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Abstract
Asplit extensionofmonoidswith kernel k : N → G, cokernel e : G → H and splitting
s : H → G is weakly Schreier if each element g ∈ G can be written g = k(n)se(g)
for some n ∈ N . The characterization of weakly Schreier extensions allows them to
be viewed as something akin to a weak semidirect product. The motivating examples
of such extensions are the Artin glueings of topological spaces and, of course, the
Schreier extensions of monoids which they generalise. In this paper we show that
the λ-semidirect products of inverse monoids are also examples of weakly Schreier
extensions. The characterization of weakly Schreier extensions sheds some light on
the structure of λ-semidirect products. The set of weakly Schreier extensions between
two monoids comes equipped with a natural poset structure, which induces an order
on the set of λ-semidirect products between two inverse monoids. We show that Artin
glueings are in fact λ-semidirect products and inspired by this identify a class of
Artin-like λ-semidirect products. We show that joins exist for this special class of
λ-semidirect product in the aforementioned order.

Keywords Semigroup · Artin gluing · Protomodular · Monoid extension ·
Lambda-semidirect products

1 Introduction

The ideas underlying the semidirect product of groups can be adapted to a number
of structures. One such example is the context of semigroups wherein an action of
semigroups α : H × N → N gives rise to a semidirect product N �α H defined just
as in the group case. These semidirect products have found much use in semigroup
theory, for instance they provide some insight into the structure of inverse semigroups
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[9]. However, when applied naively to two inverse semigroups, this semidirect product
does not in general yield an inverse semigroup. To remedy this Billhardt introduced a
related notion called aλ-semidirect product [1].Given inverse semigroups N and H the
idea is to use an action of H on N to equip a certain subset of N×H (determined by the
action) with a multiplication turning it into an inverse semigroup. These λ-semidirect
products have since granted insight into the structure of inverse semigroups.

When we restrict this construction to inverse monoids we find that just as with
groups, these λ-semidirect products naturally form a split extension. Here a split

extension is a diagram N G H
k e

s
in which k is the kernel of e, e is the

cokernel of k and s is a section of e. An explicit description of split extensions in
the context of monoids is given just after Definition 2.1. Our restriction in this paper
to inverse monoids may not be strictly necessary as there does exist a notion of a
split extensions between general semigroups. These split extensions play a role in the
structure theory of regular semigroups, analogous to the role λ-semidirect products
play in the structure theory of inverse semigroups [8].

Semigroups are not the only context in which a generalization of the semidirect
product can be considered. For monoids N and H , an action α : H × N → N of
H on N gives rise to a semidirect product N �α H defined just as expected. In this
context, as with groups, there is a relationship between semidirect products and split
extensions [7]. Unlike in the case of groups where there is a one-to-one correspon-
dence between semidirect products and split extensions, these semidirect products of
monoids correspond to only the Schreier split extensions of monoids — those split

extensions N G H
k e

s
in which for each g ∈ G there exists a unique n ∈ N

such that g = k(n)se(g).
The Schreier condition can be weakened and a new class of split extensions con-

sidered. Instead of requiring that for each g ∈ G there is a unique n ∈ N , we can
merely require that there exists (potentially many) n ∈ N for which g = k(n)se(g).
We call such an extension weakly Schreier and they were first considered in [2]. Their
characterization in [3] establishes that they resemble something like a weak semidi-
rect product. The primary (non-Schreier) examples of these extensions are the Artin
glueings of topological spaces, where the lattices of open sets are viewed as monoids.

Outline

In this paper we will show that the λ-semidirect products of inverse monoids are also
examples of weakly Schreier extensions. In fact this subsumes are previous exam-
ple as we show that Artin glueings are in fact examples of λ-semidirect products.
The characterization of weakly Schreier extensions sheds some light on λ-semidirect
products. The set of weakly Schreier extensions between two monoids comes with a
natural poset structure, which induces an order on the λ-semidirect products between
two inverse monoids. The Artin glueing leads us to define a class of Artin-like λ-
semidirect products. We show that this class is closed under binary joins.
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424 P. F. Faul

2 Background

In this section we give an introduction to the theory of weakly Schreier extensions
of monoids, summarising the core results found in [3]. We then outline the basics of
inverse semigroups and Billhardt’s λ-semidirect products [1] before finally discussing
frames and Artin glueings. In this paper we assume familiarity with the concept of a
category and a functor, though a more comprehensive introduction to category theory
can be found in [6].

