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SUMMARY 
As the volume of transcriptomic data continues to increase, so too does its potential to deepen 

our understanding of disease; for example, by revealing gene expression patterns shared 

between diseases.  However, key questions remain around the strength of the transcriptomic 

signal of disease and the identification of meaningful commonalities between datasets, which 

are addressed in this thesis as follows. 

The first chapter, Concordance of Microarray Studies of Parkinson’s Disease, examines the 

agreement between differential expression signatures across 33 studies of Parkinson’s disease.  

Comparison of these studies, which cover a range of microarray platforms, tissues, and disease 

models, reveals a characteristic pattern of differential expression in the most highly-affected 

tissues in human patients.  Using correlation and clustering analyses to measure the 

representativeness of different study designs to human disease, the work described acts as a 

guideline for the comparison of microarray studies in the following chapters. 

In the next chapter, Using Dysregulated Signalling Paths to Understand Disease, gene 

expression changes are linked on the human signalling network, enabling identification of 

network regions dysregulated in disease.  Applying this method across a large dataset of 141 

common and rare diseases identifies dysregulated processes shared between diverse conditions, 

which relate to known disease- and drug-sharing-relationships.  

The final chapter, Understanding and Predicting Disease Relationships Through Similarity 

Fusion, explores the integration of gene expression with other data types – in this case, 

ontological, phenotypic, literature co-occurrence, genetic, and drug data – to understand 

relationships between diseases.  A similarity fusion approach is proposed to overcome the 

differences in data type properties between each space, resulting in the identification of novel 

disease relationships spanning multiple bioinformatic levels.  The similarity of disease 

relationships between each data type is considered, revealing that relationships in differential 

expression space are distinct from those in other molecular and clinical spaces. 

In summary, the work described in this thesis sets out a framework for the comparative analysis 

of transcriptomic data in disease, including the integration of biological networks and other 

bioinformatic data types, in order to further our knowledge of diseases and the relationships 

between them. 
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1 INTRODUCTION 
	

1.1 UNDERSTANDING DISEASE 

1.1.1  Defining disease 

Disease can be defined as the dysfunction of one or more of the systems in our body, resulting 

in the signs and symptoms which characterize a particular condition.  Diseases may result from 

heritable genetic factors, lifestyle and environmental factors, external causes such as infection, 

or a mixture of these factors: the chance of developing disease may be determined by the 

combination of inherited genetic risk factors with risk modifiers such as age and lifestyle.  

Advances in molecular biology have deepened our understanding of the origins of disease, 

illuminating the flow of dysfunction from the molecular level through successive biological 

‘layers’ (including cells, tissues, organs, systems, and the communications between them) that 

eventually give rise to the observable phenotype of a disease. 

Recent advances in our understanding of disease have introduced several issues in the 

definition and classification of disease.  One example is a blurring of the boundaries between 

health and disease.  It has long been known that certain diseases, such as infectious and/or 

chronic diseases, have dormant or ‘asymptomatic’ states during which affected individuals do 

not display symptoms but still carry the disease, which may recur at any time.  In recent years, 

however, advances in genetics and medical imaging have revealed the existence of what could 

be called a ‘pre-symptomatic’ state in certain diseases.  In autosomal dominant hereditary 

disorders such as Huntington’s disease, genetic testing can confirm the eventual development 

of the disease in at-risk individuals1; in Alzheimer’s disease, accumulation of amyloid proteins 

in the brain begins years before the associated memory impairment2.  In the pre-symptomatic 

state, an individual does not experience any of the physical effects of the disease, yet may not 

be fully classified as healthy3, calling into question how disease can be defined in the absence 

of its symptoms. 

A second issue relates to the specificity with which disease is defined.  One example of this is 

the definition of cancer: a broad term referring to disruption of cellular proliferation leading to 

uncontrolled cell growth, which has the potential to spread throughout the body4.  However, 

cancer also refers to a collection of diseases affecting different anatomical locations (lung 

cancer, breast cancer); different locations within an organ (small cell lung cancer, non-small 
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cell lung cancer); different tissue types (carcinoma, sarcoma); and different cell types 

(adenocarcinoma, squamous cell carcinoma).  A specific cancer is usually defined according 

to all of these classifiers (e.g. non-small cell lung adenocarcinoma).  Within these subtypes, 

however, cancer can now be further defined according to its molecular features, such as the 

estrogen receptor status in breast cancer, which determines which type of treatment is most 

likely to be effective5.  Genomic features of tumours may also be an important determinant of 

drug response6, leading to the development of ‘personalised medicine’ approaches to cancer 

treatment based on exploiting particular mutations.  Whilst these molecular features may not 

affect the symptoms or histopathological appearance of cancer, they are therefore of great 

importance in defining appropriate treatment strategies for each patient. 

These two examples illustrate the difficulty of defining disease by its clinical features alone.  

One solution to this, which has been made possible by recent developments in molecular 

biology and bioinformatics, is to understand disease through its molecular features (such as 

genetic factors) rather than through its symptoms or clinical presentation.  By altering our 

understanding of how a disease is defined, these developments have the potential to 

revolutionise disease biology, changing the way that disease is prevented, managed and treated. 

 

1.1.2  Using disease relationships to understand disease 

Disease classifications describe disease by establishing the relationships between them, which 

may be based on clinical presentation, aetiology7, or a combination of these factors.  Existing 

classification systems, which are used by medics, health researchers, and economists7, include 

the International Classification of Diseases (ICD)8, the Systematized Nomenclature of 

Medicine (SNOMED)9, the Disease Ontology (DO)10, and Medical Subject Headings 

(MeSH)11.  There are also specialized disease classification systems for particular disease areas, 

such as the Diagnostic and Statistical Manual of Mental Disorders (DSM)12 which classifies 

mental disorders, or Online Mendelian Inheritance In Man (OMIM)13 for genetic disorders.  

Although each system is developed for a specific purpose, in general disease classification 

systems provide a shared computer-readable vocabulary to describe disease, and have a 

hierarchical structure which groups related diseases together under ‘is-a’ relationships (e.g. 

lung cancer is-a cancer).  

These traditional classification systems are based on established disease relationships, and as 

such do not incorporate new evidence arising from recently developed bioinformatic data 
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types.  At one end of the scale, the advent of large-scale electronic health record data (such as 

that held by insurance companies) allows the identification of disease comorbidities14, or links 

between disease and particular lifestyle or environmental factors.  At the other end of the scale, 

the development of ‘-omics’ techniques, such as genomics, transcriptomics, and proteomics, 

allows diseases to be related at a molecular level, e.g. through shared genes15.   

These ‘molecular-level’ relationships between diseases are an important new way of 

understanding disease relationships, both to identify the shared features underlying known 

disease relationships and to identify unexpected connections between diseases.  Two diseases 

which appear to be highly related may have very different molecular mechanisms: to adapt an 

example from Dudley et al.16, hereditary pattern baldness and alopecia both result in the 

symptom ‘hair loss’, but result from different underlying causes (hormonal vs. immune-

related).  Conversely, two diseases which appear unrelated symptomatically may in fact be 

very similar at the cellular or molecular level – for instance, a particular type of cancer may 

produce different symptoms depending on which organ is affected, but the underlying process 

of uncontrolled cell growth and division is the same.   

The identification of molecular commonalities between apparently unrelated diseases could 

not only shed new light on the pathogenesis of disease, but could help to identify potential 

treatments.  A direct consequence of this would be the ability to reposition or repurpose drugs 

between related conditions.  Drug repurposing (or drug repositioning), defined as the use of a 

drug in a new indication for which the drug was not originally developed17, is a promising 

strategy in the identification of new treatments for diseases, dramatically reducing the cost and 

time taken to get a drug to market compared to de novo drug development18.    Historically, 

drug repurposing opportunities have arisen through chance discoveries17, but our deepening 

understanding of the molecular basis of diseases and disease relationships could enable the 

identification of novel repurposing opportunities in a more systematic way.   

The comparison of diseases at a molecular level is therefore an invaluable tool for improving 

our understanding of diseases and their treatment.  Current research into the molecular basis of 

disease is focused primarily on genomics and gene expression, as the technology for both data 

types is now mature and relatively cost-effective, with well-established methods and software 

for analysis and large amounts of publicly available data (compared to other -omics 

technologies such as proteomics and metabolomics).  However, whilst DNA generally remains 

static over the course of an individual’s lifespan, gene expression provides a dynamic 

‘snapshot’ of cellular state at a particular point in time, and as such is a key molecular read-out 
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of disease.  In the following sections, I will discuss gene expression data, its analysis, and its 

use in the comparison of diseases. 

 

1.2 INTRODUCTION TO GENE EXPRESSION DATA  

1.2.1  Gene expression and its regulation 

 

Figure 1.1 Formation of a protein from the ‘recipe’ encoded by the DNA 

DNA	 is	 transcribed	 into	 RNA	 through	 complementary	 base	 pairing,	 catalysed	 by	 RNA	
polymerase	under	the	control	of	an	assembly	of	transcription	factors	(not	shown).	 	The	RNA	
molecule	initially	contains	non-coding	sequences	called	introns,	which	are	removed	in	a	process	
called	splicing.	 	The	addition	of	a	5’	 cap	and	poly-adenlyated	 tail	 (not	 shown)	complete	 the	
mature	RNA	molecule.		Messenger	RNA	(mRNA)	is	processed	at	the	ribosomes,	where	the	base	
sequence	encoded	by	the	mRNA	molecule	is	translated	into	a	sequence	of	amino	acids,	with	
each	group	of	three	bases	(a	codon)	encoding	a	specific	amino	acid.	The	figure	shows	how	two	
different	 codons	 encode	 the	 amino	 acid	 threonine	 (Thr),	 illustrating	 the	 redundancy	 in	 the	
amino	acid	code.		Finally,	the	amino	acid	chain	is	folded	into	the	three-dimensional	structure	of	
the	completed	protein.	

 

Gene expression is the process by which a gene encoded as DNA is converted into a functional 

gene product, such as a protein19.  An overview of this process is given in Figure 1.1.  The 

process begins with transcription: the synthesis of an RNA molecule from the ‘recipe’ 

contained in the DNA.  To begin the process of transcription, molecules called transcription 

factors must assemble at specific regulatory binding sites situated upstream of the gene.  The 
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transcription factors help to recruit and bind an enzyme, RNA polymerase, which catalyses the 

process of transcription.  RNA polymerase unwinds the double-stranded DNA helix and works 

along a single DNA strand, base pairing the deoxyribonucleic acids of the DNA code with 

complementary free ribonucleic acids (RNAs) in the cell.  This process continues until a 

termination site is reached, and RNA polymerase releases a single-stranded RNA molecule.  

Various processing is carried out on the RNA molecule before it leaves the nucleus of the cell, 

including splicing (the removal of sequences of intervening RNA called introns) and the 

addition of an RNA cap at the 5’ end and a poly-adenylated tail at the other, marking the RNA 

as complete and intact. 

The next step in the expression of protein-coding genes is the translation of messenger RNA 

(mRNA) into protein, which takes place on cellular structures called ribosomes.  Beginning 

from a specific ‘start’ codon (a sequence of three nucleotide bases), mRNA is threaded through 

the ribosomes, where it binds to complementary transfer RNA (tRNA), which carries an amino 

acid corresponding to each codon.  The amino acids are therefore joined in the sequence 

specified by the mRNA, continuing until the ‘stop’ codon is reached, at which point the 

completed polypeptide formed by the chain of amino acids is released and can fold into its 

three-dimensional structure.  Protein-coding mRNA comprises only 3-5% of total RNA20; other 

RNA types are not translated but remain as RNA molecules in the cell.  These include 

ribosomal RNAs, which form the core of the ribosomes; microRNAs, which play a role in the 

regulation of gene expression; and long non-coding RNAs, whose function is not completely 

understood but which may regulate diverse cell processes20.  

Although each cell contains all the DNA code required to make every protein in the human 

body, only a certain fraction (estimated at around 30-60%) of genes are expressed at any one 

time20.  Control of gene expression underlies the differentiation of cell types, and allows cells 

to respond to environmental conditions and extracellular signals.  Gene expression regulation 

is therefore absolutely crucial to development and homeostasis.  Although gene expression can 

be regulated post-transcriptionally (for example, through complementary binding by 

microRNAs), the dominant mechanism of gene expression regulation is through transcriptional 

control20.  Transcriptional control is mediated through transcription factors, which activate or 

repress transcription through gene-specific mechanisms, such as enhancing the binding of RNA 

polymerase (activation) or blocking the promoter (repression).  Transcription factors can be 

activated in response to changing conditions in the cell: for example, the binding of a molecule 

to a specific transcription factor (which takes place when the molecule is present in sufficient 
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concentrations) changes the three-dimensional conformation of the transcription factor in such 

a manner that it can then bind to a repressor site on the DNA, blocking transcription20.  Gene 

expression levels can therefore be seen as a response to the cellular context, providing a 

measurement of the cell’s response to different conditions. 

   

1.2.2 Motivation for studying gene expression 

Improving our understanding of the cellular state in diseased tissue could provide increased 

insight into the pathogenesis of, and cellular response to, disease.  One approach to measuring 

cellular state is proteomics, or the quantification of proteins.  Proteomics is an appealing 

approach for the study of disease, because it is a direct measure of the ‘final’ product of gene 

expression; proteins associated with a disease could therefore function as biomarkers, or even 

new targets for drugs.  However, the proteome is extremely complex, containing some 100,000 

proteins according to some estimates21; it is also challenging to measure due to the need for 

quantification of the complex three-dimensional structure of proteins, which may also be post-

translationally modified by phosphorylation, ubiquitination, or other processes.   

A simpler way to measure gene expression is via RNA molecules, rather than proteins.  Each 

RNA species can be uniquely described by its nucleotide sequence, so quantifying RNA is far 

less complex than quantifying proteins.  In the last two decades, high-throughput methods 

(such as microarray or RNA-sequencing technologies, which will be discussed in more detail 

in Methods) have been developed which can measure the expression levels of tens of thousands 

of genes relatively cheaply and quickly22.  Studies of this type, which enable gene expression 

to be studied at a large scale, are referred to as transcriptomics.  Transcriptomic experiments 

generally focus on protein-coding mRNA, which can be interpreted as a proxy or rough 

estimate of the levels of protein present in the cell (although the correlation between the two is 

far from perfect, due to numerous factors including post-transcriptional regulation and post-

translational modifications23; these are reviewed in in Maier et al.24).  Measurement of other 

RNA types, such as miRNA, provide additional information about what is taking place inside 

the cell; indeed, these molecules may play a key part in disease25.  However, these technologies 

are still developing and are less widely adopted.  In this thesis, therefore, the terms 

‘transcriptomics’ and (less precisely) ‘gene expression data’ will be used to refer to the 

quantification of mRNA levels in a high-throughput manner. 
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The suffix ‘-ome’ in molecular biology is generally understood to indicate a global viewpoint 

– the transcriptome therefore refers to the mRNA expression levels of (close to) all genes in a 

cell.  In contrast to classical molecular biology, where individual features may be studied in 

great detail, -omics approaches are most suited to drive hypothesis generation – for instance, 

indicating potential biomarkers or altered pathway activity – which may then be confirmed in 

a more focused manner.  A very brief overview of the wide variety of applications of 

transcriptomics includes uses in developmental biology to study early embryonic 

development26; in agricultural and environmental biology to profile response to environmental 

stressors27,28; in drug development to study drug mechanism of action29 and toxicity30,31, and 

in microbiology to study antibiotic resistance32 and host-pathogen interactions33,34 (a more 

detailed review of these various applications is available in Lowe et al.22).  In the study of 

disease, transcriptomics is used to understand more about disease biology, such as to identify 

perturbed biological pathways35,36, discover disease subtypes37 and predict prognosis38; 

transcriptomics is also used in drug discovery to predict drug sensitivity in cancer39 and to 

identify drug repurposing opportunities40,41.  Some of these applications will be discussed 

further in the following sections. 
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1.2.3 Measurement of gene expression  

 

Figure 1.2 Quantification of RNA levels using a single-channel microarray 

After	extracting	RNA	from	the	sample	and	removing	unwanted	forms	of	RNA	(e.g.	ribosomal	
RNA,	steps	1	and	2),	stable	complementary	DNA	(cDNA)	is	generated	and	fluorescently	tagged	
(step	3),	and	is	then	washed	over	the	array,	which	contains	a	number	of	probes	complementary	
to	the	cDNA	(matching	the	original	RNA	sequences).		The	amount	of	fluorescently	tagged	cDNA	
bound	to	each	probe	indicates	the	abundance	of	the	corresponding	RNA	molecule	in	the	original	
sample.		As	an	example,	a	large	amount	of	the	RNA	containing	the	base	sequence	‘ACTCGA’	
(top	cut-out,	step	4)	is	present	in	the	original	RNA	sample,	so	a	large	amount	of	corresponding	
cDNA	hybridizes	to	its	matching	probe	on	the	array.		By	contrast,	there	is	little	RNA	containing	
the	base	sequence	‘CTGCCA’	(bottom	cut-out,	step	4),	resulting	in	less	hybridization	and	a	lower	
fluorescent	intensity	on	the	scanned	array	(step	5).	

 

Older techniques to measure gene expression, such as Northern blotting and reverse-

transcriptase quantitative polymerase chain reaction (rt-qPCR), are low-throughput, measuring 

only a few individual transcripts at a time.  True transcriptomic methods able to measure the 

expression of thousands of transcripts at a time were introduced with the advent of microarrays 
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in the mid-1990s, followed by RNA-Seq a decade later.  Both methods aim to quantify the 

amount of mRNA present in a sample and share similar initial steps: extraction of the RNA 

from the sample; purification to remove unwanted molecular fragments; enrichment for mRNA 

(this process involves removing the ribosomal RNA which can account for up to 98% of total 

RNA content in a cell42); and finally generation of stable cDNA via reverse transcriptase, which 

may be further amplified by PCR.  The difference between microarrays and RNA-Seq lies in 

the method of quantification of the generated cDNA. 

Microarrays consist of a specific arrangement of oligonucleotide sequences (or ‘probes’) on a 

solid surface, each probe being designed to match a particular transcript.  In a microarray 

experiment, the generated cDNA is fluorescently labelled and, when washed over the 

microarray, will hybridize to complementary probes matching specific RNA sequences (Figure 

1.2).  Once the unbound cDNA is washed off, the amount of fluorescence at each probe gives 

an indication of the abundance of each mRNA species in the original sample (relative to other 

samples).  In older ‘dual-channel’ microarray designs, test and control samples are labelled 

with different fluorophores (e.g. red and green dyes) and hybridized on the same array, and it 

is the ratio between the two colours which determines the relative amount of mRNA present in 

each condition. 

RNA-Seq, by contrast, works by sequencing fragments of the cDNA.  Each sequenced 

fragment is aligned to a reference transcriptome (which may be assembled from the genome or 

generated de novo), and the count of each fragment at each transcript location indicates the 

abundance of each mRNA species in the original sample.  RNA-Seq has a number of 

advantages over microarrays: firstly, its dynamic range is substantially higher, allowing 

detection of very highly or lowly expressed transcripts (over five orders of magnitude22), 

whereas microarrays suffer from the limits of detection of fluorescence.  A further advantage 

of RNA-Seq is that it doesn’t use pre-designed probes, allowing identification of novel 

transcripts.  For these reasons, RNA-Seq is now the dominant technique in transcriptomics, 

overtaking microarrays (in terms of number of publications referring to the technique) in 

201522.  However, due to the popularity of microarrays in the preceding two decades, 

microarray datasets still far outnumber RNA-Seq in public repositories (discussed below); a 

further advantage is that during this time, techniques for pre-processing and analysis of 

microarray data have become highly developed and standardized.  These techniques will be 

discussed further in Methods. 
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1.2.4 Obtaining gene expression data from public repositories 

Since the advent of high-throughput technologies in the mid-1990s, the volume of gene 

expression data stored in public repositories has been increasing rapidly43.  Developments in 

technology have enabled transcriptomic studies to be carried out more cheaply and easily than 

ever before; at the same time, requirements for data sharing put in place by funders and journals 

mean that this data is increasingly being made publicly available.  The largest public gene 

expression repositories, Gene Expression Omnibus44 (GEO) and ArrayExpress, contain tens of 

thousands of studies: at the time of writing, GEO contained 73,388 expression profiling studies, 

(of which 53,691 were microarray studies and 18,126 were high-throughput RNA sequencing 

studies45), and ArrayExpress contained 70,894 experiments46 (ArrayExpress imports data from 

GEO, so there is substantial overlap between the two).  These cover many study types, from 

early microarray studies to cutting-edge single-cell RNA-Seq experiments, and span diverse 

research areas including toxicology, pharmacology, ageing, and development.  In particular, 

available studies cover hundreds of different diseases, from common, well-studied diseases to 

extremely rare conditions. 

In addition to these general-purpose repositories, several application-specific gene expression 

databases are available.  These include DrugMatrix47 and Open TG-Gates48 for toxicity, and 

the Connectivity Map (CMap)49 and the Library of Interconnected Cellular Signatures L1000 

dataset (LINCS)50, which record gene expression in human cell lines in response to 

perturbation by drugs.  There are also disease- and organ-specific databases such as the 

Oncomine database of gene expression in cancer51 and the Allen Human Brain Atlas52.  These 

databases generally have better annotation, curation, and integration than their general-purpose 

counterparts; the trade-off, however, is that they may not be as comprehensive, i.e. they are 

unlikely to include all studies related to a particular condition. 

 

1.3  USING GENE EXPRESSION DATA TO UNDERSTAND DISEASE 

1.3.1 Differential expression analysis 
1.3.1.1 Calculating differential expression  

After the appropriate pre-processing steps (discussed in Methods, as these are platform-

specific), a transcriptomic experiment results in a matrix containing the measured abundance 

of i genes in each of j samples.  Whilst this ‘baseline’ gene expression can be informative (for 

instance, to assess the expression of a particular gene in a specific tissue or cell type, or to 
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examine the change in gene expression over a time series experiment), the measured abundance 

can be strongly affected by technical and laboratory-specific factors (discussed below).  In 

many applications, it is more helpful to give gene expression as a ratio of expression between 

conditions, known as ‘differential expression’.  In differential expression analysis, genes are 

interpreted in terms of the expression difference between one group (the condition under study, 

e.g. patient or tumour samples) and another (the control group, e.g. healthy individuals or non-

cancerous tissue).  Differential expression has become a popular means of working with gene 

expression data, as it accounts for the fact that (unless special ‘spike-in’ controls are used) gene 

expression measurements are relative, rather than absolute.  The magnitude of differential 

expression is expressed as a fold change (e.g. if a gene is twice as highly expressed in one 

group than the other, this would be a two-fold change), usually in log2-transformed space in 

order to provide a symmetric scale around zero.   

Due to the noise inherent to gene expression data, the magnitude of fold change values should 

be considered in conjunction with a measure of significance – i.e., given the variance observed 

across samples, how likely is it that the observed difference in means could occur under the 

null hypothesis (that values in the two groups are drawn from the same distribution)?  This is 

essentially a t-test; however, because of the particular properties of gene expression data 

(noisiness, gene- and sample-specific variance, low ratio of observations to features), several 

methods have been developed to estimate a ‘moderated’ t-statistic more suited to the analysis 

of transcriptomic data.  Numerous packages exist to calculate these quantities including 

limma53 (LInear Models for MicroArrays) and SAM54 (Significance Analysis of Microarrays) 

for microarrays; and EdgeR55 and DESeq56/DESeq257 for RNA-Seq data.   

The basic outline of a limma analysis (limma being the most popular analysis package for 

microarray data) is as follows: 

1. Specify the design matrix indicating which samples are to be compared against each 

other (in a simple case-vs-control differential expression analysis this simply requires 

assigning samples to case and control groups; additional steps are required for more 

complicated analyses). 

2. Fit a linear model ! = #$ + 	' to each probe, where ! are the observed expression 

values in each sample, # is the design matrix, $ are the co-efficients, and ' is an error 

term (limma function lmFit). 

3. Use an empirical Bayes procedure (limma function eBayes) to smooth the probe-wise 

variances by borrowing information from other probes.  The reasoning behind this is 
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that given the small sample sizes usually used in microarray experiments, the true 

variance will be difficult to estimate, so the eBayes call adjusts the observed variance 

towards the expected variance computed from the average of all variances.  The 

smoothed variances are used to calculate a moderated t-statistic for each probe. 

4. Summarize the fold changes, significance values, and other statistics (e.g. average 

expression) for each probe (limma function topTable). 

An important consideration here is the correction of the obtained significance values for 

multiple testing.  The traditional concept of hypothesis testing was designed to be used in the 

context of single experiments, but with an individual p-value for each gene, tens of thousands 

of hypotheses are effectively being tested at once.  On a 10,000-gene microarray, an average 

of 500 genes would meet a significance threshold of p<0.05, whether or not any genes were 

truly differentially expressed. One way to address this problem is to use multiple testing 

correction to select a more stringent significance threshold, such as the Bonferroni method 

(which simply divides the chosen significance threshold by the number of hypotheses tested) 

or less stringent False Discovery Rate methods which specify an acceptable proportion of false 

discoveries, such as the widely-used Benjamini-Hochberg method. 

Probes may then be mapped to their corresponding genes (discussed in Section 2.1.3).  Once 

fold change and (multiple-testing corrected) significance values have been obtained for each 

gene, ‘interesting’ genes can be selected based on some combination of fold change magnitude 

and statistical significance. It is important to note that the fold change and significance 

threshold used to determine what counts as ‘significant differential expression’ are essentially 

arbitrary, and so hundreds or even thousands of genes may be classed as differentially 

expressed in a particular experiment depending on the selected threshold.  The selection of an 

appropriate threshold is dependent on the context (what question is being answered with the 

analysis?) and the type of analysis carried out. 

 

1.3.1.2 Using differential expression to understand disease 

Classical differential expression analysis aims to understand DEG lists through the functions 

of individual dysregulated genes, identifying those which could form a compelling hypothesis 

for the changes underlying the development of or response to disease.  An example of this type 

of analysis is the work of Trigueros-Motos et al.58, who analysed differential expression in 

vascular regions prone to atherosclerosis compared to those resistant to atherosclerosis.  They 
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found overexpression of a set of four homeobox genes (involved in anatomical specification in 

embryonic development), Hox6-Hox10, in murine athero-resistant aorta.  The athero-prone 

regions in murine aorta and human smooth muscle cells showed higher activity of 

inflammatory mediators normally inhibited by homeobox genes, suggesting that the interplay 

between homeobox and inflammatory gene expression patterns could create an environment 

which allows the development of atherosclerosis.   

The advantage of this type of analysis is that it can provide a mechanistic understanding of the 

observed gene expression patterns, which can then be followed up in detail by e.g. confirmation 

of high-throughput measurements using techniques such as qPCR.  However, this relies on 

human interpretation of potentially tens of thousands of data points, necessitating the use of 

strict thresholds to reduce DEG lists to a reasonably interpretable size.  This leads to a focus 

on only on the most strongly dysregulated genes, risking the exclusion of less strongly 

dysregulated genes which could nevertheless be relevant to the studied condition.  Further, 

human interpretation is subject to bias, as investigators will naturally focus on the most 

recognised and well-studied genes, potentially overlooking important but less well-

characterized genes.  Other methods which have been developed for the analysis of gene 

expression data therefore aim to provide an interpretable summary of large gene lists by 

grouping genes into sets. 
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1.3.2 Analysis against known gene sets 

1.3.2.1 Performing gene set analysis 

 

Figure 1.3 Association of a gene expression signature to the set of genes in a pathway 

A	gene	set	of	interest	(which	may	be	e.g.	a	biological	pathway	or	a	set	of	genes	known	to	be	
associated	with	a	particular	condition)	is	compared	against	a	ranked	gene	expression	profile	
(e.g.	the	most	up-regulated	to	the	most	down-regulated	genes	in	a	particular	condition).		If	the	
genes	 in	 the	 set	 are	 found	 towards	 the	 top	 or	 bottom	 of	 the	 ranked	 gene	 list	 (generally	
quantified	using	a	Kolmogorov-Smirnov	statistic),	this	gene	set	is	considered	to	be	‘enriched’	in	
the	gene	expression	profile.		An	unsigned	version	of	this	test	can	be	carried	out	(for	instance,	if	
genes	are	ranked	in	order	of	p-value),	in	which	case	only	enrichment	towards	the	top	of	the	list	
is	of	interest.		

 

Given a selection of genes of interest, gene set analysis methods aim to associate (subsets of) 

these genes with known biological processes. This can be thought of as a ‘translation’ of the 

observed gene expression patterns to a higher biological level, reducing complexity and aiding 

interpretation.   Typically, gene set methods calculate enrichment against biological pathways, 

including: 

• Metabolic pathways, which describe a sequence of reactions taking place in the cell 

that transform (metabolise) substrates into new products59.  Examples include 

glycolysis and the citric acid cycle. 

• Gene regulatory pathways, which describe the interaction of genes, RNA, proteins, 

and other cofactors to regulate gene expression and protein production in the cell. 

