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ABSTRACT 
Construction projects have been experiencing project 
delays for decades. As an executive guide to construction 
activities, construction schedules can mitigate delay risks 
and are essential to project success. Yet, creating a quality 
construction schedule is often the outcome of experienced 
schedulers, and what makes it harder is the fact that 
historic information including decision reasoning was not 
documented and disseminated for future use. This study 
proposes a graph-based method to find the time- and risk-
efficient construction method patterns from historic 
projects to help schedulers improve productivity and 
accuracy. The method leverages schedule data (including 
activity names, Work Breakdown Structure, and start and 
finish date) that were obtained from a Tier-1 contractor 
for this study. The method was validated for excavation 
activities. The results indicate that the most time-efficient 
excavation activities can be done in 0.6% of total project 
time. The proposed method can help industry 
professionals standardise scheduling guidelines and 
automate the generation of construction schedules for 
critical subtasks. 
Keywords: Construction schedules, construction method 
pattern, graph-based classification 

INTRODUCTION 
The question that this research addresses is how to find 
construction method patterns and use them to optimise 
construction planning for new projects. This study defines 
a construction method pattern as a common activity 
sequence for a subtask, sometimes also known as ‘method 
logic’ in practical scheduling software (e.g. Primavera). 
Frequency is the key feature that distinguishes a 
construction method pattern from an activity sequence. 
Method patterns are generalised and can be deployed into 
the scheduling of other projects; hence, method patterns 
should not be constrained by project characteristics. 
Another key term is the construction schedule, which is 
defined as the timetable for a project, programme or 
portfolio, which shows how the work will progress over a 
period of time given limited resources and uncertainty 
(Association for Project Management, 2017). 

The construction industry has a global market share 
worth $10 trillion (Blanco et al., 2016); however, 
construction projects are often plagued by project delays 

and cost overruns. 98% of megaprojects suffer cost 
overruns of more than 30% and 77% are at least 40% late 
(Changali et al., 2015).  

A construction schedule, as the executive guide to 
construction activities, is particularly important to 
manage the project effectively and mitigate potential 
delay risks.  However, producing quality schedules 
requires schedulers to have comprehensive knowledge to 
identify potential risks and allocate time contingencies to 
mitigate against these risks (De Snoo et al., 2011), in 
particular when addressing uncertainty and allocating 
time contingency (Brockmann, 2012). Therefore, learning 
from historic projects enables schedulers (particular 
inexperienced schedulers) to produce quality schedules in 
future projects.  

However, this is impractical and rarely done. 
Inexperienced schedulers rarely have the time and 
patience to study raw schedule data and derive patterns of 
their own, due to the size of the datasets involved and the 
trivial nature fo the task. This is an area that machine 
learning would be expected to perform well. However, 
most scheduling data available are too unstructured for 
direct use in current machine learning systems, often 
yielding very poor performence.  

A construction project often contains repetitive 
activities. However, many activity names with the same 
meaning are written differently with substantial 
identifying information often ommitted. This is because 
they are written to be read by humans, who are able to 
infer the ommitted content from a combination of 
experience and the context in which the activity is present 
in. This study proposed a graph-based approach that has 
the potential to address this challenge and encapsulate 
construction schedules with repetitive activities in 
construction method patterns.  

For instance, the example shown in Figure 1 presents 
an excavation schedule. The excavation process of Base 3 
and Base 4 are the same, starting from excavation 
followed by shutter, pouring, curing and striping concrete, 
and ending with backfill. Base 5 was scheduled slightly 
different. Blinding and placing reinforcement were put as 
separate activities. This example highlights the most 
common problem in the current scheduling naming 
practice: repeated activities are described in different 
levels of detail.  
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Figure 1: Motivating Case 

The next section summarises literature in deriving 
construction method patterns and introduces the concept 
of a graph. This is followed by an explanation of the 
proposed graph-approach, and then the research 
methodology and results. Discussion and conclusions are 
presented at the end. 

LITERATURE REVIEW 
There are overall three types of approaches to find 
construction method patterns: Case-Based Reasoning 
(CBR), model-based scheduling, and ontology-based. 