2.1 Weakly Schreier extensions

The category Mon of monoids has zero morphisms between objects: the maps send-
ing all elements to the identity. Consequently the kernel (dually the cokernel) of a
morphism f : A → B can be defined in this category as the equaliser (dually the
coequaliser) of f and the zero morphism from A into B. This allows us to define split
extensions.

Definition 2.1 For monoids H and N , a split extension of N by H is a diagram

N G H
k e

s
in which k is the kernel of e, e is the cokernel of k, and s is

a section of e—that is, es = 1H .

Here the kernel k is the equaliser of e and the constant 1 map which in the context
of monoids is the inclusion of all the elements sent by e to 1. The cokernel e is
the coequaliser of k and the constant 1 map which is the quotient map given by the
congruence generated from the pairs (k(n), 1).

Split extensions are often considered in the category of groups where it is well
known that they correspond to semidirect products. InMon this relationship is not so
simple. The appropriate notion of an action in Mon gives rise to a monoidal notion
of a semidirect product. However, as discussed above, these are only in bijection with
what are known as Schreier split extensions.

While this gives good motivation for these split extensions, one may ask if they
are the only split extensions inMon worth considering. As described in [4], there is a
related class of split extensions that arises naturally from the world of topology. That
specific example will be discussed in Sect. 2.3, but for now we consider the class of
split extensions in question.

Definition 2.2 A split extension N G H
k e

s
is weakly Schreier if for each

g ∈ G there exists n ∈ N such that g = k(n)se(g).

Here, compared to Schreier extensions, we have dropped the uniqueness require-
ment on the n ∈ N and this influences our ability to think of them as semidirect
products.

Intuitively, whenwe have a split extension N G H
k e

s
of groups, there is a

bijection between the set N × H and G which sends the pair (n, h) to k(n)s(h). When
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we let the set N × H inherit a multiplication through this bijection we arrive at the
associated semidirect product. This is why Schreier extensions are desirable inMon,
as they ensure this bijection exists and allows the same inheritance of multiplication.

In both cases these semidirect products can be characterized by actions which
encode this inherited multiplication. If α : H × N → N is an action of H on N , then
the multiplication is given by (n, h) · (n′, h′) = (nα(h, n′), hh′).

For weakly Schreier extensions there is no bijection between the elements of N×H
and G, instead we have a surjective map sending (n, h) to k(n)s(h). We do, however,
get a bijection between G and the quotient of N × H given by this surjection. This
quotient will then inherit a multiplication from G and it is this object that we call the
associated weak semidirect product.

In terms of characterizing these weak semidirect products, it is no longer enough to
just specify an action, as there is now this quotient to consider. In addition, the presence
of this quotient means that we no longer need an action to specify the multiplication
— something weaker will do.

Definition 2.3 For monoids N and H , an equivalence relation on N × H is said to be
admissible if the following conditions hold.

(1) (n, 1) ∼ (n′, 1) implies n = n′,
(2) (n, h) ∼ (n′, h′) implies h = h′,
(3) (n1, h) ∼ (n2, h) implies (xn1, h) ∼ (xn2, h) for all x ∈ N ,
(4) (n1, h) ∼ (n2, h) implies (n1, hy) ∼ (n2, hy) for all y ∈ H .

Quotients arising from admissible equivalence relations are precisely the quotients
that occur in weak semidirect products.

Definition 2.4 A function α : H ×N → N is an action compatible with an admissible
equivalence relation E on N × H if it satisfies the following conditions:

(1) (n1, h) ∼ (n2, h) implies (n1α(h, n), h) ∼ (n2α(h, n), h) for all n ∈ N ,
(2) (n, h′) ∼ (n′, h′) implies (α(h, n), hh′) ∼ (α(h, n′), hh′) for all h ∈ H ,
(3) (α(h, nn′), h) ∼ (α(h, n) · α(h, n′), h),
(4) (α(hh′, n), hh′) ∼ (α(h, α(h′, n)), hh′),
(5) (α(h, 1), h) ∼ (1, h),
(6) (α(1, n), 1) ∼ (n, 1).

