free mass Anthropometry 

Trunk predicted mass Anthropometry 

Trunk fat-free mass Anthropometry 

Leg predicted mass Anthropometry 

Whole body fat-free 
mass 

Anthropometry 

Body mass index Anthropometry 

TKT 
(3:52712681-

54087252) 

rs4687717 
(C/T; 0.57) 

Pulse rate Hematological 
TKT deficiency is linked to 
congenital heart defects, 

which may alter pulse rate 
pmid27259054 

Spherical power Eye 

TKT deficiency is linked to 
uveitis and conjunctivitis, 
both of which may lead to 
reduced visual acuity and 

affect spherical power 

pmid27259054 

rs4687718 
(G/A; 0.87) 

QRS duration Cardiovascular 

TKT deficiency is associated 
with congenital heart 

defects, which may affect 
QRS duration 

pmid27259054 

Pulse rate Hematological 
TKT deficiency is linked to 
congenital heart defects, 

which may alter pulse rate 
pmid27259054 

3mm weak meridian Eye TKT deficiency is linked to 
uveitis and conjunctivitis, 
both of which may lead to 
reduced visual acuity and 

affect spherical power 

pmid27259054 
6mm weak meridian Eye 

UGT1A1/UGT1A
3/UGT1A4/UGT

1A5/UGT1A6 
/UGT1A7/UGT1

A8/UGT1A9/ 
UGT1A10 

(2:233892619-
235187605) 

rs1976391 
(G/A; 0.31) 

Skin colour Anthropometry 

UGT1A1 deficiency can cause 
neonatal jaundice, which is 

often treated by 
phototherapy. This may 

affect skin colour and ease of 
skin tanning, though it is 

important to note that these 
phenotypes may be a side 
effect rather than a direct 

cause of the metabolic 
alteration 

pmid12983120, 
pmid23950218 

Ease of skin tanning Lifestyle 

Disorders of gallbladder, 
biliary tract and 

pancreas 

Endocrine and 
metabolism 

UGT1A1 deficiency is a 
disorder of the gallbladder 

and biliary tract that leads to 
hyperbilirubinemia and 

cholelithiasis 

pmid12983120 

Operation code: 
cholecystectomy/gall 

bladder removal 

Endocrine and 
metabolism 

UGT1A1 deficiency is 
associated with 

hyperbilirubinemia, which 
can lead to the formation of 
gallstones and may require 

surgery to remove 

pmid14013759 

Self-reported liver or 
biliary/pancreas 

problem 

Endocrine and 
metabolism 

UGT1A1 deficiency is 
associated with jaundice and 

is a known risk factor of 
gallstone formation 

pmid8596320 
Cholelithiasis and 

cholecystitis 
Endocrine and 

metabolism 

rs201829156 
(D/I; 0.35) 

Skin colour Anthropometry 
UGT1A1 deficiency can cause 
neonatal jaundice, which is 

often treated by 
phototherapy. This may 

affect skin colour and ease of 
skin tanning, though it is 

important to note that these 
phenotypes may be a side 
effect rather than a direct 

cause of the metabolic 
alteration 

pmid12983120, 
pmid23950218 rs201829156 

(D/I; 0.35) 
Ease of skin tanning Lifestyle 

rs201829156 
(D/I; 0.35) 

Self-reported liver or 
biliary/pancreas 

problem 

Endocrine and 
metabolism 

UGT1A1 deficiency is 
associated with jaundice and 

pmid8596320 
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Cholelithiasis and 
cholecystitis 

Endocrine and 
metabolism 

is a known risk factor of 
gallstone formation 

UMPS 
(3:124028592-

125111128) 

rs2242247 
(T/A; 0.17) 

Heel bone mineral 
density 

Bone 

Patients with urolithiasis 
have increased 

disintegration and lower 
bone mass 

pmid25568567, 
pmid18359393 

Mean platelet volume Hematological 
UMPS deficiency is 

associated with 
megaloblastic anemia, a 
condition in which larger 
than usual red blood cells 

are produced. Reduced 
platelet counts with varying 

sizes are also recorded in 
patients with UMPS 

deficiency 

https://pdfs.sem
anticscholar.org/
477a/e0651623c
694a7cc8f88331
78d18ba09b6d5.

pdf, 
https://www.inte
chopen.com/boo

ks/current-
topics-in-

anemia/megalobl
astic anemia 

Platelet distribution 
width 

Hematological 
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Ch5_ST4: Summary results for novel colocalising metabolite-phenotype clusters. PPR = regional 
posterior probability; PPA = alignment posterior probability; PPE = explained posterior probability. 