• Signalling pathways, which are involved in cellular communication and the 

transmission of cellular signals to and from the cell.  Examples include pathways 

involved in homeostasis, such as the insulin signalling pathway. 
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• Some collections also define disease pathways, which detail perturbations to the 

healthy biological system which are associated with disease.  Disease pathways are 

available for several well-studied diseases such as cancer, diabetes, and cystic fibrosis, 

but for many diseases pathways are not known; and where pathways are known these 

may be incomplete. 

In the last two decades, numerous collections have been developed which relate genes to 

biological pathways.  Popular resources include primary pathway databases such as KEGG 

Pathways60, Reactome61, and Panther62 as well as commercial pathway databases.  Aside from 

biological pathways, other ways to group genes include functional or local grouping – a well-

known gene set collection of this type of is Gene Ontology63, which annotates genes with 

lower-level biological processes (which can be considered the ‘building blocks’ of biological 

pathways), molecular functions, and cellular components.  Other gene set collections include 

collated resources such as WikiPathways64 and MSigDB65, which bring together multiple 

collections into a single database. 

The identification of gene sets relevant to the condition under study can be achieved through 

various methods which can be divided into two broad classes: overrepresentation and 

enrichment.  Overrepresentation methods take a gene list as input, and test for a significant 

difference in the representation of the input list compared to the background or ‘reference’ list 

in each gene set.  By contrast, enrichment analysis uses the whole measured expression profile, 

removing the need to define a DEG list using an (arbitrary) cut-off.  The most widely-used 

enrichment method is gene set enrichment analysis (GSEA)66, which uses a Kolgomorov-

Smirnov-like statistic to test for the distribution of each gene set within the measured gene 

expression profile, which is rank-ordered by e.g. fold change or significance (Figure 1.3).  

Numerous tools exist to perform either type of gene set analysis, including online tools such as 

DAVID67, ToppGene Suite68, WebGestalt69, and GOrilla70, as well as R packages such as 

ReactomePA71 and TopGO72, and standalone software for GSEA.  Whilst in theory the choice 

of method is independent of the gene set used, in practice, the tools are generally integrated 

with particular datasets – for instance, the aforementioned Panther includes a web tool to 

perform both overrepresentation and enrichment analysis on Panther pathways, although recent 

updates have added GO and Reactome annotations as well.  
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1.3.2.2 Using gene set analysis to understand disease 

One example of the use of gene set analysis to understand diseases is the meta-analysis of 17 

Parkinson’s disease (PD) studies carried out by Zheng et al.73, covering studies ranging from 

early subclinical to severe disease stages.  The authors used GSEA to identify 10 MSigDB gene 

sets associated with PD across multiple studies, including ‘electron transport chain’, ‘oxidative 

phosphorylation’, and ‘pyruvate metabolism’.  The ten gene sets covered four distinct 

biological areas related to neuronal energy metabolism: electron transport, mitochondrial 

biogenesis, and glucose utilization and sensing.  These findings suggested the intriguing 

hypothesis of Parkinson’s disease as an alteration of normal cellular energetics to which 

dopaminergic neurons ‘may be intrinsically more susceptible than other cells’73.   

Whilst gene set enrichment methods provide a high-level description of altered gene expression 

in terms of the biological functions affected, they hide information about the roles of individual 

genes.  Analysis against known gene sets is also limited by the fact that our knowledge of 

biological pathways and processes is incomplete and incompletely accurate74.   Recently, de 

novo gene set identification methods have been proposed as an intermediate, providing insight 

as to how genes work together (e.g. along signalling pathways) whilst retaining information on 

the activity of individual genes. 

 

1.3.3 Gene network analysis 
Rather than analysing gene expression against predefined gene sets, more recently developed 

methods of interpreting gene expression data are based on the identification of de novo gene 

groupings by linking genes whose expression is altered in the condition under study, forming 

condition-specific gene networks.  Current network-based methods fall into one of two 

categories according to what the gene links (edges of the network) represent: the first is co-

expression methods, which link genes whose expression varies similarly across a series of 

samples.  Co-expression methods are based on the hypothesis that groups of genes whose 

expression varies together are associated with similar biological or regulatory processes75; they 

do not try to describe the causality or directionality of interactions between genes76.   

Conversely, methods in the second category (which can be termed interaction-based methods) 

link genes via known interactions between them (or between their products).  These may 

include physical binding interactions and/or (indirect) functional (e.g. regulatory, metabolic, 

or signalling) interactions; all of these different interaction types can collectively be termed the 



 25 

‘interactome’77.  Many databases are available which cover interactions of different types; 

some of the best-known are String78, IntAct79, ConsensusPathDB80, and SignalLink81, as well 

as more recent integrative efforts such as OmniPath82 and HIPPIE83.  Just as with gene set data, 

our knowledge of the interactome is incomplete84; however, the interactome can be treated as 

a ‘scaffold’ of prior knowledge to aid gene expression analysis.  For example, Rakshit et al.85 

constructed a protein-protein interaction (PPI) network from differentially expressed genes in 

Parkinson’s disease (PD).  The authors suggested that genes which were topologically 

significant in the constructed PPI network (hub or bottleneck nodes) may represent possible 

therapeutic targets in PD.  However, by focusing only on the most topologically significant 

nodes, key genes involved in disease – which tend not to be ‘hub’ genes15 – may be missed. 

An alternative method to analyse gene networks is to group the network into ‘modules’, 

representing sets of interlinked genes that may be related to a particular biological function.  

Module identification methods include clustering methods like MCODE86 or GLay87, which 

are based on network topology and are therefore independent of network type.  Other 

approaches have been developed which are specific to either co-expression- or interaction-

based networks, such as Weighted Gene Co-expression Network Analysis (WGCNA)88 for co-

expression networks, which performs co-expression analysis, network construction, and 

module identification.  

An example of module-based analysis of gene networks is the work of Ray et al.89, who 

investigated co-expression patterns across six brain regions in Alzheimer’s disease.  For each 

pair of brain regions, genes showing dysregulation in both regions were used to construct co-

expression modules.  Each module was analysed for preservation or perturbation between the 

two regions: the varying co-expression patterns of commonly differentially expressed genes in 

perturbed modules suggest regulatory variation between the two regions.  A limitation of 

module-based network analysis is that the resulting modules may be large, necessitating further 

analysis in order to be interpretable – in this study, the authors used pathway analysis to explore 

the functions of the genes in each co-expression module.  A key challenge for network-based 

analysis is therefore to highlight small ‘active’ network regions, forming a middle ground 

between analysis of individual topologically significant nodes and analysis of large modules. 

Developments in this area will be described in more detail in Chapter 4. 
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1.3.4 Integration of other data types 

Gene expression represents only one dimension of the molecular changes associated with 

disease, and as the volume of bioinformatic data of all types continues to grow, methods which 

combine gene expression with other data types are becoming increasingly popular.  A common 

choice is to integrate gene expression data with genetic variant data (heritable variants, e.g. 

SNPs, or somatic mutations) in order to explore potential relationships between genetic 

alterations and gene expression90.  Integration approaches can be extended to different -omics 

data types including proteomics and metabolomics. In the last few years, large-scale datasets 

such as The Cancer Genome Atlas91 which contain genomic, epigenomic, transcriptomic, and 

proteomic data relating to each sample92, have enabled ‘multi-omics’ approaches which have 

the potential to provide a comprehensive molecular-level characterization of disease.   

Molecular-level data can then be combined with data at the clinical level – such as survival, 

comorbidity, phenotype, and drug prescription – to identify links between molecular-level 

changes and clinical outcomes in disease.  For example, Orozco et al.93 used a ‘systems 

genetics’ approach to study the association between methylation data and clinical (including 

blood, fat, and insulin-related) and molecular (including metabolites and proteins as well as 

gene expression) traits in mice, finding that many associations could be identified by the 

methylation data (‘epigenome-wide association’) which were not identified using traditional 

genome-wide association methods.  Methods for data integration are currently an active area 

of research, particularly for methods which integrate data types other than -omics data (such as 

electronic health record or co-morbidity data), as it is not yet clear how associations can best 

be modelled across diverse data types.  This issue will be discussed further in Chapter 5. 

 

1.4 USING GENE EXPRESSION AND OTHER BIOINFORMATIC DATA 

FOR THE COMPARATIVE ANALYSIS OF DISEASES 

1.4.1 Using comparative analysis to deepen our understanding of disease 

The reuse and reanalysis of existing studies reduces duplication of effort and enables multiple 

researchers to analyse the same data, ensuring reproducibility.  Further, previous studies can 

be combined to increase statistical power, enabling us to address existing biological questions 

with greater insight, and even to pose new questions motivated by greater data availability.  A 

2012 review of reuse of gene expression data found that a quarter of studies citing 
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ArrayExpress used it to address a biological question without generating any new experimental 

data94; a further quarter used public data to complement their own newly generated data (e.g. 

as a validation dataset).  However, the high dimensionality of gene expression data, and its 

susceptibility to noise resulting from multiple biological95 and technical96 factors, means that 

comparison across gene expression datasets is challenging.  In this section I will discuss how 

the comparative analysis of multiple studies can inform us about disease, including some of 

the potential pitfalls that must be considered. 

 

1.4.1.1 Meta-analysis reveals commonalities across studies of the same condition 

A common type of comparative analysis is meta-analysis: the integration of multiple studies of 

the same condition to effectively form a much larger study which is more generalizable 

(drawing results across different experimental designs and sample populations)97 and has 

increased statistical power compared to any one individual study98.  Meta-analysis approaches 

are particularly useful in the context of gene expression studies, where the high dimensionality 

and non-standardized (pre-)processing and analysis methods mean that there may be little 

agreement between individual differentially expressed gene lists99 of the type discussed in 

Section 1.3.1.2.  In a meta-analysis of 21 thyroid cancer studies100, for example, only 107 of 

755 genes in published gene lists showed consistent differential expression in more than one 

study.  Those genes which are consistently differentially expressed across multiple studies, 

however, are then more likely to be associated with the condition under study rather than 

technical or experimental factors (discussed below).   

Given the low agreement between gene expression studies of the same condition, a key issue 

in conducting a meta-analysis is how to define which studies are comparable, i.e. how to 

determine the best balance between study inclusion vs exclusion: the greater the number of 

studies that can be included in a meta-analysis, the greater the statistical power that can be 

achieved, but including too wide a range of studies risks diluting the detected signal due to 

‘noise’ from studies which do not accurately reflect the condition under study.   

 

1.4.1.2 Comparing gene expression reveals links between different conditions 

The comparison of clinically related diseases can reveal common molecular mechanisms 

underpinning shared pathogenesis or phenotypes.  Studies of gene expression patterns have 

illustrated the similarities between inflammatory bowel diseases101, systemic autoimmune 
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diseases102, neurodegenerative diseases103, and mental health diseases104 to name just a few 

examples.  As well as identifying similarities between related diseases, this approach can also 

be applied to phenotypically diverse diseases to uncover similar mechanisms of dysregulation 

that may lead to distinct phenotypes due to e.g. differences in cellular context105.  A 2009 

study40 compared 74 diseases using both 1) the correlation between their gene expression 

profiles and 2) the enrichment of genes significantly differentially expressed in one disease in 

the profile of another (analogous to gene set enrichment analysis).  This approach revealed 

unexpected connections between diseases, such as between Crohn’s disease and malaria, as 

well as known or emerging connections between diseases in the same ontological category, 

such as between actinic keratosis (‘sun spots’, which may be pre-cancerous) and multiple 

cancers.  This illustrates how large-scale exploratory comparisons of gene expression profiles 

from clinically unrelated diseases can highlight unexpected similarities between diseases. 

The genes and pathways shared between diseases can be used to generate new hypotheses about 

the molecular mechanisms of disease: for instance, Yang et al.106 compared gene co-expression 

across 108 diseases, finding overlap of co-expressed genes between allergic asthma, type 2 

diabetes, and chronic kidney disease.  Many of the shared genes were involved in Wnt 

signalling, suggesting the possible involvement of a common pathway in these phenotypically 

distinct diseases.  In the network as a whole, more than half (57%) of the 1326 disease-disease 

links are novel links according to traditional disease classifications, with 82% of these sharing 

disease-related genes or drugs, illustrating a relevant biological basis for the connection.  This 

study provides an example of the use of co-expression network analysis to compare diseases; 

surprisingly, however, few approaches have compared diseases based on gene expression in an 

interaction network (the other type of network-based analysis discussed above), despite the 

potential utility of identifying shared network regions active in disease.  This will be discussed 

further in Chapter 4. 

Shifting focus from diseases to genes, other approaches have used large-scale disease 

comparisons to identify genes which are frequently dysregulated in different conditions.  This 

analysis helps us to better understand observed gene expression patterns by identifying which 

patterns may reflect a general ‘disease response’ such as inflammation or immune system 

activation, and which appear specific to the disease.  Suthram et al.107 identified ‘disease 

modules’ by mapping differential gene expression in 54 diseases to pre-computed ‘functional 

modules’ (describing e.g. protein complexes in the human protein-protein interaction network).  

They found that 59 of the 4,620 functional modules were enriched in at least half of diseases 
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in the network, which the authors suggested form a ‘common disease-state signature’.  Further, 

these frequently dysregulated modules were found to be enriched for known drug targets, 

illustrating that these modules could form a useful basis for therapeutic options targeting 

common disease symptoms.  Unfortunately, this study (which was carried out in 2009) is 

somewhat limited due to the restricted number of diseases studied, as well as the use of generic 

pre-computed modules, rather than disease-specific modules.  A similar analysis over a wider 

range of diseases would therefore be of great interest for the analysis of gene expression 

profiles and how they reflect common disease responses. 

 

1.4.1.3 Cross-condition comparison of gene expression signatures can be used for 

drug repurposing 

Comparative analysis of gene expression signatures is a popular approach in transcriptomic 

drug repurposing, based on the idea that drugs inducing gene expression profiles which are 

‘opposite’ to a disease-induced differential expression profile may be able to reverse the 

dysregulation associated with the disease40,41.  A study comparing gene expression profiles in 

100 diseases and 164 drugs (using drug-induced gene expression profiles from the CMap 

resource introduced in Section 1.2.4)41 used the ‘connectivity’ between diseases and drugs (a 

concept similar to gene set enrichment, in which the top differentially expressed genes in 

disease form the ‘gene set’ against which the drug expression profile is tested) to identify 

potential candidates for drug repurposing.  If a disease is strongly negatively enriched for a 

particular drug, this suggests that the drug may potentially be therapeutic against the disease.  

As well as known drug-disease connections, such as the corticosteroid prednisolone for 

inflammatory bowel diseases, the authors identified novel connections such as the anti-ulcer 

drug cimetidine for lung cancer, which experimental validation showed to be effective in a 

mouse model.  Following the success of this study, many other approaches have been 

developed based on similar concepts108–110. 

Despite the potential of these approaches for the identification of drug repurposing hypotheses, 

comparisons between drug and disease signatures suffer from the same limitations as 

comparisons across disease signatures, including incomplete understanding of issues such as 

how cell line models of disease (which are used to record drug response) can be compared to 

disease gene expression profiles from patients.  Our understanding of potential repurposed 
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treatments for disease would greatly benefit from improved insight into the comparative 

analysis of gene expression profiles.  

 

1.4.2 General issues in comparative analysis of gene expression 

	

 
 
Figure 1.4 Types of comparative analysis of gene expression profiles of disease and 
factors affecting comparison 

A	number	of	factors	must	be	taken	into	account	when	comparing	measured	gene	expression	
profiles.		These	range	from	technical	and	biological	variance,	which	are	difficult	to	control	but	
which	have	only	a	small	influence	on	measured	expression;	to	factors	which	can	cause	much	
larger	differences	in	measured	expression,	such	as	patient	selection	(e.g.	the	drug	treatment	
history	of	patients)	or	model	type	(e.g.	comparing	a	human	study	to	an	animal	model).		A	real	
example	of	the	schematic	diagram	on	the	left	is	presented	in	the	work	of	Dudley	et	al.111.	

 

Sources of variation between gene expression experiments can be roughly divided into two 

categories: variation arising from the noise inherent to gene expression measurement, which is 

pervasive and difficult to control; and variation arising from choices made in the design of the 

experiment, which is controlled according to the aims of the study.   
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Figure 1.4 summarises these types of variation, which will be discussed further in this section.  

Although this figure illustrates the comparison of differential gene expression profiles, which 

is the focus of this thesis, these factors also apply to the comparison of base gene expression.  

However, comparison of base expression profiles is further complicated by differences in e.g. 

average measured intensity, which are cancelled out (due to being reported as a ratio) in 

differential expression analysis. 

	

1.4.2.1 Experimental factors affecting comparison of gene expression studies 

The first source of variation can be described as noise – unintentional variation resulting from 

factors other than the condition under study – and can be further divided into biological and 

technical noise.  Biological noise is an inherent property of gene expression, and includes noise 

resulting from the dynamic nature of transcription, including transcriptional bursting112 and 

differences in transcription at different stages of the cell cycle95; these are of more concern in 

recently developed single-cell transcriptomics methods, as they should even out over RNA 

sampled from whole tissue.  Another source of biological noise is variation in gene expression 

patterns between individuals113, although these differences should also even out over an 

adequate number of samples.   

Technical noise is noise resulting from experimental and measurement factors, such as sample 

preparation (RNA extraction, labelling and amplification114), probe hybridization115 and array 

scanning116.  This type of noise appears even between repeat measurements of the same sample.  

Numerous studies, most notably the large-scale studies co-ordinated by the Microarray Quality 

Control Consortium117 and the Sequencing Quality Control Consortium118, have found good 

agreement for relative (differential) gene expression measurements of the same sample, 

suggesting that repeats of an experiment should be highly concordant.  Outside of these 

controlled large-scale studies, however, a further source of technical variation between gene 

expression studies arises from laboratory-specific differences in sample handling and the 

protocols and platform type used.  

 

1.4.2.2 Study design factors affecting comparison of gene expression studies 

The second group of factors that must be taken into account when comparing experiments 

relates to the design choices made for a given study.  A key consideration in the study of disease 
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is the choice of tissue from which to sample: investigators may choose to sample gene 

expression in the tissue most relevant to the disease, or they may choose to use tissues that are 

more easily accessible, such as blood samples.  This is particularly important in cases where 

sampling the actual tissue is invasive (e.g. colonic tissue) or where tissue cannot be sampled 

until post-mortem (e.g. brain tissue).  In the case of progressive diseases such as 

neurodegenerative disease, different sub-tissues may be sampled to follow the progression of 

the disease.  Patterns of tissue-specific baseline gene expression exist across healthy tissue119, 

and it is reasonable to assume that the gene expression response to disease may also differ 

between tissues.  A study by Dudley et al.111 addressed the subject of whether the disease-

specific signal across tissues is stronger than the tissue-specific response to disease.  Across 

microarray studies representing 238 diseases and 122 tissues, under 84 combinations of 

workflow parameters (normalization, merging, and quantification methods), the authors 

concluded that although comparison across different tissues reduced the concordance between 

studies, ‘the molecular signature of disease across tissues is overall more prominent than the 

signature of tissue expression across diseases’111.  However, the question remains to what 

extent an experiment carried out in a ‘surrogate’ tissue is reflective of the gene expression 

changes that would be observed in the most directly affected tissue.   

A further issue is the selection of patients (and equivalent healthy controls).  Distinct from 

biological noise as discussed above, which would be found even in a controlled population 

(e.g. of genetically identical laboratory animals raised in identical conditions), human studies 

involve genetically diverse populations of patients of different ages and genders.  These factors 

may affect both baseline gene expression120 and the gene expression response to disease.  A 

further consideration particular to the study of disease is the drug treatment history of patients: 

patients may follow many different drug treatment regimes, which will affect the observed 

expression patterns by diluting the ‘disease signal’ with the ‘drug signal’.  Complicating these 

issues further is the fact that this demographic information is often not supplied in the sample 

meta-data stored in public repositories.   

A final issue in sample selection concerns the choice of disease model.  The ‘gold standard’ 

for gene expression experiments in disease is samples directly from patients; however, some 

studies of disease use animal models or cell lines in order to perform experiments which would 

not be possible in human patients.  The question of how well gene expression in e.g. cell lines 

taken from patients reflects gene expression sampled directly from the patient has not yet been 

answered definitively.  The issues raised here will be addressed further in Chapter 3. 
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1.4.2.3 Factors specific to cross-condition comparison of gene expression studies 

As well as the general issues in comparing gene expression data discussed above, there are 

further issues specific to comparing gene expression between different diseases.  An initial 

consideration is that diseases affect different anatomical locations – their effects may be 

systemic, such as autoimmune or metabolic disorders, or they may be localized to a particular 

tissue or organ, such as skin diseases or cancers.  As discussed above, gene expression 

responses to disease differ depending on the sampled tissue; one solution is simply to assume 

that the strongest and most ‘representative’ signal of disease is found in the most highly 

affected tissue, and to compare disease signatures in the most affected tissue for each.  Given 

the availability of enough studies (which is not currently the case), diseases could be compared 

across studies in a single tissue such as blood.  However, the strength of the transcriptomic 

signal of disease in e.g. blood compared to the affected tissue is not yet established. 

A further consideration is that different diseases have different drug treatment programs, which 

will affect observed gene expression to different extents.  The alternative is to limit the dataset 

to the few studies which state that they have been carried out in drug-naïve patients, but 

currently there are not enough transcriptomic studies available in explicitly drug-naïve patients 

for this to be practical.  Despite these limitations, previous studies, such as those discussed in 

the preceding sections, have illustrated that comparing gene expression data across diseases 

can yield valuable insights into disease and its potential treatment.   

 

1.5 PROPOSED RESEARCH 

In the Introduction so far, I have discussed issues relating to the analysis of gene expression 

data, and explored the advantages and limitations relating specifically to the comparison of 

multiple gene expression data sets.  In particular, I have focused on the use of gene expression 

data to compare different diseases.  Despite the potential of this type of analysis to deepen our 

knowledge of diseases (and their possible treatments), there are key questions remaining to be 

answered in order to fully exploit the potential of this approach.  I will now provide a more 

detailed summary of how these will be addressed in this thesis. 
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1.5.1 How do experimental factors affect measured gene expression in 

disease? 

This question concerns the comparability of microarray data across different tissues and 

organisms.  As discussed above, factors such as the choice of microarray platform and disease 

model in a transcriptomic experiment all affect the measured signal of a disease.  Several 

studies have addressed these factors individually, but it remains unclear how these factors 

affect the ‘representativeness’ of the measured gene expression to the condition under study.  

This in turn affects the ability to compare gene expression from different studies – if the choice 

of e.g. microarray platform strongly influences the measured gene expression, is it meaningful 

to compare studies from different microarray platforms? 

As an initial study in the comparison of transcriptomic data, I examine the concordance of 

microarray studies across different tissues, microarray platforms, and disease models, as well 

as the effect of sample sizes, using the neurodegenerative condition Parkinson’s disease as a 

case study.  After establishing the similarity of different study types to the ‘gold-standard’ 

studies of human brain tissue, I further examine the specificity of the measured signals through 

comparison with other brain diseases: Alzheimer’s disease and cancer.  As well as being the 

largest meta-analysis of gene expression in Parkinson’s disease to date, this work provides 

guidelines for study selection e.g. in a meta-analysis context.  This chapter forms a basis for 

the following work, helping to define the criteria for study inclusion in the larger disease dataset 

used in the following chapter. 

 

1.5.2 How can shared gene expression patterns across different diseases 

be identified? 

Previous sections of the Introduction discussed methods to aid the interpretation of gene 

expression data, including enrichment of differentially expressed genes against functional gene 

sets (e.g. biological pathways) and grouping into functional or co-expression networks.  Whilst 

these methods can be invaluable for the analysis of individual gene expression datasets, they 

have several limitations for comparison of diseases.  Biological pathways are a high-level 

description of a biological process, and comparison of diseases at this level discards the gene-

level information that could help to identify more specific processes.  Further, methods reliant 

on known biological pathways are restricted only to the identification of known processes, and 
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are thus incapable of identifying novel disease-associated processes. By contrast, methods 

based on interaction networks not only retain the gene-level information, but (depending on 

the interaction type) can also illustrate the potential flow of disease-related perturbation 

through the network.  However, network-based methods tend to produce large modules that 

may include many genes solely on the basis of topology, which are not ideal for making 

comparisons between diseases.  

In this chapter, I introduce a weighted shortest-paths method (based on the work of Sambarey 

et al.121) which identifies the most highly perturbed signalling paths in a disease.  Each edge in 

the path links two differentially expressed genes, allowing comparison of diseases based on 

individual shared edges.  Connecting the shared edges forms shared dysregulated networks, 

enabling the identification of processes showing altered expression in both diseases.  I first 

confirm the biological relevance of the identified paths by showing their enrichment for 

disease-associated genes and drug-interacting genes compared to the use of simple (non-

network based) differentially expressed gene lists.  I then examine the properties of genes 

which are frequently in dysregulated paths across multiple diseases, identifying commonly 

dysregulated genes which may represent ‘pressure points’ in the human signalling network.  

Finally, I apply the method to the pairwise comparison of 141 studies of common and rare 

diseases, identifying disease pairs with significant similarity (i.e., a significant number of 

shared interacting gene pairs) and illustrating how shared dysregulated paths might be used to 

identify potential opportunities for drug repurposing. 

 

1.5.3 How can gene expression data be integrated with other 

bioinformatic data types to make connections between diseases? 

Previous sections of the Introduction outlined how the integration of other bioinformatic data 

types can aid the interpretation of gene expression in disease.  However, gene expression 

represents just one possible information ‘layer’ at which diseases may be compared: diseases 

may share drug treatments, for instance, or a genetic variation conferring risk for the disease.   

Defining relationships between diseases across multiple biological layers could form a new 

bioinformatic classification of disease, incorporating new molecular data types as well as 

traditional disease relationships.  Such multi-layer links between diseases could improve our 

understanding of disease biology and potentially identify opportunities for drug-sharing.   
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However, relatively few methods have been developed for the comparison of diseases across 

diverse data types.  One reason for this may be that differences in data type properties (e.g. 

information content) make it difficult to directly compare disease relationships across 

spaces122.  In the final section, I explore the use of additional data types in the comparison of 

diseases, developing a method based on the integration of pairwise disease similarities in an 

unbiased manner which accounts for differences in data type properties.  The proposed method 

is used to integrate gene expression data with five other data types – ontology, phenotype, 

literature co-occurrence, genetic variation, and drug prescription – and is designed to easily 

incorporate additional data types.  The integrated similarities reveal how links between diseases 

at the gene expression level relate to links at other levels, and are used to explore disease 

relationships that exist across multiple levels, particularly in relation to drug-sharing. 

 

1.6 SUMMARY 

In this thesis, I will use comparative analysis of gene expression data to understand diseases 

and the relationships between them, addressing issues including the comparability and 

interpretation of transcriptomic data, as well as the integration of other data types to aid 

identification of disease relationships.  The remainder of the thesis is structured as follows: 

In Methods, I discuss methodological aspects related to the selection, pre-processing, and 

analysis of gene expression studies. 

In Concordance of Microarray Studies of Parkinson’s Disease, I describe work investigating 

the comparability of microarray studies across different species, tissues, and microarray 

platforms. 

In Using Dysregulated Signalling Paths to Understand Disease, I describe the integration of 

gene expression data with a signalling network to aid the interpretation and comparison of gene 

expression datasets across diseases. 

In Understanding and Predicting Disease Relationships Through Similarity Fusion, I introduce 

a method for the integration of multiple bioinformatic data types, and apply it to reveal disease 

relationships spanning gene expression and other spaces. 

Finally, in Conclusions I describe the significance and possible future directions of the research 

described in this thesis. 
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2 METHODS 
 

2.1 ANALYSIS OF MICROARRAY DATA 

2.1.1 Motivation for using microarray data in this project 

In the Introduction, I discussed the advantages and disadvantages of microarray and RNA-Seq 

technology.  Despite the many advantages of RNA-Seq, in this work I have chosen to focus 

exclusively on the analysis of gene expression data from microarrays.  This is the most suitable 

data type for this project, which involves the analysis of hundreds of transcriptomic datasets, 

for two reasons. The first reason is the greater ease of analysis of microarray data: the large 

volumes of data required by this project necessitate a semi-automated analysis workflow that 

can be applied in a standardized manner across multiple datasets, which would be much more 

complex without the greater homogeneity and standardization amongst microarrays (at least 

within a platform type).  The second reason is the greater number of microarray datasets: as 

detailed in the Introduction, microarray experiments make up much of the data stored in public 

repositories due to their longer history of use compared to RNA-Seq.  As this project relies on 

the use of public datasets, focusing on microarray data then allows a greater number and variety 

of datasets to be included in the comparative analysis setting.   

The other possibility is to analyse both data types together, with the bulk of the datasets coming 

from microarray experiments, supplemented with RNA-Seq experiments where necessary for 

greater coverage.  However, given that the reported concordance between the two technologies 

is moderate123 and dependent on transcript abundance124, the risk is that the use of different 

technologies might introduce an extra confounding factor in the comparison of measured gene 

expression.  Therefore, only microarray studies were used in this project. 