Conditions (3)–(6) are reminiscent of the usual action definition, except that in this
case they are only required to hold up to equivalence.

These are essentially all the needed ingredients to characterize weak semidi-
rect products. The only wrinkle is that two actions compatible with an admissible
equivalence relation can sometimes induce the same multiplication on the quotient.
Thus instead of considering the set ActE (H , N ) of actions compatible with E , we
consider a quotient ActE (H , N )/∼ where two actions α and β are equivalent if
(α(h, n), h) ∼ (β(h, n), h) for all n ∈ N and h ∈ H . See [3] for more details.

Proposition 2.5 For monoids N and H, let E be an admissible equivalence relation
and α a compatible action. Then (E, [α]) corresponds to a weakly Schreier extension

N (N × H/E, ·, [1, 1]) H
k e

s
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426 P. F. Faul

in which k(n) = [n, 1], e([n, h]) = h and s(h) = [1, h]. Multiplication is defined as

[n, h] · [n′, h′] = [nα(h, n′), hh′].

Similarly we can consider a reverse of this process.

Proposition 2.6 For monoids N and H, let N G H
k e

s
be a weakly Schreier

extension and let q : G → N be a function such that g = kq(g)se(g). Then we can
associate to this a pair (E, [α])where E is an admissible equivalence relation defined
by

(n, h) ∼ (n′, h′) ⇐⇒ k(n)s(h) = k(n′)s(h′).

and α is a compatible action defined by

α(h, n) = q(s(h)k(n)).

Notice that there must exist such a map q by virtue of the split extension being
weaklySchreier (using the axiomof choice). The choice ofq does not endupmattering.

These two processes are inverses of one another up to isomorphism. Let us discuss
what the morphisms in question are.

Definition 2.7 Amorphismofweakly Schreier extensions is amonoid homomorphism
f : G1 → G2 such that the three squares in the following diagram commute.

N G1 H

N G2 H

k1 e1

s1

k2 e2

s2

f

If f : G1 → G2 is such a morphism, then for all g ∈ G1, there exists an n ∈ N
such that f (g) = f (k1(n) · s1e1(g)) = f k1(n) · f s1(e1(g)) = k2(n) · s2(e1(g)). This
means that any morphism between two weakly Schreier extensions must be unique.

Proposition 2.8 The category WSExt(H , N ) of weakly Schreier extensions between
N and H and morphisms of weakly Schreier extensions is a preorder.

Inspired by the above we can define an order relation on our pairs (E, [α]). Let
N G1 H

k1 e1

s1
and N G1 H

k1 e1

s1
be weakly Schreier extensions and

f : G1 → G2 a morphism between them. Let E1 and E2 be the respective admis-
sible equivalence relations and q1 and q2 associated Schreier retractions. Then our
above calculation implies that f ([n, h]E1) = [n, h]E2 . This will only be well-defined
when (n, h) ∼E1 (n′, h) implies (n, h) ∼E2 (n′, h). The fact that f must pre-
serve multiplication is equivalent to the statement that (q1(s1(h)(k1(n))), h) ∼E2

(q2(s2(h)k2(n)), h). Thus we can define the order as follows.
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Definition 2.9 Let WAct(H , N ) have as objects pairs (E, [α]) where E is an admis-
sible equivalence relation on N × H and α is a compatible action. Then we say
(E1, [α1]) ≤ (E2, [α2]) if and only if (n, h) ∼E1 (n′, h) implies (n, h) ∼E2 (n′, h)

and for all n ∈ N and h ∈ H (α1(h, n), h) ∼E2 (α2(h, n), h).

Using the transformations provided in Propositions 2.5 and 2.6 we get the following
equivalence.

Theorem 2.10 The categories WSExt(H , N ) and WAct(H , N ) are equivalent.

2.2 Inverse semigroups and �-semidirect products

Definition 2.11 A semigroup S is called an inverse semigroup when for each x ∈ S
there exists a unique element x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1.