Locus IFVs Colocalising traits PPR/PPA 
Candidate 

causal variant 
(R2 with IFV) 

PPE 

ABCA1 
(9:107264123-

107915739) 
rs2575876 

Self-reported high cholesterol, 
Cholesterol lowering medication | 
medication for cholesterol, blood 

pressure, diabetes, or take exogenous 
hormones, Medication use (HMG CoA 
reductase inhibitors), sphingomyelin 

(d18:1/20:0, d16:1/22:0)*, sphingomyelin 
(d18:1/14:0, d16:1/16:0)* 

0.99/0.97 rs2740488 0.51 

ACSF3 
(16:88668096-

90424092) 

rs36099289, 
rs72817435 

Body mass index, ethylmalonate 0.99/0.70 rs72817435 (-) 0.11 

APOA5/ 
APOA4/ 
APOA1/ 
APOC3 

(11:116274569-
117470429) 

rs530885291, 
rs964184 

Self-reported high cholesterol, 
Hypercholesterolemia, Coronary artery 

disease, Metabolic syndrome, 1-
palmitoyl-2-docosahexaenoyl-GPE 

(16:0/22:6)*, 1-oleoyl-2-linoleoyl-glycerol 
(18:1/18:2), 1-oleoyl-3-linoleoyl-glycerol 
(18:1/18:2), 1-stearoyl-2-arachidonoyl-

GPE (18:0/20:4), 1-stearoyl-2-
docosahexaenoyl-GPE (18:0/22:6)*, 1-

palmitoyl-2-linoleoyl-glycerol 
(16:0/18:2)*, 1-palmitoyl-3-linoleoyl-
glycerol (16:0/18:2)*, 1-stearoyl-2-

arachidonoyl-GPI (18:0/20:4), 1-stearoyl-
2-linoleoyl-GPE (18:0/18:2)*, 1-stearoyl-2-

oleoyl-GPE (18:0/18:1), 1-stearoyl-2-
linoleoyl-GPI (18:0/18:2), 1-palmitoyl-2-
stearoyl-GPC (16:0/18:0), 1-palmitoyl-2-
linoleoyl-GPC (16:0/18:2), 1-stearoyl-2-
linoleoyl-GPC (18:0/18:2)*, N-palmitoyl-
sphingosine (d18:1/16:0), 1-margaroyl-2-
linoleoyl-GPC (17:0/18:2)*, 1-palmitoyl-2-

linoleoyl-GPE (16:0/18:2), 1-oleoyl-2-
docosahexaenoyl-GPC (18:1/22:6)*, 
phosphatidylcholine (16:0/22:5n3, 

18:1/20:4)*, 1-stearoyl-GPE (18:0), 1-
stearoyl-GPC (18:0) 

1/>0.99 rs964184 (-) 1 

APOB (2:20893329-
21546682) 

rs934197 

Self-reported high cholesterol, Treatment 
with simvastatin, Treatment with 

atorvastatin, Hypercholesterolemia, 
Medication use (HMG CoA reductase 

inhibitors), cholesterol, palmitoyl 
sphingomyelin (d18:1/16:0), 1-palmitoyl-

2-stearoyl-GPC (16:0/18:0), palmitoyl 
dihydrosphingomyelin (d18:0/16:0)* 

1/0.79 rs1367117 0.52 

APOE/ 
APOC1/ 
APOC2/ 
APOC4 

(19:45081103-
45922478) 

rs7412, 
rs5112, 

rs429358, 
rs204474 

Deep venous thrombosis, Coronary artery 
disease, Self-reported high cholesterol, 
Hypercholesterolemia, Angina pectoris, 
Myocardial infarction, Vascular or heart 

problems diagnosed by doctor: high blood 
pressure, Hypertension, Diagnoses - 

>0.99/>0.99 rs7412 (-) 1 
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secondary ICD10: Z95.5 Presence of 
coronary angioplasty implant and graft, 1-