CBR is an approach that recalls an earlier case 
comparable to the present case and uses that to suggest a 
solution to the new problem (Kolodner, 1992). Benjamin 
et al. (1990) built a knowledge-based prototype using 
CBR to identify precedence relationships and the Work 
Breakdown Structure (WBS) by mimicking the process of 
an expert’s decision making. Muñoz-Avila et al. (2001) 
introduced a case-based planning algorithm to generate 
project plans using previous cases. The follow-up 
research integrated CBR to help project planners create 
WBS more efficiently (Muñoz-Avila et al., 2002). CBR 
requires the situational context of both the earlier situation 
and the present situation. CBR is an effective approach to 
applying decisions made in previous similar situations, 
but not to find generalised construction method patterns. 

Model-based scheduling approaches find construction 
method patterns from building models. A typical example 
of model-based automatic scheduling is MOCA, which 
formalises construction methods based on product models 
(Fischer et al., 1994). Wu et al. (2010) used a similar 
approach to look at the construction logic of bridge 
construction. Fırat et al. (2007) broadened the scope of 
model-based automatic scheduling to resource and cost 
allocation. The follow-up research (i.e. Firat et al. (2009)) 
interacts with automatically generated schedules with 
project managers to improve the scheduling quality and 
customised it to project constraints. However, model-

based scheduling approaches heavily rely on the 
availability and the level of details of building models. 
The current application of Building Information 
Modelling (BIM) in practice is not sufficient to deploy 
model-based scheduling approaches if its availability 
throughout the lifecycle and the level of detail is 
considered. 

Ontology-based approaches use an ontology-based or 
rule-based framework to configure construction 
processes. Benevolenskiy et al. (2012) developed a 
framework that combines ontology-based with rule-based 
process modeling to configure the construction process 
for ‘structural concrete  subtasks. Cao and Hall (2020) 
developed an ontology to configure product information 
for modular construction by enriching process 
information. Ontology-based approaches provide the 
flexibility to configure and modify construction 
processes. However, it is a labour intensive process to 
generalise the configuration of construction processes 
across all types of projects.  

There are also other approaches to find construction 
method patterns. Pan (2008) used fuzzy Analytical 
Hierarchy Process to select the suitable bridge 
construction method. Hegazy and Kamarah (2008) 
optimised repetitive scheduling for high-rise construction 
using genetic algorithms. However, these approaches 
focus on small datasets and are project-based. 

What is a Graph? 
A graph G(V,E) is comprised of vertices V and edges E 
(Diestel, 2017). There are two types of graphs: undirected 
and directed. An undirected graph connects vertices with 
bidirectional edges; whereas, a directed graph connects 
vertices with uni-directional edges (Sedgewick and 
Wayne, 2011). Two connected vertices can be transversed 
in either direction in an undirected graph, but cannot in a 
directed graph.  



 
Figure 2: Schedules = Directed Graphs 

In a construction project schedule, a vertex is an 
activity and an edge is the logical relationship between 
two activities. A construction project schedule is a 
directed graph since the construction process is not 
bidirectional. Figure 2 depicts the above description. 
Node classification is one of the classic applications of 
graph learning, which predicts the label associated with 
all the nodes. Examples of node classification include 
classifying social network data (Bhagat et al., 2011), 
classifying the function of proteins in the interactome 
(Hamilton et al., 2017), and classifying the topic of 
documents based on hyperlink or citation graphs (Kipf 
and Welling, 2017). Available graph-based node 
classification methods include graph kernel methods and 
Graph Neural Networks (GNNs). Weisfeiler-Lehman 
kernel is a typical graph kernel method that approximates 
graph isomorphism to check whether two graphs have the 
same label set (Shervashidze et al., 2011). GNNs is a 
general framework for defining deep neural networks on 
graph data.  

The advantage that distinguishes GNNs from other 
classifiers, particularly Multi-Layer Perceptrons, is 
permutation invariance. Permutation invariance is a 
property that processes inputs regardless of their arbitrary 
ordering (Hamilton, 2020). This characteristic helps 
graph-based processes because construction activities are 
connected with a logical order. Therefore, GNNs are the 
theoretically best approach to categorise construction 
schedule data. 

