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Abstract—Collaborative prognosis is a technique that enables
the industrial assets to learn from similar other assets in a fleet,
and improve their data-driven prognosis models. When collabo-
rative prognosis is implemented in a computationally distributed
framework, each asset is monitored by its corresponding Digital
Twin agent. Distributed collaborative prognosis is particularly
beneficial for high value assets where the communication and
the processing costs are negligible compared to the maintenance
costs. This paper analyses the effects of Digital Twin deployment
strategies on the effectiveness of predictive maintenance activities
relying on distributed collaborative prognosis. Distributed and
heterarchical multi-agent system architectures are analysed for
large fleets of assets, with varying failure rates and noise levels
in the failure data. The results show that no single architecture
or deployment strategy can be deemed best across all failure
rates and noise levels. The conclusion derived in this paper
provides guidance to the asset owners to choose the most suitable
combination for a given application.

Index Terms—Collaborative Learning, Digital Twins, Progno-
sis, Operations Research

I. INTRODUCTION

Predictive maintenance is characterised by real-time mainte-
nance scheduling when the corresponding asset failure hazards
rise over a certain threshold. It minimises unwanted preventive
maintenance for healthy assets, and also expensive corrective
maintenances by avoiding asset failures. As a result, the
predictive maintenance policies have proven to be more cost-
effective for the service providers, compared to conventional
fixed maintenance plans. Predictive maintenance policies pri-
marily rely on data-driven prognosis, where the statistical
models are used to learn from historical failure data and predict
the oncoming asset failures [1].

Nevertheless, the industrial processes are non-ergodic sys-
tems. In the sense that the average behaviour of independent
assets in the fleet is not representative of any single asset. As a
consequence of this non-ergodicity, an asset’s failure behaviour
can be best described by a model trained using its own
failure data. But an individual asset often does not experience
sufficient failures for its statistical model to learn the failure
behaviour. In these circumstances, collaborative prognosis is
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a technique that enables the assets with insufficient failures
to identify similar other assets in the fleet and learn from
their data. State-of-the art collaborative prognosis involves
clustering similar assets, followed by exchanging the failure
data within these clusters [1], [2].

The literature presents multiple instances where researchers
have proposed collaborative learning for industrial asset op-
erations. [3] showed that in a system comprising of multiple
assets and historical failures, prediction of a given asset is
improved by identifying similar historical behaviours from a
library of past failure data, and evaluating the best fit for
the current failure’s degradation curve. [4] used a genetic
algorithm to identify clusters of the most similar historical
failure trajectories, which in turn improved the prediction
accuracy of models corresponding to each of those identified
clusters. An example implementation of this was shown for
fatigue crack growth, drilling bit degradation, and degradation
of turnout system applications. [5] relied on collaborative
learning to tackle the lack of sensing resources for the overall
cohort of units, for the cases of both medical patients and
industrial assets. Markov models and selective sensing were
used to address the problem of incomplete data per individual
units. The reader may refer to [1] for further insight about
collaborative prognosis.

Collaborative prognosis can be computationally distributed
across the asset fleet using industrial multi-agent system
(MAS) frameworks, where each asset is controlled by its cor-
responding Digital Twin agent. The distributed nature makes
collaborative prognosis more adaptable, scalable, resilient,
flexible, and lean compared to a centralised application [6],
[7].

Operational costs of MAS architectures with varying ex-
tents of computational distributions were compared by [8] to
identify the suitable architecture for a given asset value. [§]
concluded that distributed collaborative prognosis is particu-
larly beneficial for a fleet of high value assets. This is because
the resulting increase in communication and computation costs
due to data exchange and model training, are more than
compensated by the reduction in corrective and preventive
maintenance activities.

However, apart from the underlying MAS architecture, asset



failure characteristics also affect the overall costs of the op-
erations. For example, the severity of asset failure determines
the cost of its preventive or corrective maintenance. In most
applications, an asset has multiple failure profiles, each mode
with its own corresponding downtime [9]. This is shown in
[10] where the maintenance cost is evaluated as a function of
time to repair. Failure frequency is another characteristic that
determines the total maintenance cost. [11], [12] highlight the
use of frequency of failure events and downtime as key criteria
for maintenance policy decision.

Similar to the failure characteristics, several strategies for
deploying the assets’ Digital Twin also exist. Cloud, Fog and
Edge computing infrastructures are the main strategies for
deploying distributed computing systems [13]. Cloud strategy
provides almost unlimited computing and storage resources,
away of the source where data is generated [14]. Whereas the
Fog and Edge computing strategies push the computations to
the end points of the network, which in our case are the assets.
The distinction between Fog and Edge is not always clear,
however both strategies aim to bring computation closer to the
data generation, with benefits such as reducing communication
latency [15].