(1-enyl-stearoyl)-2-linoleoyl-GPE (P-
18:0/18:2)*, cholesterol, N-palmitoyl-

sphingosine (d18:1/16:0), 1-stearoyl-GPE 
(18:0), 1-palmitoyl-2-stearoyl-GPC 

(16:0/18:0), 1-nonadecanoyl-GPC (19:0), 
1-stearoyl-2-arachidonoyl-GPE 

(18:0/20:4), 1-palmitoyl-2-
docosahexaenoyl-GPE (16:0/22:6)*, 1-
oleoyl-2-linoleoyl-glycerol (18:1/18:2), 

lactosyl-N-palmitoyl-sphingosine, 
sphingomyelin (d18:1/20:1, d18:2/20:0)* 

Metabolic syndrome, 1-oleoylglycerol 
(18:1), palmitoyl sphingomyelin 

(d18:1/16:0) 
1/0.95 

rs483082 (<0.1 
with all IFVs) 

0.62 

ARG1 
(6:131575856-

132147278) 
rs71753454 

Type 2 diabetes, Hip circumference, 
Weight, Body mass index, Leg fat-free 

mass, Leg predicted mass, Arm fat mass, 
Whole body fat mass, Trunk fat mass, Leg 

fat mass, Waist circumference, Arm fat 
percentage, Body fat percentage, arginine 

>0.99/0.95 
rs2781668 

(0.64) 
0.85 

CETP 
(16:56689969-

57265091) 
rs12149545 

Treatment with simvastatin, Coronary 
artery disease, Cholesterol lowering 

medication | medication for cholesterol, 
blood pressure, diabetes, or take 

exogenous hormones, Self-reported high 
cholesterol, Metabolic syndrome, 

Medication use (HMG CoA reductase 
inhibitors), 1-(1-enyl-palmitoyl)-2-

palmitoleoyl-GPC (P-16:0/16:1)*, 1-(1-
enyl-palmitoyl)-2-linoleoyl-GPC (P-
16:0/18:2)*, 1-(1-enyl-palmitoyl)-2-

palmitoyl-GPC (P-16:0/16:0)*, 1-(1-enyl-
palmitoyl)-2-oleoyl-GPC (P-16:0/18:1)*, 1-
(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-

16:0/20:4)*, 1-palmitoyl-2-linoleoyl-
glycerol (16:0/18:2)*, 1-palmitoyl-2-

arachidonoyl-GPC (16:0/20:4), 1-(1-enyl-
stearoyl)-2-oleoyl-GPC (P-18:0/18:1), 1-
stearoyl-2-linoleoyl-GPI (18:0/18:2), 1-

palmitoyl-2-linoleoyl-GPC (16:0/18:2), 1,2-
dipalmitoyl-GPC (16:0/16:0), 1-palmityl-2-

arachidonoyl-GPC (O-16:0/20:4)*, 1-(1-
enyl-palmitoyl)-2-myristoyl-GPC (P-

16:0/14:0)*, 1-stearoyl-2-arachidonoyl-
GPC (18:0/20:4), 1-(1-enyl-stearoyl)-2-

linoleoyl-GPC (P-18:0/18:2)*, 1-myristoyl-
2-linoleoyl-GPC (14:0/18:2)*, 1-palmitoyl-

2-palmitoleoyl-GPC (16:0/16:1)* 

0.97/0.89 rs183130 0.9391 

CPS1 
(2:209335210-

212467075) 

rs1047891, 
rs13411696 

Operation code: cholecystectomy/gall 
bladder removal, Vascular or heart 

problems diagnosed by doctor: high blood 
pressure, Hypertension, Chronic kidney 

disease, glycine, N-acetylglycine, gamma-
glutamylglycine, propionylglycine, 3-

methylglutarylcarnitine (2), 
homoarginine, isobutyrylglycine, 
hexanoylglycine, tigloylglycine, 

isovalerylglycine, cinnamoylglycine, 
creatine, pyroglutamine*, citrulline 

0.99/0.99 rs1047891 (-) 1 

CPT2 (1:53193901-
54025740) 

rs35316080 Systolic blood pressure, succinylcarnitine 0.96/0.83 rs35316080 (-) 0.49 