 

2.1.2 Retrieval and pre-processing of microarray data 

A broad range of microarray platforms are in use for the measurement of gene expression data.  

By far the most common microarray type in the datasets used by this project is the Affymetrix 

range of microarrays (see Appendices A, B, and C), in particular the Human Genome U133A 

and Human Genome U133A Plus 2.0 arrays; other platform types represented in the dataset 
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include Illumina BeadChip and Agilent SurePrint arrays.  While there should be general 

consistency amongst these different platform types (as evidenced by e.g. the work of the 

Microarray Quality Control Consortium117), platform effects may still be detectable between 

the different technologies125,126.  This is investigated further in Chapter 3.  No matter the 

platform, differential expression analysis of microarray data follows the same basic steps: data 

retrieval; pre-processing and normalization; and determination of significantly differentially 

expressed genes.   

As discussed in the Introduction, microarray data can be retrieved from public repositories such 

as Gene Expression Omnibus44 or ArrayExpress127.  The datasets used in this project were 

obtained from GEO, which has a number of associated R tools and also contains much of the 

data in ArrayExpress.  GEO records often contain both raw and pre-processed data.  Several 

different algorithms are available for pre-processing (which is required to convert the measured 

fluorescent intensities from each chip into comparable expression values), and in a comparative 

analysis setting it is therefore advisable to download the raw rather than submitter-supplied 

pre-processed data in order to exclude the possibility of bias resulting from different pre-

processing methods.   

Pre-processing methods are specific to each platform type: for Affymetrix data, the different 

pre-processing algorithms available include MAS-5.0, RMA, and gc-RMA.  RMA has several 

advantages over the older MAS-5.0 algorithm, namely less noise and variance at lower 

expression levels, and is the currently the most widely-used approach128, so I have used RMA 

for processing Affymetrix data.  The three steps of RMA are: background correction, which 

models the observed expression as a function of signal and noise; quantile normalization, which 

fits the expression values on the chip to the same distribution; and finally summarization of the 

log-transformed values using a median polish algorithm, which iteratively subtracts chip- and 

probe-level medians to estimate chip- and probe-specific errors.  Following this step, the 

measurements from each chip are comparable to each other, and further analysis can be 

undertaken. 

 

2.1.3 Generating a differential expression profile  

In the Introduction, I discussed differential expression analysis: the comparison of gene 

expression values between case and control samples, and the calculation of the magnitude and 

significance of the fold change value for each probe on the microarray.  The next step in 
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generating a differential expression profile is mapping of probes to their corresponding gene(s) 

using the platform-specific annotation files supplied by the manufacturer, which can be 

obtained from repositories such as GEO.  The relationship between probes and genes is not 

one-to-one.  There are several methods to resolve this relationship (which are detailed in a 

review by Ramasamy et al.129); a straightforward method adopted for this project is to retain 

the probes with the highest p-value in the case of multiple probes mapping to a gene, and to 

duplicate the probe information in the case of probes mapping to multiple genes.   

The final stage of differential expression analysis is to determine which genes are considered 

meaningfully differentially expressed.  This requires the choice of an appropriate threshold of 

fold change and/or significance; as mentioned in the Introduction, the use of these thresholds 

will vary depending on the particular experiment and the goals of the analysis.  Multiple testing 

correction is generally advisable in differential expression analysis of a single experiment, 

where a list of high-confidence differentially expressed genes with few false positives is the 

desired outcome.   

By contrast, this project involves the comparative analysis of many datasets, with highly 

variable profiles of significance.  For some of the studies used in this work, no genes remain 

significantly differentially expressed after Benjamini-Hochberg multiple testing correction (the 

default in limma) is applied: this is the case for 24 of 42 studies used in Chapter 3, 35 of 141 

studies used in Chapter 4, and 17 of 84 studies used in Chapter 5.  Rather than remove these 

studies from consideration entirely, I have applied a non-conservative significance cut-off of 

raw p < 0.05 to call differentially expressed genes throughout the dataset.  In the comparative 

analysis setting, it is the genes that are shared between datasets that are of interest, rather than 

each individual gene in a gene list.  The proportion of false positives is therefore less of a 

concern than in the analysis of a single experiment: a study which does not record any truly 

differentially expressed genes will likely not appear similar to any other experiment, and can 

be excluded from further consideration at this point.  

Following the approach recommended by the Microarray Quality Control consortium (which 

found that combining a non-stringent significance cut-off with log-fold change ranking 

generates gene lists of higher reproducibility compared to methods such as p-value based 

ranking130–132), this significance cut-off is combined with further gene selection based on log-

fold change magnitude.  In Chapters 3 and 5, the top e.g. 100 most significantly differentially 

expressed genes are considered; in Chapter 4, a combination of log-fold change magnitude and 

signalling network interactions is used to select ‘interesting’ genes.   
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2.2 IDENTIFICATION OF SUITABLE MICROARRAY EXPERIMENTS 

This work relies entirely on the re-use of publicly available microarray data.  I used three main 

criteria for selecting suitable experiments from the Gene Expression Omnibus (GEO) 

repository: 

• The study must include (healthy) controls, in order to calculate differential expression.  

The definition of a control varies from study to study: in many studies, the control 

samples are from different individuals, but there are also studies where the control 

samples are non-affected tissues from the same individual (e.g. acne-affected skin vs 

non-acne-affected skin); in some studies, both contrasts are provided (e.g. lobular breast 

tumour samples vs non-affected lobular tissue from lobular breast carcinoma patients 

or vs non-affected lobular tissue from ductal breast carcinoma patients).  In the latter 

case samples from different individuals were used rather than ‘non-affected’ samples 

from the same patient, in order to avoid bias resulting from non-phenotypic gene 

expression changes that might be present even in apparently unaffected tissue. 

• There must be at least two samples per condition.  Whilst larger sample sizes are 

desirable for increased statistical power and reduction of biological noise, in the setting 

of large-scale comparative analysis the inclusion of a greater number of possibly noisy 

studies is preferable to fewer, more reliable studies, in order to increase the coverage 

of diseases in the dataset. 

• There must not be another study in the dataset submitted by the same investigator, in 

order to minimize the chance of overlap between datasets resulting from technical 

factors.  For Chapter 3 this criterion was relaxed to include only those studies submitted 

within a year of each other, in order to include as many Parkinson’s disease studies as 

possible.  This criterion was not applied to the drug response datasets used in Chapter 

4, as they are not compared against other studies. 

• Following the work described in Chapter 3, an additional condition in building the 

datasets used in the subsequent chapters was that the diseases must be recorded in 

human patients, rather than in animal models, and where possible they must be from 

whole tissues, rather than from cell lines.  A few cell line studies were included where 

no patient tissue studies were available, i.e. in rare disease studies. 

The Parkinson’s disease dataset used for Chapter 3 is detailed in Appendix A. 

The large dataset of common and rare diseases used for Chapter 4 is detailed in Appendix B. 



 41 

A smaller dataset containing common diseases was used in Chapter 5, this is detailed in 

Appendix C. 

Metadata recorded from each experiment included the disease, the submitter and institution 

name, the microarray platform, the tissue sampled, the number of cases and controls, and the 

samples which were included/excluded.  Sample selection is necessary for studies which cover 

a number of different conditions, such as comparing two different types of arthritis to healthy 

controls; in this case only the relevant conditions were retained, and the other samples excluded 

from the analysis. 

An early version of the disease dataset was based on the work of Yasaman Kalantar Motamedi 

on text-mining of GEO records to identify suitable experiments.  However, as many of these 

experiments did not pass the above inclusion criteria, I chose instead to base my dataset on 

manual searching, which enabled me to find a higher number of datasets whilst applying strict 

quality control.  Those datasets discovered by her text mining approach that did pass the quality 

criteria after manual checks were retained. 

 

2.3 DEVELOPMENT OF AN AUTOMATED WORKFLOW FOR 

PROCESSING OF RAW MICROARRAY DATA 

The processing of large numbers of datasets requires a standardized system to convert raw CEL 

files from GEO into differential expression profiles with minimal manual input.  Given the 

large variety of microarray types (some of which occur only once in the dataset) and the need 

to specify e.g. the correct case-control designation of samples, a fully automated system for 

microarray data processing is not possible.  With these limitations in mind, I constructed a 

workflow that requires minimal input for most cases.   

The first part of the workflow (steps 1-4) takes the raw CEL files and calculates log-fold change 

and significance metrics for every probe on the microarray.  The second part of the workflow 

(steps 5-6) maps the probe-level data to their corresponding genes, in order to compare data 

across different microarray platforms.  All analyses were carried out in R version 3.3.2 running 

under OS X 10.11.6 (El Capitan)133.  

The protocol is as follows: 

1. Download the raw CEL files from GEO.  Delete any files that correspond to samples 

to be excluded. 
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2. Specify the design matrix corresponding to that particular experiment.  This indicates 

(in order of filename) which files are cases, i.e. disease samples, and which are controls, 

i.e. healthy samples.  The controls are designated as the reference (represented by 0), 

so that a positive log fold change indicates a gene that is more highly expressed in cases 

(represented by 1) than in controls. 

3. Read in the CEL files and rma-normalize them using functions ReadAffy and rma from 

the package affy134 (version 1.52.0).  

4. Determine probe-level statistics (including log-fold change, p-value, adjusted p-value) 

using the functions lmFit, eBayes, and topTable from the package limma53 (versions 

3.26.7-3.30.13 depending on when the analysis was carried out).  Statistics for all 

probes are retained by setting the parameter number = “LNF” (equivalent to setting to 

Inf). 

5. Retrieve the appropriate platform annotation file from GEO using the getGEO function 

from the GEOQuery package135 (version 2.40.0).  Match the probe IDs to their 

corresponding gene ID and symbol (using code from the online differential expression 

service integrated with GEO, GEO2R136). 

6. Where more than one probe maps to a gene, retain the probe with the smallest p-

value129.  Where a probe maps to more than one gene, duplicate the probe record, 

matching its information to both genes.  Remove any probes that do not map to a gene, 

as these are non-informative for cross-platform comparison. 

This describes the basic workflow constructed for Affymetrix arrays, which were the most 

common array type encountered in my dataset.  Variations of the workflow for other 

microarray types include the following: 

• Certain Affymetrix ST arrays cannot be processed by the affy package, in which cases 

the oligo package137 (version 1.38.0) was used in step 3.  

• For experiments that used Illumina platforms, the submitter-supplied non-normalized 

data was obtained from GEO, and step 3 was replaced by log-transformation and 

quantile-normalization (for consistency with the steps used in the Affymetrix-specific 

RMA normalization method).   

• For the few experiments which used other platforms such as Agilent arrays, or where 

raw data was not provided, submitter-supplied normalized data was processed using 

GEO’s web service GEO2R136 in place of steps 1-5.   
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Additional processing steps that can be applied to further reduce noise in microarray data 

include array quality-checking to remove aberrant or outlier arrays; variance filtering to 

exclude those genes which show low variance across all experiments; and batch correction to 

account for the effects of sample handling and processing across different experimental 

batches.  Batch correction was not considered for this analysis, as GEO records do not generally 

supply experimental batch information.  It is possible to use the microarray scan date as a 

potential source of batch effects, but given the potential for sample clustering across these 

batches (e.g. all disease samples scanned on one date, all controls scanned on another), batch 

correction risks normalizing out biological signal and is therefore not appropriate in this setting. 

Variance filtering and array quality checking methods were tested on the dataset described in 

Chapter 3, as this was the first piece of work undertaken and provided a simple metric with 

which to test the utility of various methods in the comparative analysis setting: a ‘useful’ 

method should increase the concordance between two studies of the same disease.  Variance 

filtering was carried out using the package genefilter138 (version 1.56.0) and array quality 

checking was carried out using the package ArrayQualityMetrics139, version 3.30.0.  These 

were found to make almost no difference to the observed concordance between studies of 

Parkinson’s disease.  Variance filtering was therefore not applied, in order to retain the 

maximum number of genes for comparison between experiments; the results of array quality 

checking were retained for the Parkinson’s disease dataset (see description in Section 3.2.2) 

but were not applied to the larger dataset, as with such a large volume of datasets to process 

this would involve a significant amount of manual work for potentially very little benefit.  

Whilst these steps may be valuable for the analysis of individual datasets, for these reasons I 

decided not to apply these steps in the comparative analysis setting. 
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3 CONCORDANCE OF MICROARRAY STUDIES 

OF PARKINSON’S DISEASE 
 

This work was previously published as Oerton E, Bender A. Concordance analysis of microarray studies identifies 
representative gene expression changes in Parkinson’s disease: a comparison of 33 human and animal studies. 
BMC Neurol. 2017;17(1):58. doi:10.1186/s12883-017-0838-x. 

 All analyses, text, and figures were produced by the author, incorporating comments from co-authors. 

 

SUMMARY 

The reported lack of concordance between transcriptomic studies of the same condition raises 

questions about the representativeness of different study types, such as studies of surrogate 

tissues or animal models, to gene expression in the human disease.  In a comparison of 33 

microarray studies of Parkinson’s disease, correlation and clustering analyses were used to 

investigate concordance between studies, including agreement between different tissue types, 

different microarray platforms, and between disease models and human Parkinson’s disease.   

Concordance over all studies is low, with correlation of only 0.05 between differential gene 

expression signatures on average, but increases within human patients and studies of the same 

tissue type, rising to 0.38 for studies of the substantia nigra region of the human brain.  Studies 

of the substantia nigra in Parkinson’s disease patients form a distinct group, showing patterns 

of differential gene expression noticeably different from that in non-brain tissues and animal 

models of Parkinson’s disease.  A meta-analysis of these 33 microarray studies demonstrates 

the greater ability of studies in humans and highly-affected tissues to identify expression 

changes in genes previously known to be associated with Parkinson’s disease.  

The observed clustering and concordance results suggest the existence of a ‘characteristic’ 

signal of Parkinson’s disease found in significantly affected tissues in humans.  These results 

help to account for the consistency (or lack thereof) so far observed in microarray studies of 

Parkinson’s disease, and act as a guide to the selection of transcriptomic studies most 

representative of the underlying gene expression changes in the human disease. 
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3.1 INTRODUCTION 

Parkinson’s disease (PD) – a neurodegenerative disorder which causes the death of 

dopaminergic neurons in the substantia nigra, causing tremors and postural instability – has 

been well-studied at the level of gene expression, with numerous microarray studies available 

in public repositories.  However, the concordance of differential gene expression between these 

studies has been reported to be low, even when standardized analysis is applied140–143.  The 

observed discordance may result from multiple factors, including differences in the progression 

of the disease at time of post-mortem142 and differing amounts of neuronal loss between the 

substantia nigra (SN) and other regions of the brain.  Several meta-analyses of PD gene 

expression in human patients have been carried out73,140,143 on datasets of up to 14 unique 

studies.  Although meta-analyses generally focus on the commonalities between studies (in 

order to identify the genes most relevant to the condition under study), meta-analysis 

approaches can also be used to shed light on inconsistencies between studies.  For instance, 

one such analysis of 11 human PD microarray studies highlighted tissue-specific differences 

between studies, demonstrating increased convergence within studies using samples from the 

SN140.  

Also demonstrated by an early microarray study of PD144 is the difference between animal 

models of PD (reviewed in Blesa et al.145) and the human condition, which is of much practical 

relevance for therapeutic research.  These models were developed to mimic the clinical 

symptoms of Parkinson’s disease, and it is unclear to what extent the underlying patterns of 

gene expression will reflect those that take place in human PD.  Studies comparing disease 

models to human patients have reported conflicting results: one study examined the consistency 

of gene expression between a mouse model of colorectal liver metastasis and human 

specimens, and found an overlap of 35% of differentially expressed genes, as opposed to 44% 

in normal liver tissue146.  Another study of mouse models of inflammation found little 

transcriptomic agreement between human inflammatory conditions and their murine 

counterparts147, although a re-analysis of this data using different statistical methods questioned 

this conclusion148.  As the use of transcriptomics becomes more prevalent in medicine and drug 

development, it is important to establish whether gene expression in a model system can be 

treated as a proxy for gene expression in the human condition.  

Choice of microarray platform is another factor that can affect concordance between studies.  

Notably, although some studies have reported good cross-platform reproducibility117,149, an 
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early study of a mouse model of PD found very little concordance between Affymetrix and 

CodeLink platforms150.  More recent studies in psoriasis151 and in healthy tissues119 still found 

detectable platform biases, indicating that this issue will not necessarily be resolved by the use 

of newer microarray technologies.  The effect of sample size on study concordance should also 

be considered.  Multiple studies have found that larger sample sizes in microarray experiments 

allow greater confidence in calling differentially expressed genes and produce more robust 

differentially expressed gene lists130,152,153, but the effect of sample size in the context of 

average concordance across different datasets – i.e., the likelihood of being an unrepresentative 

‘outlier’ study – has not been examined directly.   This question is particularly important in the 

study of neurodegenerative diseases such as PD, given that large numbers of high-quality brain 

tissue samples are not always easy to obtain154,155.  

The concordance between different studies of the same condition will act as a measure of 

‘representativeness’ of the recorded gene expression to true human PD, helping to establish 

whether animal models of disease are representative of the human condition at the 

transcriptomic level, and whether gene expression in more easily accessible surrogate tissues 

could be useful in PD research or diagnostics156.  In this chapter, the effects of four factors – 

species, tissue, platform, and sample size – are analysed in relation to the observed 

inconsistency between microarray studies of PD.  As well as the specific findings related to 

PD, the general findings from this work will serve as a basis for study selection in the datasets 

used for later chapters. 
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3.2 METHODS 

3.2.1 Obtaining Parkinson’s disease microarray studies 

GEO was searched for suitable case-control studies of Parkinson’s disease using combinations 

of PD keywords, i.e. "Parkinson's"/"Rotenone"/"MPTP" [rotenone and MPTP are neurotoxins 

used to model PD in animal studies] AND "homo sapiens"/"mammals"/"primate", using 

studies submitted up to February 2017.   

Inclusion/exclusion criteria were as follows: 

• Studies must be designed specifically for the investigation of PD or PD drug treatment. 

• At least two Parkinson’s disease (or equivalent model) samples and two healthy (wild-

type/vehicle injected) control samples must be available for each condition. 

• Gene expression must be measured using microarray technology, as too few studies are 

currently available on GEO using other methods of expression profiling (e.g. RNA-

Seq) to be able to draw any conclusions about their use in PD.   

• Human stem cell studies must be derived from PD patients and not just modelled by 

PD-associated mutations, in order to be comparable with human PD; equivalently, stem 

cells derived from PD patients compared to mutation corrected controls were excluded. 

In order to minimise the impact of possible laboratory effects on concordance results, where 

multiple datasets were contributed by the same investigator and less than a year apart, only one 

of the two was retained (with the exception of two studies submitted as part of a meta-analysis 

that did not state whether the studies originated from the same experimental group, see 

Appendix A).  Similarly, if a single study analysed multiple tissues, only one tissue was 

retained for analysis.  In both cases, the retained study was chosen in order to provide the most 

balanced dataset; i.e. the most even split between tissues. 

This gave a total of 33 PD studies.  Four studies of Alzheimer’s disease and five studies of 

brain tumours (glia- and astrocyte-derived) were included as disease controls, giving a total of 

42 studies (see Appendix A).  These studies were analysed in Section 3.3.6.   

 

3.2.2 Processing of datasets 

Following pre-processing and generation of a differential gene expression profile as described 

in Section 2.3, array quality was assessed using the ArrayQualityMetrics package139, version 
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3.30.0; any samples which failed more than one of the three outlier tests (distances between 

arrays; boxplots; MA plots) were removed.   

In order to make comparisons between gene expression in different species, all non-human 

studies were mapped to orthologous human genes using annotationTools 1.44.0157.  As stated 

in Section 2.3, where a probe was associated with multiple genes, the probe information was 

retained for both genes in order to maximise the number of genes available for comparisons 

between different platforms, and it should be noted that this could artificially inflate 

concordance between studies, especially for those using the same platform.  

 

3.2.3 Biological pathway enrichment 

Biological pathway enrichment profiles were calculated from the differential gene expression 

profiles (generated above) against the Reactome pathway database with the GSEA function of 

the Bioconductor package ReactomePA 1.14.471, using the default settings of 1000 

permutations to calculate significance and a minimum geneset size of 10.   For mouse and rat 

studies, the original (animal) genes were used to calculate enrichment profiles using species-

specific pathways provided by Reactome.   

 

3.2.4 Calculation of pairwise concordance of differential gene expression 

The ‘agreement’ between two microarray studies can be measured in many different ways, 

including comparison of lists of genes which are differentially expressed according to some 

cut-off (which can be published lists, or lists created by standardized analysis of published 

data)140,141,144, comparison of ranked expression values (e.g. Spearman correlation)111,158, and 

agreement of sign and/or magnitude of measured gene expression (e.g. Pearson 

correlation)151,159, either over all measured genes, or over those defined as significant by some 

cut-off.  These are reviewed in a 2009 paper by Lu et al.160. 

In this analysis, concordance between studies is defined as the Pearson correlation (as 

calculated by R’s cor function161) of their differential gene expression signatures: an 

expression signature is here defined as the 50 genes showing the highest absolute log-fold 

change at a significance of p<0.05 in each study, from the set of 2,372 genes recorded by all 

33 PD studies, or 2,310 over all 42 studies of brain disease.  Similar concordance results were 

obtained when the expression signature was defined over 20, 100, or 250 genes for each study; 
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a value of 50 was chosen in order to capture the most relevant information while keeping the 

dimensionality relatively low (important in the following analyses).  If correlation was 

calculated over the sign of the log-fold changes (i.e. considering only the direction and not the 

magnitude of fold changes), similar results were obtained; concordance in the SN was 

somewhat reduced from 0.3 to 0.22, but was still the highest-concordance tissue type, and so 

the measured log-fold change magnitudes were used in order to retain information.   

 

3.2.5 Calculation of pairwise concordance of biological pathway 

enrichment 

At the biological pathway enrichment level, pairwise concordance cij between two studies was 

defined as the Pearson correlation of the normalized enrichment scores (NES) of pathways that 

are significantly up- or down-regulated (at an FDR <0.25, as recommended by the Broad 

Institute’s GSEA page162) in either experiment.  In the case where a pathway is significant in 

one experiment but there is no score reported in the other, a NES of 0 was assigned for the 

missing pathway.  If no significantly enriched pathways were reported for either experiment, 

the correlation was set to 0.  The Pearson correlation is the most appropriate correlation 

measure to use given the high proportion of zeros amongst the normalized enrichment 

scores163. 

 

3.2.6 Calculation of average concordances within subsets of studies 

The mean of the pairwise concordances cij of a study i with every other study j in a set of studies 

S gives a measure Ai of how well this study agrees with other studies in S.  From the average 

agreement of each individual study, the average agreement AS in a set can be measured (i.e. AS 

is the average of each Ai).  In this case, S is a subset of studies chosen to represent a particular 

factor of experimental design, such as the subset of studies using human specimens or the 

subset of studies run on a particular microarray platform, and the basis of this analysis is the 

comparison of AS between these different subsets, specifically for subsets in which three or 

more studies share one of the experimental factors tissue, species, platform, or sample size.  

These four factors were chosen to analyse as they are nearly always specified in study meta-

data, and such can be quickly determined in a meta-analysis context. 



 50 

Note that smaller subsets may have larger numbers of shared genes, (e.g. due to sharing a 

platform which measures the same genes).  Concordance over smaller subsets was calculated 

on the same expression signatures as for the set of all studies, i.e. expression signatures selected 

from the shared 2,372 genes, in order to ensure that AS was not biased by the size of shared 

gene-sets in different subsets.   If concordance was calculated over the full set of genes shared 

by each subset, results were not substantially different (see Appendix F). 

Significance of average subgroup concordances was tested against the average concordances 

over randomly sampled subgroups of the 33 PD studies (to a maximum of 100,000) of each 

size.  An observed average correlation is defined as significant if it is greater than the 95th 

percentile value.  The smaller the subgroup size, the more likely that randomly chosen 

subgroups show high concordance by chance alone (the distribution of observed correlations 

is wider), and so the confidence threshold is higher for smaller subgroups (see Appendix E).  

 

3.2.7 Principal component analysis and hierarchical clustering 

Hierarchical clustering was performed using R’s hclust function164 using correlation distance.  

Correlation distance was chosen over the default Euclidean distance because it is not affected 

by scale (e.g., differences in average log fold change magnitude across experiments)165. 

Significance of the observed clusters was calculated using the R package pvclust166, which uses 

multiscale bootstrap resampling to approximate a probability value for each observed cluster 

(probability values quoted are the Approximately Unbiased values). Principal component 

analysis was performed using R’s prcomp function with centering and scaling167. At the 

differential gene expression level, the feature vector for each study was defined as its log-fold 

change values over the gene-set defined by the union of the 50 highest-ranking genes (the union 

of expression signatures; i.e. the 50 genes in each study at a significance of p<0.05 with the 

highest absolute log-fold change in every study in the set) – for the PD studies, this is 1,008 

genes.  For hierarchical clustering, where high dimensionality affects the stability of clusters, 

this was reduced to the union of the top 10 highest-ranking genes, which for the PD studies is 

258 genes.    
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3.2.8 Meta-analysis of Parkinson’s disease microarray studies 

A meta-analysis over the 33 PD studies was carried out using a ‘vote-counting’ approach in 

which a gene was deemed to be of importance in a study if it was in the top 50 genes by absolute 

log-fold change, at a significance of p<0.05.  A gene was deemed to be significant by the meta-

analysis if it was considered to be of importance by more than three studies.  This threshold 

was chosen due to the low agreement between studies (see Results).  The results of the meta-

analysis were compared against a list of 694 PD-associated genes downloaded from the Centre 

for Therapeutic Target Validation (CTTV)168 on 8th March 2016.  Note that this resource was 

an early version of the OpenTargets platform169 used in Chapter 4.  The list includes genes 

identified by genetic associations, by PD drugs, and by text-mining; targets identified through 

reprocessing of previous RNA expression studies were excluded, as the studies used in the 

CTTV analysis could potentially overlap with those used here.  Similar results (in terms of the 

proportions of genes identified by each subgroup) were obtained when the meta-analysis was 

carried out over the top 10 or top 100 genes instead of the top 50.  
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3.3 RESULTS 

3.3.1 Higher concordance within human studies and within tissue groups 

 

Figure 3.1: Average concordance of differential gene expression within subsets of 
shared factors 

Average	concordance	over	all	studies	is	low,	but	increases	within	human	patients	and	studies	
of	the	substantia	nigra.		

 

The mean average pairwise concordance of differential gene expression signatures (i.e. the 

Pearson correlation over the top 50 genes by absolute log fold change, see Methods) over all 

33 Parkinson’s disease studies was 0.05 (Fig 1), indicating little agreement between different 

studies.  To identify how much of the observed inconsistency is due to differences in species, 

tissue, or microarray platform, concordance was examined within subgroups of studies that 

shared these characteristics (Table 3.1, Figure 3.1). 
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Table 3.1 Average concordance of differential gene expression signatures in 
microarray studies.   

Asterisks	 indicate	 subgroups	 where	 concordance	 significant,	 i.e.	 is	 within	 the	 top	 5%	 of	
concordance	 values	 over	 randomly	 sampled	 subgroups	 of	 PD	 studies.	 	 The	 threshold	 for	
significance	varies	with	the	number	of	studies	in	the	subset	(see	Methods,	Appendix	E).		

Subset Number of studies Average 

concordance of 

expression 

signatures 

Whole dataset   

PD studies plus Alzheimer’s disease and 

glioblastoma studies 

42 0.04 

All PD studies 33 0.05 

Species 

    Human (inc. human cell lines) 19 0.08 

        Human patients 15 0.15* 

    Mouse models 9 0.03 

    Rat models  4 -0.04 

Disease model 

    All neurotoxic models  12 0.03 

        MPTP 6 0.09 

            MPTP, mice only 5 0.10 

        6-OHDA 4 -0.03 

    Genetic models 3 0.12 
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Tissue 

    Basal ganglia (SN (excluding isolated 

dopaminergic neurons) and striatum) 

18 0.11* 

        SN: tissue 8 0.30* 

        SN: isolated dopaminergic neurons 4 0.03 

        Striatum  9 0.07 

Platform 

    Affymetrix 27 0.06 

        U133 and U133 Plus arrays (human 

studies only) 

12 0.10 

 

The first factor to be examined was species.  The average concordance of differential gene 

expression signatures increased from 0.05 over all PD studies to 0.15 in human in vivo studies.  

In the subset of mouse studies, however, average concordance of differential gene expression 

decreased compared to the full dataset, at 0.03, and average concordance within the three rat 

studies was actually negative.  This could be explained by the use of different disease models 

with distinct effects on gene expression: concordance within the MPTP and genetic models of 

PD was 0.09 and 0.12 respectively; although there was negative concordance between studies 

in the 6-OHDA group (Table 3.1).  