Given an inverse semigroup S and an element x ∈ S it can be easily seen that xx−1

and x−1x are idempotents. Furthermore in an inverse semigroup it is always the case
that idempotents commute with one another. For a comprehensive introduction to the
subject, see [5].

As discussed above, the standard semigroup semidirect product construction, when
applied to two inverse semigroups, will not in general return an inverse semigroup.
Thus,we studyBillhardt’sλ-semidirect product [1]. The idea is to consider an algebraic
structure on a subset of the product of two inverse semigroups.

Definition 2.12 Let N and H be inverse semigroups and let α : H × N → N be a
function which we write as α(h, n) = h · n. Then α is an action of inverse semigroups
if the following conditions are satisfied for all h, h′ ∈ H and n, n′ ∈ N .

(1) h · (nn′) = (h · n)(h · n′),
(2) hh′ · n = h · (h′ · n).

An action could, of course, equivalently be defined as a homomorphism from H
into the endomorphisms of N .

Definition 2.13 Let N and H be inverse semigroups and let H act on N . Then the
λ-semidirect product associated to this action has as underlying set

{(n, h) ∈ N × H : hh−1 · n = n}

and multiplication defined by

(n1, h1)(n2, h2) =
(
((h1h2)(h1h2)

−1 · n1)(h1 · n2), h1h2
)

This multiplication resembles the multiplication of the standard semidirect product
in a number of ways. The only disagreement is that instead of (h ·n2) being multiplied
on the left by n1, it is being multiplied on the left by (h1h2)(h1h2)−1 · n1.
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428 P. F. Faul

2.3 Frames and Artin glueings

A motivating example of weakly Schreier extensions is the Artin glueing of frames.
As we shall see in this section, Artin glueings have some interesting parallels to λ-
semidirect products.

A frame is an algebraic structure that captures the lattice of open sets of a topological
space. A frame has finite meet operations capturing finite intersections of open sets,
and arbitrary joins corresponding to arbitrary unions of opens. Finally we require
meets distribute over arbitrary joins. For a more comprehensive look at frames, see
[10].

Definition 2.14 A frame L is a poset with finite meets and arbitrary joins such that
finite meets distribute over joins.

We treat frames as algebraic structures and so the morphisms are just the maps
preserving this structure.

Definition 2.15 A morphism f : L → M of frames satisifies

(1) f (0) = 0,
(2) f (1) = 1,
(3) f (a ∧ b) = f (a) ∧ f (b),
(4) f (

∨
S) = ∨

f (S).

Given a continuousmapbetween two topological spaces,weknow that the preimage
sends opens to opens and from set theoretic properties of the preimage, preserves
the empty set, the whole space, finite intersections and arbitrary unions. That is, the
preimage is a frame homomorphism between the corresponding lattices of open sets.

This idea gives rise to a contravariant functor from the category of topological
spaces to the category of frames. Furthermore, the category of frames is seen to be a
subcategory of the category of monoids, where a frame (L,∧,∨, 1, 0) is thought of as
the monoid (L,∧, 1). (To see that this is injective on objects note that the finite meet
operation determines the order structure and consequently the joins). Note that it is not
a full subcategory, as general monoid homomorphisms need not preserve the joins.
Thus, we obtain a functor from the category of topological spaces into the category of
monoids.

Transporting topological spaces into the category of monoids gives a worthwhile
perspective on the well-known Artin glueing construction (see [11]). An Artin glueing
of two topological spaces N and H is a topological space in which N embeds as a
closed subspace and H as its open complement. For any two spaces there are in general
many distinct Artin glueings and each is determined by a finite-meet-preserving map
from O(H) to O(N ). We present this construction below in the context of frames.

Definition 2.16 Let N and H be frames and f : H → N be a (finite-)meet-preserving
map. Then the Artin glueing Gl( f ) is the frame of pairs (n, h) for which n ≤ f (h)

with componentwise meets and joins.

In [4] it was shown that Artin glueings precisely correspond to the weakly Schreier
extensions in the full subcategory ofMon consisting of frames.
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We see immediately some similarities with λ-semidirect products. The Artin
glueing associates to a map an algebraic structure on a subobject of the product.
Furthermore, the condition n ≤ f (h) is equivalent to n ∧ f (h) = n. We will revisit
this idea in Sect. 5 where we will show that Artin glueings are in fact λ-semidirect
products.