CYP7A1 
(8:59061697-

59661042) 
rs4738684 

Operation code: cholecystectomy/gall 
bladder removal, Disorders of gallbladder, 

biliary tract and pancreas, Self-reported 
high cholesterol, Cholelithiasis and 
cholecystitis, Cholesterol lowering 

medication | medication for cholesterol, 
blood pressure, diabetes, or take 

exogenous hormones, Treatment with 

0.87/0.75 rs10107182 (1) 0.51 
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atorvastatin, Medication use (HMG CoA 
reductase inhibitors), taurocholenate 
sulfate, glycodeoxycholate sulfate, 7-

alpha-hydroxy-3-oxo-4-cholestenoate (7-
Hoca), glycochenodeoxycholate 

glucuronide (1), glycodeoxycholate, 
deoxycholate 

DBH (9:135888765-
136851769) 

rs6271 

Diastolic blood pressure, Vascular or heart 
problems diagnosed by doctor: high blood 

pressure, Hypertension, Systolic blood 
pressure, Blood pressure medication | 

medication for cholesterol, blood 
pressure, diabetes, or take exogenous 

hormones, Treatment/medication code: 
amlodipine, Medication use (calcium 
channel blockers), vanillylmandelate 

(VMA) 

0.97/0.97 rs6271 1 

ETFA 
(15:76247217-

77203256) 

rs2291449, 
rs2959850 

Alcohol intake frequency, 
isovalerylcarnitine, butyrylcarnitine, 

ethylmalonate, dimethylglycine 
>0.99/0.72 

rs78185702 
(0.98 with 

rs2291449, 0.11 
with rs2959850) 

0.98 

GATM 
(15:44859591-

46199886) 

rs1145091, 
rs2486274 

Chronic kidney disease, homoarginine 1/0.95 rs1049518 0.16 

HAL (12:95953054-
96683079) 

rs3213737, 
rs61937878 

Childhood sunburn occasions, Ease of skin 
tanning, histidine 

>0.99/0.98 rs3213737 0.66 

LCT (2:135169570-
136883771) 

rs4988235 
Bread intake, Cereal intake, Milk added to 

cereal, galactonate, 1,5-anhydroglucitol 
(1,5-AG) 

0.96/0.92 rs182549 0.68 

LDLR 
(19:10939298-

11586444) 
rs118068660 

Treatment with ezetimibe, Stroke, 
Rosuvastatin | treatment/medication 

code, Ischaemic heart disease, 
Atherosclerosis, Diseases of the 

circulatory system, Non-butter spread 
type details: Flora Pro-Active or Benecol, 

Ischaemic stroke, Self-reported high 
cholesterol, Cholesterol lowering 

medication | medication for cholesterol, 
blood pressure, diabetes, or take 

exogenous hormones, Treatment with 
simvastatin, Hypercholesterolemia, 

Treatment with atorvastatin, Coronary 
artery disease, Angina pectoris, 

Medication for pain relief, constipation, 
heartburn: aspirin, Treatment with 

aspirin, Chronic ischaemic heart disease, 
Major coronary heart disease event, 
Number of treatments/medications 

taken, Weight, Medication use (agents 
acting on the renin-angiotensin system), 
Medication use (antithrombotic agents), 

Medication use (HMG CoA reductase 
inhibitors), cholesterol, palmitoyl 

dihydrosphingomyelin (d18:0/16:0)*, 
palmitoyl sphingomyelin (d18:1/16:0), 

glycosyl-N-palmitoyl-sphingosine, lactosyl-
N-palmitoyl-sphingosine, N-palmitoyl-

sphingosine (d18:1/16:0), stearoyl 
sphingomyelin (d18:1/18:0), 

sphingomyelin (d18:1/15:0, d16:1/17:0)*, 
sphingomyelin (d18:1/17:0, d17:1/18:0, 
d19:1/16:0), sphingomyelin (d18:1/14:0, 

d16:1/16:0)*, sphingomyelin (d18:1/20:0, 
d16:1/22:0)*, 1,2-dipalmitoyl-GPC 

(16:0/16:0), sphingomyelin (d18:1/22:1, 
d18:2/22:0, d16:1/24:1)* 

0.99/0.76 rs138294113 0.35 

LPL (8:19565852-
20190058) 

rs1441764, 
rs15285 

Coronary artery disease, Self-reported 
high cholesterol, Ischaemic heart disease, 

Angina pectoris, Myocardial infarction, 
Type 2 diabetes, Diseases of the 

circulatory system, Metabolic syndrome, 

0.99/0.53 rs15285 (-) 0.97 
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1-oleoyl-2-linoleoyl-glycerol (18:1/18:2), 
1-palmitoyl-2-linoleoyl-glycerol 