To the best of the authors’ knowledge, the literature does
not present analyses for the implications of the asset failure
characteristics and the Digital Twin deployment strategies
on predictive maintenance activities relying on collaborative
prognosis. This paper analyses the implications of asset failure
characteristics and Digital Twin deployment strategies on a
predictive maintenance plan relying on distributed collabora-
tive prognosis. Simulated asset fleets were used to study the
aforementioned effects, which allowed analysing the effect of
increasing asset failure frequencies. The logic used for the
simulations enable the industries to gauge the implications of
the agent deployment strategies suitable for their systems.

Section II describes the simulation parameters used for the
experiments, in line with the standard predictive maintenance
policies and collaborative prognosis technique. Description
of the experiments conducted and the results obtained are
presented in sections III and IV respectively. The results are
discussed in Section V. Finally, Section VI summarises the
key conclusions and the potential future research directions.

II. SIMULATION DESCRIPTION

Open source MAS simulation software Netlogo was used
to model the temporal evolution of a fleet of 500 high value
assets, according to the parameters described in this section.
The prognosis and clustering algorithms were run at the
corresponding agents using Python extension for Netlogo. The
dynamic simulation model used for the experiments is detailed
in this section.

A. Simulation Setup

It must be noted that the simulations were performed for
the cases where distributed collaborative prognosis has been
deemed beneficial, i.e. for the fleets comprising of high value
assets. MAS architectures analysed in the experiments were

the heterarchical and distributed MAS architectures, presented
in Fig. 1 and Fig. 2. Characteristically, the presence of a central
agent overlooking the asset fleet network differentiates the
heterarchical architecture from the distributed. The following
agent types comprise the distributed and heterarchical MAS
architectures:

o Digital Twins, which are the components that run the
predictive and maintenance planning algorithms for their
corresponding assets.

e Social Platform, wherever present, is responsible for
enabling communications across the system.

Further information about these architectures can be found
in [8].

An asset’s health was represented using a synthetic health
index, assumed to be evaluated using various operational
parameters like in [16], [17]. A white noise was added to this
health index to represent noisy data, based on which the Digital
Twins would learn the corresponding failure behaviours/ func-
tion parameters. Asset health indicators degraded according to
inverse exponential functions, described as:

HIi(t) = 0 (1= e 0m0) oy (1)

where, t;; is the local time of the i asset, i.e. the time
since the last corrective repair or installation. (a;, b;,ty;) are
the parameters that determine the shape of Health Indicator
function. b; is the curvature parameter, and a; determines the
expected value of HI; at ¢;; = 0. ty; is the average (or
expected) time of failure. ¢p, is a white noise term with
standard deviation o and 0 mean, conforming to Gaussian
distribution.

It must be noted that the true health of an asset was a
monotonously decreasing function, represented only by the
first term in 1. The noise term was added only for the data
analysed by the Digital Twin, to represent the noisy sensors.
Assets failed when (true) HI; < 0.

Asset failures corresponded to one of the three possible
failure modes, each representing mild, moderate, and high
severity of the failures. Whenever an asset failed, a weighted
random choice with probabilities 0.6, 0.3, and 0.1 for mild,
moderate, and high severity failures respectively was used to
determine the failure mode. The failures were also associated
with their own corrective maintenance downtimes, being 2, 4,
and 6 time-steps respectively. This brought the simulated fleet
closer to reality where an asset experiences diverse failures
during its operations, each one with its own individual time
to repair (TTR) [10]. The preventive maintenance activities on
the other hand were associated with a downtime of only one
time-step, which is later detailed in Section II-B.

The goal for a given Digital Twin was to estimate the
function parameters (a;,b;,ts;), and predict the impending
failure of its corresponding asset. Collaborative prognosis was
used for estimating the model parameters across the fleet, and
a predictive maintenance policy was used to prevent the asset
failures, details of which are presented later in Section II-B.



Apart from the failures in the assets, the Digital Twins were
also simulated to fail. Digital Twin failures however were
relatively straightforward, as these were software components
that could fail suddenly without any noticeable degradation.
Digital Twin failures followed a Bernoulli distribution at each
time-step, with a failure probability of 0.1. The implication of
a Digital Twin failure was their inability to communicate with
other agents as well as to make any decisions.

B. Collaborative Prognosis and Maintenance Policy

Collaborative prognostics was implemented by clustering
the assets, and subsequently sharing health indices data within
the clusters. k-means clustering algorithm was used for clus-
tering the assets, which was run by the Social Platform
and the Digital Twins for the heterarchical and distributed
architectures respectively. The health indices observed over
the most recent 200 time-steps of the assets were used to
cluster the assets. More information about the distributed k-
means clustering implementation can be found in [8], [18].
The function parameters were subsequently estimated based on
the cluster’s data corpus using non-linear least squares fitting
algorithm.