3 �-Semidirect products of inversemonoids

In order to relate the λ-semidirect product to weakly Schreier extensions of monoids,
we must work inside the category of monoids. Thus, in this section we consider only
inverse monoids—that is, inverse semigroups with a unit.

In order to consider λ-semidirect products in this context there is one standard
modification that is made to the theory, relating to the definition of an action.

Definition 3.1 Let N and H be inverse monoids and let α : H ×N → N be a function
with application written α(h, n) = h · n. Then α is an action of inverse monoids if it
is an action of inverse semigroups and satisifies that for all n ∈ N

1 · n = n.

Notably, it is not required that h ·1 = 1. Thus, the action can equivalently be thought
of as a monoid homomorphism into the monoid of semigroup endomorphisms of N .

The λ-semidirect products we consider in this context are only taken with respect to
actions of inverse monoids, as these are precisely the actions for which the associated
λ-semidirect product is a monoid. (The pair (1, 1) acts as identity.)

Proposition 3.2 Let N and H be inverse monoids and let α : H × N → N be an
action of inverse monoids. If N �α H is the associated λ-semidirect product, then the
following functions are monoid homomorphisms.

(1) k : N → N �α H, where k(n) = (n, 1),
(2) e : N �α H → H, where e(n, h) = h,
(3) s : H → N �α H, where s(h) = (hh−1 · 1, h).

Proof (1) We begin by proving that the function is well defined. This entails showing
that 1(1−1) · n = n. Since the inverse of 1 is 1 we use the fact that α is an action of
inverse monoids.

Next observe that

k(n1)k(n2) = (n1, 1)(n2, 1)

= ((1(1−1) · n1)(1 · n2), 1)
= (n1n2, 1)

= k(n1n2).

It is clear the unit is preserved.
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430 P. F. Faul

(2) The function is automatically well defined and it is very easy to see that it
preserves the multiplication and unit.

(3) Again we begin by proving it is well defined.Wemust show that (hh−1)·(hh−1 ·
1) = hh−1 · 1. This follows from the fact that α is action of semigroups and that hh−1

is an idempotent.
Finally observe the following calculation.

s(h1)s(h2) = (h1h
−1
1 · 1, h1)(h2h−1

2 · 1, h2)
= (((h1h2)(h1h2)

−1 · h1h−1
1 · 1)(h1 · h2h−1

2 · 1), h1h2)
= ((h1h2h

−1
2 h−1

1 h1h
−1
1 · 1)(h1h2h−1

2 · 1), h1h2)
= (h1h2h

−1
2 · ((h−1

1 h1h
−1
1 · 1)(1)), h1h2)

= (h1h2h
−1
2 h−1

1 · 1, h1h2)
= s(h1h2).

Where the transition from the third line to the fourth involves factoring out h1h2h
−1
2

from both terms.
Finally, note that s(1) = (1(1−1) · 1, 1) = (1 · 1, 1) = (1, 1), the identity. ��
It is apparent that k is the kernel of e and that s splits e. Below we show that this

diagram is indeed a weakly Schreier extension.

Proposition 3.3 Let N and H be inverse monoids, α : H × N → N an action of
inverse monoids, N �α H the associated λ-semidirect product and let k, e and s be as

in Proposition 3.2. Then N N �α H H
k e

s
is a weakly Schreier extension.

Proof As discussed, it is apparent that k is the kernel and s is the splitting of e. Thus,
we must only show that e is the cokernel of k and that the weakly Schreier condition
holds. We begin with the latter. Let (n, h) ∈ N �α H and consider

k(n)s(h) = (n, 1)(hh−1 · 1, h)

= ((hh−1 · n)(1 · hh−1 · 1), h)

= (hh−1 · n, h)

= (n, h).