A Graph Convolution Network (GCN) is a type of 
GNNs designed for graph datasets. It is a simple and 
effective method for capturing high order neighbourhood 
information (Kipf and Welling, 2017). Therefore, the 
proposed graph-based method is built based on GCN.  

Knowledge Gaps, Objectives and Research Questions 
Previous studies used case-, model-, and ontology-based 
methods to find construction method patterns. However, 
these methods have their limits in practical use. Case-
based methods have the ability to forecast decisions based 
on the context of both the earlier case and the present case. 
Model-based methods are limited by the often 
unavailability of detailed project information models at 

the project planning stage. Ontology-based methods are 
limited in their ability to generalise construction method 
patterns across project types. This study aims to address 
these limitations by leveraging graph-based approaches to 
categorise construction schedule data. 

This study proposes a graph-based method to identify 
construction method patterns, and hence to automate and 
optimise construction planning for new projects. This 
study aims to answer the question: How to find the most 
time- and risk-efficient construction method patterns? 
The following objectives are summarised to achieve the 
aim:  
• Extract construction activities’ feature representation, 
• Identify construction method patterns, 
• Find the most time- and risk-efficient construction 

method pattern. 

PROPOSED METHOD 
This section describes the proposed graph-based method 
to classify construction method patterns. Figure 3 
summarises the steps of the proposed method starting 
from data pre-processing to formulating the feature matrix 
and the adjacency matrix before building a graph. The 
proposed method was validated on earthwork and 
foundation construction activities because they are 
common to most construciton projects and their first 
onsite step. The GCN model consists of an input layer, a 
hidden layer, and an output layer. The input of a GCN 
model comprises of a feature matrix and an adjacency 
matrix. 

 
Figure 3: Flowchart of the Proposed Method 

Step 1 – Formulating feature matrix. A feature matrix 
describes the features of nodes in a graph. In the case of 
this study, a feature matrix describes the features of all the 
schedule activities; i.e. numerical features (i.e. activity 
duration) and text features (i.e. activity names and its 
WBS).  

This study used two metrics to describe the numerical 
features of an activity - relative activity duration and long 
duration. Relative activity duration is the ratio of an 
activity duration to the project duration (estimated as Eq. 
(1)). It is used because the time needed to complete an 
activity is affected by the project size. Laying a shallow 
foundation for an independent house is quicker than 
laying a deep foundation for a skyscraper.  

𝑅𝐴𝐷! = 𝐷!/∑ 𝐷!!   Eq. (1) 
where i is the i"#	activity, D$	is the duration of i"#activity 

Log duration is the logarithm to activity duration used 
to account for zero-duration activities (estimated as Eq. 
(2)). Activities such as milestones are important to 
method pattern classification because they signal the 
commencement and completion of a sequence of 
activities. However, durations of these milestones are 



usually zeros. This study used the logarithm to activity 
duration to avoid infinite values when building the 
adjacency matrix. 

𝐿𝐷! = 𝑙𝑜𝑔(𝐷! + 1)  Eq. (2) 
This study used word embedding to represent text 

features of an activity numerically to integrate text 
features and numerical features. Word embedding maps 
words into the vector space by training language models. 
word2vec and FastText are two typical examples of 
language models developed by Mikolov et al. (Mikolov et 
al., 2013) and Bojanowski et al. (Bojanowski et al., 2017). 
The architecture of word2vec takes one-hot encoded 
words as input, passes the input to a linear projection layer 
and a non-linear hidden layer for training, and returns the 
probabilities of target words as output (Mikolov et al., 
2013). The architecture of FastText is quite similar to the 
word2vec, but takes n-gram features as input (Joulin et al., 
2017); thus the vector of a word is made of the sum of its 
n-gram (e.g., the word vector ‘rebar’ is the sum of the 
vectors of ‘reb’, ‘eba’, ‘bar’). This study tested FastText 
on a set of test words that are frequently seen in the 
construction context and summarised based on our 
domain knowledge.  