The assets were preventively repaired when their time since
installation or last repair surpassed the predicted time of failure
multiplied by a factor, n: ¢; > nt%;, n < 1, and corrective
maintenance was conducted upon asset failure. Asset failures
were associated with downtimes according to the severity. For
the experiments discussed here, ¢, was the estimated time of
failure of the asset ¢ in the fleet, and 7 was set to a fixed value
of 0.7. The preventive maintenances were associated with a
downtime of one time-step.

C. Deployment strategies

Two Digital Twin deployment strategies were analysed.
These strategies can be thought of as cloud or edge deploy-
ment, and are illustrated in Figures 1 and 2. Their behaviours
and corresponding deployments are explained as follows:

o Cloud Deployment: This strategy is depicted in Fig. 1,
where the Digital Twins of the corresponding architec-
tures are deployed away from the assets they monitor. In
this strategy, a failure in the asset would not affect the
corresponding Digital Twin capabilities. While simulating
the cloud deployment strategy, the agent failure and the
asset failure were simulated independently.

o Edge Deployment: In this strategy it was believed that
the assets possess sufficient computing infrastructure for
the agents to be deployed directly on board. Such assets
could have built-in computing infrastructure or have it
retrofitted [19]. This strategy is depicted in Fig. 2, where
the Digital Twins are deployed along with the assets that
they monitor.

Any asset failure in the case of edge deployment would
propagate to the corresponding Digital Twin, causing it
to cease its operation and hence the prognostics system
capabilities for that asset. For the simulations, it was

believed that any asset failure would cause its corre-
sponding Digital Twin to fail. Since the Digital Twin had
failed, the operators would not know what caused the
failure, and would resort to the conservative estimate of
a severe failure. Therefore, only severe asset failures were
simulated for this strategy.

Similar assets in Figures 1 and 2 are shown with same
symbols, and are connected to one another. However, when
the assets have failed (marked with cross), it is shown how
for the case of cloud deployment the agents are still working
and the network connection is not severed. Opposite is the
case for edge deployment, where asset failure implies agent
failure as well because the Digital Twin agent is deployed on
the asset.

III. EXPERIMENTS

The parameter values for the various experiment cases are
described in this section.

The simulated asset fleet was divided into four asset clusters.
The clusters were each characterised by a corresponding set
of (ai,b;,ty;) parameters. The true cluster of any given asset
was not known beforehand at the start of simulation.

Parameter ty; represents the reference time to failure for
the simulated fleet ({,.s). Assets with a higher reference
time to failure would experience less number of failures
(lower failure frequency), and vice versa. ty; was varied
across the experiment cases, with values in the ranges of
50, 100, 150,200. Apart from the (a;,b;,ts;) parameters, the
asset health degradation was also governed by the Gaussian
noise term €y, as shown in (1). Since the first term in
(1) was normalised to the a; value, the Gaussian noise was
characterised by mean 0, and a standard deviation o € (0,1)
that was varied across the experiment cases along a range of
values as 0.05,0.1,0.15,0.2.

Figure 3 shows examples of the degradation functions
describing a simulated asset fleet across the range of noise
variations, and also two extreme asset failure frequencies (i.e.
t¢; = 50 and 200). The functions are shown for the case where
the four asset clusters are represented by different ranges of
ty; mentioned in the sub-captions. The noisy input used by
the Digital Twins to estimate the true parameters is coloured
red, whereas the dashed lines are the true health degradations.
Digital Twins in the simulations discussed in this paper use
the non-linear least squares fitting algorithm for estimating the
(@i, bi, tr;) parameters. The noisy function is illustrated for a
single cluster and across the range of noise values. Moreover,
the shaded green region in Figure 3 show the threshold for
preventive maintenance, given the true parameter values. This
time is shown for the function plot in black.

The simulations were run until either total number of
failures exceeded 5000 or the total simulation time was greater
than ¢y; * 10 for the given simulation case. The simulation
time was chosen as the expected number of failures per asset
multiplied by its reference time to failure. Table I summarises
the asset down times and the weights associated with each of
the failure modes, including other governing parameter values
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discussed yet. Using these values, heterarchical and distributed
architectures were simulated for the two agent deployment
strategies. Each experiment case was simulated ten times with
different randomness seeds.