(16:0/18:2)*, 1-oleoyl-3-linoleoyl-glycerol 
(18:1/18:2), 1-palmitoyl-3-linoleoyl-

glycerol (16:0/18:2)*, 1-(1-enyl-
palmitoyl)-2-oleoyl-GPC (P-16:0/18:1)*, 1-

(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-
16:0/18:2)* 

OPLAH/CYC1 
(8:143909290-

146458377) 
rs3935209 

Cognitive performance, Intelligence, 5-
oxoproline, 6-oxopiperidine-2-carboxylic 

acid 
0.94/0.9 rs3935209 (-) 1 

PCSK9 
(1:55255647-

55755647) 
rs11591147 

Treatment with ezetimibe, 
Butter/spreadable butter | spread type, 

Lipitor 10mg tablet | 
treatment/medication code, Treatment 

with atorvastatin, Chronic ischaemic heart 
disease, Angina pectoris, Coronary artery 
disease, Self-reported high cholesterol, 
Treatment with simvastatin, Cholesterol 

lowering medication | medication for 
cholesterol, blood pressure, diabetes, or 

take exogenous hormones, 
Hypercholesterolemia, Ischaemic heart 
disease, Atherosclerosis, Diseases of the 
circulatory system, Non-butter spread 

type details: Flora Pro-Active or Benecol, 
Medication for pain relief, constipation, 

heartburn: aspirin, Myocardial infarction, 
Medication use (HMG CoA reductase 

inhibitors), cholesterol, palmitoyl 
dihydrosphingomyelin (d18:0/16:0)*, 
palmitoyl sphingomyelin (d18:1/16:0), 
stearoyl sphingomyelin (d18:1/18:0), 

sphingomyelin (d18:1/17:0, d17:1/18:0, 
d19:1/16:0), lactosyl-N-palmitoyl-

sphingosine, sphingomyelin (d18:1/15:0, 
d16:1/17:0)*, sphingomyelin (d18:2/16:0, 

d18:1/16:1)* 

0.95/0.95 rs11591147 (-) 1 

PPM1K 
(4:88255945-

89499444) 
rs10018448 

Waist circumference, Leg fat percentage, 
valine, alpha-hydroxyisovalerate, 3-
methyl-2-oxobutyrate, 4-methyl-2-

oxopentanoate, 3-methyl-2-oxovalerate 

>0.99/0.71 
rs1129043 

(0.50) 
>0.99 

RBP4 
(10:95110964-

95610964) 
rs10882283 Optic disc area, retinol (Vitamin A) >0.99/>0.99 rs10882283 (-) >0.99 

SLC7A9 
(19:32932750-

34004548) 
rs7247977 Chronic kidney disease, homocitrulline 0.99/0.95 rs7247977 (-) 0.38 

TH (11:1735287-
2479759) 

rs10840516 
Pulse rate, 3-methoxytyrosine, dopamine 

sulfate (2) 
0.99/0.79 

rs11564705 
(0.97) 

0.3644 

UGT1A1/UGT1A3/
UGT1A4/UGT1A5/
UGT1A6/UGT1A7/
UGT1A8/UGT1A9/

UGT1A10 
(2:233892619-

235187605) 

rs1976391, 
rs201829156 

Cholelithiasis and cholecystitis, Skin 
colour, Disorders of gallbladder, biliary 

tract and pancreas, Operation code: 
cholecystectomy/gall bladder removal, 

Ease of skin tanning, p-cresol-
glucuronide*, bilirubin (Z,Z), bilirubin 

(E,E)* 

0.98/0.88 rs887829 1 
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Ch5_ST5: Clinical annotations for nine IFVs in the PharmGKB database. Chr = Chromosome, Pos = 
Position, EA = Effect Allele, OA = Other Allele, EAF = EA frequency, ADR = Adverse drug reaction, PK = 
Pharmacokinetics. Tiers are based on PharmGKB’s tiers of evidence225. 