The next factor considered (independently of species) was the tissue type sampled.  Limiting 

the studies under consideration to those of an area highly affected in PD, the basal ganglia (here 

including studies of the striatum and the substantia nigra, which is functionally part of the basal 

ganglia), increased average gene-level concordance from 0.05 to 0.11, while further limiting 

the studies to just those of the substantia nigra yielded a substantial increase to 0.30 (Figure 

3.1).  This result is in agreement with a previous meta-analysis140, which also reported an 

increase in concordance when the analysis was confined to studies of the substantia nigra.  

Concordance within striatal studies was lower than that over all tissues of the basal ganglia at 

0.07; however, tissue selection was strongly associated with species, with substantia nigra 
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studies tending to be from humans (6 of 8 studies) and striatal studies tending to be from animal 

models (8 of 9 studies), and so the lower concordance within the striatal group perhaps reflects 

the general lower concordance between animal models.  To deal with issues of species 

dependence in tissue choice and other experimental parameters, the following subgroup 

analyses focus on human studies.   

 

3.3.2 High concordance of biological pathway enrichment in human PD 

Given the low average concordance of differential gene expression, correlation was also 

calculated at the level of biological pathway enrichment (see Methods).  As pathways are a 

higher-level biological concept, capturing concerted changes in gene expression, pathway 

enrichment might be expected to reveal higher concordance between studies, as previously 

shown in Sutherland et al.140  Whilst the concordance values at the pathway level are not 

directly comparable to those at the gene expression level (due to the differing feature vectors 

used), biological pathway enrichment demonstrated relatively good agreement across human 

studies, from 0.22 over all human patient studies to 0.3 over studies of human brain tissue, 

indicating that measured differential expression reflects the activation of similar biological 

processes (Figure 3.2; see Appendix G for a list of significant pathways).  In animals, in 

contrast to human studies, concordance at the pathway level was in most cases actually lower 

than that at differential expression level (Table 3.2).  One reason for this may be incomplete 

annotation of non-human biological pathways in the database used in this study.  
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Figure 3.2 Average concordance within subgroups of human studies of PD 

Gene-	and	pathway-level	concordance	 increases	 in	studies	of	human	patients	 (i.e.	excluding	
human	cell	line	studies)	and	within	tissue	subgroups.		The	trend	seen	at	the	level	of	differential	
gene	expression	 is	 replicated	at	 the	 level	of	biological	pathway	enrichment,	 suggesting	 that	
subgroup-specific	increases	in	concordance	reflect	enrichment	of	shared	biological	processes.	
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Table 3.2 Concordance results for different subgroups using biological pathway 
enrichment analysis	

Pathway-level	 concordance	 in	 human	 studies	 reflects	 the	 patterns	 seen	 at	 the	 level	 of	
differential	gene	expression	concordance;	in	animals,	by	contrast,	pathway-level	concordance	
is	lower	and	does	not	increase	by	model	type.	

Subset  Number of studies  Average 

concordance of 

biological 

pathway 

signatures  

Whole dataset   

PD studies plus Alzheimer’s disease and 

glioblastoma studies  

42  0.05  

All PD studies  33 0.08 

Species  

    Human PD  19  0.15  

        Human PD, in vivo studies only  15  0.22  

    Mouse models  9  0.01  

    Rat models  4  -0.10  

Disease model  

    All neurotoxic models  12  0.02  

        MPTP   6   0.03  

            MPTP, mice only  5  -0.02  

        6-OHDA  4  -0.01  

    Genetic models  3   -0.02  
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Tissue  

    Basal ganglia (SN (excluding isolated 

dopaminergic neurons), striatum, globus 

pallidus)  

18  0.10  

        SN: tissue  8  0.24  

        SN: isolated dopaminergic neurons  4  0.01  

        Striatum  9  0.00  

Platform  

    Affymetrix  27  0.09  

        U133 and U133 Plus arrays (human 

studies only)  

12  0.21  

 

3.3.3 Microarray platform type has little effect on average concordance of 

human PD studies  

The next factor examined was the effect of microarray platforms, which are intended to be 

species-specific (one macaque study run on the U133A platform was excluded from this 

analysis).  There was a very slight concordance increase when selecting for platform types, 

from 0.08 over all 19 human studies to 0.09 over all Affymetrix platforms (15 studies) and 0.10 

for those studies run on the most common platform types in the dataset, the Affymetrix U133A 

and U133 Plus 2.0 series (12 studies).  It should be noted that although the U133 microarrays 

are distinct platforms, they are technically very similar, as the probe set of the U133A arrays 

represents a non-random subset of the U133 Plus 2.0 arrays151, and so are considered as a single 

platform type for the purpose of this analysis.  At the pathway level, the concordance increase 

within the U133 subgroup was much larger (Figure 3.2), and this may reflect the effect of a 

shared probeset in calculating pathway enrichment profiles, as the gene-set enrichment used 

here takes into account the expression of every measured gene.  
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3.3.4 Smaller PD studies do not show lower concordance of differential 

gene expression  

The next factor examined was the study sample size.  When the smallest 25% of human studies 

(five studies with sample sizes of less than 10) were excluded, concordance within the 

remaining larger studies increased slightly from 0.08 to 0.11 at the differential gene expression 

level and from 0.15 to 0.17 at the pathway level.  Linear regression was then used to test 

whether there was an overall association between sample size and average concordance across 

all (human) datasets.  There was no significant relationship between sample size (case plus 

control) and average concordance of differential gene expression signatures or of biological 

pathway enrichment (Figure 3.3), suggesting that smaller studies are no more likely to be 

discordant ‘outlier’ studies than larger studies. 
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Figure 3.3 Average concordance against sample size for gene expression and 
biological pathway enrichment 

There	is	no	significant	effect	of	sample	size	on	average	concordance	of	gene	expression	(top)	or	
biological	pathway	enrichment	(bottom).
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3.3.5 Visualizing the gene expression landscape of PD studies reveals a distinct subset of human studies 

 

	

Figure 3.4 Principal component analysis of PD studies based on differential expression across the union of expression signatures 

PCA	of	the	1,008	genes	in	the	union	of	expression	signatures	across	all	33	studies	reveals	a	distinct	group	composed	mainly	of	human	studies	
(centre	plots)	of	the	substantia	nigra	and	frontal	cortex	(left	plots).		This	is	most	clearly	seen	in	the	second	and	third	principal	components	
(bottom	row,	top	row	displays	the	first	and	second	components).		There	appears	to	be	little	separation	between	different	disease	model	types	
(right);	although	the	two	studies	using	neurotoxins	other	than	MPTP	(rotenone	and	co-exposed	maneb-paraquat)	appear	very	distinct	
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The relationships between studies in differential gene expression space (here defined as the 

1,008 genes in the union of expression signatures across all studies; see Section 3.2.7) were 

visualised using principal component analysis (PCA, Figure 3.4).  PCA enables representation 

of the 1,008-dimensional expression signature space in a lower-dimensional space which 

captures the greatest amount of variance amongst studies170.  The visualization of samples in 

this space shows an outlying group of human studies which appear distinct from other human 

and animal studies (Figure 3.4). This is most clearly seen in the second and third principal 

components, which together with the first component represent 44% of the variance.
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Figure 3.5 Principal component analysis of PD studies based on the sign of differential expression across the union of expression 
signatures 
If	PCA	is	carried	out	only	on	the	sign	of	differential	expression,	ignoring	the	magnitude,	separation	between	human	and	animal	studies	can	still	be	
seen,	particularly	in	the	second	and	third	principal	components	(bottom	right	plot),	although	there	is	still	some	overlap	between	the	two	groups.	
Plots	of	the	first	and	second	principal	components	have	been	included	for	comparison,	and	here	the	separation	of	studies	seems	to	also	reflect	
tissue	type	in	human	studies	(top	left	plot).	
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The principal component plots in Figure 3.4 show several studies which are outliers in principal 

component space, which may result from high average log-fold change magnitudes.  One way 

to address this is to perform PCA on the sign of the differential expression signatures, 

discarding the magnitude information.  These plots should be interpreted with caution, as they 

force the assignment of directionality to even very small gene expression changes, but the 

advantage is that the outlier effect is removed, allowing clearer visualisation of the separation 

of studies by tissue type and species, which is most clearly visible in the third principal 

component (Figure 3.5).
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Figure 3.6 Hierarchical clustering of studies based on the most highly differentially expressed genes in each PD study 
Clustering	was	performed	based	on	differential	expression	of	the	258	genes	in	the	union	of	the	top	10	genes	(by	absolute	log-fold	change)	across	
the	33	studies.		The	highlighted	cluster	contains	all	but	one	of	the	human	studies	of	the	substantia	nigra,	as	well	as	both	human	frontal	cortex	
studies.		This	indicates	that	a	distinct	differential	expression	pattern	is	shared	by	these	study	types.		However,	this	cluster	also	contains	one	rat	
study,	indicating	that	it	is	possible	for	animal	models	to	capture	the	expression	patterns	observed	here.		Aside	from	this	group,	there	is	no	apparent	
clustering	of	other	factors	such	as	platform,	disease	model,	or	treatment	(e.g.	with	L-DOPA),	reflecting	the	low	concordance	seen	in	these	groups.
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To further examine the distinct group of human studies seen in Figure 3.4, hierarchical 

clustering was performed over the 258 genes in the union of the top 10 most differentially 

expressed genes over all 33 studies (Figure 3.6; see Appendix H for list of 258 genes). This 

shows a distinct cluster composed mainly of human studies of the substantia nigra (the most 

highly-affected tissue in PD) and studies of the cerebral cortex (SFG and PFC-Brodmann area 

9)171,172 (which are also affected in PD, although the cortex is affected at a later stage of 

disease173).  The bootstrap probability value of the highlighted cluster (see Section 3.2.7) is 

0.99, indicating that this cluster remains highly stable under resampling of the dataset.  A 

heatmap of the differential expression signatures (Figure 3.7) reveals that studies in this cluster 

share downregulation in a set of genes which are enriched for the Panther pathway ‘synaptic 

vesicle trafficking’ (the pathway enrichment method used here is described in Section 4.2.6).  

It should be noted that a sixth study of the substantia nigra, which was run on an Agilent 

platform (all other studies were run on Affymetrix platforms), does not cluster with the others, 

showing a distinct differential expression pattern in which the majority of genes are up-

regulated (Figure 3.7). 



 67 

 

Figure 3.7 Heatmap of differential expression in Parkinson’s disease studies  
Green	 represents	 upregulated	 genes,	 red	 represents	 downregulated	 genes.	 	 The	 heatmap	

illustrates	 the	differential	expression	patterns	underlying	 the	clustering	shown	 in	Figure	3.6,	

showing	that	the	substantia	nigra	cluster	of	studies	share	downregulation	in	a	group	of	genes	

towards	the	bottom	of	the	plot	(see	Appendix	H	for	row	names).	



 68 

The clustering in Figure 3.6 uses average linkage; when complete linkage is used, the six SN 

studies form a cluster on their own (bootstrap probability value 0.96), indicating that there are 

also expression patterns which are specific to the SN and not shared by the frontal cortex or 

dopaminergic neuron samples.   

Other clusters that can be seen include 4 of the 6 MPTP models of PD, 3 of the 4 studies in 

blood, and clustering of iPSC studies with the appropriate tissue (dopaminergic neurons) or 

model (genetic animal models), although bootstrap probability values of these clusters are less 

than 95%, indicating a less stable clustering.  Otherwise, there is no clear effect of any factor 

(such as microarray platform or treatment with L-DOPA) on study distribution within the 

clustering, reflecting the low concordance seen in these groups.  Concordance in microarray 

studies of PD may therefore be partly explained by the different gene expression signals present 

in studies of human brains and in studies of peripheral areas or animal models.   
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3.3.6 Differential gene expression in human tissues highly-affected in PD 

is distinct from other brain diseases 

  

  
Figure 3.8 Principal component analysis of differential gene expression in Parkinson’s 
disease, Alzheimer’s disease and brain tumour studies 

Top	row:	PCA	based	on	differential	expression	over	the	1,152	genes	in	the	union	of	42	expression	

signatures	(including	AD	and	tumour	studies).		Bottom	row:	PCA	based	on	sign	of	differential	

expression	 (discarding	 the	magnitude)	 over	 these	1,152	genes.	 	 The	 tumour	 studies	appear	

highly	 distinct	 from	 AD	 and	 PD	 studies	 in	 the	 principal	 component	 representation	 of	 gene	

expression	space.		Even	if	only	the	sign	of	differential	expression	is	taken	into	account	(bottom	

row),	 the	 tumour	 studies	 appear	 at	 the	 outer	 edges	 of	 the	 second	 principal	 component,	

suggesting	highly	distinct	patterns	of	gene	expression	in	the	two	disease	groups.		By	contrast,	

the	 four	 AD	 studies	 are	 not	 separated	 from	 the	 PD	 studies,	 illustrating	 that	 the	 variation	

between	tumours	and	neurodegenerative	diseases	is	much	higher	than	that	between	the	two	

neurodegenerative	diseases.		
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In order to examine the disease specificity of gene expression in PD, PD studies were compared 

with studies of other diseases – namely Alzheimer’s disease (AD), a neurodegenerative 

disorder which can present similar pathology to PD172, and brain tumours (glioma), which are 

clinically unrelated to PD.  As before, PCA was used to provide a low-dimensional 

visualisation of the separation of samples in differential expression space (Figure 3.8); the first 

three principal components here represent 42% of the variance.  When magnitude of 

differential expression is taken into account, the cancer studies vary mostly across the first and 

third principal components, whilst the AD and PD studies vary across the second principal 

component, suggesting highly distinct patterns of gene expression in cancer compared to in the 

neurodegenerative diseases.   

When only the sign of differential expression is taken into account (removing variation due to 

different magnitudes of expression changes, in order to focus on the general patterns of 

regulation), the cancer studies still appear distinct from the AD and PD studies, here showing 

the greatest variance across the second principal component.  Interestingly, the cancer studies 

here split into two groups – one containing studies of human cerebellum, human whole brain, 

and mouse whole brain; the other containing studies of human blood and murine dorsal brain 

run on an Illumina platform – which appear at opposite edges of the second principal 

component.  This means that when the magnitude information is discarded, there is greater 

variation within the cancer studies than between the cancer studies and the neurodegenerative 

diseases.   

In all PCA plots, the AD studies appear less distinct from those of PD.  The separation between 

human and animal studies seen in PCA of the PD studies only (Figure 3.4, Figure 3.5) appears 

reduced in this plot, illustrating that the variation between tumours and neurodegenerative 

diseases is much greater than the variation between human and non-human neurodegenerative 

diseases. 

The relation between these studies can be further examined by clustering based on differential 

expression across the union of the top ten genes in all studies (as above).  Interestingly, this 

plot shows one of the groups of tumour studies clustering near to the group of human substantia 

nigra studies (Figure 3.9).  Examination of the heatmap reveals that their overall gene 

expression patterns are different, but that they share down-regulation in a cluster of genes at 

the bottom of the heatmap; pathway analysis reveals the Panther pathway ‘synaptic vesicle 

trafficking’ and GO biological process ‘dopamine metabolic process’ to be significantly 

enriched in these genes.  A fourth tumour study taken from a blood sample clusters together 
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with all but one of the other blood-based studies on the outer edge of the heatmap, suggesting 

that blood displays overall different gene expression patterns from brain tissue, although the 

tumour blood gene expression study appears distinct within this group.    
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Figure 3.9 Heatmap of differential gene expression in Parkinson’s disease, 
Alzheimer’s disease, and brain tumour studies   

The	heatmap	illustrates	differential	expression	across	the	315	genes	in	the	union	of	the	top	10	
most	 differentially	 expressed	 genes	 over	 all	 studies	 (see	 Appendix	 I	 for	 rownames).	 	 The	
clustering	 reveals	 shared	 down-regulation	 between	 three	 of	 the	 tumour	 studies	 and	 the	
human	substantia	nigra	studies	in	a	group	of	genes	related	to	dopamine	transport	(towards	
the	bottom	of	the	heatmap).		Overall,	however,	the	tumour	studies	appear	distinct,	with	large	
differences	in	the	magnitude	of	expression	changes,	particularly	displaying	strong	upregulation	
of	genes	at	the	top	of	the	heatmap.		Distinct	expression	changes	can	also	be	seen	in	the	cancer	
study	taken	from	blood	samples,	which	is	clustered	at	the	left	of	the	heatmap	together	with	
other	blood	samples	of	PD	and	AD.		
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3.3.7 Inclusion of non-human and non-nigral tissue studies reduces the 
percentage of Parkinson’s disease-associated genes identified in a 
meta-analysis  

A key aim of this study is to determine whether gene expression in surrogate tissue (i.e. non-

brain tissue) or in animal models of disease is reflective of gene expression in the brain of a 

human patient.  In order to establish this, a meta-analysis was carried out across different 

subgroups of studies, where a gene was deemed to be significant if it was included in the top 

fifty most highly differentially expressed genes in more than three studies (this vote-counting 

methodology was chosen due to the low agreement between studies).  The results of the meta-

analysis were compared with a list of 694 potential PD-associated genes downloaded from the 

Centre for Therapeutic Target Validation168.  These genes were selected on the basis of 

previous association with PD through genetic, drug target, or text-mining association (see 

Section 3.2.8) and represent numerous pathways including those involved in signal 

transduction (such as RAF/MAP kinase cascade and G alpha and AKT signalling events) and 

the immune system (such as interleukin-1 signalling and proteasome degradation).   

 

Table 3.3 Genes highly differentially expressed in multiple Parkinson’s disease studies 

Table	shows	the	number	of	times	a	gene	is	in	the	top	50	genes	by	absolute	log-fold	change	in	

each	study.	

Gene All studies Human studies Studies of the SN 

Up-regulated 

HSPA1A 4 3 3 

RELN 4 4 3 

PTPRC 3 2 0 

LCN2 3 0 0 

PLIN4 3 0 0 

MAFF 3 2 2 

SLCO4A1 3 3 2 
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HSPA1B 3 3 3 

IGF2BP2 3 0 0 

CDKN1A 3 0 0 

ENC1 3 2 1 

Down-regulated 

EGR2 6 0 0 

FOS 5 2 1 

RGS4 5 5 3 

TAC1 5 4 3 

SLC6A3 4 3 3 

AGTR1 4 4 3 

FGF13 4 3 4 

PCSK1 4 3 2 

NPTX2 4 1 1 

GABBR2 4 3 2 

NR4A2 4 3 4 

EIF1AY 3 2 2 

SATB2 3 0 0 

RET 3 1 2 

SNCA 3 3 0 



 75 

TTR 3 0 0 

CCK 3 0 0 

DDC 3 3 3 

SLC18A2 3 3 3 

ALDH1A1 3 3 3 

KCNJ6 3 2 2 

TMEM255A 3 3 3 

SCG2 3 3 3 

GPR26 3 2 3 

DCLK1 3 2 0 

DUSP1 3 2 1 

HPCAL4 3 2 1 

SYNGR3 3 3 2 

PREPL 3 3 0 

STMN2 3 3 2 

VSNL1 3 3 2 

NTS 3 2 3 

 

The overall agreement in differentially expressed gene lists over all 33 studies was low, with 

no gene consistently differentially expressed in more than 6 studies (Table 3.3).  Even if larger 

expression signatures including the top 100, 250 or even 500 most highly dysregulated genes 

(of a total 2,372 shared genes) were used, the findings were not much different, with no gene 

consistently regulated in more than 6, 8, and 10 studies respectively.  The most common 
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findings shown in Table 3.3 include significant downregulations in genes including 

ALDH1A1, TTR, TAC1, and solute carrier genes SLC18A2 and SLC6A3, and upregulation 

of the heat shock protein genes HSPS1A and HSPS1B in multiple studies.  This is consistent 

with the findings of a previous meta-analysis140 of human datasets, who reported concordance 

as low as ‘20 genes… consistently differently regulated across 6 of 13 datasets’, whilst 

cautioning that the downregulation seen in DDC and other genes could be the result of ‘a 

disproportionate number of SN dopaminergic neurons between cases and controls’.  Other 

findings include downregulation of FOS, which is more commonly associated with 

overexpression following L-DOPA treatment, in two animal (non-L-DOPA treated) and one 

human experiments.  SNCA is also downregulated in multiple human studies, which previous 

studies have suggested may be related to long post-mortem intervals in PD cases174.  

Over all data sets, 26% of the 43 genes called significant by the meta-analysis (Table 3.3) were 

included in the list of previously PD-associated genes.  If the meta-analysis was limited to 

human studies, however, 36% of the 22 significant genes had previous evidence of association 

with PD (Figure 3.10).  The inclusion of non-human studies therefore reduced the enrichment 

of PD-associated genes in the list, i.e. the likelihood of each identified gene having a previously 

evidenced association with PD is lower.  If the meta-analysis is limited to just animal models 

of PD, this was reduced to 10% of the 10 significant genes.  There was a similarly noticeable 

difference between studies of different tissues.  32% of the 28 genes considered significant in 

a meta-analysis of the 18 basal ganglia studies (here including studies of the substantia nigra 

and striatum, excluding those which considered isolated dopaminergic neurons from the SN) 

had been previously associated with PD, and increasing to 40% when only substantia nigra 

studies were considered (Figure 3.10), suggesting that gene expression changes in these tissue 

types capture genes and gene products highly relevant to PD.  
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Figure 3.10 Percentage (bar) and number (number above bar) of potential PD targets 
amongst genes considered significant by a meta-analysis in each grouping 

Gene	lists	from	human	studies	and	studies	using	tissue	from	the	basal	ganglia	(here	including	

studies	of	the	striatum	and	substantia	nigra)	are	more	enriched	for	genes	and	proteins	that	

have	 been	 associated	with	 PD	 through	 genetic	mutations,	 drugs,	 or	 literature-mining	 than	

those	from	animal	models	or	studies	using	other	tissues.	
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3.4 DISCUSSION 

The low concordance between microarray studies of Parkinson’s disease echoes recent 

concerns about the reproducibility of microarray studies between different labs111,119,140,151 and 

between humans and animal models144,146–148,175.  This study aimed to determine the major 

factors of study design influencing the observed lack of concordance.   

The results presented here confirm that the differences between human studies and model 

systems, and between tissues, are larger than those caused by other experimental factors such 

as microarray platform or sample size (Figure 3.1, Figure 3.2, Figure 3.4). This analysis seems 

to indicate a split between human brain tissues and other study types (animal models and human 

studies of other tissues, including isolated dopaminergic neurons).  It is possible that these 

human brain studies, particularly studies of the human substantia nigra, reflect a distinct 

‘characteristic’ transcriptional signature specific to human PD; whereas the non-human studies 

and human studies of non-brain tissue reflect other, more general disease-associated molecular 

changes that take place in multiple tissues and systems (Figure 3.7).  The inclusion in the 

‘characteristic’ group of tissues affected later in the disease e.g. frontal cortex173 (Figure 3.6) 

is noteworthy – given the progressive nature of PD, the late-affected tissues may display a 

signal of the early stages of neurodegeneration, which may be masked in the substantia nigra 

by the extent of cell death in this region at the time of post-mortem, as suggested by Sutherland 

et al.140   

Although there are large differences between the results from animal models and human 

studies, it is encouraging to note that animal models (both genetic and neurotoxic) are not 

completely separated from human neurodegenerative disease in differential gene expression 

space (Figure 3.4, Figure 3.5).  In particular, one of the two animal models sampling tissue 

from the SN appears very similar to human studies in hierarchical clustering (Figure 3.6).  It is 

possible that these simply reflect the ‘terminal cytoarchitectural differences’140 related to 

neuronal loss in the SN.  However, the observed similarity of studies of the frontal cortex – 

which does not show such severe neuronal loss140 compared to the SN, where next to no 

dopaminergic neurons remain post-mortem172 – to studies of the SN (Figure 3.4, Figure 3.5, 

Figure 3.6) points towards at least partly shared gene expression patterns which are reflective 

of other biological processes.  

There is much interest in the use of non-brain tissues for gene expression studies, as these can 

be relatively easily obtained pre-mortem and could reflect processes associated with early-
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stage PD, as well as potentially offering direct patient benefit.  Studies which use human cell 

lines, such as iPSCs derived from PD patients, do not appear to replicate the differential 

expression patterns found in tissue samples from PD patients.  Using hierarchical clustering, 

however, iPSC-derived dopaminergic neurons appear similar to dopaminergic neurons isolated 

post-mortem, while iPSCs harbouring SNCA mutations cluster with Pink1- and SNCA-based 

genetic animal models of PD (Figure 3.6), suggesting the potential for these study types to 

replicate relevant gene expression patterns in PD.  Similarly, studies in blood samples cluster 

together, appearing distinct from gene expression in brain tissue (Figure 3.6) but also appearing 

distinct from gene expression in blood studies of brain tumours (Figure 3.9), suggesting a 

common transcriptional pattern that could function as a marker of neurodegenerative disease.  

These are encouraging results for the development of surrogate tissue approaches for studying 

gene expression in PD. 

In practice, the concordance between microarray studies from different experimental groups 

will never reach 100%.   Experimental factors including sample amplification, labelling, array 

scanning, wash protocols, etc.116,176,177 exert a significant effect on the results and 

reproducibility of studies; in the context of PD, there are a number of experimental factors 

which influence measured RNA expression in the brain including the impact of age, gender, 

and post-mortem interval120,154,178 and other confounding factors including long-term anti-

Parkinsonian drug treatment and the co-occurrence of other diseases such as Alzheimer’s 

disease141.  More detailed meta-data associated with studies uploaded to public repositories 

would be immensely helpful in aiding meta-analysis and identification of differences between 

studies.   This could be disease-specific, such as distinguishing between idiopathic and genetic 

PD cases; or more general, such as distinguishing between drug-treated and drug-naïve 

patients, or providing a measure of RNA integrity such as RIN179 (especially key in post-

mortem studies where RNA quality is affected by the agonal state180). 

Nevertheless, this study aims to illustrate the amount of agreement that can be expected 

between different microarray studies in the context of PD; further, its general conclusions may 

be equally applicable in studies of other conditions.  This study acts as a guide to the 

‘representativeness’ of different tissues and disease models to the human condition (which is 

of special significance in PD due to the inaccessibility of PD-affected tissues in living patients), 

and as a guide to the use of animal models, at a time of increasing importance of transcriptomics 

and other molecular-level analyses in drug discovery and development181.  The identification 

of a specific ‘characteristic’ signal of PD in human brain tissues could explain the apparent 
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discordance between microarray studies of PD, and is hence of more general interest for the 

study of PD at the transcriptomic level. 
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4 USING DYSREGULATED SIGNALLING PATHS 

TO UNDERSTAND DISEASE 
	

SUMMARY  

Network-based methods of gene expression analysis have recently become popular, allowing 

gene expression changes to be interpreted by relating them on to each other on a known 

framework.  However, gene networks produced by these methods are often large and difficult 

to interpret.  In this chapter, a ‘bottom-up’ method of subnetwork identification based on 

weighted shortest-paths (termed ‘path-set analysis’) is described, which highlights smaller 

network regions which are dysregulated in disease.  This method, in contrast to similar 

approaches, is based solely on differentially expressed genes.  Each edge is therefore disease-

specific, rather than including ‘bystander’ nodes resulting purely from network topology.  This 

makes path-set analysis particularly suited to the comparison of expression changes in disease, 

allowing comparison at a granular (edge-wise) level instead of comparing large subnetworks.  

The ability of path-set analysis to identify relevant dysregulated processes in disease is 

confirmed by the enrichment of known disease-associated genes in the returned paths.  

Comparing path-sets across the 141 transcriptomic studies in the dataset reveals commonly 

dysregulated genes which are included in the path-sets of multiple disease studies.  There is a 

moderate relationship between the number of studies in which a gene is included and its 

network importance (quantified by degree), suggesting that path-set analysis identifies 

‘pressure points’ in the network which can influence the progression of diverse disease types.  

Disease studies that share dysregulated paths are 2.5 times more likely to be in the same Disease 

Ontology subcategory than those that don’t, and more than twice as likely to share drugs, 

confirming the relevance of path-sharing to known disease relationships.  Over half of shared 

paths between disease pairs contain a drug-interacting gene, suggesting the utility of this 

approach in forming early-stage drug repurposing hypotheses. 

This work represents the first application of path-based network analysis to the comparison of 

diseases, including understudied rare diseases.  This analysis reveals the underlying processes 

dysregulated in disease, helping to develop our understanding of disease and disease 

relationships, which could ultimately lead to novel treatments. 



 82 

4.1 INTRODUCTION 

The analysis of gene expression data can give valuable insight into the underlying processes 

taking place in disease.  However, as illustrated in Chapter 3, transcriptomic data can be noisy, 

displaying high variation even between studies of the same condition.  Gene expression data is 

therefore often interpreted by translation to a higher biological level, such as biological 

pathways, under the assumption that different observed gene expression changes can reflect 

similar underlying processes.  A limitation of this gene set analysis, however, is that canonical 

biological pathways represent inflexible, high-level descriptions of a complicated process 

which obscure the individual gene expression changes.  