Text features of an activity in this study include the 
activity name and the name of its WBS level to capture 
more contextual information of an activity. FastText 
trains weights of the hidden layers by minimising the 
cross-entropy loss using gradient backpropagation 
(Mikolov et al., 2013). Weights of the hidden layer form 
the embedding matrix and are stored locally to produce 
embedding for construction activity names.  

Once a FastText is finely tuned, activity names and 
WBS were fed into the tuned model to derive word 
vectors. FastText represent words in vectors; whereas 
construction activity names usually comprise multiple 
words. This study counted the frequency of each word in 
every construction activity, obtained the word vector of 
each word via feeding words into the tuned FastText 
model, and then sums the vector of an activity. 

Step 2 – Dimension Reduction. This study employed 
Principal Component Analysis (PCA) for dimensionality 
reduction. This suppresses noise and speeds up the 
computation of pairwise distances between samples once 
all features have complied. PCA is a statistical procedure 
used to transform attributes of a dataset into a new set of 
uncorrelated variables called Principal Components 
(PCs), while retaining the variability of the original 
dataset (Howley et al., 2006). This study fed the feature 
matrix obtained in the last step into a PCA model to 
achieve 99% explained variance and represented a 
sparsed feature matrix with condensed PCs. 

Step 3 – Formualting adjacency matrix. An 
adjacency matrix describes the connection of nodes in a 
graph and each node has a self-loop that connects a vertex 
to itself (Kipf and Welling, 2017)(Sedgewick and Wayne, 
2011). An adjacency matrix describes how each activity 
is linked with others in the context of this study. Given the 
nature of construction schedules, this study incorporated 

two types of information in an adjacency matrix: the 
graph structure of a project schedule and logic links 
between activities (i.e. Finish to Start). We assigned a 
weight to each edge based on the frequency of its logic 
link in the project. Figure 4 shows the corresponding 
adjacency matrix of Figure 2. 

 
Figure 4: Adjacency Matrix – Example 

RESEARCH METHODOLOGY 
5,050 project schedules were collected from a Tier 1 
contractor in the UK. They contain work breakdown 
structures, construction activities and their durations, 
early start dates and early finish dates. Collected data are 
in ‘.xml’ format and then parsed to ‘csv’ format using our 
project partner’s library (nPlan, 2019). This study further 
selected 27 completed projects which have a planned date 
and an actual date. These 27 projects are very diverse as 
shown in Figure 5.  

 
Figure 5: Type diversity of projects 

The collected project schedules are unlabelled data. 
The authors manually and randomly labelled 23% of the 
activities based on the classification system found in the 
Standard Methods of Measurement (The Royal Instituion 
of Charted Surveyors, 1988). This study used GCN as a 
semi-supervised learning method to learn from labelled 
activities to predict unlabelled activities. The trainning set 
has both labelled and unlabelled activities since this study 
takes a project schedule as a sub-graph and all project 
schedules in the training set as a whole graph. Therefore, 
there are three types of activities: labelled activities in the 
training set (a.k.a. train nodes), unlabelled activities in the 
training set (a.k.a. transductive test nodes), and unlabelled 
activities in the testing set (a.k.a. inductive test nodes) 
(Hamilton, 2020). Both training nodes and transductive 
testing nodes will be used in GCN training, but the loss 
function is only computed on train nodes (Hamilton, 
2020). 

This study pre-processed activity names to secure 
accuracy before feeding activity names into analysis 



models. The pre-processing steps include tokenisation, 
lemmatisation, stemming, and removing stop words. 
Tokenisation is a process that transforms text into tokens 
which are readable in a computer language (Manning et 
al., 2015). Lemmatisation and stemming are used to 
reduce the effects of inflectional form and words’ 
morphology (Habash et al., 2009). Stop words (e.g. ‘and’, 
‘the’) and punctuation was removed to eliminate 
unmeaningful words. 