Annotated 
IEM genes at 

locus 

IFV 
(Chr:Pos:EA:OA) 

EAF Chemical Phenotypes 
Type of 

response 
Tier 

APOE/APOC2 
rs429358 

(19: 
45411941:C:T) 

0.15 

Simvastatin Myocardial Infarction  Efficacy,  3 

Acenocoumarol Haemorrhage Toxicity/ADR 3 

Warfarin 
Venous 

thromboembolism  
Efficacy 3 

HmG CoA reductase 
inhibitors 

Alzheimer’s disease Efficacy 3 

Antivirals for treatment of 
HIV 

infections/combinations/rit
onavir 

HIV infections, 
hyperlipidemias and 
hypertriglyceridemia 

Toxicity/ADR 3 

APOE/APOC2 
rs7412 

(19: 
45412079:T:C) 

0.081 

Atorvastatin  
 

Coronary disease, 
Hyperlipidemias 

Efficacy 2 

Warfarin Hyperlipidemias Efficacy NA 

Fenofibrate  
Venous 

thromboembolism  
Efficacy 3 

Fluvastatin Hypertriglyceridemia Efficacy 3 

Antivirals for treatment of 
HIV 

infections/combinations/rit
onavir  

HIV infections, 
hyperlipidemias and 
hypertriglyceridemia 

Toxicity/ADR 3 

Pravastatin 
Coronary disease, 
Hyperlipidemias 

Efficacy 3 

CTH 
rs1021737 

(1:70904800:T:G) 
0.29 

Busulfan and 
cyclophosphamide 

Hemopoietic stem cell 
transplant 

Toxicity/ADR 3 

DPYD 
rs3918290 

(1: 97915614:T:C) 
0.0039 

Capecitabine, fluorouracil 
and pyrimidine analogues 

Neoplasms 
 

Toxicity/ADR 1A 

Tegafur Neoplasms Toxicity/ADR 3 

Fluorouracil Neoplasms Efficacy 3 

DPYD 
rs67376798 

(1: 97547947:A:T) 
0.0072 

Capecitabine, fluorouracil 
and pyrimidine analogues 

Neoplasms 
 

Toxicity/ADR 1A 

MTHFR 
rs1801133 

(1: 11856378:A:G) 
0.34 Tegafur Neoplasms Toxicity/ADR 3 

SLCO1B1/SLC
O1B3 

rs2291075 
(12:21331625:T:C) 

0.39 
Cytarabine, daunorubicin, 
etoposide, mitoxantrone 

Acute myeloid 
leukaemia 

Efficacy 3 

SLCO1B1/SLC
O1B3 

rs4149056 
(12:21331549:C:T) 

0.15 Simvastatin 
Muscular diseases, 

Central core 
myopathy 

Toxicity/ADR 1A 

UGT1A1 
rs1976391 (2: 

234665983:G:A) 
0.31 

Risperidone Hyperprolactinemia Toxicity/ADR 3 

Oxazepam 

Treatment of anxiety 
and insomnia, Control 
of alcohol withdrawal 

symptoms 

Metabolism/
PK 

4 

UGT1A1 
rs3732218 (2: 

234627304:A:G) 
0.084 Anastrozole Breast cancer Other 4 

UGT1A1 
rs72551330 (2: 
234580678:C:T) 

0.014 

Mycophenolate mofetil Kidney transplantation Toxicity/ADR 3 

Sulfinpyrazone Gout 
Metabolism/

PK 
4 
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Ch6_ST1: Summary statistics for the top 20 tested variant-PheRS associations with the largest odds 
ratios and the numbers of high PheRS ‘cases’ and ‘controls’ by variant carrier status. EA = Effect 
allele, OA = Other allele, EAF = EA frequency in UK Biobank. 

IEM gene 
IFV (EA/OA; 

EAF) 
PheRS OR (95% CI) 

FDR-
adjusted 
p-value 

Carriers of effect 
allele (% 

homozygotes) 

Homozygotes for 
other allele 

     
High 

PheRS  
Controls 

High 
PheRS  

Controls 

PCSK9 
rs11591147 
(G/T; 0.98) 

Homozygous Familial 
Hypercholesterolemia 

2 (1.03; 3.88) 0.37 
57816 
(97.12) 

10 
294055 
(96.44) 

106 

APOE 
rs429358 

(C/T; 0.16) 
Alzheimer Disease 4 

1.97  
(1.82; 2.13) 

1.5x10-59 
1086 
(19.8) 

1397 
99760 
(8.3) 

249744 

APOE 
rs429358 

(C/T; 0.16) 
Alzheimer Disease 2 

1.8 (1.67; 
1.95) 