A middle ground between analysis of individual gene dysregulation and gene set analysis is 

network-based analysis, which relates genes on the interactome.  The interactome describes the 

interactions between gene products (chiefly proteins) without reference to known pathways or 

processes, thereby enabling the discovery of novel regions of interest182.  This type of analysis 

often involves the detection of dysregulated subnetworks of interacting genes and gene 

products that are active in disease.  Distinct from ‘functional module’ approaches which 

partition the interactome into clusters based on topology183,184, ‘active’ subnetwork approaches 

incorporate experimental information such as genomic or transcriptomic data (covered in a 

comprehensive review by Mitra et al.185).   

An alternative to ‘top-down’ subnetwork identification is the ‘bottom-up’ identification of 

individual dysregulated paths: subunits of networks which have defined start and end points.  

The advantage of using paths is that unlike subnetworks, paths can represent isolated patterns 

of dysregulation which may involve only two or three gene products.  This approach is 

commonly used to study drug response by identifying paths connecting drug targets to 

differentially expressed genes186 or toxicity-related proteins187; or to connect known genetic 

variations in disease with differentially expressed genes188.  However, it is not always possible 

(or desirable) to define these start and end points in advance, in which case a priori path 

identification approaches are required.   

Of most relevance is the method developed by Sambarey et al.121, who used a weighted 

shortest-paths approach to identify a common response network shared by multiple 

tuberculosis gene expression datasets.  Briefly, dysregulated paths are identified by computing 

weighted shortest-paths on the signalling network, where the weights are inversely proportional 

to the differential expression magnitude of each gene.  Those paths whose lengths are most 
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highly changed from the unweighted base network (representing signalling in a healthy person) 

therefore contain the most highly dysregulated genes.  Using this method, the authors could 

identify commonalities between the datasets that were not found by traditional differentially 

expressed gene list analysis.  They confirmed the specificity of the identified response network 

by comparing it to response networks in four other diseases (sarcoidosis, Still’s disease, 

pneumonia, and systemic lupus erythematosus).  

Whilst this approach looked for differences (specificity) between the tuberculosis response 

network and other diseases, such path-based approaches could also be valuable for the 

identification of commonalities between diseases.  Previous studies have integrated multiple 

datasets from a shared phenotype to discover common differential-expression based 

subnetworks across related diseases182,189,190.  For example, one study used topological network 

clustering of differentially expressed genes in oesophagitis and oesophageal cancer to discover 

functional modules common to both diseases190.  Alroobi et al.189 integrated datasets within 

phenotypic classes including ‘gastroenteritis’, ‘carcinoma’, ‘neoplastic process’ and ‘cell or 

molecular dysfunction’ to find subnetworks shared within these classes. However, few 

previous approaches have compared differential expression-based networks across different 

types of disease.  One exception is the 2009 study by Suthram et al.107 described in Section 

1.4.1.2, who compared 54 diseases by mapping their gene expression to precomputed 

functional modules, finding significant disease correlations between e.g. Crohn’s disease and 

malaria.  

Here, a method inspired by the weighted shortest-paths approach of Sambarey et al.121 (see 

Section 4.2.4 for discussion of the key differences) is applied to the comparison of 141 gene 

expression datasets representing 119 diseases, as well as 19 drug-induced gene expression 

profiles.  In this method, which is termed path-set analysis, the initial network for each disease 

(or drug) is constructed from all genes with non-zero differential expression.  The use of this 

non-conservative differential expression threshold enables path-set analysis to discover groups 

of genes which may not be highly differentially expressed individually, but which represent a 

flow of dysregulation along the network.  Unlike traditional analysis methods, where the 

importance of a gene in a particular disease is determined solely by its individual log-fold 

change or significance value, in path-set analysis the importance of a gene is determined in a 

more holistic manner by taking into account the activity of its interacting genes. 

An advantage of this approach (in contrast to the work of Sambarey et al., where paths combine 

differentially expressed genes with non-differentially expressed ‘bystander’ nodes) is that each 
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individual edge is disease-specific, i.e. each edge connects two genes which are differentially 

expressed in that disease, as opposed to connecting a differentially expressed gene with each 

of its neighbours. This property of edge specificity enables the comparison of diseases at a 

granular (edge-wise) level, rather than across whole (sub-) network modules as in the work of 

Suthram et al., allowing the identification of disease pairs which share dysregulated processes.  

In this chapter, I use path-set analysis to interpret gene expression data across diverse 

conditions, including 141 microarray studies of disease representing 119 different diseases, and 

19 drug response studies in human patients.  The relevance of the paths for each disease is 

evaluated using the presence of known disease-associated genes and drug-interacting genes in 

each path.  For the first time, I use path-based analysis to compare diseases, identifying paths 

which are shared between diseases and highlighting dysregulated processes common to diverse 

disease types.  Finally, I explore the relevance of these common processes to the identification 

of potential drug repurposing opportunities. 
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4.2 METHODS 

4.2.1 Gene expression dataset construction 

Suitable gene expression datasets were identified by manually searching Gene Expression 

Omnibus44 for specific diseases and by searching for the keywords ‘disease’, ‘syndrome’ and 

‘cancer’ and selecting those for which high-quality patient transcriptomic data were available, 

according to the criteria described in Section 2.2.  This resulted in 141 datasets covering 119 

distinct diseases, including 35 rare genetic diseases (defined as inheritable diseases with a 

prevalence of less than 1 in 10,000 where known).  Due to limitations of the available data, 

some of the gene expression profiles are based on in vitro samples from cell lines, rather than 

in vivo samples directly from patient tissue (this is mostly for rare diseases where fewer studies 

are available).  Where technical replicates e.g. multiple repeats of the same cell line are used, 

only the first is taken in order to have a consistent ‘one-patient, one-sample’ structure 

throughout each dataset.  Datasets and sample selection are listed in Appendix B.  In order to 

classify diseases, disease names were manually mapped to Disease Ontology191 terms and their 

top- and second-level classes were recorded. 

All datasets were downloaded and processed as described in Section 2.3, resulting in 

differential expression profiles of diseased vs healthy patients.  A non-conservative threshold 

of p<0.05 was used to call significant differential expression; log-fold changes of non-

significant genes were set to 0.  This non-conservative threshold represents a departure from 

traditional gene expression analysis, which relies on the significance of individual gene 

expression changes to select a list of individually ‘important’ genes.  Instead, this method 

considers the dysregulation of a gene in combination with that of its neighbours, representing 

a network-based view of ‘importance’.  At this threshold, a median of 27% of the genes in a 

disease experiment have non-zero differential expression, although only 1.6% of genes on 

average have an absolute log-fold change value greater than 1.  

Drug gene expression datasets were identified by manually searching Gene Expression 

Omnibus using keywords including ‘drug’, ‘treatment’, ‘compound’, ‘placebo’.  This resulted 

in 19 datasets covering 16 different drugs.  These were downloaded and processed as described 

in Section 2.3, resulting in differential profiles from e.g. the patient after drug treatment vs after 

taking a placebo, or the patient after drug treatment vs before drug treatment.   
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4.2.2 Identifying disease-associated and drug-interacting genes 

Data on disease-associated genes was obtained from the OpenTargets platform in December 

2016 using the provided REST API169.  Diseases were mapped to their closest disease concepts 

in OpenTargets, although in some cases the match is to a less specific concept (e.g. ‘breast 

lobular carcinoma’ maps to ‘breast carcinoma’; ‘non-small cell lung carcinoma’ maps to ‘lung 

cancer’, ‘teratozoospermia’ maps to ‘male infertility’). Genes with an evidence score >0.2 in 

‘genetic association’ or ‘somatic mutation’ were defined as disease-associated genes.  For drug 

response datasets, disease genes corresponding to the disease in which the drug was tested were 

used. 

To identify drug-interacting genes related to diseases (for use with the disease datasets), drug 

indication data was obtained from ChEMBL version 22.1192 

(https://www.ebi.ac.uk/chembl/downloads, files chembl_drug_indication and 

chembl_mol_dict), and approved drugs or drugs in Phase III clinical trials were retained.  

Genes related to these drugs were downloaded from the Drug Gene Interaction Database 

(http://www.dgidb.org/) in November 2016.  Genes corresponding to primary targets of drugs 

(for use with the drug response datasets) were identified using the ‘Mechanisms of action’ 

information from the OpenTargets platform, which translates ChEMBL mechanism of action 

information into target space. 

 

4.2.3 Signalling pathway network construction 

OmniPath82 was used as the basis of the signalling network.  OmniPath is a recently published 

resource containing ‘literature-curated human signalling interactions’82 from 27 different 

resources including SignaLink, Reactome, IntAct, WikiPathways, Signor and others, resulting 

in coverage of ‘~39% of the human proteome’82.  Only those interactions of known direction 

(causal interactions, which are the basis of signalling pathways) are retained, resulting in a 

network of 6,942 nodes. 

In this work, as in common in canonical pathway analysis, changes in gene expression (i.e. 

mRNA abundance) are treated as a proxy measure of changes in pathway activity, recognising 

that gene expression is not directly correlated to the abundance of the corresponding 

proteins193, but that they may function as a broad indicator of dysregulation in a particular 

pathway.  The proteins in the network are therefore represented by their corresponding genes, 
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with the UniProt IDs used in OmniPath converted to gene symbols supplied by the Hugo Gene 

Nomenclature Committee (conversion tool downloaded from https://www.genenames.org/cgi-

bin/download).  Where a UniProt ID maps to more than one gene (or vice versa), both 

mappings were kept in order to retain the maximum number of interactions.  Duplicate entries 

and self-loops were removed.   

In order to test the dependence of the results on the underlying network, the analysis was 

repeated with an independent network resource, HIPPIE (Human Integrated Protein-Protein 

Interaction rEference)83.  Unlike OmniPath, HIPPIE is not based on signalling interactions, but 

on experimentally determined protein-protein interactions.  HIPPIE provides a confidence 

score based on the available evidence supporting each interaction, allowing the filtering of the 

network to retain only high-confidence interactions (score >=0.73).  Following this filtering, 

HIPPIE contains 62,615 interactions between 12,162 proteins compared to the 43,693 

interactions between 6,972 proteins in OmniPath.  Although the resulting path-sets contained 

different nodes (due to the small overlap between interactions in HIPPIE and OmniPath) and 

contained slightly fewer disease-associated genes, overall properties of HIPPIE path-set 

analysis in terms of shared edges and enrichment of disease-associated genes compared to other 

methods were not substantially different to those obtained with OmniPath (discussed in 

Appendix J), indicating that the results presented in this chapter are not dependent on the 

specific topology of the OmniPath network. 
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4.2.4 Identification of dysregulated signal paths in each disease 

 

Figure 4.1 Identification of dysregulated signal paths 

Path-set	analysis	uses	weighted	shortest-paths	on	a	directed	signalling	network	to	find	paths	
which	 are	 strongly	 dysregulated	 in	 disease.	 	 For	 each	 disease,	 all	 genes	 with	 non-zero	
differential	expression	changes	are	identified,	and	an	initial	base	network	is	created	from	these	
genes.		A	modified	version	of	the	base	network	is	then	created	in	which	the	outgoing	edges	of	
a	gene	are	weighted	according	to	the	magnitude	of	differential	expression	for	that	gene,	so	
that	high	differential	expression	‘reduces’	the	distances	to	the	gene’s	neighbours.		The	length	
of	the	path	between	each	node	pair	is	then	calculated	for	both	networks.		Similar	to	the	wok	
of	Sambarey	et	al.121,	paths	containing	many	highly	differentially	expressed	genes	will	be	much	
shorter	in	the	weighted	network	than	in	the	base	network.		These	paths	with	highly	changed	
distances	form	the	path-set	for	a	disease.	

		

Path-set analysis calculates, for each disease, the paths which link the most highly differentially 

expressed nodes.  This process is summarised in Figure 4.1 and detailed in full below.  Steps 

1-3 describe the construction of the base signalling network, steps 4-6 describe the construction 

of the weighted signalling network, and steps 7-11 describe the selection of dysregulated paths. 

1. First, an initial base network is created from OmniPath by excluding nodes which are 

not differentially expressed in the disease (at a threshold of p<0.05).  This prevents 
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the algorithm from simply returning all possible paths between two non-neighbouring 

genes, ensuring that each edge is disease-specific rather than based on network 

topology.   

2. All nodes in the base network must have at least one outgoing edge, because it is the 

outgoing edge that is considered in the weighted shortest path calculation (step 6).  

Any ‘leaf’ nodes which do not have children in this network are therefore connected 

to a ‘dummy’ child node.   

3. The resulting interactions list is converted to a graph representation using the 

graph_from_edgelist function from the R package igraph194 (version 1.1.2).  

Unweighted shortest path distances are computed along this base network, using 

igraph’s distances function with mode=out, resulting in a distance matrix where first 

neighbours have a distance of 1, neighbours of first neighbours have a distance of 2, 

and so on, which is the base distance matrix, baseDist. 

4. An edge weight vector initialWeights is initialised where for each edge p->q, the 

weight is set to the absolute log-fold change value of the source node p.   

5. The weights are inverted: 

!"#$ℎ&' = max #,#&#-./"#$ℎ&' − #,#&#-./"#$ℎ&'	
so that the most highly differentially expressed gene has a weight of 0 (a small positive 

value d is added to this gene to avoid having a 0-length path) and therefore the smallest 

path cost, and the least highly differentially expressed gene has the highest weight 

(equal to the highest absolute log-fold change) and therefore the highest path cost.   

6. The distance computation via distances is repeated with the weights from the previous 

step, yielding the weighted shortest path distance matrix, weightedDist.  

7. In order to be comparable with the weighted distances, baseDist is multiplied by a 

constant equal to the maximum log-fold change observed in the disease.  This creates 

a new distance matrix, scaledBaseDist, which is equivalent to performing weighted 

shortest-paths on a network where all differential expression values are zero (and 

therefore has longer path lengths than any in weightedDist).  

8. Path dysregulation scores are calculated as the difference between the scaled base 

distance matrix and the weighted distance matrix, normalized by the length of the path: 

2#33"4",5" = ('5-."27-'"8#'& − !"#$ℎ&"28#'&)/;-'"8#'& 
Note that the normalization here could equally be division by scaledBaseDist. 
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9. A threshold is set which specifies the number of paths to consider for each disease, 

here set to the 100th or 500th highest value of the difference matrix depending on the 

application.  All differences less than this threshold are set to 0, so that in further 

analysis the (roughly) 100/500 most highly dysregulated paths are considered.   

10. For each node pair whose path dysregulation score is above this threshold, the vertices 

of the shortest path(s) between them are returned by igraph’s all_shortest_paths 

function, again with mode=out and weights as calculated in step 5.  

11. The returned paths are then pruned according to the following criteria: 

a. Paths must link at least two nodes after removal of the dummy node.   

b. Any paths which are shorter subsets of other paths are removed. 

Diseases are then represented by the set of edges resulting from the union of these paths, the 

path-set for each disease.   

A threshold of the 100th highest distance was used for the first part of the analysis, which 

focuses on paths in individual diseases.  A more relaxed threshold of the 500th highest distance 

was used for the second part of the analysis (Sections 4.3.5 and 4.3.6), in order to increase the 

possible number of paths shared between diseases.   

One potential limitation of the shortest-paths method is that by recording only the shortest path 

between two nodes, the algorithm may potentially miss other paths between the two nodes 

which may also meet the threshold.  An adjustment of the algorithm is possible which takes 

this into account by incorporating every path between two nodes which meets the threshold, 

but this increases the run-time of the algorithm exponentially without adding many new nodes 

to the path-set.  The shortest-path formulation was therefore retained for this version of the 

algorithm. 

In order to compare path-set analysis to traditional differential expression analysis, an LFC-set 

is also constructed for each disease.  The LFC-set is simply the top n most highly differentially 

expressed genes (where n is the number of nodes in the path-set of that disease) by absolute 

log-fold change at p<0.05, restricted to those genes which are contained in OmniPath.  Genes 

in OmniPath may have different properties than those genes which are not in OmniPath 

(possibly associated with being more well-studied), so this allows a fairer comparison between 

the two methods.  In order to examine the contribution of network information in the absence 

of log-fold change information, 100 random-path-sets are also constructed.  These are 

constructed as the real path-sets, but with permuted log-fold change values within each disease. 
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Path-set analysis is inspired by the method proposed by Sambarey et al.121 who used weighted 

shortest-paths to identify response networks in tuberculosis, but differs in several key details 

including the calculation of the node and edge weights and the use of directed interactions on 

a signalling network to represent signal flow; and further in the use of only differentially 

expressed genes to define the network, so that the resulting paths are composed solely of 

differentially expressed genes rather than including ‘bystander’ neighbour nodes.   

 

4.2.5 Identification of shared dysregulated signalling paths between 

diseases 

In order to compare dysregulated signalling paths across diseases, a common-path-set was 

additionally constructed for each disease.  The common-path-set is constructed as above, but 

takes into account the diversity of platform types (each measuring different sets of genes) in 

the dataset by restricting the analysis to the 3,724 genes measured on all platforms, 2,306 of 

which are in OmniPath.  The common-path-set was used for analyses involving comparison 

across disease datasets (Sections 4.3.5, 4.3.6). 

Using the common-path-sets, the number of edges shared between two diseases is calculated.  

An edge is shared between two diseases if: 

1. The edge is in the common-path-set of both diseases 

2. The direction of the log-fold change associated with the nodes linked by the edge is 

the same in both diseases.   

A random permutation test is used to calculate if the number of shared edges between two 

diseases is significant.  For each disease, a random edge-set is created which contains the same 

number of edges as in the original path-set by sampling edges from the shared base network 

according to the frequency of these edges over all common-path-sets.  The number of 

overlapping random edges between each disease pair is then calculated as above (randomly 

assigning a direction of log-fold change to each node).  This procedure is repeated 1000 times 

for each disease pair, and the highest random overlap is taken as the significance threshold for 

each disease pair.   

Finally, the disease similarity score is calculated as the number of shared edges divided by the 

total number of edges in the path-set of each disease.  Where the number of shared edges is 

less than the significance threshold, the similarity score is set to 0. 
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4.2.6 Pathway enrichment analysis 

Pathway enrichment analysis was carried out using the Panther Classification System62 version 

13.1 (http://www.pantherdb.org).  Gene lists were uploaded to Panther and an 

overrepresentation test was performed specifying an appropriate reference list as the 

background (i.e. all genes in the network).  Gene lists were analysed against the Panther GO-

Slim biological process termset.  The Fisher’s exact test was used to determine significance; 

pathways with a Benjamini-Hochberg FDR < 0.05 (the default reported by Panther) were 

reported as significant.   
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4.3 RESULTS 

4.3.1 Path-set analysis of gene expression changes in disease reveals 

shared dysregulation amongst interacting gene products 

To quantify the extent to which path-set analysis differs from traditional log-fold change 

analysis (which considers the most strongly differentially expressed genes in each disease), the 

n genes comprising a disease’s path-set were compared to the disease’s n most highly 

differentially expressed genes in OmniPath (the LFC-set, see Methods).  Across all diseases, a 

median average of 22% of genes are common to the path-set and the LFC-set of a disease, i.e. 

the path-sets capture 22% of the disease’s most highly differentially expressed genes.   

Simply mapping the highly differentially expressed genes in the LFC-sets to the OmniPath 

network results in very small network sizes: most of these genes do not interact with each other, 

meaning that the resulting networks cover a median of only 18% of the genes in the LFC-sets.  

On the other hand, trying to connect more of the LFC-set genes e.g. by including all first-

neighbour genes results in a very large network: whilst the median LFC-set size is 82 genes, 

the median resulting network size is 659 genes, which is infeasible to analyse visually.   
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Figure 4.2 Distribution of path-set size 

At	a	threshold	of	the	100	top	paths,	most	diseases	have	a	path-set	comprising	around	50-100	
dysregulated	 nodes,	 although	 a	 few	 path-sets	 (for	 hepatocellular	 carcinoma	 and	 Turner	
syndrome)	are	much	larger.	

 

Path-set analysis represents an alternative to network-based analysis of DEG lists, which rather 

than selecting the top most differentially expressed genes, highlights genes which interact in a 

dysregulated biological process (in this case, signalling).  The initial network for each disease 

is built from all genes with non-zero differential expression; across all diseases, there is a 

median of 4,714 genes with non-zero differential expression per disease, resulting in a median 

initial network size of 1,408 nodes.  The top most dysregulated paths are then selected from 

this network (see Section 4.2.4), resulting in a median path-set size of 82 nodes (Figure 4.2).   

This type of analysis can be particularly useful for experiments where few genes show high 

log-fold changes.  One example of this is the experiment for asthma (see Appendix B for 

details), where the highest absolute log-fold change (at p<0.05) is only 0.56.  By comparison, 

the median highest absolute log-fold change across all diseases in the dataset is 3.91.  
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Figure 4.3 Dysregulated signalling paths in asthma  

The	path-set	of	asthma	(based	on	the	top	100	paths)	includes	two	connected	components,	one	

centred	 around	 the	 network	 ‘hub’	 gene	MAPK1	 and	 its	 downstream	 genes,	 and	 the	 other	

centred	around	the	inflammatory	chemokine	receptor	CCR5	and	its	ligands.		18	of	the	58	genes	

in	the	path-set	are	also	in	the	set	of	most	highly	differentially	expressed	genes	(the	LFC-set),	but	

the	LFC-set	does	not	 include	the	key	nodes	MAPK1	and	CCR5	which	 form	the	basis	of	 these	

components.	 	 The	 pale	 node	 colours	 indicate	 low	 magnitude	 of	 differential	 expression	 in	

comparison	to	later	figures,	which	are	plotted	on	the	same	colour	scale.	

	

Figure 4.3 shows the genes comprising the dysregulated paths (the path-set) for the asthma 

dataset; overlaying the individual paths onto the OmniPath network in this way shows how the 

expression changes are related to each other. 18 of the 58 genes in the asthma path-set are also 

captured by its LFC-set; however, the LFC-set does not capture the key network-specific ‘hub 

genes’ mitogen-activated protein kinase 1 (MAPK1) and C-C chemokine receptor type 5 

(CCR5).  MAPK1 in particular has a central position in the human signalling network (it has a 

degree of 476, one of the highest-degree nodes in OmniPath) and so it is unsurprising to see 

that this hub structure is retained in the asthma path-set.   
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As OmniPath is a signalling network, links between dysregulated genes are not a casual 

explanation (e.g. under-expression of gene A leads to under-expression of gene B).  Rather, 

path-set analysis highlights groups of interacting genes with shared dysregulation, suggesting 

broader underlying dysregulation e.g. of a particular signalling pathway.  It should also be 

noted that as mRNA expression levels are not necessarily correlated with protein abundance193, 

expression dysregulation provides at best a rough suggestion of what might be taking place at 

the protein level.  Bearing these points in mind, the observed expression changes can be 

interpreted as indicators of signalling events that may be dysregulated in asthma.  Throughout 

this chapter, protein symbols will be given in italics to distinguish them from gene symbols. 

For instance, the hub gene MAPK1 is shown to interact with PDE4D, a subtype of 

phosphodiesterase 4.  Its product, mitogen-activated protein kinase 1, phosphorylates the 

product of PDE4D, but whether this has an activating or inhibitory effect depends on the exact 

isoform of PDE4D that is translated (PDE4D has an intron variant in asthma which could 

potentially affect this)195.  The upregulation of PDE4D, if this translates to increased levels of 

its protein product, chimes with the fact that inhibitors of PDE4 are currently being developed 

for the treatment of asthma (although the PDE4D subtype specifically is associated with the 

side effect of nausea and vomiting)196.    

Another component of interest is formed by the inflammatory chemokines CCL2, CCL4, and 

CCL5, and the chemokine receptor CCR5.  Previous studies have found levels of their 

corresponding proteins to be increased in asthma197, however, here all four chemokines and 

their receptors are downregulated.  The fact that these chemokines interact with each other 

suggests that their downregulation is not just a chance observance but is part of a co-ordinated 

process, which is particularly important to establish as the observed magnitude of the fold 

changes is so low.  Interestingly, whilst the LFC-set captures the four ligands CCL2, CCL4, 

CCL5, and CCL8, indicating that they are some of the most highly dysregulated genes in 

asthma, the receptor CCR5 is not strongly differentially expressed enough to be included in 

this set, illustrating how analysis based on fold change alone excludes relevant gene expression 

changes. 
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4.3.2 Dysregulated paths are enriched for disease-associated genes and 

drug-interacting genes 

Table 4.1 Known disease-associated genes and drug-interacting genes (KDGs) in 
path-sets  

Path-sets	are	enriched	for	KDGs	compared	to	selecting	the	same	number	of	genes	by	log-fold	

change	(LFC-set)	or	random	sampling	(random-gene-set),	capturing	KDGs	for	58%	of	diseases	

(values	reported	are	mean	averages	across	diseases	which	have	at	least	one	KDG	in	OmniPath).		

The	high	percentage	of	KDGs	found	by	the	random-path-set	(which	is	created	by	permuting	the	

LFC	values	for	each	disease)	suggests	that	this	is	due	to	the	ability	of	path-sets	to	capture	genes	

of	higher	degree,	which	are	more	likely	to	be	KDGs.	

	 Path-set LFC-set Random-

path-set 

Random-

gene-set 

What proportion of sets 

contained at least one 

KDG? 

0.58 0.56 0.54 0.43 

How many KDGs were 

found per set on 

average? 

2.95 1.89 2.40 1.18 

What percentage of 

genes in the set were 

KDGs on average? 

3.2% 2.4% 2.5% 1.3% 

 

The presence of genes associated with a disease, and genes which interact with drugs for this 

disease (together ‘known disease-associated genes’; KDGs) in a path-set can indicate the 

interaction of the dysregulated paths with causative or therapeutic processes taking place in the 

disease. The presence of KDGs in each path-set was therefore used as a proxy measure to 

evaluate the biological relevance of the discovered paths (Table 4.1).  In this study, disease-

associated genes are defined as genes which have a variation or somatic mutation which has 

been previously associated with the disease.  Drug-interacting genes are defined as genes which 

interact in some way with drugs prescribed for the disease (e.g. a drug inhibits a product of this 

gene) (see Section 4.2.2).   
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Across all diseases with at least one KDG (130 diseases), 58% contained at least one KDG in 

their path-set, with a mean average of 2.95 KDGs per path-set.  If the less strict threshold of 

500 is used, these values increase to 72% of path-sets, containing a mean average of 7 KDGs.  

Path-sets capture more KDGs than LFC-sets, which find only 1.89 KDGs per disease on 

average.  Surprisingly, the random-path-sets (in which the log-fold change values for each 

gene are permuted, repeated 100 times) also capture many KDGs in disease.  Although the 

difference between the real and random path-sets is statistically significant (t-test p-value 

<2.2e-16 for percentage of datasets containing at least one KDG and for number of KDGs 

found), the magnitude of the difference is small.  This is not seen in the random-gene-sets 

(gene-sets of the same length as the path-sets randomly selected from the genes in OmniPath, 

repeated 1000 times), suggesting that the path-set method inherently selects for KDGs, 

regardless of gene expression information. 

The enrichment of KDGs in random path-sets can be explained by the tendency of path-sets to 

return genes of high network importance, quantified here by the degree of the node, i.e. the 

number of nodes with which it interacts (calculated using igraph’s degree function).  The 

median degree of genes in the real path-sets is 15.5, and 19 in the random-path-sets.  By 

comparison, this figure is only 5 for both the LFC-sets and the random-gene-sets.  This 

illustrates how the path-set analysis method selects for genes which have a greater number of 

interactions, which have greater chance to be included in a dysregulated path. 