Here the last line follows because (n, h) was assumed to belong to S �α T .
To see that e is the cokernel consider a map t : N �α H → X such that tk is the

zero morphism.Wemust show that there is a unique map � : H → X such that t = �e.
By the above t(n, h) = t(k(n)s(h)) = ts(h). We then need only observe that for

� = ts we have �e(n, h) = ts(h), as required. Since e has a splitting, it is epic and
consequently the map � = ts must be unique. ��

Since λ-semidirect products of inverse monoids N and H are weakly Schreier
extensions, we can view them instead as a particular admissible quotient of N × H
paired with a compatible action.
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3.1 The admissible quotient and compatible action

Let α be an action of inversemonoids of H on N and let N N �α H H
k e

s
be

the weakly Schreier extension corresponding to the associated λ-semidirect product.
Then two pairs (n1, h1) and (n1, h2) will be related in the admissible quotient if and
only if k(n1)s(h1) = k(n2)s(h2). This amounts to requiring that h1 = h2 and that
h1h

−1
1 · n1 = h1h

−1
1 · n2.

Proposition 3.4 Let N N �α H H
k e

s
be the weakly Schreier extension cor-

responding to a λ-semidirect product. Then (n, h) ∼ (hh−1 · n, h) in the associated
admissible equivalence relation.

Proof Since the second components agree, we need only verify that hh−1 ·n = hh−1 ·
hh−1 ·n. This follows from α being an action of semigroups and from the idempotence
of hh−1. ��

This means that each equivalence class [n, h] has a canonical representative (hh−1 ·
n, h). The set of these representatives is easily seen to be the underlying set of S�α T .

In order to determine a compatible action we first consider the associated Schreier
retraction. It is easy to see that the first projection π1 : N �α H → N is such a map.
(Recall that the Schreier retraction need not be monoid homomorphisms). Given this
Schreier retraction the compatible action is thus β : H × N → N where

β(h, n) = π1(s(h)k(n))

= π1((hh
−1 · 1, h)(n, 1))

= π1((hh
−1 · hh−1 · 1)(h · n), h)

= (hh−1 · 1)(h · n)

= (hh−1 · 1)(hh−1h · n)

= hh−1 · (1(h · n))

= h · n.

Thus, the compatible action β is just the original action α.
Recall that from the weakly Schreier perspective the multiplication is given by

[n1, h1][n2, h2] = [n1(h1 · n1), h1h2]

The element (n1(h1 · n2), h1h2) will not in general be the canonical element of its
class. Thus, we pass to the canonical element and arrive at

(h1h2(h1h2)
−1 · (n1(h1 · n2), h1h2)

= ((h1h2(h1h2)
−1 · n1)(h1h2(h1h2)−1 · h1 · n2), h1h2)

= ((h1h2(h1h2)
−1 · n1)(h1 · (h2h

−1
2 · n2)), h1h2).
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432 P. F. Faul

Note that if (n2, h2) ∈ N �α H , then the expression reduces to ((h1h2(h1h2)−1 ·
n1)(h1 · n2), h1h2) which is precisely the multiplication of N �α H .

4 The preorder of �-semidirect products

Since the set of weakly Schreier extensions between monoids N and H has a natural
preorder structure, we can now ask what order this induces on the set of λ-semidirect
products when we take N and H to be inverse monoids.

It will be convenient to think in terms of the actions of inverse monoids instead
of the λ-semidirect products themselves. Thus, we consider the preorder induced on
the set of actions by the function sending an action to its associated weakly Schreier
extension.

This function is not injective as two distinct actions can be mapped to isomorphic
weakly Schreier extensions.

Example 1 Let N be an inverse monoid with at least two distinct idempotents u and
u′ and let H be an inverse semigroup satisfying that h1h2 = 1 implies h1 = 1 = h2.

Consider the function αu : H × N → N where αu(h, n) = u whenever h = 1 and
αu(1, n) = n. Because h1h2 = 1 implies h1 = 1 = h2 we have that αu is an action of
inverse monoids.

Similarly, consider the action αu′ : H × N → N where αu′(h, n) = u′ whenever
h = 1 and αu′(1, n) = n.

It is apparent that αu = αu′ . Furthermore, both actions result in an equivalence
relation in which (n1, h) ∼ (n2, h) for all n1, n2 ∈ N and h ∈ H −{1}, and (n1, 1) ∼
(n2, 1) if and only if n1 = n2. The multiplications agree as required, as in both
equivalence relations we have that (αu(h, n), h) ∼ (αu′(h, n), h).

