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In March 2016, DeepMind's computer programme

AlphaGo surprised the world by defeating the world-

champion Go player, Lee Sedol. AlphaGo exhibits a

novel, surprising and valuable style of play and has

been recognised as “creative” by the artificial intelli-

gence (AI) and Go communities. This article examines

whether AlphaGo engages in creative problem solving

according to the standards of comparative psychology.

I argue that AlphaGo displays one important aspect of

creative problem solving (namely mental scenario

building in the form of Monte Carlo tree search), while

lacking another (domain generality). This analysis has

consequences for how we think about creativity in

humans and AI.
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1 | INTRODUCTION

In the 1970s science fiction thriller, Colossus, a super-intelligent machine quickly discovers
mathematical knowledge unknown to humankind. Although this is science fiction, it mirrors
current aspirations in artificial intelligence (AI) research. One of the goals of AI research today
is to develop “the kind of AI we need for science” (Hassabis, 2017a). This goal is beginning to
look achievable. Computer programmes like AlphaFold can now predict the three-dimensional
structure of proteins from amino acid sequences alone (Senior et al., 2020).

In 2015, the AI company DeepMind developed AlphaGo, a computer programme capable of
playing the ancient Chinese game of Go. Go playing has long been viewed as a form of art
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requiring human intelligence and creativity to master. In 2016, AlphaGo not only became the
first computer programme to defeat a world-champion Go player but also introduced innovative
and valuable strategies and tactics to the Go community. As professional Go player, Ke Jie,
observed, AlphaGo “can see the whole universe of Go. I can only see a small area around me”
(CGTN, 2017). If something like AlphaGo could be applied to science and technology, then
Colossus might not remain fiction for long.

Is AlphaGo an example of the kind of creative intelligence required for scientific insight and
innovation? AlphaGo fulfils the criteria for creativity widely adopted in the philosophical litera-
ture: It is capable of producing novel, surprising and valuable solutions to problems
(Boden, 2014). The Korean Go Association awarded it the highest rank (9 dan) in Go in part
due to its creative play and its developers describe it as creative (Baker & Hui, 2017;
Hassabis, 2017b). Thus, AlphaGo appears to be a significant milestone for AI. But the chess-
playing programme Deep Blue, when it defeated Gary Kasparov in 1997, was also thought to
represent a major milestone on the path to artificial general intelligence. Deep Blue's reliance
on the specialised knowledge of chess grandmasters, however, meant that it was not ultimately
a significant advance in technology (Ensmenger, 2012). What, if anything, makes AlphaGo
different?

This article examines whether AlphaGo is capable of creative problem solving according to
the standards currently set in comparative psychology. Comparative psychologists have long
been developing accounts of the psychological capacities underpinning creative behaviour and
how to identify such capacities in non-human animals (Köhler, 1976/1925). Their methods are
particularly useful for examining artificial systems because they are designed to accommodate a
wide range of structures, functions and behaviours. Applying these standards to AlphaGo pro-
vides common ground for evaluating whether this programme is capable of creative problem
solving and, if not, what more is required.

I begin by providing some brief background regarding the importance of Go to AI research
(Section 2) and why members of the AI and Go communities have identified AlphaGo as crea-
tive (Section 3). I then introduce the criteria and methods for identifying insightful problem
solving in nonhuman animals currently used in comparative psychology (Section 4). As we will
see, central to these accounts are the capacities for mental scenario building and domain-
general understanding. Lastly, I introduce how AlphaGo works (Section 5) and evaluate its
capacities according to the criteria developed in Section 4. I argue that while AlphaGo has
capacities that resemble mental scenario building (particularly, its use of Monte Carlo tree sea-
rch), the domain specificity of its world model means that its capacity for “insight” is signifi-
cantly different from what we find in human and nonhuman animals. My conclusion, however,
is not that AlphaGo fails to be creative tout court, but that the process by which it produces
novel, surprising and valuable outcomes is unlike that found in animals. While AlphaGo lacks
some of the virtues of animal insight, it exhibits other unique and surprising strengths, such as
the capacity to transform a conceptual space in ways that do not appear available to human
minds.

A few caveats: This article focuses on whether AlphaGo is capable of creative problem solv-
ing, rather than the more general question of whether computer programmes can generate cre-
ative products like music and art. I also leave open the precise connection between creative
problem solving and scientific discovery. Much has been written on the role creativity plays in
the sciences (Dunbar, 1997; Simonton, 2004). My analysis here, however, focuses on the specific
question of how programmes like AlphaGo compare in their creative problem-solving abilities
to animals. Finally, throughout this article, I use the terms “creativity” and “insight”
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interchangeably. These terms are used variably in the philosophical and psychological litera-
ture. My objective is not to defend one definition over another, but rather to use existing
accounts to probe what artificial and biological systems can and cannot do. In this article, I
adopt Margaret Boden's definition of creative products as ideas or artefacts that are novel, sur-
prising and valuable (Boden, 2014), while drawing on comparative psychology for an account of
those cognitive processes responsible for creative products in the domain of problem solving
(Section 4).