KDGs also tend to have higher degree on average than non-KDGs (median degree of 7 for 

drug-interacting genes vs 4 for non-drug-interacting genes, Wilcox p-value <4.46e-12; median 

degree of 7 for disease-associated genes vs 4 for non-disease-associated genes, Wilcox p-value 

<2.20e-16).  The performance of the random-path-sets at identifying KDGs suggests that the 

ability of path-sets to identify KDGs may be partly based on the incorporation of the network 

structure information.  However, the LFC-sets do much better than the random-gene-sets at 

finding KDGs, suggesting that fold change information is also important for identifying paths 

which contain KDGs; it is therefore unsurprising that path-sets, which combine fold-change 

and network information, are most enriched for KDGs. 
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4.3.3 Dysregulated paths interact with known disease-associated genes 
and drug-interacting genes 

It should be noted that not all of a disease’s KDGs can be captured by path-set analysis.  Only 

KDGs which are: 

1. Measured by the gene expression platform used for that disease 

2. In OmniPath (median of 30% of measured genes in each experiment) 

3. Differentially expressed in the associated disease (median of 36% of KDGs, compared 

to the 27% of all measured genes with non-zero differential expression on average 

across diseases) 

can be returned by this method.  Whilst path-set analysis focuses only on differentially 

expressed genes (in order to improve understanding of differentially expressed gene lists in 

disease), there will also be many genes involved in disease which are not dysregulated, such as 

the 64% of KDGs which are not differentially expressed in their associated disease.  By relating 

genes in the path-sets to first-neighbour KDGs, other ‘key players’ can be captured which 

despite not showing changes in their expression levels may influence or be influenced by the 

dysregulated processes captured in the path-sets.  A median of 12.5 KDGs per path-set are 

captured in the first-neighbour genes. 
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Figure 4.4 Dysregulated paths in type 1 diabetes interact with non-dysregulated 
disease-associated genes and drug-interacting genes 

Visualising	the	first-neighbour	KDGs	of	the	53	genes	in	the	type	1	diabetes	dysregulated	path-

set	shows	how	genes	in	the	path-set	 interact	with	disease-relevant	proteins	 in	the	signalling	

network.		The	figure	also	shows	5	KDGs	directly	in	the	path-set,	including	disease-associated	

genes	KEAP1	(purple	border)	and	four	drug-interacting	genes	(cyan	border)	

	

Figure 4.4 shows an example visualisation of a path-set and (non-differentially expressed) first-

neighbour KDGs in type 1 diabetes mellitus (T1D), an autoimmune condition in which insulin-

producing beta cells in the pancreas are destroyed by the body’s own immune system, resulting 

in an inability to control glucose levels in the bloodstream.  Again, the Figure reveals 

interactions between groups of dysregulated genes, such as the coordinate overexpression 

between the chemokine receptors CXCR1 and CXCR2 (referred to as ‘master regulators of 

diabetes pathogenesis’198 due to their role in the autoimmune destruction of insulin-secreting 

beta cells199) and their ligands, CXCL1, CXCL2, and CXCL8 (shown on the right-hand side 

of the Figure).   
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The Figure also illustrates how the nodes in the path-set interact with (non-differentially 

expressed) first-neighbour KDGs.  The path-set together with first-neighbours now captures 

23.6% of the 93 drug-interacting genes associated with T1D, and 9.8% of the 122 known 

disease-associated genes.  Again, examining the relations between genes in the path-set and 

their first-neighbours can reveal more about the patterns of dysregulation seen in disease.  One 

example is PIK3R1, which has only one neighbour in the path-set, but which takes on a more 

central ‘hub’ position when the first-neighbour KDGs are added, suggesting its potential 

importance in T1D.  PIK3R1 is the p85α regulatory subunit of PI3K, which mediates insulin 

signalling200,201; lowered PIK3R1 expression has been found to prevent insulin resistance in 

obese mice202, and so the under-expression seen in this dataset might be associated with lower 

blood insulin levels by increasing insulin sensitivity. 

	

4.3.4 Path-sets reveal genes frequently dysregulated in disease 

Comparing the path-sets across the 141 experiments in the dataset (here using the shared-genes 

path-sets, which are based on only the 3724 genes measured in all experiments) allows 

identification of genes which are frequently dysregulated in many different diseases.  These 

genes may represent a ‘stress response’ which is not specific to the disease, but which form a 

more general response to disease e.g. involvement of the immune system.  Note that 15 diseases 

are represented twice in the dataset, 2 diseases represented thrice, and one disease (multiple 

sclerosis) being represented four times, leaving a total of 119 unique diseases.  Given the 

difference that can exist between two measurements of the same disease (as has been shown in 

Chapter 3) these replicate experiments were retained for the following analysis, which 

therefore more properly refers to genes dysregulated in multiple experiments, rather than 

diseases. 

Ignoring those genes which do not appear in any path-sets, each gene appears in a median of 4 

path-sets; however, some genes are in many more path-sets, with 54 genes appearing in the 

path-sets of 25 or more experiments (Appendix K).  One gene, the epidermal growth factor 

receptor (EGFR), is in the path-sets of 66 experiments, which include cancers (EGFR is known 

to play a role in many cancers203) as well as other disease types including skin diseases and a 

number of rare syndromes.  

Gene Ontology biological process (GO BP) enrichment analysis of these 54 genes returned 14 

terms, mostly related to signalling, including biological regulation, signal transduction and 
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cell communication.  This is unsurprising given that the dysregulated paths are based on the 

OmniPath network, which is designed to reflect signalling interactions; although other 

significant terms were not directly related to signalling, including negative regulation of 

apoptotic process and metabolic process (see Appendix K).  These terms suggest mechanisms 

through which these commonly dysregulated genes may influence the general response to 

disease.  

This analysis was repeated for genes in multiple LFC-sets and random-path-sets.  There is less 

overlap between the LFC-sets than between the path-sets, with genes in LFC-sets being 

dysregulated in a mean of 5.5 LFC-sets each, compared to the mean of 6.1 path-sets (although 

the median value for both is 4), and no gene appearing in the LFC-sets of more than 34 

experiments (compared to 14 genes appearing in more than 34 path-sets).  One explanation for 

this is that whereas LFC-sets focus on the individual genes with the highest differential 

expression, which will vary between diseases and experiments, path-set analysis returns sets 

of interacting genes which show co-ordinated expression dysregulation, which may be more 

likely to be replicated in multiple experiments due to e.g. the involvement of these gene sets in 

particular biological processes.    

Interestingly, despite the selection of genes in random path-sets having a strong relationship to 

their degree (Figure 4.5), there is comparatively little overlap between the random path-sets: 

taking the total number of occurrences of a gene in the 100 random path sets and dividing by 

100, genes are included in a mean of 4.5 random-path-sets each.  This suggests that the overlap 

seen in the path-sets is not simply due to the repeated selection of high-degree nodes across 

multiple experiments.   
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Figure 4.5 Moderate relationship between the number of dysregulated path-sets in 
which a gene is included and the degree of the gene in OmniPath 
The	 figure	 shows	 the	 number	 of	 genes	 which	 are	 dysregulated	 in	 multiple	 experiments	

according	to	membership	of	the	dysregulated	path-set	(purple	points),	membership	of	the	same	

number	of	most	highly	dysregulated	genes	(LFC-set;	cyan	points),	or	membership	of	path-sets	

based	on	permuted	log-fold	change	profiles	(random-path-set;	grey	points).		Genes	which	are	

included	 in	more	path-sets	 tend	to	be	of	higher	degree	 in	 the	OmniPath	signalling	network,	

although	this	relationship	is	weaker	than	in	the	random-path-sets	(which	represent	the	absence	

of	log-fold	change	information).		The	plot	also	shows	that	there	are	some	genes	which	are	in	

the	dysregulated	path-sets	of	over	40	experiments,	suggesting	an	influential	role	of	these	genes	

in	the	disease	response	of	diverse	disease	types.		Note	that	the	x-axis	is	multiplied	by	100	for	

the	random-path-sets,	as	the	randomization	was	repeated	100	times	across	the	141	diseases.	

 

GO BP enrichment analysis of the 54 genes most frequently in LFC-sets did not return any 

significant terms.  Enrichment analysis of the 54 genes most frequently in random-path-sets 

returned 8 terms, all of which were signalling pathways also returned by the analysis for the 

real path-sets (e.g. biological regulation, signal transduction and cell communication).  This 

could be explained by the relatively strong relationship between the number of random-path-

sets containing a gene and the degree of that gene (R2 of 0.679; Figure 4.5): high-degree nodes 

in a signalling network will tend to be linked to signalling-related functions.  This relationship 

confirms that in the absence of coherent log-fold change information, path-set analysis tends 

to select genes of high degree. 
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By contrast, there is almost no relationship between the number of LFC-sets containing a gene 

and the degree of that gene (R2 of 0.003).  The line of best fit shown in Figure 4.5 even suggests 

a slight negative trend, i.e. genes with high log-fold change values in multiple experiments do 

not tend to be central in the network.  This in contrast to the genes frequently in path-sets, 

which show a moderate trend towards higher degree (R2 of 0.470) but not as strongly as the 

random-path-sets.  These genes may represent ‘pressure points’ in the network whose 

dysregulation is often associated with further dysregulation in their network neighbours.  These 

genes would be expected to have higher-than-average degree, as they must interact with many 

different genes in order to influence diverse biological processes in different diseases; at the 

same time, the most important (highest degree) nodes in the network are unlikely to be 

frequently dysregulated, as these will be the critical nodes, dysfunction in which could be lethal 

to the cell.   

 

4.3.5 Shared edges between diseases reveal unexpected disease 

relationships which are enriched for shared drugs and drug-

interacting genes 

Path-set analysis enables the comparison of diseases through shared dysregulated edges.  A 

shared edge is an interaction between two genes that is contained in the path-set of both 

diseases, where each gene is regulated in the same direction in both diseases.  Whilst shared 

dysregulated genes might represent isolated points on the biological network, shared edges are 

a stricter method of comparison which helps to make a stronger case for common mechanisms 

between two diseases.   
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Figure 4.6 Disease similarity based on number of shared dysregulated edges shows known and novel similarities between diseases 

Many	 of	 the	most	 significant	 similarities	 are	 between	 different	 experiments	measuring	 the	 same	 disease	 (such	 as	 clear-cell	 renal	 carcinoma,	
Duchenne	muscular	dystrophy,	and	Parkinson’s	disease)	or	between	diseases	of	similar	pathogenesis	or	anatomical	location	(such	as	head	and	neck	
squamous	cell	carcinoma	and	esophageal	squamous	cell	carcinoma).	 	Other	similarities,	such	as	between	cervical	 intraepithelial	neoplasia	and	
dengue	fever,	are	less	expected.		
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Figure 4.6 shows a clustering of diseases according the size of their shared-edge-set, based on 

676 significant disease pairs of a possible 9,870 pairs (see Methods for details of the similarity 

score calculation, including the permutation test to discover if the number of edges shared 

between two diseases is greater than would be expected by random chance).  The shared-edge-

sets were based on path-sets calculated from the 3,724 genes measured in all diseases, and 

using a more lenient threshold of 500 in order to capture as many shared edges between 

diseases as possible.  If a threshold of 100 was used for this analysis, proportionately fewer 

shared edges were found (Appendix L).   

Many of the clusters in Figure 4.6 reflect known disease relationships: there are strong edge 

similarities between multiple experiments measuring the same or similar diseases (renal clear 

cell carcinoma; nasopharyngeal carcinoma; Sjogren’s syndrome; Parkinson’s disease; 

ulcerative colitis and Crohn’s disease; Duchenne muscular dystrophy) as well as between 

diseases which are symptomatically (polycystic ovary syndrome and acne) or pathologically 

(head and neck and esophageal squamous cell carcinomas) related.  Overall, 45% of significant 

pairs are in the same Disease Ontology (DO) top-level class (e.g. ‘disease of anatomical 

entity’); 18% in the same DO sub-class (e.g. ‘musculoskeletal system disease’), making them 

2.5 times more likely to be in the same sub-class than diseases that do not share edges (Table 

4.2).  Interestingly, 17 of the 27 same-disease pairs (two experiments measuring the same 

disease) do not share significant numbers of edges, again illustrating the discordance between 

different measurements of the same condition. 
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Table 4.2 Biological relevance of shared edges 
Disease	pairs	that	share	a	significant	number	of	dysregulated	edges	are	more	likely	to	be	in	
the	same	ontological	class,	more	likely	to	share	disease-associated	genes,	and	are	more	likely	
to	be	treated	with	the	same	drugs,	than	diseases	that	do	not	share	dysregulated	edges.		Note	
that	this	analysis	includes	disease	pairs	which	are	different	experiments	in	the	same	disease	
(e.g.	Parkinson’s	disease,	Parkinsons’	disease.1). 
	 Disease pairs 

with shared 
paths 

Disease pairs 
without 
shared paths 

Fisher test 
p-value 

In the same Disease Ontology top-level 

class 

44.7% 26.3% <2.20e-16 

In the same Disease Ontology sub-class 18.1% 7.2% <2.20e-16 

Share drugs (in Phase III clinical trials 

or approved) 

17.2% 8.0% 1.33e-13 

Share disease-associated genes 19.2% 10.8% 5.27e-10 

 
 
However, many disease pairs which share edges are not obviously related, such as the 

connections between diseases in different DO classes shown in Table 4.3.  Some of these 

relationships are not entirely unexpected – for instance, acne is a symptom of polycystic ovary 

syndrome, so it is unsurprising to find that these two share some dysregulated processes.  Other 

relationships are less obvious, such as between cervical intraepithelial neoplasia (CIN) and 

Dengue fever.  Table 4.3 shows that their shared-edge-set contains five drug-interacting genes 

for CIN, suggesting that the shared edges are strongly linked to a known (druggable) biological 

process dysregulated in CIN, which may also be relevant in Dengue fever.   
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Table 4.3 Selected disease pairs with significant numbers of shared edges 
65%	of	significant	shared-edge-sets	contain	disease-associated	genes	or	drug-interacting	genes	
(KDGs)	for	one	or	both	of	the	diseases.		Under	the	guilt-by-association	hypothesis,	a	KDG	for	
one	disease	in	the	shared-edge-set	with	another	disease	may	indicate	possible	relevance	of	that	
KDG	in	the	other	disease.		This	is	especially	of	interest	for	novel	disease	connections	(those	in	
different	Disease	Ontology	 (DO)	 classes	or	 subclasses)	and	 links	between	common	and	 rare	
diseases	(italicized).		

Disease pair Number of 

genes in 

shared 

dysregulated 

edges 

Disease-

associated 

genes in 

shared 

dysregulated 

genes 

Drug-

interacting 

genes in 

shared 

dysregulated 

genes 

In the same DO subclass 

Crohn’s disease.1, ulcerative colitis 98 STAT3 
PLAU IL1R1 
IL7R 

ENG 
ANXA1 
MMP9 

Atopic dermatitis, psoriasis 51 STAT3  CCND1 
STAT3 

Cervical squamous cell carcinoma.1, esophageal 

squamous cell carcinoma 
96 RB1 TOP2A 

ITGB3 

In different DO (sub)classes 

Hutchinson-gilford progeria.1, thrombocythemia 54 PTPN11 - 

Epidermolysis bullosa simplex, prostate cancer 15 SMA4 
GNAQ 

ADRA1A 
PRKCA 

Cervical intraepithelial neoplasia, dengue fever 77 - BIRC5 
STMN1 
BRCA1 
RRM1 
RRM2 

Acne, polycystic ovary syndrome 48 IRF1 ITGB2 

Actinic keratosis, sepsis 33 - PRKCA 
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Overall, 42% of significant shared-edge-sets contain a disease gene for at least one of the 

diseases, and 52% of significant shared-edge-sets contain a drug-interacting gene for at least 

one of the diseases.  This figure increases the greater the number of edges that are shared above 

random, so for the top 100 most significant disease pairings (of the 676 significant pairs, the 

100 pairs with the greatest difference in the number of edges shared from the median number 

of shared edges observed in the random permutation test – this is actually 106 pairs here, due 

to ties), 62% of shared-edge-sets contain a disease-associated gene and 75% a drug-interacting 

gene.  Excluding same-disease pairs (e.g. Parkinson’s disease, Parkinson’s disease.1), 7.4% 

and 15.9% of these genes respectively are relevant to both diseases. 

	

Table 4.4 Disease-associated and drug-interacting genes in shared edges  
Where	the	shared-edge-set	of	two	diseases	includes	a	disease-associated	or	drug-interacting	
gene,	this	suggests	that	the	shared	edges	are	capturing	a	disease-relevant	process,	particularly	
where	this	gene	is	associated	with	both	diseases.		For	the	top	100	most	significant	disease	pairs	
(those	with	 the	highest	number	of	 shared	edges	compared	 to	 random	expectation),	16%	of	
drug-interacting	genes	in	shared	edges	are	relevant	to	both	diseases.		This	suggests	that	some	
of	the	remaining	genes	(currently	associated	with	only	one	disease)	could	also	be	relevant	drug-
interacting	genes	in	the	other	disease,	leading	to	potential	drug	repurposing	suggestions.	
	 All 676 

significant 

disease pairs 

Top 100 most 

significant 

disease pairs 

Percentage of significant disease pairs which 

include a disease-associated gene for either 

disease in their shared-edge-set 

41.7% 62.2% 

Percentage of these genes associated with both 

diseases (excluding same-disease pairs) 

6.4% 7.4% 

Percentage of significant disease pairs which 

include a drug-interacting gene for either disease 

in their shared-edge-set 

51.9% 74.5% 

Percentage of these genes associated with both 

diseases (excluding same-disease pairs) 

9.8% 15.9% 
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The percentage of drug-interacting genes in shared edges which are applicable to both 

diseases suggests that within the shared-edge-sets, there may be other drug-interacting genes 

currently associated with only one of the diseases which could be applicable in the other 

disease.  This could imply the possibility for drugs to be repurposed from one disease to the 

other.  In fact, diseases that share edges are 1.78x as likely to share drugs than diseases that 

don’t share edges (Table 4.4), rising to 3.38x as likely for the top 100 most significant disease 

pairings. 

 

4.3.6 Shared paths highlight shared mechanisms between rare and 

common diseases which may be used for drug repurposing 

The shared-edges approach is particularly useful for investigating connections between 

common and rare diseases, enabling the discovery of potential disease-associated genes 

through an association transfer approach: common diseases are usually better studied than rare 

diseases, so are more likely to have known disease-associated genes.  If these KDGs are 

associated with processes shared by the two diseases, then they could feasibly also be important 

in the rare disease. 

One example of a connection between a common and a rare disease is the link between 

polycystic ovary syndrome and Pompe disease.  Polycystic ovary syndrome (PCOS) is a 

common condition in which elevated levels of androgens are produced in the ovaries, resulting 

in anovulation, irregular periods, and difficulty conceiving.  The exact cause is not known, but 

it is thought to be associated with high blood insulin levels caused by insulin resistance.  Pompe 

disease (otherwise known as Type II glycogen storage disease) is an inherited metabolic 

disease caused by deficiency in the acid alpha-glucosidase enzyme, which results in the 

accumulation of glycogen inside cellular lysosomes, causing progressive muscle wasting, liver 

enlargement, and respiratory difficulties. Interestingly, polycystic ovaries are known to appear 

in females with glycogen storage disease at a much higher prevalence than in healthy 

females204, although without necessarily displaying related symptoms such as amenorrhea205; 

the link is thought to be due to impaired glucose tolerance in Pompe disease patients. 
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Figure 4.7 Paths dysregulated in both polycystic ovary syndrome and Pompe disease 

The	shared	paths	are	centred	around	the	tyrosine	kinases	LYN	and	SYK,	and	show	the	interaction	
of	SYK	with	integrin-beta	2	(ITGB2),	a	target	of	the	PCOS	drug	simvastatin.	The	entire	network	
component	is	upregulated	in	both	diseases,	aside	from	a	single	down-regulated	gene,	EGFR.	

		

Figure 4.7 shows the shared edges dysregulated in Pompe disease and PCOS.  The shared 

dysregulated components are centred around two hub genes, LYN and SYK.   Activation of 

spleen tyrosine kinase (Syk)206, and possibly tyrosine-protein kinase Lyn (Lyn)207, together with 

insulin-mediated activation of PI3-kinases208 (in Figure 4.7, represented by PIK3R2, PIK3CG, 

PIK3CD), is involved in activation of Akt (protein kinase B).  Akt inactivates glycogen synthase 

kinase 3 (GSK-3)207, inducing glycogen synthesis.  The upregulation in the genes 

corresponding to these kinases might therefore be indicative of increased glycogen synthesis, 

which would seem counter-intuitive: in PCOS, decreased insulin-stimulated glycogen 

synthesis has previously been reported in granulosa cells209.  It should be noted, however, that 

3 of the 7 PCOS samples in the gene expression study used here were from non-insulin-resistant 

patients, which might be one explanation for the observed upregulation in this part of the 

glycogen synthesis pathway.  In Pompe disease, increased glycogen synthesis also seems 

counter-intuitive, but could be related to the inability to break down stored glycogen – glycogen 

storage has previously been found to correlate with an increase in glycogen synthesis-

promoting factors with in a murine model of Pompe disease210. 
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Also highlighted in Figure 4.7 is the upregulated integrin-beta 2 (ITGB2), a drug-interacting 

gene in PCOS which participates in a two-way interaction with SYK.  ITGB2 is the beta subunit 

of the integrin LFA-1, which is inhibited by simvastatin211.  Statins, such as simvastatin, act by 

inhibiting HMG-CoA reductase, which has two possible therapeutic mechanisms in PCOS.  

The first is the reduction of cholesterol synthesis, which may in turn result in decreased 

androgen production; the second is through the reduced production of another product of the 

same pathway, dolichol212.  Dolichol is required for maturation of insulin receptors, so 

decreasing its levels may therefore reduce the effects of excess insulin in PCOS212; in Pompe 

disease, this could potentially support the reduction of glycogen synthesis through reduced 

insulin receptor levels.  Unfortunately, a literature search reveals that this finding may not be 

particularly promising due to the potential of statins to cause myopathy in patients with Pompe 

disease213.  It is also worth noting that the activity of simvastatin on the shared target ITGB2 

specifically is thought to produce an anti-inflammatory effect214 rather than being involved in 

the HMG-CoA pathway, therefore the shared path-set shown in Figure 4.7 might not be directly 

relevant to the desired mechanism of action. 
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Figure 4.8 Paths dysregulated in polycystic ovary syndrome and Pompe disease, 
including first-neighbour known disease-associated genes 

The	first-neighbours	of	genes	in	the	shared-edge-set	include	multiple	genes	which	are	known	
genetic	variants	or	drug-interacting	genes	in	PCOS.		Only	one	of	these	first-neighbour	genes	is	
related	to	Pompe	disease,	which	is	somewhat	expected	due	to	the	rarer	disease	being	less	well	
studied	–	Pompe	disease	has	only	3	known	disease-associated	genes,	compared	to	78	for	PCOS.	

 

As discussed in Section 4.3.3, KDGs that are not differentially expressed in disease can be 

associated with dysregulated paths by searching the first-neighbour genes.  Amongst the first-

neighbour KDGs of the shared-edge set of PCOS and Pompe disease (Figure 4.8) is MTOR.  

The mechanistic target of rapamycin complex 1 (mTORc1), of which mTOR is a core 

component, is inhibited by metformin, a drug commonly prescribed for type II diabetes due to 

its ability to decrease high blood glucose levels, but which may also be used in PCOS215.  

Chronic activation of mTORc1 is known to play a role in insulin resistance due to feedback 

inhibition of insulin signalling, and so its inhibition by metformin may improve the metabolic 

profile in insulin-resistant individuals216.   
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In Pompe disease the problem is not insulin resistance but glycogen accumulation.  Here, 

mTOR inhibition is also of therapeutic interest: inhibition of mTOR via rapamycin has been 

shown to block amino-acid induced inactivation of glycogen synthase kinase 3, decreasing 

glycogen synthesis217, making it a potential therapeutic avenue for glycogen storage diseases.  

Rapamycin therapy has demonstrated some benefit in a canine model of glycogen storage 

disease type III218 and may also be potentially useful in Pompe disease (glycogen storage 

disease type II)219, although this is not without controversy220.  Given the similarity between 

PCOS and Pompe disease discussed here, perhaps metformin could also be considered as a 

useful mTOR inhibitor in Pompe disease. 
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4.3.7 Path-set analysis captures the mechanism of action of cediranib 

 
Table 4.5 Known disease-associated genes and drug targets (KDGs) in path-sets 
compared to in the same number of OmniPath genes by absolute log-fold change or 
random selection. 

Path-sets	 capture	more	KDGs	compared	 to	 selecting	 the	 same	number	of	genes	by	 log-fold	
change	(LFC-set)	or	random	selection.		

	  Path-set LFC-set Random-

path-set 

Random-

gene-set 

What 

proportion of 

sets contained at 

least one KDG? 

Drug 

targets 

only 

0.18 0.24 0.05 0.02 

Disease- 

and drug 

targets 

0.47 0.32 0.34 0.23 

How many 

KDGs were 

found per set on 

average? 

Drug 

targets 

only 

0.47 0.35 0.06 0.02 

Disease- 

and drug 

targets 

1.05 0.74 0.60 0.31 

	

Path-set analysis was also applied to human drug response datasets, to investigate whether a 

drug’s path-set may be able to reveal details of its mechanism of action.  The analysis in Section 

4.3.2 was repeated for the drug response datasets, although here, the definition of a relevant 

gene is slightly different.  For drug response, a relevant gene is defined as a the gene 

corresponding to a target related to the drug’s primary mechanism of action (as defined in 

Section 4.2.2). Given that most drugs in this dataset have only one primary target, and that only 

33% of target genes show non-zero differential expression in the corresponding dataset, it is 

not surprising to find that the primary target could only be discovered in three of the 17 drug 

path-sets for which a primary target was available – cediranib, sunitinib, and tamoxifen. 
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However, the definition of a relevant target can also be extended to include disease-associated 

genes for the indication in which the drug experiment took place, under the assumption that an 

effective drug might target proteins located near to disease genes in the interactome (a 

loosening of the disease modules concept described in the work of Guney et al.221).  This could 

provide a way to evaluate whether the drug path-set contains genes related to its mode of action 

in cases where the target itself is not differentially expressed.  Under this definition, drug-

relevant targets are discovered in 9 of the 19 datasets, finding a mean of 1.05 targets per path-

set (compared to a mean of 0.74 targets per LFC-set). 

 

 

 

Figure 4.9 Signalling paths dysregulated following cediranib administration  
The	dysregulated	path-set	for	the	vascular	endothelial	growth	factor	receptor	(VEGFR)	inhibitor	
cediranib	shows	downregulation	of	its	VEGFR	targets	(FLT1,	FLT4,	and	KDR)	and	dysregulation	
of	downstream	nodes,	which	may	be	mediated	through	FYN	kinase.	
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The path-set of cediranib, a vascular endothelial growth factor receptor (VEGFR) inhibitor for 

the treatment of various cancers, was examined as a case study.  No known disease-associated 

genes of alveolar soft part sarcoma (the rare cancer in which cediranib response was studied) 

are seen in the cediranib path-set, but genes corresponding to its target VEGFRs (FLT1, FLT4, 

and KDR) are shown to be down-regulated (Figure 4.9).  The kinase Fyn, whose corresponding 

gene forms a hub in this path-set, is activated by VEGFR1 (FLT1) signalling222; FYN 

expression is decreased in this study, suggesting possible transcriptomic disturbance following 

VEGFR1 inhibition.  By contrast, the LFC-set of cediranib does not include its target FLT4, 

and does not capture the hub gene FYN, thereby missing a possible network structure through 

which transcriptomic signals of VEGFR inhibition may be transmitted in the cell.  Another 

cediranib target whose corresponding gene is shown in Figure 4.9 is platelet-derived growth 

factor receptor alpha (PDGFRA), which is also inhibited by cediranib due to its structural 

similarity to VEGFR223.  In contrast to the VEGFR genes, however, PDGFRA is upregulated 

following cediranib administration, suggesting a role for different transcriptomic feedback 

mechanisms in cediranib response.   
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4.4 DISCUSSION 

Given the noise inherent to gene expression data, new methods of analysis are needed which 

bridge the gap between individual fold change analysis and high-level biological pathway 

methods.  This chapter describes the use of path-set analysis to relate gene expression changes 

on the human signalling network, enabling the discovery of dysregulated signalling paths in 

disease and drug response.  The adaptation of the original framework proposed by Sambarey 

et al.121 constrains the paths to differentially expressed genes, forming disease-specific 

subpaths which can be used to compare dysregulated paths across diseases. 

The dysregulated paths are enriched for known disease-associated genes and drug-interacting 

genes (KDGs) compared to a gene-set of the same size based on magnitude of differential 

expression (Table 4.1).  Whilst the aim of path-set analysis is not to find putative disease-

associated genes (in which case limiting the path-sets to differentially expressed genes would 

be counter-productive), their presence confirms the relevance of the returned paths, and aids 

the interpretation of the observed gene expression by showing how dysregulated genes are 

interacting with genes known to influence the pathogenesis or treatment of disease.  In drug 

response datasets, while only a few path-sets captured the primary targets of the drug (possibly 

due to the low likelihood of the drug’s target to be differentially expressed in response to drug 

administration224,225), path-set analysis captured known disease variant genes for the disease in 

which the drug was given for 9 of the 19 drug path-sets.  This could be used as a measure of 

efficacy of a drug in a given disease, i.e., an ‘effective’ drug (one that treats the underlying 

cause of a disease rather than just the symptoms) is one that affects the expression of disease-

associated proteins.  This concept was introduced by Guney et al.221, who used the proximity 

of a drug’s targets to disease-associated proteins as a measure of efficacy, successfully applying 

this measure to make suggestions for drug repurposing.   