Proposition 4.1 Let N and H be inverse monoids and let α : H × N → N and
β : H × N → N be actions of inverse monoids. Then α ≤ β if and only if for all
n ∈ N and h ∈ H, β(hh−1, α(h, n)) = β(h, n).

Proof (⇒) Suppose that α ≤ β.
Then (α(h, n), h) ∼β (β(h, n), h). Unwinding this gives

β(hh−1, α(h, n)) = β(hh−1, β(h, n))

= β(h, n).

(⇐) Suppose that for all n ∈ N and h ∈ H , β(hh−1, α(h, n)) = β(h, n).
First we show that (n1, h) ∼α (n2, h) implies (n1, h) ∼β (n2, h). Suppose that

(n1, h) ∼α (n2, h). This means that α(hh−1, n1) = α(hh−1, n2). Thus, making use
of our assumption we find
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β(hh−1, n1) = β(hh−1(hh−1)−1, α(hh−1, n1))

= β(hh−1, α(hh−1, n1))

= β(hh−1, α(hh−1, n2))

= β(hh−1, n2).

Now we must show that (α(h, n), h) ∼β (β(h, n), h). For these to be related we
need that β(hh−1, α(h, n)) = β(hh−1, β(h, n)). By assumption β(hh−1, α(h, n)) =
β(h, n) and combined with the fact that β(h, n) = β(hh−1, β(h, n)), we obtain the
desired equality. ��

5 Artin-glueing-like actions

Given an order structure on the set of λ-semidirect products, it is natural to consider
if meets and joins exist. In the section we show that joins exist for a natural class of
λ-semidirect products, reminiscent of Artin glueings of frames.

As alluded to in the introduction, Artin glueings of frames are nothing more than a
certain class of λ-semidirect products between certain meet-semilattices.

Proposition 5.1 Let N and H be frames considered in the category of monoids and
let f : H → N be a monoid homomorphism. Then the Artin glueing Gl( f ) is a
λ-semidirect product of N by H.

Proof The action corresponding to Gl( f ) is given by α(h, n) = f (h)∧n. Let us begin
by confirming that this is an action of inverse monoids.

It is clear that α(1, n) = n as f preserves the identity. Next observe

α(h, n ∧ n′) = f (h) ∧ n ∧ n′

= f (h) ∧ n ∧ f (h) ∧ n′

= α(h, n) ∧ α(h, n′).

Finally consider

α(h ∧ h′, n) = f (h ∧ h′) ∧ n

= f (h) ∧ f (h′) ∧ n

= α(h, f (h′) ∧ n)

= α(h, α(h′, n)).

Thus, it remains only to show that N �α H = Gl( f ).
Since the inverse of an element in ameet semilattice is itself and because of idempo-

tence,wehave that the elements of N�αH are those pairs (n, h) inwhichn = f (h)∧n.
These are precisely the pairs in which n ≤ f (h) and so N �α H and Gl( f ) agree on
elements.
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Using the same properties of meet-semilattices we see that the multiplication in
N �α H is given by

(n, h)(n′, h′) = (( f (h) ∧ f (h′) ∧ n) ∧ ( f (h) ∧ n′), h ∧ h′)
= ( f (h) ∧ n ∧ f (h′) ∧ n′, h ∧ h′)
= (n ∧ n′, h ∧ h′).

This coincides with the multiplication of Gl( f ) and so we are done. ��

As discussed in [4], if N and H are frames and f , g : H → N are monoid homo-
morphisms, then Gl( f ∧ g) is the join of Gl( f ) and Gl(g) in the order structure on
Artin glueings. In fact, as we shall see, Gl( f ∧ g) is the join of Gl( f ) and Gl(g) in
WSExt(H , N ).

Inspired by the above, we would like to consider actions α of inverse monoids such
that α(h, n) = f (h) · n where f is some function from H into N . The condition that
α be an action precludes many functions f from serving this purpose. It is sufficient
for f to factor through the central idempotents of S.

Proposition 5.2 Let H and N be inverse monoids and let f : H → E(N ) ∩ Z(N )

be a monoid homomorphism into the central idempotents of N , where E(N ) denotes
the idempotents of N and Z(N ) the central elements. Then α(h, n) = f (h) · n is an
action of inverse monoids.