2 | GO: THE BETTER DROSOPHILA

Computer scientists have described chess as the “Drosophila of AI” since the 1960s
(McCarthy, 1990). In the same way that Drosophila is a fruitful model organism, leading to
major advances in our understanding of molecular biology and genetics, the successful develop-
ment of a chess-playing AI, the argument goes, would represent a major leap in our under-
standing of human-like intelligence. The idea that good chess playing requires human-like
general intelligence dates back to the 18th century (Ensmenger, 2012). If playing chess requires
general intelligence, then engineering a machine that can play chess well is a suitable target for
researchers aiming to develop artificial general intelligence. As it turned out, chess was ulti-
mately not a good “model organism” of choice for AI, however, as computer scientists found
ways to develop programmes that could defeat humans in chess while relying on brute-force
computational techniques (Kasparov, 2017).

A widely recognised alternative to chess as the appropriate model organism for AI is the
game of Go (McCarthy, 1990). Go is a strategy game in which two players take turns placing
white and black stones on a 19 × 19 grid. Players place only one stone at a time and the objec-
tive of the game is to capture territory by surrounding areas of the board with one's stones (and
preventing one's opponent from capturing territory). Although the rules of Go are simple, the
game is complex. The branching factor (i.e., the possible moves from a given board position) of
Go is 250, which is almost an order of magnitude more than chess (Silver et al., 2016). There
are 10170 legal positions in Go, while the number of atoms in the known universe is 1080. Thus,
making decisions about where to place a stone requires vastly reducing the search space.

The possibility space of Go is vast, yet humans have learned to play Go well. This is
achieved through a combination of theory and practise. Go professionals also emphasis their
use of creative intuition (Hassabis, 2017b). Indeed, the capacity to play Go has long been viewed
as a form of art in that people “play it without knowing how they [are] able to play so well”
(Zobrist, 1969). Given the complexity of Go, and the fact that intelligent human play cannot be
distilled into explicit rules programmable into a computer, it is not possible to engineer a pro-
gramme that can play Go by either brute-force search or hand-coded rules. In this way, Go
seems like a better Drosophila for AI than chess. If building a program that can play Go at
human levels is at all possible, then such a programme might represent a milestone on the path
to artificial creative intuition and judgement.

3 | ALGORITHMIC INSPIRATION

Although building a computer system that can play Go has been an objective in AI research for
over half a century, the first significant achievement towards this goal took place in October
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2015 when AlphaGo defeated the European Go champion Fan Hui. No machine could beat a
professional Go player before this date (Silver et al., 2016). AlphaGo went on to achieve interna-
tional recognition in 2016 when it defeated Lee Sedol, a South Korean professional Go player
with 18 world titles. Subsequent programmes developed using similar deep-learning architec-
tures proved even stronger. AlphaGo Zero, for example, beat AlphaGo 100-0 (Silver
et al., 2017).

The incredible capacities of these programmes deserve philosophical attention. I focus
here on the ability of these programmes to make moves that are surprising; novel and valu-
able; and described as “creative” by AI researchers and Go professionals. As software engi-
neers Lucas Baker and Fan Hui write, “AlphaGo's strategy embodies a spirit of flexibility and
open-mindedness: a lack of preconceptions that allows it to find the most effective line of
play” (Baker & Hui, 2017). AlphaGo has introduced many valuable and innovative styles of
play to the Go community. To give two examples: Firstly, AlphaGo regularly plays tenuki
before the end of a joseki to its advantage. A “joseki” is a sequence of moves that is considered
balanced for both players. “Tenuki” means ignoring a local exchange in order to play else-
where. Joseki are intensely studied sequences of play; the fact that AlphaGo regularly plays
tenuki one or more moves before what professional Go players would consider the end of a
joseki suggests that the accumulated wisdom concerning these local exchanges may be mis-
taken. Secondly, a common proverb in Go is “high move for influence, low move for territory”
where “high” and “low” refer to the fourth and third lines of the board, respectively. Another
widely accepted proverb is “the second line is the route to defeat”. AlphaGo, however, plays
contrary to these conventions. The famous “move 37” was a play on the fifth line and a new
joseki has now been attributed to AlphaGo, the “giant crawl” which consists of playing
repeatedly on the second line. AlphaGo also favours “shoulder hits”, “three-three invasions”
and other moves that are unconventional among contemporary Go professionals. Exactly how
such strategies contribute to AlphaGo's extraordinary playing strength is currently a topic of
much discussion in the community.1