Applying path-set analysis over multiple diseases allows the identification of genes which are 

frequently dysregulated in disease. These genes may be acting as points of influence in the 

network whose modulation is associated with the development of a disease, either causal 

(resulting from a disruption in function through a variant or mutation) or opposing (alleviating 

symptoms of the disease through pharmacological interference).  The frequency with which 

these genes are involved in dysregulated paths shows a moderate correlation with their degree 

(one measure of network importance), which is not evident for genes which show high log-

fold changes in many diseases (Figure 4.5).  Previous research on the network topology of 
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disease-associated processes has been focused on genetic variants, and this has produced 

somewhat differing results226.  One key study found that ‘essential’ genes required for survival 

tended to be network hubs, whereas disease-associated genes tended to be non-essential, non-

hubs15.  However, genes which show somatic mutations in disease (i.e., cancer-associated 

genes) tend to have a more central network position15,226; and research looking specifically at 

rare diseases has found that genes associated with rare diseases do tend to be hubs227.  Similarly, 

drug targets should be ‘highly influential in, but not toxic to, the functioning of the entire 

network’228; drugs targeting hub genes tend to have more side effects229.  The moderate 

correlation between a gene’s frequency in path-sets and its degree may be explained by the 

same principle: genes that are moderately important in signalling are frequently in path-sets, 

but the most important (highest-degree) genes which are essential to the functioning of the cell 

tend not to show expression dysregulation, and are therefore not so likely to be included in 

path-sets.   

As every gene in a disease’s path-set is differentially expressed in the disease, path-set analysis 

can also be used to identify dysregulated paths which are shared between diseases.  Disease 

pairs that share edges are 2.5 times more likely to be in the same Disease Ontology subcategory 

than those that don’t (Table 4.2), confirming that shared edges reflect known disease 

relationships.  Potentially more interesting are the cases where dysregulated paths are shared 

between two diseases which are not known to be related.  The case study of PCOS and Pompe 

disease illustrated how path-set analysis can highlight dysregulated processes shared between 

phenotypically distinct diseases, and how drug-interacting genes in shared paths might be used 

to suggest potential drug-sharing options between the two diseases.  With 52% of disease pairs 

containing a drug-interacting gene for at least one of the diseases, this analysis could be 

extended to many other disease pairs.  This analysis can also be applied to non-differentially 

expressed first-neighbour genes, as shown with the example of metformin in PCOS and Pompe 

disease.  Targeting first-neighbours of differentially expressed genes has been proposed as a 

drug repurposing strategy in cancer230, and network proximity to differentially expressed genes 

has been shown to be a good predictor of potential drug targets for repurposing231, suggesting 

that this could be a viable repurposing strategy where diseases share dysregulated edges.  

A potential limitation of path-set analysis is the applicability of the general human signalling 

network on which this method is based.  The interactome is known to vary across different 

tissues and may be altered in disease232; future developments of path-set analysis could 

incorporate tissue- or disease-specific interactomes which would provide a more accurate 
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picture of interactions taking place in individual diseases.  Unfortunately, our knowledge of 

the general human interactome (much less condition-specific alterations) is highly 

incomplete84, and although this work is based on the most comprehensive signalling network 

published to date82, it will necessarily contain inaccuracies and omissions.  Related to this, 

genes with no known interactions are necessarily excluded from the analysis, meaning that 

important genes may potentially be omitted.  This situation should improve in future, as our 

knowledge of the interactome develops further.  Despite its current limitations, network data 

represents a valuable ‘extra dimension’ whose integration with gene expression data can result 

in improved interpretability and ease of analysis. 

Path-set analysis represents a valuable addition to the transcriptomic analysis toolkit, which 

can be used to identify interactions between dysregulated genes, genetic variants, and drug-

interacting genes in disease.  Here, path-set analysis was used to discover dysregulated 

processes shared between diseases, highlighting common molecular mechanisms underlying 

disease and revealing new connections between conditions.  As the vast amount of 

transcriptomic data continues to grow, this type of analysis will be key to improving our 

understanding of gene expression in disease. 
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5 UNDERSTANDING AND PREDICTING 

DISEASE RELATIONSHIPS THROUGH 

SIMILARITY FUSION 
 
This work was previously published as Erin Oerton, Ian Roberts*, Patrick S. H. Lewis*, Tim Guilliams*, Andreas 
Bender. Predicting disease relationships through similarity fusion. Bioinformatics Advance Access published Aug 
30, 2018, doi:10.1093/bioinformatics/bty754. 

* Healx Ltd, Park House, Castle Park, Cambridge CB3 0DU, United Kingdom 

The work represents the result of a collaboration with the listed co-authors.  All work described here was carried 
out by the author except the text-mining for literature co-occurrence of diseases, as noted in the text.  All analyses, 
text, and figures were produced by the author, incorporating comments from co-authors. 

 

SUMMARY 

Relationships between diseases can be defined on multiple levels, from the observable 

phenotype down to molecular-level events.  Combining information across these levels could 

yield a systems-level view of disease relationships, aiding our understanding of common 

biological processes taking place in disease.  However, each of these levels differs in features 

and information content, and it is unclear how they could be most effectively combined.  In 

this chapter, a similarity fusion approach is proposed which enables comparison of diverse data 

types.  This method is applied to 6 different data types (ontological, phenotypic, literature co-

occurrence, genetic association, gene expression, and drug indication data) for 84 diseases to 

create a ‘disease map’: a network of diseases connected at one or more biological levels.  

The fused similarities are used to classify diseases into known categories from the Disease 

Ontology.  With a mean Random Forest AUROC of 0.95 for these two tasks, the disease map 

scores over 10% higher than the mean of its component spaces, confirming that the fused values 

are good predictors of known disease relationships.  As well as known relationships, 15% of 

links in the disease map are novel links that span traditional ontological classes, such as 

between psoriasis and inflammatory bowel disease.  62% of diseases linked in the disease map 

share drugs (approved or in Phase III clinical trials), illustrating the relevance of the disease 

map to the identification of potential therapeutic relationships.  The analysis presented here 

illustrates how similarity fusion can give greater insight into shared disease biology than 

individual data types alone. 
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5.1 INTRODUCTION 

Establishing relationships between diseases increases our understanding of disease biology, 

aiding the identification of shared mechanisms or development of new treatments, for 

example through drug repurposing. As discussed in Chapter 1, existing disease classification 

systems such as the International Classification of Diseases8 and Medical Subject Headings11 

are based on established clinical relationships between diseases.  There is therefore great 

biological and pharmacological interest in the identification of novel disease relationships 

using new types of evidence arising from the development of bioinformatics technologies.   

As well as the gene-expression based approaches to relating diseases covered in Section 

1.4.1.240,107, other -omics data types that have been used to explore disease relationships 

include disease-associated genes15,233,234, protein interaction networks84, pathways235 and 

biological processes236.  Rather than examining each of these different data types in isolation, 

however, recent studies have related diseases by considering multiple data types 

simultaneously.  These data integration approaches can provide a more comprehensive 

understanding of disease, potentially reflecting interactions between the different layers of 

the biological system237 where links at one layer (e.g. genetic variance) are associated with 

changes at another layer (e.g. gene expression or phenotype). Recent examples have 

demonstrated how this can be achieved through the use of heterogeneous networks, such as 

the DiseaseConnect web server developed by Liu et al.238, or through matrix factorization 

approaches, such as that presented by Zitnik et al.239. 

However, these approaches do not quantify the overall strength of the relationship across 

multiple levels.  Defining a measure of disease similarity that takes into account multiple data 

types is not straightforward, as such a measure must consider differences between properties 

such as information content122.  Sun et al.240 evaluated disease similarity by defining a feature 

vector for each disease in which every element (genes, chemicals, pathways, and GO terms) 

was weighted according to its information content.  The downside of this approach is that it 

requires an entry for each entity in the feature universe, needing a feature vector of tens of 

thousands of dimensions to represent just four spaces.  Computing similarity across multiple 

spaces by this approach therefore does not scale readily to large numbers of feature spaces.  

In this work, this issue is addressed by translating the feature vectors in each space into 

pairwise disease similarities, thus capturing disease relationships in a lower-dimensional 

space before performing the integration step to define an overall measure of similarity.  This 
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‘similarity fusion’ approach has been successfully applied to integrate data in drug 

repurposing241,242, gene prioritization243 and patient subtyping and survival analysis244,245.  

Yet there have been few applications of this approach to quantify disease similarity.  In one 

study, disease similarities were computed by integrating literature-based similarity of 

diseases with protein interaction network topology-based similarity of their associated 

genes246; more recent work related diseases through ‘meta-correlation’, combining similarity 

amongst gene expression and electronic health record profiles of diseases247.  Another study 

integrated similarity in nine different spaces according to a pre-defined ‘importance’, with the 

resulting relationships weighted towards genetic similarities248.  Although the relative 

‘importance’ of each relationship type naturally depends on the context in which the map is 

used, no study has yet defined a general method for the combination of multiple disease 

similarities in an unbiased manner.  In particular, unbiased combination of spaces requires 

consideration of the underlying distributions of similarity in each space.  Here, quantile 

normalization (usually associated with microarray statistics) is used to adjust the distributions 

of similarity in each space, enabling balanced comparison and combination of disease 

similarities across multiple spaces.   

In summary, in this chapter the proposed similarity fusion approach is applied to six different 

data types – ontological, phenotypic, literature co-occurrence, genetic association, gene 

expression, and drug data – to create a disease map: a network of diseases connected at one 

or more biological levels.  The disease links revealed by the map are explored, with a focus 

on disease pairs not previously known to be related, and evaluated against their relation to 

existing disease classifications and drug-sharing relationships. 
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5.2 METHODS 

 

Figure 5.1 Disease similarity fusion workflow 

Disease	 data	 from	 six	 different	 ‘feature	 spaces’	 are	 transformed	 into	 symmetric	 similarity	
matrix	representations.		Feature	sets	for	each	disease	are	formed	of	the	approximately	100	top	
features	in	each	space,	although	the	exact	number	varies	slightly	dependent	on	the	available	
data.		Similarity	matrices	representing	each	individual	feature	space	are	then	normalized	and	
combined	into	a	single	fused	similarity	matrix.	 	The	disease	relationships	represented	by	this	
matrix	can	be	analysed	to	find	novel	links	between	diseases,	or	links	which	may	represent	drug-
sharing	opportunities.	

	

5.2.1 Disease dataset construction 

The disease dataset which formed the basis of this work was compiled based on available 

transcriptomic experiments as described in Section 2.2.  In order to ensure data coverage 

across all six spaces, this was limited to common diseases.  Where multiple transcriptomic 

experiments were present for a disease, one experiment was randomly selected to represent 

the disease.  This resulted in a dataset of 84 diseases, some of which were closely related (e.g. 

asthma and allergic asthma; see Appendix C).  39 of these diseases are in the Disease 

Ontology (DO) class disease of anatomical entity, 25 are in the DO class disease of cellular 
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proliferation, and the remainder are distributed across the other top level DO classes, with the 

exception of class physical disorder (no diseases in the dataset belong to this class).  These 

diseases were mapped to the most closely matching disease terms in each space (e.g. 

‘teratozoospermia’ may map to ‘azoospermia’ or simply ‘male infertility’, depending on what 

representation is available in each space; see Appendix D for details).   

Feature sets for each disease were then constructed as detailed below in each of ontological, 

phenotypic, literature co-occurrence, genetic, transcriptomic, and drug spaces (Figure 5.1) 

using R version 3.3.2133.  The feature set size of phenotypic space was restricted by the 

dataset used; the feature set size of drug space was restricted by the limited number of drugs 

prescribed for each disease.  For the remaining spaces, different feature set sizes of 20, 50, 

100, and 200 were tested.  A feature set size of 100 was chosen, as this captured sufficient 

information in each space whilst not being overly large compared to the fixed-size feature 

spaces (see Appendix M for exploration of different feature set sizes).  The exact number 

may be slightly more or less than 100 for some diseases due to e.g. ties in the data, this is 

detailed for each feature space below. 

Ontological feature space: The Disease Ontology191 was downloaded from 

http://ontologies.berkeleybop.org/doid.obo in December 2016 and used to match disease 

names to their Disease Ontology ID.  The DOSE package249 was used to measure semantic 

similarity between Disease Ontology IDs using Lin’s measure250, which minimizes the number 

of ties between terms.  The feature set for each disease was then calculated as the top 100 most 

similar diseases according to this metric, excluding self-similarity.  When there are ties for the 

top 100th similarity value, all tied diseases are retained, so some diseases have more than 100 

features (up to a maximum of 135).  Two diseases (irritable bowel syndrome and polycystic 

ovary syndrome) have no similar diseases according to DOSE, so these are assigned a feature 

vector of size zero in this space.   

Phenotypic feature space: Disease-phenotype associations were taken from the work of 

Hoehndorf et al.251 who matched diseases with terms from the Human and Mammalian 

Phenotype Ontologies based on literature co-occurrence.  This dataset, which comprises the 21 

most highly-associated Human/Mammalian Phenotype Ontology terms for each disease, was 

obtained from http://aber-owl.net/aber-owl/diseasephenotypes/data/ in November 2016, and 

this formed the feature set for the phenotypic feature space.  Duplicated phenotypes in the 

supplied data (e.g. the term ‘myocarditis’ is found in both the Human and Mammalian 
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Phenotype ontologies) were removed, resulting in 16 of the 84 diseases having only 19 or 20 

features in this space. 

Literature co-occurrence feature space: 13 million Medline abstracts (dating between 2000 

and 2016) were annotated with MeSH term identifiers using a recently published named entity 

recognition system, TaggerOne252.  The normalized pointwise mutual information (NPMI) 

score between MeSH terms in these abstracts was calculated as a measure of co-occurrence.  

This work was carried out by Patrick Lewis, as named in the author list at the beginning of the 

chapter.  These terms mostly represent MeSH disease concepts, although they also include a 

few more general concepts such as ‘body weight’ or ‘infection’, or higher level disease terms 

such as ‘nervous system diseases’ or ‘musculoskeletal abnormalities’.  The feature set for this 

space was the top 100 most highly co-occurring MeSH terms by NPMI score, excluding self-

similarity.  Three diseases had less than 100 co-occurring terms (allergic contact dermatitis 

with 23, male infertility with 55, and juvenile rheumatoid arthritis with 80).  Certain MeSH 

terms overlap with the Human/Mammalian Phenotype Ontology terms used for the phenotypic 

space (e.g. ‘diabetes mellitus’, ‘neoplasms’ and ‘carcinoma’ are examples of terms that are 

included in both sets), so there is a degree of overlap between these two spaces.   

Genetic feature space: Disease-gene associations were downloaded from DisGeNET253 

(http://www.disgenet.org/web/DisGeNET/menu/downloads) in November 2015.  These 

mostly represent associations of type ‘genetic variation’, which includes susceptibility 

mutations, causal mutations, and modifying mutations; there are also a small number of 

associations of type ‘post-translational modification’ and ‘therapeutic’.  Associations of type 

‘AlteredExpression’ were removed to avoid overlap with the transcriptomic feature space, and 

entries for the non-gene ‘NEWENTRY’ were removed.  The feature set was composed of the 

top 100 associated genes by evidence score.  There was high variation in the number of genes 

associated to each disease: 19 diseases have less than 100 associated genes (10 diseases have 

less than 20), but there were also a large number of ties in the data due to the calculation of the 

evidence score for each gene, leading some diseases to have more than 100 associated genes.  

10 diseases had more than 100 genes, up to a maximum of 207 genes for malignant pleural 

mesothelioma. 

Transcriptomic feature space:  Gene expression microarray experiments were selected as 

described in Section 2.2, and differential expression profiles for each probe were generated as 

described in Section 2.3.  The feature ‘universe’ was defined as the set of 4,482 genes measured 



 127 

in all experiments; the feature set for each disease was then calculated as the top 100 of these 

genes by absolute log-fold change at a p-value threshold of <0.05.  

Drug feature space: Drug indication data was downloaded from ChEMBL version 22.1192 

(https://www.ebi.ac.uk/chembl/downloads), as in Section 4.2.2.  The feature set comprised 

approved drugs for each condition.  The number of approved drugs listed for each disease in 

ChEMBL ranges from 0 (for 11 conditions, including four diseases – dengue fever, leukopenia, 

limb-girdle muscular dystrophy, and measles – which could not be mapped to EFO or MeSH 

terms used by ChEMBL) to 72 (for type II diabetes). 

The spaces have different sparsities: phenotype is the most sparse space, with only 7.5% of 

disease pairs having any overlap in their phenotypes; followed by ontological at 12.9%, drug 

at 13.6%, co-occurrence at 58.5%, genetic at 83.3%, and finally transcriptomic space, with 

84.4% of disease pairs having some overlap.  This is related to the size of the feature set in 

each space relative to the size of the feature universe. 

 

5.2.2 Independent comorbidity dataset 
Comorbidity associations based on Medicare records of 13 million patients254 were 

downloaded from sbi.imim.es/data/hudine in July 2018.  Diseases are recorded in this data as 

ICD9 3-digit codes; mapping the set of 84 diseases to these codes resulted in duplicated codes 

for 14 diseases (e.g. type 1 and type 2 diabetes mellitus both map to 250 diabetes mellitus; 

bipolar disorder and major depressive disorder both map to 296 episodic mood disorders; see 

Appendix D for mappings).   

Disease pairs with less than 100 co-occurrences were filtered out (as the relative risk (RR) 

comorbidity measure tends to overestimate for pairs with small numbers of observed 

associations255), leaving 88,347 disease pairs for which comorbidity data was recorded.  800 

of these observations related to disease pairs in the dataset of 84 diseases, which when the 14 

duplicate mappings are included covers 938 (27%) of the 3,486 disease pairs in the dataset.  

Relative risk (RR) was used to quantify comorbidity, where a RR of 1 indicates that diseases 

occur together as often as expected by chance.  The lower quantile, median, and upper quantile 

values of RR in the 800 recorded pairs were 0.76, 1.07, and 1.62.   

RR thresholds of 1.5, 2, and 5 were used to define comorbid disease pairs, with 239, 125 and 

32 of the 800 observed disease pairs respectively meeting these thresholds.  Of the 938 disease 

pairs in the dataset for which comorbidity data exists, the percentage of the 63 disease pairs 
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linked in the map which were comorbid at these thresholds were compared to the percentage 

of the 875 disease pairs not linked in the map which were comorbid at these thresholds.  In 

both cases, duplicate pairs were counted twice (e.g. “type 1 diabetes-obesity” and “type 2 

diabetes-obesity” were counted as two separate pairs although they both map to “250-278” at 

the ICD code level). 

 

5.2.3 Similarity fusion 

Pairwise similarity scores between each of the 84 diseases were calculated based on the 

Jaccard index256 of their feature sets.  In the case of transcriptomic data, the up- and down-

regulated genes are considered separately, and so the Jaccard score was calculated as a 

weighted average of Jaccard scores for the two sets.   

As the distributions of similarity scores within each space are uneven, fusion of the raw 

similarity scores would cause those spaces with higher average scores to dominate the fused 

similarity.  Even if the scores are normalized to the same sum, the fused similarities would 

still be affected by the differences in distribution of similarity values in each space (e.g. 

causing sparse spaces to dominate the fused scores at high similarities).  Quantile 

normalization257 was therefore applied to adjust the distributions of similarity scores towards 

each other, enabling comparison and combination of each space independently of their 

distributions.  

Quantile normalization, which has been previously mentioned in the context of microarray 

normalization (Section 2.1.2), involves replacing each value with the mean value of the same 

rank across each space.  In the example shown in Table 5.1, the maximum similarity scores 

are 0.556 in phenotypic space and 1 in drug space, and so the maximum similarity score in 

both spaces is replaced with the mean of these two values: 0.778.  The second highest values 

are 0.481 in phenotypic space and 0.500 in drug space, so these scores are replaced in each 

space with the mean of 0.4905, and so on.  Adjustment for ties is used, so that tied ranks are 

replaced with the mean of the quantile normalized value across those ranks (orange values in 

Table 5.1). 
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Table 5.1 Example of quantile normalization with adjustment for ties 

Where	there	are	ties	for	a	particular	rank	in	one	space,	the	values	are	replaced	by	the	mean	of	
the	quantile-normalized	values	for	those	ranks:	here	the	tied	values	in	phenotypic	space	are	
replaced	by	the	mean	of	0.475,	0.470,	and	0.465	=	0.470.	

 Raw 
similarity 
scores, drug 
space 

Raw similarity 
scores, 
phenotypic 
space 

New value in 
drug space after 
quantile 
normalization 

New value in 
phenotypic 
space after 
quantile 
normalization 

Highest value 1 0.556 0.778 0.778 

2nd highest 
value 

0.500 0.481 0.491 0.491 

3rd highest 
value 

0.490 0.460 0.475 0.470 

… 0.480 0.460 0.470 0.470 

… 0.470 0.460 0.465 0.470 

 

Following quantile normalization of the similarity values using limma’s normalizeQuantiles 

function, a single ‘fused’ similarity score was computed by taking the mean of the quantile-

normalized similarity values for each disease across each space, resulting in a 3,486-

dimensional similarity vector (or an 84*84 symmetric similarity matrix) forming the basis of 

the disease map. Figure 5.1 shows an overview of this process.  The majority of the analysis 

presented here is based on an unweighted mean of spaces, although the method allows the 

specification of weights in order to adjust the influence of each space on the fused 

similarities, in which case a weighted mean of spaces is calculated.  

 

5.2.4 Defining a significance threshold for disease similarity 

To construct the disease map, a threshold of significant similarity t was defined above which 

diseases are linked, based on 1000 random similarity matrices.  Randomized feature vectors 

were constructed for each disease by sampling from the feature universe, defined as the union 

of all features in that space across all diseases in the dataset, according to their distribution 

(frequency) in the dataset.  Using these random feature vectors, 1000 random fused similarity 

matrices were created.  The 99.99th percentile of the random similarity scores (equivalently, 

the maximum similarity observed in 83% of the random matrices) was taken as the threshold 
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of similarity above which diseases were considered to be linked.  6.9% of similarity values in 

the network were above this threshold.  Cytoscape258 was used for network visualisation. 

  

5.2.5 Evaluating the fused similarity scores 

An initial evaluation of the fused similarity scores was carried out against the independent 

disease comorbidity dataset254 described in Section 5.2.2, which covers 938 of the 3,486 

disease pairs in the dataset.  Any disease-related evaluation data covering all diseases could 

also be used as a feature space, and so for more detailed evaluation a ‘hold-out’ style of 

evaluation was used measuring how well one feature space is represented in the remaining 

five.  Two feature spaces were chosen to capture different aspects of disease-relatedness.   

Firstly, drug approval information (obtained from ChEMBL as described in Section 5.2.2, 

although here drugs in Phase III clinical trials were also included) measures whether 

similarity between two diseases might indicate drug-sharing potential.  Secondly, 

membership of Disease Ontology top-level classes (e.g. disease of anatomical entity, disease 

of cellular proliferation) measures how closely disease associations match established 

notions of clinical similarity.   This was evaluated by training a random forest classifier on 

the pairwise similarity values, using the R package randomForest259 with default parameters.  

To ensure availability of sufficient training data, DO class prediction was split into two 

binary tasks – membership of disease of anatomical entity, and membership of disease of 

cellular proliferation (as these are the two largest classes within the dataset).  Model 

performance was evaluated using stratified Monte Carlo cross-validation, with an 80-20 split 

into training and test sets.  The true positive rate (TPR), false positive rate (FPR), and area 

under the ROC curve (AUROC) were calculated using the function performance from the 

package ROCR260 averaged over 1,000 runs.  In order to display ROC curves, TPR and FPR 

were averaged only over those runs where the mode average number of data points were 

recorded.    
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5.3 RESULTS 

5.3.1 Exploratory disease map analysis identifies existing and novel 

disease relationships  

Similarity fusion (Figure 5.1), which enables comparison and combination of heterogeneous 

data types, was used to create a ‘disease map’: a network of diseases that are linked at multiple 

biological levels.  Links in the disease map represent similarities above a threshold of 

significance (calculated as described in Methods) between the 84 diseases analysed here, as 

shown in Figure 5.2.  81 of the 84 diseases are included in the map, with cystic fibrosis, 

teratozoospermia, and placental malaria not showing any significant links to other diseases.  

Many links in the map correspond to the traditional ontological classes represented by the 

Disease Ontology (DO) – particularly within the DO classes disease of cellular proliferation, 

disease by infectious agent and respiratory system disease – but many novel links were 

additionally observed that span traditional disease categories, here defined as disease pairs 

which are not in the same top-level DO class.  These novel links, which are listed in Table 5.2, 

make up 15% of the links in the disease map. 

The network consists of two densely connected areas, the first containing cancers (yellow 

nodes) and the second composed of inflammatory bowel diseases, skin diseases, and immune 

system diseases (blue and purple nodes).  The strong interconnection between cancers has been 

noted in other disease similarity studies such as the Human Disease Network of Goh et al.261, 

which found that cancers were highly interconnected due to common involvement of tumour 

repressor genes; the disease map confirms that this commonality is replicated across different 

spaces, with different cancers presenting e.g. similar phenotypes, similar gene expression 

responses, and potential to be treated with similar drugs.  The second densely connected area 

links diseases which are less obviously related, which will be explored in Section 5.3.2.  
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Figure 5.2 Disease network resulting from fused similarity scores. 

Connecting	the	most	similar	diseases	defines	a	disease	network,	where	edges	represent	similarity	in	multiple	feature	spaces.		The	network	shown	
here	is	constructed	from	all	6	feature	spaces,	and	connects	diseases	not	only	within	DO	classes	(the	class	‘Disease	of	anatomical	entity’	has	been	
split	into	subclasses	for	clarity)	but	shows	novel	links	(highlighted	in	blue)	which	are	in	different	DO	classes.		More	detail	on	these	novel	links	is	given	
in	Table	5.2.		The	network	shown	is	based	on	a	force-directed	layout,	with	minor	adjustments	to	node	position	for	greater	readability.
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Many of the novel links in the network represent diseases of distinct aetiology which share 

similar clinical presentations, such as actinic keratosis and psoriasis, or chronic obstructive 

pulmonary disease and malignant pleural mesothelioma.  The shared features between each of 

these links can help to understand how these similarities arise: given any linked disease pair, 

the shared features which contribute to their similarity can be identified by simply taking the 

intersection of their feature vectors in each individual space, as demonstrated in Table 5.2.  

 

Table 5.2 Novel links between diseases in different Disease Ontology classes 
Novel	links	are	disease	pairs	which	have	similarity	higher	than	the	significance	threshold,	but	
which	are	not	related	by	the	Disease	Ontology	top-level	classes.		Many	novel	links	are	related	
in	 multiple	 feature	 spaces,	 indicating	 similarities	 on	 different	 biological	 levels.	 	 Some	
relationships	which	 fall	 under	 this	 definition	 are	 expected,	 such	 as	 the	 connection	 between	
inflammatory	bowel	disease	(DO	class	‘disease	of	anatomical	entity’)	and	colorectal	cancer	(DO	
class	 ‘disease	 of	 cellular	 proliferation’),	 as	 they	 affect	 the	 same	 organ	 system.	 	 Other	
connections,	such	as	between	hepatitis	B	and	cervical	cancer,	seem	surprising,	and	in	such	cases	
it	is	helpful	to	interpret	the	features	shared	between	the	two	diseases.	

Novel link Number of shared: 

Phenotypes MeSH terms 
co-occurring 
in literature 

Genetic 
associations 

Dysregulated 
genes 

Drugs 

Acne Actinic keratosis 1 15 1 18 0 

Acne Polycystic ovary 
syndrome 

1 16 0 15 0 

Actinic keratosis Atopic dermatitis 0 10 0 23 0 

Actinic keratosis Psoriasis 0 15 6 25 0 

Actinic keratosis Rosacea 3 15 4 13 0 

Alcoholism Head and neck squamous 
cell carcinoma 

0 33 2 2 0 

Alzheimer's 
disease 

Down syndrome 0 4 17 3 2 

Bacterial 
meningitis 

Influenza 1 12 4 35 1 

Cervical 
squamous cell 
carcinoma 

Chronic hepatitis b 
(carrier) 

0 6 42 0 0 

Cervical 
squamous cell 
carcinoma 

Chronic hepatitis c 0 5 41 1 0 
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Cervical 
intraepithelial 
neoplasia 

Dengue fever 0 0 5 29 0 

Chronic 
obstructive 
pulmonary disease 

Non-small cell lung 
carcinoma 

2 4 1 20 0 

Chronic 
obstructive 
pulmonary disease 

Malignant pleural 
mesothelioma 

2 2 2 19 0 

Colorectal 
adenocarcinoma 

Crohn's disease 3 34 12 21 0 

Colorectal 
adenocarcinoma 

Irritable bowel syndrome 0 29 9 7 0 

Colorectal 
adenocarcinoma 

Ulcerative colitis 3 35 16 26 0 

Crohn's disease Dengue fever 5 1 17 4 0 

Crohn's disease Irritable bowel syndrome 0 22 27 6 4 

Dengue fever Systemic lupus 
erythematosus 

0 10 15 22 0 

Dengue fever Ulcerative colitis 5 2 15 3 0 

Dengue fever Vulvar intraepithelial 
neoplasia 

0 0 0 24 0 

Down syndrome Huntington's disease 0 4 12 0 1 

Endometrial 
carcinoma 

Endometriosis 7 21 8 1 0 

Endometriosis Polycystic ovary 
syndrome 

3 12 7 1 0 

Endometriosis Prostate cancer 3 3 6 1 1 

Chronic hepatitis b 
(carrier) 

Hepatocellular carcinoma 3 29 0 2 2 

Chronic hepatitis b 
(carrier) 

Sarcoidosis 0 2 35 9 1 

Chronic hepatitis c Hepatocellular carcinoma 3 28 0 0 0 

Chronic hepatitis c Sarcoidosis 0 2 31 15 0 

Idiopathic 
pulmonary fibrosis 

Non-small cell lung 
carcinoma 

2 6 7 19 0 

Influenza Leukopenia 2 5 9 21 0 

Influenza Sarcoidosis 0 1 16 21 0 
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Irritable bowel 
syndrome 

Ulcerative colitis 0 24 27 8 1 

Myocardial 
infarction 

Type 1 diabetes mellitus 0 0 17 26 2 

Obesity Polycystic ovary 
syndrome 

0 27 4 1 3 

Sarcoidosis Type 1 diabetes mellitus 0 2 26 15 0 

Sickle cell disease Essential 
thrombocythemia 

0 10 14 5 1 

	

As an example of this analysis, the unexpected connection between cervical squamous cell 

carcinoma and hepatitis B can be examined.  Table 5.2 shows that they share 42 genetic 

associations, including genes in the human leukocyte antigen system involved in antigen 

presentation (HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1, and HLA-

DRB1); this suggests that the link between the two diseases is driven by shared aspects of 

immunological response.  This may reflect the involvement of the human papillomavirus 

(HPV) in the majority of cervical cancer cases, with the immune response playing a key role 

in the development of cervical cancer from an initial HPV infection262.  Likewise, the hepatitis 

B virus is a causal risk factor in the development of hepatocellular cancer263, so shared 

processes between the two diseases could also reflect the interface between infection and 

carcinogenesis of these two DNA viruses. 