RESULTS 
GCN Input 
This study trained a FastText model on 5,050 project 
schedules with a vocabulary size at 42,420. There are 
three main hyperparameters in FastText: embedding size 
and learning rate (Rehurek and Sojka, 2010). Embedding 
is a mapping from a word to a vector and embedding size 
is the dimension of the vector (Rehurek and Sojka, 2010). 
Learning rate is a parameter that determines how quick a 
model approaches the optimal solution (Goodfellow et al., 
2016). A small learning rate may get stuck on a 
suboptimal solution; whereas, a large learning rate may 
lead to an oscillating performance and never converge 
(Goodfellow et al., 2016). Length of character n-grams is 
another hyperparameter that decides how many 
neighbouring words are considered (Joulin et al., 2017).  

The optimal FastText model was determined by the 
accuracy in finding similar words. This study pre-defined 
a value range for each hyperparameter and computed the 
accuracy of finding similar words for the test words. The 
optimal language model is the one with hyperparameters 
that demonstrated the highest accuracy in finding similar 
words for the test words. The optimal FastText model has 
the following characteristics: 60 embedding size, 7 
negative samples and 7 character n-grams.  

The next step is deriving text features of construction 
activities by feeding activity names and WBS into 
FastText model, and then integrating relative activity 
duration and log duration before reducing feature 

dimensions. Figure 6 shows the explained variance of 
PCA over the numbers of PCs. This study used the oldest 
method – the elbow method - to determine the numbers of 
PCs. In the elbow method, the moment when the cost 
function value  drops dramatically and reaches plateau 
afterwards indicates that the ideal  is reached (Kodinariya 
and Makwana, 2013). Five PCs are sufficient according 
to elbow method. 

 

Figure 6: Explained Variance - PCA 

GCN Tuning 
The next step is GCN tuning and this study tuned two 
hyperparameters: learning rate and the size of the hidden 
layer. The previous section described the learning rate and 
its impacts. The number of neurons in the hidden layer is 
another hyperparameter. A deep hidden layer may lead to 
overfitting; whereas a shallow hidden layer may be 
underfitting (Goodfellow et al., 2016). This study used the 
hyperparameters tuned by (Kipf and Welling, 2017) as the 
baseline to benchmark the tuning performance. The 
baseline model has 16 neurons in the hidden layer and the 
learning rate is 0.01.  

Figure 7 shows the train accuracy and test accuracy of 
different hyperparameters, and the results indicated that 
70 neurons in the hidden layer and 0.02 learning rate is 
the most accurate combination. Other three key 
characteristics that describe a GCN are optimiser, loss 
function, and regularisation. This study used Adam 
optimisation to optimise the cross-entropy loss at a drop-
out rate of 0.3.  

 
Figure 7: GCN Tuning 



 
Figure 8: Method patterns – Results 

Table 1: Cosine Similarity of Activities in Tank Base Construction Sequence 

 

Foundation Construction Method Patterns 
This study found 1 method pattern and 34 sequences in 
total. Figure 8 (a), an excavation and backfill method 
pattern, is the most common method pattern found that 
has shown 4 times. It starts from ‘Excavate to Formation’, 
followed by ‘Shutter’, ‘Concrete’ (or ‘Pour concrete’), 
and ‘Strip / Cure (concrete)’, then ends with ‘Backfill’. 
This method pattern was scheduled in two different 
timeframes. One needs 6 days to complete, and the 
relative duration of this sequence is 0.006. Another one 
needs 13 days to complete, and the relative duration of 
this sequence is 0.013. Therefore, authors argue that 
foundation excavation activities in a construction project 
can be done in 0.6% of total project time. However, not 
all the activities in this sequence were updated with the 
actual start date and finish date. Therefore, this study 
cannot judge which sequence is the best risk-efficient 
practice.  

Although 34 sequences were found, many of these 
sequences are project-based because it only appeared 
once and has project constraints (e.g. location). Figure 8 
(b) – Tank Base Construction sequence is a typical 
example. There are two pairs of activities (‘Mainframe 
Base GL1-GL8’ vs ‘Mainframe Base GL8-GL16’ and 
‘Piling to Autoclave Mezzanine and AC Base 185 no.’ vs 
‘Piling to AD Base 32 no.’) are, in essence, the ‘similar’ 
activities, but performed in different areas. 