To put the above in perspective, humans have been playing Go for over 3,000 years and the
consensus in the professional Go community before AlphaGo was that humans were converg-
ing on perfect play (Hassabis, 2017b). In contrast, after losing the tournament against AlphaGo,
Lee Sedol observed, “What surprised me the most was that AlphaGo showed us that moves
humans may have thought are creative, were actually conventional” (Kohs, 2017). As co-
founder and CEO of DeepMind, Demis Hassabis writes, “[t]hese moments of algorithmic inspi-
ration give us a glimpse of why AI could be so beneficial for science: The possibility of
machine-aided scientific discovery” (Hassabis, 2017a).

4 | ANIMAL INSIGHT

AlphaGo has radically changed the way humans think of Go strategy, but does this programme
play Go creatively in a way that resembles creative problem solving in cognitive creatures like

1See Sensei's Library for an online resource of lists and discussions of Go proverbs and joseki, including new joseki
introduced by AlphaGo (https://senseis.xmp.net/). For more examples and discussion of AlphaGo's innovative play, see
Baker and Hui (2017) and professional commentary on the Google DeepMind Challenge Match and The future of Go
summit.
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humans and other animals? To answer this question, we need to draw on what is known about
creative problem solving in psychology.

Psychological studies on creative problem solving in human and nonhuman animals typi-
cally begin by presenting participants with a puzzle or problem. The puzzle is designed to
ensure that the solution is not easy to find and often requires overcoming a cognitive bias of
“functional fixedness”. Functional fixedness is the tendency to view objects as serving particular
functions and having difficulty imagining them being put to alternative uses
(Shettleworth, 2012). This bias impedes the ability to think flexibly about how an object might
be used in novel ways. In one classic human study on insight, participants are given a candle, a
book of matches and a box of thumbtacks, and asked to attach the lit candle to a wall
(Duncker, 1945). An effective, although rarely discovered, solution is to attach the tack box to
the wall with some tacks, using the box as a shelf or ledge for the candle to stand on. Finding
this solution requires thinking flexibly about how the box can be used, given its known physical
properties, such as rigidity.

Animal cognition researchers have been interested in insightful problem solving since the
early 20th century when the German Gestalt psychologist Wolfgang Köhler performed his clas-
sic studies on chimpanzees (Köhler, 1976/1925).2 Köhler observed that chimpanzees, when
faced with a puzzle (such as how to obtain an out-of-reach banana suspended from a high
rope), would examine the situation and then seemingly become aware of the full solution all at
once. Psychologists working in this area have since defined insight as “the sudden emergence
of a complete solution without trial and error” (Seed & Boogert, 2013; see also Thorpe, 1956). In
one contemporary insight task, corvids – a family of birds, including crows and ravens – are
faced with food tied to the end of a string suspended from a perch (Figure 1). Like Köhler's
apes, these birds are unable to reach the food by extending their bodies towards it. Simply
pulling once on the string is equally ineffective, as the string is too long and the food remains
out of reach. One solution to this problem is to grab a segment of the string with one's beak,
pull it up, hold the slack part of the string underfoot while grabbing the next bit of string, and
continuing in this way until the food is hauled up. Remarkably, some individuals from the cor-
vid and parrot families execute this solution from the first trial, suggesting that they have solved
the problem through a flash of insight (Heinrich, 1995; Heinrich & Bugnyar, 2005; see Taylor
et al., 2010 for an alternative interpretation of these results).

What cognitive capacities underpin insightful problem solving? Research is ongoing, but
two capacities are regularly highlighted as critical. The first is the ability to mentally plan or
simulate (Taylor et al., 2010; but see Call, 2013). This capacity to plan accounts for several fea-
tures of insightful problem solving, such as reaching a solution, and knowing that the solution
will work, before engaging in action. When researchers explain a bird's success on the string-
pulling task as a result of insight, they mean that the bird has imagined or mentally simulated
(consciously or not) the sequence of actions of pulling and stepping on the string needed to
reach the food (Taylor et al., 2010). After engaging in such a simulation, the bird knows how
the problem can be solved and proceeds to conduct the sequence of actions required to do so
(Seed & Boogert, 2013). This ability to think through problems in one's head is evolutionarily
advantageous: It removes the risks of tinkering or intervening in an unknown situation in the
real world and allows one to act appropriately in situations that have not been encountered
before. Daniel Dennett refers to organisms that are capable of generating and testing hypothe-
ses internally in this way as “Popperian creatures” (Dennett, 1996; Godfrey-Smith, 2018).