TABLE I: Simulation parameters

Number of assets 500
probability of agent failure 0.1
Runs per architecture 10

Noise standard deviations (e, )
Reference times to failures (¢ ;)
Stopping condition:
Total failures, or 5000
Simulation time tr; x 10
Corrective maintenance downtimes (and probabilities):

0.05, 0.10, 0.15, 0.20
50, 100, 150, 200

Severe 6 time-steps (0.1)
Moderate 4 time-steps (0.3)
Mild 2 time-steps (0.6)

IV. RESULTS

Results of experimental cases are presented in Figures 4
and 5 in the form of box plots. The box plots represent total
corrective and preventive maintenance activities performed
for each experiment case. Since these are high value assets,
the determining factor of the overall operations costs are the
maintenance activities. Each box plot is generated based on
ten replications of the simulation case.

Common to both Figures 4 and 5, the x-axes indicate the
agent deployment strategy, where Dist() and Het() indicate
distributed or heterarchical architectures. The letters ‘e’ or
‘c’ in the parentheses denote edge or cloud Digital Twin
deployment strategy. The reader must note that ‘edge’ and
‘cloud’ terminology here merely indicates whether the Digital
Twin is deployed on the asset (in which case the Digital
Twin fails when the asset fails) or not. The y-axes indicate
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Fig. 3: Asset degradation function plots for high and low failure frequency assets. The noise levels are shown at the top of the
corresponding plots. True health indices are shown in black and grey, whereas the noisy data are shown in red.

function, therefore better estimates of the function
parameters can be derived by the corresponding
Digital Twins.

the corresponding maintenance activity counts. Furthermore,
the reference times to failures increase from top to bottom
subplots, and the data noise increases from left to right. The
reader must be aware that the axes in Figure 4 are not evenly
scaled, this is to improve the readability as the corrective
maintenance counts vary greatly across the cases.

2) Based on the trends in corrective maintenance ac-
tivities (the following conclusions are observed from
Figure 4 only)

. D1 ION . . .. .
v SCUSSIO « With less noise, the cloud Digital Twin deployment

The box plots in Figures 4 and 5 show that the maintenance
activities are substantially higher when the noise (o) is higher.
Furthermore, the following conclusions can further be derived:

1) Based on overall trends observed in the corrective
and preventive maintenance activities

Going from left to right in Figures 4 and 5, it is
observed that the corrective maintenances (CMs)
increase but no significant increase is observed in
the preventive maintenances (PMs). This is because
the white noise causes early or late predictions of
asset failures with equal chances. As a result the
number of PMs stay nearly constant throughout the
noise variations. However, early predictions have
no effect on the CMs because the failures can
be prevented with early PMs. But late predictions
cause an increase in CMs. The effectiveness of the
PMs reduce with increasing noise, and are rendered
almost ineffective in the extreme case seen in the
top right plot in Figure 4.

The above effect is mitigated with decreasing failure
frequency (going from top to bottom) because the
assets spend more time in the high health region/
above the PM threshold (refer the green shaded
region Figure 3). This enables the cumulative data
across the asset clusters to be closer to the actual

strategy performs better than the edge Digital Twin
deployment. This is because only severe failures
are observed in the case of edge Digital Twin
deployment, and the assets have an overall lesser
uptime compared to the cloud counterparts. As a
result the Digital Twins in cloud strategy are able
to collect more data from the operating time of
the assets. However, when the noise is high, the
parameter estimation is challenging. This problem
is amplified when the failure frequency is high and
the assets are often wrongly clustered, leading to
incorrect estimation of the parameters (the case of
50, 0.2 and to some extent 100, 0.2). The results
show that the connected architectures perform better
in these cases.

For higher failure frequencies (upper row), the dis-
tributed architecture performs better than the heter-
archical, the reason for which is attributed to system
resilience. A failed central agent in the heterarchi-
cal case cannot update asset clusters, leading to
suboptimal preventive maintenance activities. This
disadvantage becomes clear as the noise increases
as the PMs become increasingly ineffective.
However, the above mentioned conclusion does not
hold for lower failure frequencies because the time
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lost upon agent failure is negligible with respect to
the average time between failures of the assets. In
these cases, the heterarchical architecture has shown
to perform better.

In summary, it is concluded that the choice of architecture
and the Digital Twin deployment strategy is governed by
the failure frequencies and the noise levels observed in the
operations data.

VI. CONCLUSIONS AND FUTURE WORK
A. Conclusions

This study analysed the effect of Digital Twin deployment
strategies and failure characteristics on the operational cost of

collaborative prognosis based predictive maintenance. Results
help industries determine suitable Digital Twin deployment
strategies for their asset failure profiles and agent architec-
tures. Key conclusions from the discussions are reiterated in
Figure 6.

B. Future Work

Following research stems from the very limitations of this
research, including:

o Granularity of failures: Degradations and the failures
of the entire assets were simulated in the experiments
discussed here. This granularity could be reduced to
simulate particular cases where the assets experience
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