Proof For α(h, n1n2) we have

α(h, n1n2) = f (h) · n1n2
= f (h) f (h) · n1n2
= f (h)n1 · f (h)n2
= α(h, n1)α(h, n2),

which makes use of the fact that f (h) is a central idempotent.
Next we must check that α(h1h2, n) = α(h1, α(h2, n)). Here we consider

α(h1h2, n) = f (h1h2) · n
= f (h1) f (h2) · n
= f (h1) · α(h2, n)

= α(h1, α(h2, n)).

The final condition follows easily with α(1, n) = f (1) · n = 1 · n = n. ��

Definition 5.3 Let H and N be inverse monoids and f : H → E(N ) ∩ Z(N ) a
monoid homomorphism into the central idempotents of N . Then we call the action
α f (h, n) = f (h) · n the Artin-like-action corresponding to f .
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The λ-semidirect products resulting from Artin-like-actions have many nice prop-
erties. For instance, when interpreted as a weakly Schreier extensions, the canonical
element of each equivalence class can be easily seen to be the smallest element in each
class.

Furthermore, just as in the frame setting, we can combine two actions of this form
in a natural way.

Proposition 5.4 Let N and H be inverse semigroups and let α f , αg be Artin-like-
actions corresponding to the maps f , g : H → E(N ) ∩ Z(N ) respectively. Then the
action γ : H × N → N given by γ (h, n) = f (h)g(h)n, is an Artin-like-action.

Proof We claim that γ corresponds to α f ·g , where f · g(h) = f (h)g(h). It is clear
that f · g preserves the identity. To see that it preserves multiplication we make use
of the fact that both f and g map into the centre of N . Thus we have

f · g(h1h2) = f (h1h2)g(h1h2)

= f (h1) f (h2)g(h1)g(h2)

= f (h1)g(h1) f (h2)g(h2)

= f · g(h1) f · g(h2)

and can conclude that f · g is a monoid homomorphism as required.
We then invoke Proposition 5.2 and we are done. ��

Proposition 5.5 Let N and H be inverse monoids and let f , g : H → E(N ) ∩ Z(N )

be monoid homomorphisms into the central idempotents of N . Then the join of α f and
αg exists inWSExt(H , N ) and is equal to α f ·g.

Proof First we show that α f ·g is larger than α f and αg in WSExt(H , N ).
If (n1, h) ∼α f (n2, h) then f (h)n1 = f (h)n2. Thus, g(h) f (h)n1 = g(h) f (h)n2

and since g(h) is central, we have f g(h)n1 = f g(h)n2. This means that (n1, h) ∼α f ·g
(n2, h) as required. This same argument gives that (n1, h) ∼αg (n2, h) implies that
(n1, h) ∼α f ·g (n2, h).

The final condition to check is that (g(h)n, h) ∼α f ·g ( f g(h)n, h) ∼α f ·g ( f (h)n, h).
This follows because f (h) and g(h) are both central and idempotent.

To show that α f ·g is the join suppose we have a weakly Schreier extension (E, β)

larger thanα f andαg , but smaller thanα f ·g . Since (E, β) is smaller thanα f ·g , we have
that if (n1, h) ∼E (n2, h) then (n1, h) ∼α f ·g (n2, h). We will show that (E, β) being
larger thanα f andαg means that (n1, h) ∼α f ·g (n2, h) implies that (n1, h) ∼E (n2, h).

We know that (g(h)n, h) ∼E (n, h) ∼E ( f (h)n, h) for all n ∈ N and h ∈ H . Now
suppose that (n1, h) ∼α f ·g (n2, h). This means that f (h)g(h)n1 = f (h)g(h)n2. Now
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simply consider

(n, h) ∼E ( f (h)n1, h)

∼E ( f (h), 1)(n1, h)

∼E ( f (h), 1)(g(h)n1, h)

∼E ( f (h)g(h)n1, h)

∼E ( f (h)g(h)n2, h)

∼E (n2, h).

Thus, the equivalence relations are equal and so (E, β) = α f ·g . ��
Notice that this gives that Gl( f ∧ g) = Gl( f ) ∨ Gl(g) in WSExt(H , N ).
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