2Indeed, Köhler's work on chimpanzees inspired early research on creative problem solving in humans (Sobel, 1939).
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In order to effectively generate and test hypotheses about the world, one must have some
understanding of how the world works. This leads to the second capacity highlighted as critical
for creative problem solving: The ability to learn and reason about objects and situations in
terms of their domain-general properties (Brown, 1989). In the physical domain, such proper-
ties include the weight, rigidity, solidity, malleability, fluidity, and so forth, of objects, as well as
capacities such as impact, displacement, and connection. Knowledge of these properties and
capacities enables an organism to overcome cognitive biases like functional fixedness and rea-
son flexibly about a problem. If an individual can reason about an object's affordances indepen-
dently of the object's typical use, then he or she might conceive of new functions for that object,
functions that can solve the problem at hand. Such an inferential strategy is hugely powerful as
it enables an organism to flexibly deploy objects in ways that are not limited to the domain or
function in which they were originally used or experienced (Godfrey-Smith, 2018). Humans
seem to rely on such inferences from an early age, showing “rapid insightful transfer if they are
familiar with the mechanism of causality that underlies the deep structural similarity between
problems” (Brown, 1989).

In order to ensure that nonhuman animals are engaging in insightful problem solving, com-
parative psychologists control for the possibility that individuals might be relying on alternative
cognitive and behavioural abilities. Firstly, as mentioned above, the problems presented in
insight tasks are designed to be novel to the participants. Participants are not given access to
the problem beforehand, or tested over many trials, and researchers choose problems that par-
ticipants are unlikely to find in their everyday environment. This helps ensure that successful

FIGURE 1 A Common Raven (Corvus corax, Bird 4 in Heinrich, 1995) solves the string-pulling task with no

apparent trial-and-error learning. In the first trial, after a few initial pecks at the string, this participant suddenly

performed a sequence of six steps (reach, grab, pull up, set down, step on, let go, reach down) and then

proceeded to repeat these steps at least five more times (for a total of 30 steps) without error until obtaining the

reward at the end of the string. Reprinted by permission from Oxford University Press (Heinrich, 1995)
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performance is not due to past trial-and-error learning. Care is also taken to ensure that partici-
pants cannot draw on their natural behavioural repertoire or fixed action patterns to solve the
problem in a routine or reflexive way (Heinrich & Bugnyar, 2005). Lastly, researchers probe
individuals' understanding of the problem in order to determine the extent to which they
understand the underlying properties and affordances of the objects involved (Taylor
et al., 2010).

One recent example from the animal cognition literature illustrates the above experimental
strategy. Betty the crow achieved international fame for her performance in a study at the Uni-
versity of Oxford (Weir, Chappell & Kacelnik, 2002). The study required that Betty choose
between two tools – a straight wire and a hooked wire – to retrieve a small bucket containing
food from a vertical, transparent tube. Another crow, however, interfered with the experiment
and flew away with the hooked wire. Betty nevertheless proceeded to pick up the straight wire,
bend it, and retrieve the food with the hooked end. Betty had not experienced wire before and
had very little experience with wire-like material (Weir et al., 2002). Various considerations and
follow-up tests led researchers to conclude that it was unlikely Betty had solved this task
through the application of either instrumental learning or an evolutionarily acquired fixed
action pattern (Weir et al., 2002; Weir & Kacelnik, 2006). This led researchers like Alex
Kacelnik to conclude that Betty might have “a level of competence and understanding of the
function of hooks unknown as yet outside our own species” (Graham, 2002) and was possibly
using this knowledge to plan a solution to the problem (Weir & Kacelnik, 2006). If Betty were
in fact deploying knowledge about the dispositions of objects (a malleable wire's capacity to be
fashioned into a hook and a hook's capacity to retrieve food) to mentally solve this problem,
then this would be a paradigm case of insightful problem solving.

Although Betty's performance suggested insightful problem solving, various aspects of her
behaviour were at odds with this interpretation. She would sometimes modify a tool and then
attempt to use the unmodified non-functional end of the tool to retrieve food, for example
(Weir & Kacelnik, 2006). More recent studies have revealed that fashioning hooked tools is in
fact part of the natural behavioural repertoire of New Caledonian crows (Rutz, Sugasawa, Van
der Wal, Klump, & St Clair, 2016) and that crows are faster at retrieving food with hooked over
straight tools regardless of the context, tool material, or food type (St Clair et al., 2018). The lat-
ter suggests that there are strong selection pressures for the capacity to produce hooked tools in
crows. Whether this capacity has evolved in the form of a fixed tool-manipulation routine or
something more flexible is to be determined.