1.8x10-46 
1074 

(18.25) 
1510 

99772 
(8.32) 

249631 

ACY1 
rs189171677 

(T/C; 
0.00018) 

Neurological 
Conditions Associated 
With Aminoacylase 1 

Deficiency 

1.74 (0.88; 
3.43) 

0.59 9 (0) 16134 116 (0) 335577 

DDC 
rs930707 

(G/A; 0.98) 

Aromatic L-amino Acid 
Decarboxylase 

Deficiency 

1.72 (0.75; 
3.93) 

0.61 
36837 
(96.78) 

6 
314728 
(96.89) 

91 

APOE 
rs7412  

(C/T; 0.92) 
Alzheimer Disease 2 

1.61 (0.86; 
3.01) 

0.6 
2574 

(87.84) 
10 

347164 
(85.16) 

2239 

SLC5A1 
rs117086479 
(A/G; 0.92) 

Glucose/galactose 
Malabsorption 

1.57 (0.91; 
2.72) 

0.57 
3576 

(85.82) 
13 

343247 
(86.02) 

1936 

LDLR 
rs118068660 

(C/T; 0.91) 
Homozygous Familial 
Hypercholesterolemia 

1.21 (1.08; 
1.35) 

0.02 
55398 
(84.5) 

383 
280387 
(82.77) 

2298 

LIPC 
rs121912502 
(T/C; 0.0014) 

Hyperlipidemia Due 
To Hepatic 

Triacylglycerol Lipase 
Deficiency 

1.21 (0.96; 
1.51) 

0.56 90 (0) 24988 
917 

(0.11) 
325992 

APOC2 
rs5112  

(G/C; 0.54) 
Apolipoprotein C-ii 

Deficiency 
1.2 (1.03; 1.4) 0.18 

922 
(36.98) 

205 
232136 
(35.83) 

61934 

GGT1 
rs2236626 
(T/C; 0.78) 

Glutathionuria 
0.84 (0.54; 

1.3) 
0.82 

343 
(64.14) 

21 
307959 
(63.54) 

15801 

SCO2 
rs74479613 
(C/T; 0.91) 

Cardioencephalomyop
athy, Fatal Infantile, 

Due To Cytochrome C 
Oxidase Deficiency 1 

0.81 (0.59; 
1.1) 

0.6 
4220 

(83.27) 
42 

344866 
(83.76) 

2738 

GATM 
rs1145091 
(T/C; 0.74) 

Cerebral Creatine 
Deficiency Syndrome 

3 
0.8 (0.59; 1.1) 0.6 

478 
(61.09) 

42 
328497 
(59.24) 

22951 

UGT1A1 
rs72551330 
(C/T; 0.013) 

Crigler-najjar 
Syndrome Type 1 

0.8 (0.69; 
0.93) 

0.07 
168 

(1.19) 
8246 

8562 
(0.64) 

334516 

ACY1 
rs187813956 
(T/C; 0.0013) 

Neurological 
Conditions Associated 
With Aminoacylase 1 

Deficiency 

0.78 (0.55; 
1.11) 

0.6 33 (0) 16053 887 (0) 333759 

ACY1 
rs187092353 
(T/C; 0.0015) 

Neurological 
Conditions Associated 
With Aminoacylase 1 

Deficiency 

0.78 (0.56; 
1.08) 

0.6 37 (0) 16087 996 (0) 334210 

APOE 
rs7412  

(C/T; 0.92) 
Lipoprotein 

Glomerulopathy 
0.71 (0.43; 

1.17) 
0.6 

1826 
(86.36) 

16 
347912 
(85.18) 

2233 

APOC2 
rs7412  

(C/T; 0.92) 
Apolipoprotein C-ii 

Deficiency 
0.7 (0.4; 1.24) 0.64 

1344 
(85.19) 

12 
348394 
(85.18) 

2237 

ACY1 
rs545740325 
(A/G; 0.0011) 

Neurological 
Conditions Associated 
With Aminoacylase 1 

Deficiency 

0.66 (0.43; 
0.99) 

0.38 23 (0) 16112 
745 

(0.27) 
334825 

GGT1 
rs186765281 
(G/A; 0.016) 

Glutathionuria 
0.63 (0.31; 

1.27) 
0.61 8 (0) 394 

10928 
(0.75) 

340657 
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