One may argue that finding a similarity threshold to 
find and eliminate ‘similar’ activities can solve the 
repetition problem and translate sequences into patterns. 
Table 1 summarises the cosine similarity of the two pairs 
‘similar’ activities in Figure 8 (b). Cosine similarity is a 
metric (dot product over magnitudes) used to measure 
how similar the documents are irrespective of their size 

(Singhal, 2001). All the activities are quite similar to 
others since the cosine similarity ranges between 0.97 and 
1.0.  

The similarity between ‘Mainframe Base GL1-GL8’ 
and ‘Mainframe Base GL8-GL16’ is approximately 1.0, 
which indicates that these two activities are ‘nearly’ the 
same. The similarity between another pair (‘Piling to 
Autoclave Mezzanine and AC Base 185 no.’ vs ‘Piling to 
AD Base 32 no.’) is 0.99, which is close to ‘nearly’ the 
same. However, 0.99 is not a good threshold value since 
the similarity between ‘Mainframe Base GL1-GL8’ and 
‘Piling to AD Base 32 no.’ is also 0.99. Therefore, 
translating sequences to patterns by finding and 
eliminating ‘similar’ activities is not feasible. 

DISCUSSIONS 
This study designed and tested a graph-based approach to 
classify construction activities into construction method 
patterns, which can then be used as the generalised best 
practice to initiate the schedule of new projects. The 
proposed method captures the text, numerical and 
graphical features in construction schedules. The results 
of this study indicated that the proposed method can 
encapsulate construction activities into construction 
method patterns.  

This study found 1 construction method pattern and 34 
sequences. An excavation method pattern was found 4 
times; whereas other sequences were found only once. 
The proposed did partially addressed the ‘repetition’ 
challenge explained in the motivating case since it 
encapsulate excavation activities that have repeated 4 
times into one process pattern. However, the ‘repetition’ 
challenge is not fully addressed. The proposed graph-
based method is unable to distinguish two ‘similar’ 
activities that are connected (Figure 8 (b)). Most of these 



connected ‘similar’ activities have the same actions but at 
different locations. Translating sequences to patterns by 
finding and eliminating ‘similar’ activities is also not 
feasible.  

Future studies can address this problem via two 
solutions. One is training a grammatical model (e.g. Part-
of-Speech) to find and remove the project constraints 
(such as location) in each activity before using the 
proposed method. Another solution is data-inefficient. 
Researchers can eliminate sequences that have only show 
once since project-based sequences constrained with 
project characters. Thus, it is unlikely to find the same 
sequence again. 

Results of this study can be applied in multiple 
disciplines (e.g. prefabrication). Researchers (i.e. Cao and 
Hall (2020)) investigated the configuration of product 
information for modular construction by enriching 
process information. The proposed graph-based method 
can help to mine the construction schedules to configure 
the construction or the prefabrication process for each 
modular component.  

Results of this study are more applicable in industry 
practice, particularly at the early construction stages 
where project information was not sufficient and accurate. 
Schedulers and project managers can load generalised 
construction method patterns and then ‘projects’ the 
schedules to fit project needs. By doing so, schedulers can 
mitigate subjective risks (e.g. personal experience) and 
the impact of the lack of information to produce quality 
front planning and avoid project delays. Meanwhile, new 
schedules created based on method patterns are more 
standardised and readable for either human or machine. 
Such reading problems explained in the motivating case 
will not occur again.  

CONCLUSIONS 
This study investigated how to find the most time-
efficient construction method patterns. The proposed 
graph-based approach was tested to encapsulate 
construction activities into construction method patterns. 
The best practice to schedule a subtask was then found by 
comparing the time-efficiency of activity sequences in the 
same method patterns.  

We found an excavation method pattern and observed 
that the most time-efficient foundation excavation 
activities can be done in 0.6% of project time. The results 
of this study support researchers and industry 
professionals to generalise construction methods, and thus 
initiate and automate the construction schedule from an 
early stage of a project to minimise subjective risks.  

However, this result is not supported statistically 
given the limited sequences found. Another limitation of 
this study is that the project constraints in the construction 
activities still exist, which should be categorised to 
identify influencing factors. Future studies can investigate 
how to translate construction sequences to method 
patterns. 
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