The above case illustrates how comparative psychologists identify creative problem solving
in nonhuman animals. They probe an individual's understanding of a problem and control for a
range of ontogenetic and evolutionary factors that might provide alternative explanations for
successful performance on novel problem-solving tasks. In what follows, I examine how
AlphaGo works before proceeding to evaluate its capacities from the perspective of animal cog-
nition research.

5 | HOW AlphaGo WORKS

As we have seen, AlphaGo produces results that are surprising, novel and valuable. How does it
accomplish this? The version of AlphaGo that defeated Lee Sedol (“AlphaGo Lee”) learned to
play Go through a combination of training on human expert play and self-play (Silver
et al., 2017). The basic principles behind the programme can be understood in terms of three
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components: Two neural networks (the policy network and the value network) and a Monte
Carlo tree search.3

A Monte Carlo tree search (MCTS) works by building a search tree according to the out-
comes of simulated games. A “search tree” is an abstract data structure of linked nodes, which
represents in this case legal board positions (the nodes) and moves (the edges) within the game
of Go. Go is a game of perfect information. Each player is fully informed of the prior moves and
board positions of the game. Given this, one can, in principle, solve the game by calculating an
optimal value function, which maximises rewards, given perfect play by both players. Solving
Go is not possible in practise, however, given the vast number of possible board positions and
legal moves. Thus, AlphaGo employs what Claude Shannon (1950) calls a “type B" search strat-
egy or one that is heuristically guided in its explorations (in contrast to a “type A" strategy,
where all branches of the search tree are methodically explored). In the case of AlphaGo, two
neural networks guide the construction of the search tree: The policy and value networks.

AlphaGo's policy network is a neural network with 12 convolutional layers trained through
supervised and reinforcement learning. Supervised learning involves training a network on
labelled data. In this case, the network was trained on 28.4 million board positions and moves
from 160,000 unique games played by professional (6–9 dan) human players until it could accu-
rately predict new human expert moves 56% of the time (Silver et al., 2016). The policy network
was then further trained through reinforcement learning by playing 30 million games against a
randomly selected previous version of itself. Here, the network was not told which moves a
human expert would make, but instead the weights of the network were updated in the direc-
tion of winning games. The full version of AlphaGo Lee was iteratively trained in this way on a
total of 100 million or more games (Lake, Ullman, Tenenbaum & Gershman, 2017). It is worth
noting here that the policy network on its own is a strong Go programme. When competing
against the advanced amateur Go programme, Pachi, it won 85% of the games (Silver
et al., 2016, p. 485). Learning from millions of games then is a powerful strategy for playing Go
well. As we will see below, however, MCTS allows AlphaGo to go beyond what it has learned
from past experience, encouraging exploration of parts of the search tree that it has not encoun-
tered in its training.

The millions of self-played games used to train AlphaGo resulted in a huge data set of
games. A subset of 30 million board positions from these games was used to train the value net-
work. This network was trained using reinforcement learning to sort board positions according
to whether they led to a win or loss. By doing so, the network learned the probability of a partic-
ular board state leading to a win. It is worth highlighting that each of the above 30 million
board positions was sampled from different games in order to avoid overfitting. Training a net-
work on board positions from the same game resulted in the network “memorising” which
positions led to a win, since the board positions in any particular game are highly correlated
(in a game, only one stone is added to the board each turn, and stones that have been placed on
the board stay in one position throughout the game unless captured and removed). In these
cases of memorisation, the programme performed well on the training set but poorly on new
test sets (Silver et al., 2016, p. 486).

The main components of AlphaGo then are the above-trained deep neural networks com-
bined with Monte Carlo tree search. Faced with a situation in an actual game (against Lee
Sedol, e.g.), the neural networks guide the construction of the search tree: The policy network

3See Silver et al. (2016) for details regarding the training of AlphaGo Fan (the program that played against Fan Hui in
October 2015 and Silver et al. (2017) for the differences between this program and AlphaGo Lee.
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narrows the breadth of the search by choosing high-probability moves, while the value network
together with Monte Carlo rollouts (discussed below) reduce the depth of the search by provid-
ing information about the value of a position (Silver et al., 2016, 2017).

A central motivation behind the creation of AlphaGo successor programmes like AlphaGo
Zero and AlphaZero has been the desire to develop systems that can play complex games with-
out relying on human expert knowledge (Silver et al., 2017, 2018). The “zero” in these pro-
gramme names refers to “tabula rasa" learning; starting with nothing besides the rules of the
game. Go and chess professionals focus their search of the game tree on those parts they think
will lead to positive outcomes. AlphaGo draws on this human knowledge to guide its search.
Without any such knowledge, AlphaGo Zero and AlphaZero begin by playing at random. Some
of these randomly chosen options are bound to eventually lead to a win, which the Monte Carlo
tree search then uses to guide its search of the possibility tree. Programmes like AlphaZero dif-
fer from AlphaGo in several other respects: They rely on a single neural network (instead of
separate policy and value networks) and include MCTS in the course of training, for example.
Although it is beyond the scope of this paper to consider the individual implications of these
changes, together, they enable AlphaZero to not only achieve superhuman performance in
chess, Go, and shogi, but defeat previous programmes, such as AlphaGo Lee, 100-0 (Silver
et al., 2017).

6 | IS AlphaGo CREATIVE?

6.1 | Monte Carlo tree search as mental scenario building

Does AlphaGo meet the criteria for creative problem solving as understood in cognitive psychol-
ogy? With respect to mental planning or simulation, the answer I believe is “yes”. The Monte
Carlo tree search used in AlphaGo simulates games in order to determine the value of a move,
given a particular board position (Figure 2). The simulation proceeds by first selecting a particu-
lar path (the selection phase) and adding one or more valid moves to that path (expansion).
One of these moves is then selected and, if it itself does not end the game in a win or a loss, a
“playout” or “rollout” is carried out. Rollouts involve sampling a sequence of actions for both
players and are guided by a “fast rollout policy”. This rollout policy is similar to the policy net-
work in that it is trained on human expert play, but it is faster and less accurate than the policy
network. The outcome of the simulated game (who won) is combined with a value-network

FIGURE 2 The main steps of the Monte Carlo Tree Search simulation in AlphaGo. Source: Reprinted by

permission from Nature (Silver et al., 2016)
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evaluation to provide a general evaluation of the simulated node (evaluation). Once the simula-
tion is complete, this information, along with information about how many times each node
has been visited is propagated up the tree (backup).

AlphaGo's simulation phase is distinct from and prior to the phase in which it determines
which move to make against its real-world opponent. When simulating possible moves, the pro-
gramme is guided by the prior probability that a particular move will lead to a win (as indicated by
the policy network) and a preference for those nodes that have been visited infrequently to encour-
age exploration. It is the exploration parameter that allows AlphaGo to go beyond its training,
encouraging it to simulate moves outside of those recommended by the policy network. As the sea-
rch tree is constructed, the system starts choosing moves with the highest “action value” to simu-
late, where the action value indicates how good a move is based on the outcome of rollouts and
value-network evaluations. The more simulations there are, the larger the search tree, and the more
likely that a high-action-value move will in fact be good. Nevertheless, when it comes time to decide
which move to make in the real-world game at hand, AlphaGo does not rely on action values, but
rather visit counts: The node that has been visited the most during the simulation phase is chosen.
Visit counts are less susceptible to outliers than action values and are thus a less risky indicator of
what move to play in an actual game (Silver et al., 2016).

Why should we view MCTS as analogous to mental planning or scenario building? MCTS
allows an agent to explore a problem space by advancing various hypotheses about which move
might be effective given the situation (i.e., the real-world board position that it currently faces).
“Considering” a move does not commit AlphaGo to playing it, however. Game simulations may
reveal that the move being considered is likely to lead to a loss. Indeed, the programme con-
siders multiple avenues of play simultaneously. And, if at the end of a search, AlphaGo finds
that the move with the highest visit count does not also have a high action value, it will con-
tinue searching. Finally, given that the programme is encouraged to explore moves beyond
those recommended by the policy network, the hypotheses generated are not simply those that
have proven effective in the past. All of this grants the programme some degree of flexibility: It
can evaluate the potential outcome of a move without having experienced the effects of making
that move in a real-world game (either during training or against another opponent). This sea-
rch strategy fits Dennett's conception of a system capable of generating and evaluating actions
within a simulated world before trying them out in the physical world (Dennett, 1996).

6.2 | Domain-specific learning

How does AlphaGo compare with respect to the second criterion of insightful problem solving
– the capacity to draw on one's domain-general knowledge to generate novel solutions to prob-
lems? Here, the analogy to insightful problem solving in animals starts to break down. The
input that AlphaGo receives is restricted to a 19 × 19 game of Go under standard Chinese rules
with a komi of 7.5.4 The policy network receives a 19 × 19 × 48 image stack of 48 feature planes
and the value network receives the same input with one additional feature plane representing
the current colour to play.5 In a standard game of Go, a stone can be placed on any

4In standard Go, the player with black stones has the advantage of playing first. Komi is the number of points given to
the player with white stones to compensate them for playing second.
5These feature planes are 19 × 19 planes of binary values, where a value represents the presence or absence of a
particular feature.

324 HALINA



intersection of the 19 × 19 board (presuming the move is legal). Accordingly, each feature plane
represents the status of these 361 intersections with respect to a particular feature, such as stone
colour (black, white, empty), liberties (how many empty spaces there are adjacent to one's sto-
nes), self-atari size (how many of one's own stones would be captured with this move), and
others (see Silver et al., 2016). This relatively basic set of inputs provides AlphaGo with what it
needs to analyse and classify board states at the scale of both local battles and whole-board
strategy for a standard 19 × 19 game of Go. Any aspect of the world outside of this domain,
however, does not exist, so to speak, for AlphaGo.

We can understand AlphaGo as constructing and employing a “world model” of its environ-
ment.6 AlphaGo's input and training allows it to construct a model of board positions, Go rules,
promising moves (given human expert play), and valuable positions (given the known out-
comes of games). Critically, however, this world model represents a very specific part of the
world – that of a standard 19 × 19 game of Go. As Silver et al. (2017) write, “the neural network
architecture is matched to the grid-structure of the [19 × 19] board” (p. 360). AlphaGo has been
trained to identify valuable moves and board positions within this context, according to Chinese
rules with a komi of 7.5 points. Of course, as we have seen, AlphaGo is not limited to actions
that have been reinforced in the past. Faced with a particular board position in a real-world
game, it can explore and assess new avenues of play through simulation. Nevertheless, these
simulations themselves are constrained by the system's world model. The policy network guides
the moves to be considered and the value network provides information on the value of board
positions. Also, the sequences of actions sampled by rollouts depend on the fast rollout policy
and the rules of a standard 19 × 19 game.

The implication of this is that although AlphaGo is capable of planning flexibly within the
context of its world model, it lacks the input to know which actions might be rewarding in con-
texts other than a standard game of Go. To see this, consider that there are many variants of Go
that introduce subtle changes to the rules and structure of the game, which human Go players
can typically understand and adapt to. Tibetan Go, for instance, awards extra points to the
player that occupies all four corner points on the board, and the Korean Go variant, bangneki,
includes a fixed wager for every 10 points by which a player is defeated. Although these and
other variants of Go differ by only a few elements from the version of Go on which AlphaGo
was trained, the programme is unable to successfully play them (Lake et al., 2017). AlphaGo's
input and training are crucial for its success: These factors enable the programme to construct
an incredibly effective world model for navigating the vast space that is a 19 × 19 game of
Go. AlphaGo, however, loses traction on environments that require an alternative world model
for success.

The above analysis applies to programmes like AlphaGo Zero and AlphaZero insofar as
their successful performance depends on domain-specific input (Silver et al., 2017, 2018).
Depending on the game they are being trained to play, these programmes receive as input an
image of a game board (8 × 8 for chess, 9 × 9 for shogi, 19 × 19 for Go) with feature planes rep-
resenting possible board positions. They are also given knowledge of the game rules, which are
used during MCTS. Like for AlphaGo, the result is a world model that fits a particular part of
the world. Although AlphaZero is described as a “general” algorithm, what is meant by this is
that the same algorithm can be retrained to learn how to play different two-player games of per-
fect information (such as shogi, chess and Go), not that it can be trained on one game and
transfer what it has learned to other contexts (Silver et al., 2018). Doing so would mean

6I thank an anonymous reviewer for suggesting this framing.
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applying a model of one game, such as shogi, to another, such as Go, which would be an unsuc-
cessful strategy, given that the board positions and rules from one game do not transfer to the
other. This is not to minimise the power, value or even creative potential (see below) of these
systems, but to identify an important difference between them and the capacities believed to be
operating in animals when they engage in insightful problem solving (Shevlin & Halina, 2019).

7 | CREATIVITY IN ANIMALS AND AI

Computer programmes like AlphaGo are not creative in the sense of having the capacity to
solve novel problems through a domain-general understanding of the world. They cannot learn
about the properties and affordances of objects in one domain and proceed to abstract away
from the contingencies and idiosyncrasies of that domain in order to solve problems in a new
context. AlphaGo's world model is instead tightly coupled to its input, which is in turn coupled
to a standard 19 × 19 game of Go. Faced with a situation in a real-world game, AlphaGo has
the remarkable ability to generate and test hypotheses concerning which moves might be valu-
able before choosing which move to play. But this ability to plan depends on AlphaGo's model
of its environment. Insofar as this model fails to apply to the situation (i.e., insofar as the condi-
tions for success differ from those of a standard 19 × 19 game of Go), this ability to flexibly plan
will fail to yield valuable results.

Although AlphaGo does not engage in insightful problem solving as found in humans and
other animals, this does not mean it completely lacks creative power. Indeed, from what we
have seen here, there is a compelling case that AlphaGo is responsible for what Margaret Boden
calls “transformational creativity” with respect to Go. Transformational creativity involves not
just combining old things in new ways or originating something new within an existing concep-
tual space, but transforming the space in which a problem is conceived (Boden, 2014). This
form of creativity is traditionally believed to be out of reach of AI (Ibid.). Boden defines a con-
ceptual space as “any disciplined way of thinking that's familiar to (and valued by) a certain
social group” (Boden, 2004, p. 4). Under this definition, AlphaGo is responsible for radically
transforming the conceptual space of Go – a game that humans have devoted vast amounts of
time and effort to understand. In this way, AlphaGo demonstrates that there are forms of crea-
tivity – indeed transformational creativity – that can be achieved without domain-general
understanding.

What is the significance of AlphaGo's creativity? In addition to providing humans with a
new conceptual understanding of Go, AlphaGo might give us insight into constraints on human
knowledge. Although studies on the psychology of Go playing are limited, there is some evi-
dence that learning and playing Go relies on culturally acquired concepts and templates
(Gobet, de Voogt & Retschitzki, 2004). As we saw above, players learn Go through the applica-
tion of proverbs, such as “the second line is the route to defeat”. Players at all levels also rely on
joseki or sequences of moves that are believed to lead to a balanced outcome for both sides. In
chess, there is evidence that professionals rely on a “system of playing methods” where individ-
uals draw on a specific blend of tactical and strategic methods, allowing them to rely more on
routine knowledge than look-ahead (Gobet et al., 2004, p. 120). Go professionals similarly have
distinctive styles of play and a recurring theme of professional commentators on AlphaGo is
that it diverges from humans in this respect. As 9-dan professional Kim Sung Yong observed in
response to AlphaGo's performance at The future of Go summit: “When human artists start
drawing landscapes, they keep drawing landscape no matter what happens during the process.
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However, AlphaGo can quickly switch from landscape to portrait”.7 Kim Sung Yong's point
here is that while human Go players tend to have a fixed style of play, AlphaGo does not.

The templates, concepts, patterns and other aids that humans use to teach, learn and play
Go might explain in part AlphaGo's success relative to humans. Conceptual and linguistic tools
such as these facilitate human learning, memory, and reasoning but can also lead to functional
fixedness. It might be difficult to view the second line as something other than a “route to
defeat” if one has relied on this belief successfully in the past and seen a community of experts
similarly do so. In contrast, through exploration and playing tens of millions of games against
itself, AlphaGo has discovered value functions that radically diverge from these conceptual
guides. Although AlphaGo's remarkable abilities are specific to the domain of Go, they provide
humans with a powerful tool for overcoming functional fixedness in Go play and in this sense
have great creative potential.

Upon discovering that fashioning hooked tools is part of the natural behavioural repertoire
of New Caledonian crows, the biologist Christian Rutz remarked that Betty “might have been a
little robot … just following a natural, behavioral routine” (Morell, 2016). The account provided
here expands our understanding of what machines can do and how these capacities relate to
the abilities of animals. Artificial systems do not act only according to preprogrammed rules
hand-coded by engineers. Moreover, current deep-learning methods are capable of producing
systems that are superhuman in their abilities to discover novel and valuable solutions to prob-
lems within specific domains. However, if AI researchers are seeking to build systems with
animal-like insight, then they will likely have to move beyond the methods used to construct
AlphaGo. Domain-general insightful problem solving is powerful because it allows one to rea-
son and intervene on the world effectively without having encountered that particular part of
the world before. Given this, there has been a large push in AI research recently to imbue
machines with “intuitive physics”, “theory of mind”, and other domain-general forms of rea-
soning (Buckner, 2018; Lake et al., 2017). The tools developed by comparative psychologists for
studying animal minds are an incredibly valuable resource for probing the capacities of
machines and rigorously comparing them to the diverse forms of intelligences we find in the
biological world (Crosby, Beyret & Halina, 2019). Perhaps the new Drosophila of AI is the fruit
fly itself.
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