If diseases linked in the map are pathologically related, they may be more likely to co-occur in 

the same patient.  Links in the disease map were therefore compared to disease comorbidities 

based on the medical records of 13 million patients254.  The 63 links for which comorbidity 

scores are available had a median relative risk (RR) of 2.35 (i.e. diseases are 2.35 times more 

likely to co-occur than expected by chance), compared to a median of 1.06 for the 875 disease 

pairs (for which comorbidity scores are available) that are not linked in the disease map.  71% 

of these links co-occur in patients at a RR threshold above 1.5, compared to 27% of the non-

linked pairs, or 2.6 times more often.  At higher RR thresholds of 2 and 5, this ratio increases 

to 4.6 and 10.6 respectively.  This relationship suggests that links in the disease map represent 

clinically relevant associations. 
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5.3.2 Case study: psoriasis 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Diseases related to psoriasis 

As	well	as	known	links	to	other	skin	diseases	(light	blue	nodes),	psoriasis	has	links	to	a	number	
of	phenotypically	distinct	diseases	with	an	autoimmune	component,	such	as	alopecia,	arthritis,	
and	 lupus,	 as	well	 as	 inflammatory	 bowel	 diseases	 (turquoise	 nodes),	 with	which	 it	 shares	
genetic	features	related	to	drugs	that	can	be	used	to	treat	both	conditions.	 	There	 is	a	high	
degree	of	interconnection	amongst	this	group	of	diseases,	which	form	one	of	the	most	densely	
connected	areas	in	the	network. 

 

The disease map also allows us to focus on connections of a disease of interest.  As a case 

study, I examine psoriasis and its related diseases, which form a densely-connected region of 

the map (Figure 5.2).  Psoriasis is classified as a skin condition in Disease Ontology, but is 

known to have immune and hereditary components264.   This is reflected in the disease map, 

which links psoriasis to a number of autoimmune diseases as well as to other skin diseases 

(Figure 5.3).  One example is the relationship between psoriasis and the inflammatory bowel 

diseases Crohn’s disease (CD) and ulcerative colitis (UC).  The inflammatory bowel diseases 

are phenotypically distinct from psoriasis, but both diseases involve an autoimmune 

component, and in fact show a degree of co-occurrence in patients265.   
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Examining the feature sets of psoriasis, CD, and UC shows that they share a number of 

associations in genetic space, including Interleukin family genes IL12B and IL23R, involved 

in cytokine-mediated immune response; STAT3, which is activated by the interleukin IL6 (also 

shared) to produce inflammatory T-cells266; and (in psoriasis and UC) human leukocyte antigen 

HLA-B, which also plays an important role in the immune system.  Psoriasis, CD, and UC also 

show shared dysregulation in the expression of several genes including upregulation in the pro-

inflammatory S100 family (S100A8, S100A9) and CXC chemokines CXCL8, CXCL9, and 

CXCL10 (associated with immune system activation).  Importantly, some of their shared 

features are relevant to the drugs prescribed for these diseases: the monoclonal antibodies 

adalimumab and infliximab are antagonists of tumor necrosis factor267, a pro-inflammatory 

cytokine whose corresponding gene, TNF, shows genetic variation in a number of diseases 

including CD, UC, and psoriasis.  

 

5.3.3 Similarity conversion allows comparison of information content 
between feature spaces 

The use of quantile normalization allows the direct comparison of disease relationships present 

in the individual and fused feature spaces.  This can be quantified by the Pearson correlation 

between the pairwise disease similarities in each space (Figure 5.4).  The most similar spaces 

are phenotype and literature co-occurrence, with a Pearson correlation of 0.56.  Both spaces 

are based on literature-mining, and there is also a degree of overlap between MeSH disease 

terms and phenotypes (e.g. ‘diabetes mellitus’ is both a MeSH disease term and a phenotype 

in the Human Phenotype Ontology) so the two spaces are not completely orthogonal.  The 

ontological space also has high correlation with these two spaces, suggesting that these spaces 

capture ‘traditional’ knowledge of disease relationships.  By contrast, the low correlation (<0.2) 

across the three ‘non-traditional’ representations (genetic association, gene expression, and 

drug approval) indicate that disease relationships are highly distinct in each of these spaces.   
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Figure 5.4 Correlation of pairwise similarity scores between feature spaces 
The	 high	 correlation	 between	 phenotypic-,	 ontological-,	 and	 literature-based	 similarity	
indicates	 that	 relationships	 in	 these	 ‘traditional’	 spaces	 are	 relatively	 similar	 to	 each	other,	
whereas	 there	 is	 little	 resemblance	 between	 relationships	 in	 genetic	 association,	 gene	
expression,	and	drug	spaces.		The	fused	space	resembles	relationships	in	all	spaces,	but	appears	
more	 similar	 to	 the	 ‘traditional’	 spaces	 due	 to	 the	multiple	 representation	 of	 relationships	
shared	between	these	spaces.		Lit	=	Literature	co-occurrence;	Ont	=	Disease	Ontology;	Drug	=	
Approved	drugs;	Phen	=	Phenotype;	Gene	=	Genetic	association;	Expr	=	Gene	expression;	Fused	
=	fused	similarity	scores	from	six	spaces.			
 

Whilst the fused similarities have high correlation with each of the individual spaces, the fused 

space seems to resemble the three ‘traditional’ spaces more than the others, despite each space 

contributing equally to the fused similarities.  As may be anticipated, shared similarities in the 

‘traditional’ spaces cause the averaged similarities in the fused space to reflect these shared 

similarities more highly.  This can be adjusted by down-weighting these spaces so that they 

have less influence on the fused similarities.  Weighting the ‘traditional’ spaces so that they 

together make up one-third of the total similarity (instead of half), the similarity of the 

‘traditional’ spaces to the fused becomes 0.56, 0.65, and 0.68 for ontological, phenotypic, and 

literature-based spaces respectively; and 0.58, 0.63, and 0.61 for genetic, expression, and drug 

spaces.  Despite doubling the contribution of the ‘non-traditional’ spaces, the resulting disease 
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map does not appear substantially different (see Appendix N), suggesting that the disease map 

is not overly affected by the similarity of the ‘traditional’ spaces.  The disease map therefore 

fundamentally resembles these traditional spaces, whilst inclusion of the diverse relationships 

from the genetic association, gene expression, and drug spaces adds novel similarities which 

distinguish the disease map from traditional classification systems.  

 

5.3.4 Top disease links in the fused space show high overlap in shared 
drugs relative to the individual spaces 

 

Figure 5.5 Mean Jaccard overlap of drugs (approved or in Phase III clinical trials) 
between disease pairs linked at different thresholds of similarity   

Diseases	that	are	highly	similar	in	the	fused	space	(constructed	without	drug	information)	are	
more	likely	to	share	approved	or	trialled	drugs	than	diseases	that	are	highly	similar	in	the	five	
individual	spaces	on	average	(grey	line).		Drug	overlap	in	the	sparse	feature	spaces,	which	have	
comparably	few	links	between	diseases,	is	static	until	higher	thresholds	of	similarity	are	used	
(noticeable	for	the	ontological	and	phenotypic	spaces). 

 

One aim of the disease map is the identification of similarities between diseases that could 

indicate where two diseases might be treated with the same drug.  The extent to which links in 

the disease map correspond to drug-sharing relationships was therefore evaluated, including 

drugs that are in phase 3 clinical trials (as opposed to approved drugs only, which were used to 

construct the drug feature space).  61.6% of the links in the full disease map share drugs (with 
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44.2% of links sharing approved drugs only).  Even if the information from drug space is 

excluded, still 50.8% of links in the top 6.9% of the non-drug fused values (the significance 

cut-off used to construct the full disease map) share drugs. 

Rather than simply looking at the percentage of links which share at least one drug, the mean 

Jaccard drug overlap of diseases linked by the map can be evaluated.  This accounts for 

differences in the number of drugs prescribed for each disease, as well as the number of drugs 

shared.  However, this score is less intuitive and is best understood in comparison with the 

individual disease maps.  Excluding any information from drug space, the remaining individual 

spaces were therefore compared to a disease map constructed from the fusion of these five 

spaces.  At the cut-off of the top 6.9% of similarity values, links in the non-drug fused space 

have a higher Jaccard overlap of drugs approved and in Phase III trials (0.050) than any of the 

individual spaces (mean of 0.040). 

This analysis was repeated across multiple similarity thresholds, from all values to the top 1% 

highest similarity scores (Figure 5.5).  As expected, the higher the similarity threshold used, 

the greater the mean Jaccard drug score of diseases linked in the resulting map.  Indeed, at the 

top thresholds of similarity (the top 5% or above), links in the fused map show greater mean 

drug overlap than links in any of the maps constructed from individual spaces, although the 

difference is relatively small.  Importantly, drug overlap at the top thresholds is higher for the 

fused similarities than the mean over the five spaces (grey line on Figure 5.5), despite the fact 

that the fused map is constructed from the mean of similarities in each space.  A similar result 

was also seen when considering only approved drugs (Figure 5.6) and for the weighted disease 

map (Appendix N), although for these cases ontological and/or literature spaces slightly 

outperform the fused space at the top similarity thresholds.   
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Figure 5.6 Mean drug overlap (by Jaccard score) of diseases linked at different 
thresholds of similarity, approved drugs only 

The	fused	space	has	a	high	proportion	of	 links	which	share	approved	drugs	relative	to	other	
spaces.		At	the	threshold	of	the	top	6.9%	most	similar	values	(the	threshold	used	for	the	disease	
map),	 the	 fused	matrix	 (mean	 Jaccard	 score	0.038)	 is	outperformed	only	by	 the	ontological	
space	(mean	Jaccard	score	0.040). 

	

If only novel links (those that are in different top-level Disease Ontology classes) are 

considered, the ontological and literature co-occurrence spaces outperform the fused space. 

Ontological space does contain some disease pairs which are given high similarity (according 

to Lin’s similarity measure) despite being in different top-level classes, but as expected this 

number is very small compared to the other spaces, with e.g. 24 novel links at a similarity 

threshold of 0.9 compared to 92 for the non-drug matrix and 117 for the literature co-

occurrence matrix. Examination of the novel links at a threshold of 0.9 suggests that the 

reduced performance of the (non-drug) fused space is due to the failure to identify links 

between neurodegenerative and mental disorders which share drugs, such as major depressive 

disorder/bipolar and Parkinson’s disease (identified in literature co-occurrence space) or 

Alzheimer’s/Parkinson’s/Huntington’s diseases and Down syndrome (identified in ontological 

space).  Literature co-occurrence space identifies a number of additional novel drug-sharing 

pairs not in the fused space, such as polycystic ovary syndrome and type II diabetes, or cystic 

fibrosis and chronic obstructive pulmonary disease.  
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5.3.5 Fused similarities outperform individual similarities in the prediction 
of Disease Ontology classes 

	

	
Figure 5.7  Ability of similarity scores from fused and individual spaces to predict 
Disease Ontology classes  

 Individual	 spaces	differ	widely	 in	 their	predictive	ability,	with	 literature-based	similarity	and	
phenotypic	similarity	performing	particularly	well.	 	The	fused	similarity	scores	outperform	all	
individual	spaces	for	the	prediction	of	 ‘disease	of	cellular	proliferation’	(AUROC	0.986,	right-
hand	plot).	 	 The	 fused	 similarity	 scores	also	outperform	 the	 individual	 spaces	 for	predicting	
‘disease	 of	 anatomical	 entity’	 (AUROC	0.920,	 left-hand	 plot),	 although	 for	 this	 class	 (which	
contains	more	diverse	disease	types)	phenotype	and	literature	co-occurrence	perform	almost	
as	well	(AUROC	0.901	and	0.905	respectively).		

 

A Random Forest classifier was used to examine how well the similarities in fused and 

individual spaces (excluding the ontological space) correspond to known disease categories 

(see Methods), reasoning that the ability of the fused similarities to reconstruct known 

categories would grant greater confidence that any novel relationships are likely to be 

biologically relevant.  To ensure the existence of sufficient training data to build a robust 

classifier, the two largest Disease Ontology classes disease of anatomical entity and disease of 

cellular proliferation were predicted.  Receiver Operating Characteristic curves for each space 

show that there is high variation between each space, although all spaces did better than random 

(Figure 5.7).  Of the individual spaces, literature-based similarities were best able to classify 

diseases into known categories, with an AUROC of 0.905 for disease of anatomical entity and 

0.968 for disease of cellular proliferation. Phenotypic similarities were also good predictors of 

disease classes, with an AUROC of 0.901 and 0.927 for disease of anatomical entity and 

disease of cellular proliferation respectively.  Genetic and transcriptomic spaces do not closely 

correlate with the known categorizations (Figure 5.7), which is expected as traditional disease 

classifications (such as DO) do not take into account genetic or transcriptomic similarities.  
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The fused kernel outperformed any of the individual kernels, with AUROC scores of 0.920 for 

disease of anatomical entity and 0.986 for disease of cellular proliferation, despite the 

integration of spaces which are not such good predictors of disease classes. The mean 

performance over the five individual spaces was 0.795 for the prediction of disease of 

anatomical entity and 0.910 for the prediction of disease of cellular proliferation, meaning that 

the fused similarities in the disease map outperformed the individual similarities by 10% on 

average (mean AUROC over both tasks of 0.953 for the fused kernel vs 0.852 for the individual 

kernels).  Largely similar classification results were seen for different feature vector sizes 

(Appendix M), although phenotypic and/or literature spaces slightly outperformed the fused 

space at some feature set sizes.  Weighting the fused similarities so that the overlapping 

phenotype and literature co-occurrence spaces accounted for only 25% of the fused similarities 

(instead of 40%, as ontological space is excluded) did not significantly affect classification of 

disease of cellular entity, but slightly reduced the AUROC score to 0.891 for disease of 

anatomical entity (slightly less than the AUROC score of phenotypic and literature similarities, 

see Appendix N).	
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5.4 DISCUSSION 
This chapter introduced a method, similarity fusion, to integrate biological data across multiple 

domains through conversion of features into normalized similarity scores, such that each space 

contributes evenly to the fused similarity.  For the first time, the similarity fusion approach was 

applied across six feature spaces (ontological, phenotypic, literature co-occurrence, genetic 

association, gene expression, and drug indication data) in an unbiased manner.  Following the 

normalization step, spaces may be weighted according to the desired application of the map (in 

terms of the importance placed on finding novel links vs reflecting known links, for instance).  

Here, a balanced fusion of disease relationships was used to create a ‘disease map’: a network 

linking diseases with significant similarities across multiple spaces.   

The disease map reveals novel connections between diseases in different ontological categories 

(Figure 5.2), and highlights shared features between diseases – for example, shared gene 

expression patterns which may underlie an observed common phenotype.  The case study of 

psoriasis illustrated how genetic variants shared with inflammatory bowel diseases were also 

targeted by drugs used for both conditions, illustrating how the identification of similarities 

between diseases at a ‘molecular’ level can indicate potential opportunities for sharing drugs, 

and to generate potential drug repurposing hypotheses in a ‘guilt-by-association’ approach268.  

Similar links have been identified in previous studies of -omics data integration, such as the 

DiseaseConnect web server238 (association between psoriasis and inflammatory bowel 

disease); the interactome-based approach of Menche et al.84 (association between psoriasis and 

other autoimmune diseases, their Supplementary Material); and the Integrated Disease 

Network240 (connections between Crohn’s and autoimmune conditions including parapsoriasis 

and psoriatic arthritis).  This example illustrates how ‘molecular’ (e.g. genetic- and gene- 

expression based) approaches to disease similarity can identify disease relationships which are 

not captured by traditional disease classifications: the link between psoriasis and autoimmune 

disease, for example, is present in SNOMED but absent from other major classifications 

including MeSH, DO, and ICD.   

Through the fusion of multiple data types, the disease map gives a new perspective on disease 

relationships, where aspects of disease (such as genetics and gene expression) not ordinarily 

considered by established classification systems reveal novel similarities between diseases.  

These spaces contain similarities not captured in our ‘traditional’ understanding of disease 

relationships (Figure 5.4), and therefore contribute greater depth of interest to the disease map.   

From this perspective, the more data types that can be included in the map, the more complete 
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the description of the biological system becomes.  Using a ‘hold-out’ evaluation style, all six 

data types included in this study could be incorporated into the map, without designating any 

data types as reserved for evaluation purposes.   

In agreement with previous studies showing how inclusion of more data types leads to greater 

accuracy in the prediction of disease relationships239,240, the first evaluation task showed that 

the integrated disease map outperformed any individual space in predicting disease class 

membership, despite the inclusion of spaces that individually had little relation to known 

disease classes (Figure 5.7).  In fact, the disease map, which is based on averaging similarity 

values, outperformed the average of individual similarity values by a mean of 10% across the 

two classes.  One explanation for this is that the two spaces that are most similar to the 

ontological space (phenotypic and literature co-occurrence spaces) are also the most similar to 

each other (Figure 5.4), as they are based on literature mining of phenotype terms and MeSH 

terms respectively, and there is some overlap between these term sets.  The similar disease 

relationships contained in these spaces therefore reinforce each other in the fused similarities.  

However, even if these two spaces are down-weighted (with a corresponding increase in 

influence of the ‘non-traditional’ spaces), the fused similarities still markedly outperform the 

average of other spaces in the prediction of disease classes (Appendix N).  This suggests that 

the classification performance is not driven purely by these spaces; rather, the benefit in 

similarity fusion lies in the prioritization of disease relationships common to multiple spaces. 

The second evaluation measure was the sharing of drugs (either approved or in Phase 3 clinical 

trials) between diseases linked by the disease map.  Although the drug sharing space is highly 

distinct from any of the other spaces (Figure 5.4), drug sharing relationships were captured 

well by the fused space, which had a high mean Jaccard overlap of drugs shared amongst its 

most similar disease pairs relative to the individual spaces (Figure 5.5).  This not only increases 

confidence in the biological relevance of the linked diseases, it further illustrates the value of 

incorporating multiple data types into the disease map.  This pattern fits what has generally 

been seen in computational drug repurposing approaches: while approaches based on 

individual data types such as genome-wide association studies269 or transcriptomics270–272 are 

possible, successful drug repurposing methods often incorporate multiple data types241,273; data 

fusion may therefore become an increasingly important approach in drug discovery. 

In summary, this chapter has demonstrated the utility of similarity fusion for integrating 

different types of biological data in the analysis of disease relationships, showing that the fused 
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data is not only able to reconstruct known disease and drug-sharing associations, but also offers 

the possibility of highlighting new relationships between diseases.  The similarity-based 

approach proposed here will be particularly suited for the integration of high-throughput data 

sets where dimensionality would otherwise pose a problem, such as proteomics and 

metabolomics data, as the technology matures and the data becomes available for a large 

enough number of diseases.  This approach could be extended to any number of spaces, leading 

to the possibility of a fully comprehensive disease map.   Such a map could transform our 

current understanding of disease and disease relationships, revealing shared mechanisms 

behind diverse diseases which could eventually help to drive novel drug repurposing and 

treatment opportunities.  
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6 CONCLUSIONS 
	

6.1 SUMMARY OF FINDINGS 

The aim of this thesis was to explore the comparative analysis of gene expression data to 

understand disease and disease relationships, including the comparability of the transcriptomic 

disease signal across different study types; the analysis and comparison of gene expression 

changes through translation to the level of signaling interactions; and finally, the integration of 

gene expression data with other data types to explore how disease relationships extend across 

different biological levels.   

This work began with the research described in Chapter 3, Concordance of Microarray Studies 

of Parkinson’s Disease, which showed that gene expression studies of the substantia nigra in 

Parkinson’s disease patients shared expression patterns which were distinct from those in 

studies of other tissues and disease models.  Previous research has studied the effects of 

individual factors such as microarray platform type on the resulting gene expression 

profile117,149–151, and examined the concordance between disease models and human 

patients144,146–148.  However, in a comparative analysis setting, multiple factors come into play 

when selecting experiments that will be representative of the condition under study.  The work 

described in this chapter therefore considered the effects of four key factors – tissue, platform, 

sample size, and disease model – using the agreement between studies of the same disease to 

understand how these affect the gene expression representation of disease.  The improved 

concordance within the most highly-affected tissue in human patients suggested that these 

studies formed a characteristic representation of gene expression in PD; also notable was a lack 

of effect of factors such as the platform type (at least within Affymetrix-type microarrays) on 

concordance.  The general study selection guidelines set out in this research were employed in 

selecting studies to be included in the larger disease dataset used for the next chapters. 

The relatively low concordance observed between even the two most closely related PD studies 

illustrates the noisiness inherent to gene expression data.  In the next chapter, Using 

Dysregulated Signalling Paths to Understand Disease, the weighted shortest-paths method of 

Sambarey et al.121 was adapted in order to make more informative comparisons between 

diseases.  Each disease was represented by a set of dysregulated paths on the human signaling 

network, providing a middle ground between raw gene expression data and canonical 
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biological pathways.  The work described in this chapter is the first to use a path-based 

approach to compare multiple diseases, and reveals the existence of shared signaling processes 

between common and rare diseases.  52% of the paths shared between disease pairs contained 

a drug-interacting gene for at least one of the diseases, suggesting that this approach could be 

used to identify drug repurposing hypotheses, as detailed in a case study of the link between 

polycystic ovary syndrome and the rare condition Pompe disease.  As well as comparing 

diseases, this chapter also examined more general properties of gene expression, finding that 

genes in dysregulated networks of multiple diseases have a moderate tendency to have higher 

degree, suggesting an influential (but not central) role in dysregulated signaling networks 

across diverse disease types.   

In the final chapter, Understanding and Predicting Disease Relationships Through Similarity 

Fusion, the comparison of diseases was extended to multiple bioinformatics spaces.  Following 

the direct network integration approach used in the previous chapter, a more generalized 

integration method was introduced to link diseases across different biological levels, from the 

molecular (genetic variation, gene expression, and drug indication) to the clinical (phenotype, 

literature co-occurrence, and ontological relationships).  When quantifying the strength of 

relationships across such different data types, it is imperative to take into account the differing 

properties of each space122, such as sparsity and the size of the feature universe.  However, 

current methods to address this (such as the work of Sun et al.240) are limited in terms of the 

number of feature spaces that can be included.  The similarity fusion method introduced in this 

chapter uses quantile normalization to adjust the distributions of pairwise similarity vectors 

towards each other, making them comparable and combinable.  While the disease map 

contained mostly known relationships, 15% of links were novel links between diseases not 

related by traditional classification systems, such as between psoriasis and inflammatory bowel 

disease, or cervical cancer and hepatitis B.  Importantly, links in the disease map were 

indicative of drug-sharing, with 62% of the links in the full disease map sharing drugs; this 

provides further indication of the potential of disease similarity approaches for drug 

repurposing. 

Although the focus of this thesis has been comparative analysis of gene expression across 

diseases, the findings will be of interest in broader settings.  The conclusions of this work 

translate most clearly to meta-analysis design, as many of the same considerations (such as the 

effect of tissue, platform, and disease model) apply to determining study selection criteria.  By 

illustrating the agreement that can be expected between studies of the same disease and of 



 

	

149 

different diseases, this work also contributes to wider questions around the strength and 

specificity of gene expression representations of disease.  Following on from this, the method 

developed in Chapter 4 is not only applicable to comparing disease, but is of broader interest 

for the interpretation of individual gene expression datasets (including drug response data, as 

shown here) in the context of signaling pathways.  Finally, the data integration method 

developed in Chapter 5 can be applied to diverse data types as a general data integration 

method, particularly for the analysis of high-dimensional data.   

 

6.2 LIMITATIONS  

The research in this thesis confirms what countless previous studies have demonstrated: gene 

expression is noisy, representing a snapshot of the disease state under highly specific 

conditions.  This is most clearly illustrated by the study of gene expression datasets in 

Parkinson’s disease, where the low agreement between studies of the same condition may 

reflect the effect of multiple factors.  These range from deliberate factors such as the choice of 

tissue to sample (as different tissues will show a different transcriptomic response to disease), 

to inherent factors such as biological and technical variation.  Further complicating the 

interpretation of gene expression data is the well-established lack of predictivity of gene 

expression to the abundance of its corresponding protein product193.  Gene expression data is 

therefore at best a partial representation of cellular state, which gives limited information 

compared to other measurements such as the proteome. The second and third chapters of this 

work therefore incorporate other data types in order to provide additional evidence for disease 

relationships.   

Even assuming that a ‘representative’ gene expression profile is available, a further issue in 

gene expression data analysis (one that is common to other dynamic -omics measurements 

including the proteome and metabolome) is that measured gene expression may reflect not only 

disease pathogenesis, but also the body’s compensatory responses (e.g. immune system 

activation).  This further complicates the comparison of diseases: shared gene expression 

profiles may not necessarily represent shared mechanisms of disease, but may simply represent 

a shared response to different pathological processes, as shown with the case study of 

polycystic ovary syndrome and Pompe disease in Chapter 4.  This can be useful – for example, 

the inflammatory response underlying the symptoms of many diseases can be treated with non-

disease-specific anti-inflammatory drugs such as aspirin – but means that it is not possible to 
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establish a causal relationship between gene expression and disease, as is (sometimes) possible 

with e.g. genetic data.   

In addition to the general limitations of comparative analysis of microarray data discussed here 

and in the Introduction, a broader limitation of this work stems from its reliance on public data.  

Despite the rapidly increasing number of gene expression profiles of disease, research 

questions are inevitably constrained by the availability of suitable studies: in Chapter 3, for 

instance, the scarcity of non-Affymetrix microarray studies of Parkinson’s disease prevented 

drawing a stronger conclusion on the effect of microarray platform type on study concordance.  

As the popularity of transcriptomic analysis continues to grow in line with its decreasing cost, 

the amount of public transcriptomic data should further increase, providing greater statistical 

power and enabling a wider range of questions to be answered from the re-analysis of existing 

data.   

 

6.3 FUTURE DIRECTIONS 

Given the limitations of gene expression data, an obvious extension of this research would be 

to employ multi-omics data to study disease relationships in more detail.  A basic version of 

this idea is already implemented in Chapter 4, with the inclusion of genetic variant data in 

dysregulated signaling pathways helping to give context to the observed gene expression 

changes; this could easily be extended to other -omic data types and/or incorporated into the 

path-finding algorithm directly.  This would help to determine whether shared gene 

expression patterns between two diseases are associated with shared genetic, epigenetic, 

and/or proteomic features, leading to a greater understanding of shared disease biology.  

Multi-omics approaches are already being applied in disease subtyping244,274 and precision 

medicine275,276, although available multi-omics profiles are so far largely confined to cancer 

datasets such as The Cancer Genome Atlas91.  It would be an interesting next step to apply 

this type of analysis to identify similarities between different cancers or, when the data 

becomes available, more diverse disease types.   

Whilst it may be several years until this type of analysis is feasible on a large scale, one topic 

that would be of more immediate benefit is the identification of patterns of drug-induced 

gene expression in transcriptomic studies of disease.  As mentioned previously, gene 

expression in disease may be affected by the drug treatment history of the patient; one way to 

identify this would be to compare patient differential expression profiles with drug-induced 
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differential expression profiles from large-scale resources such as CMAP49 and LINCS50, 

which contain in vitro drug response data from thousands of drugs tested in multiple cancer 

cell lines.  The methods used here to study disease gene expression can equally be applied to 

understand gene expression in response to drugs, as shown by the drug-response case studies 

in Chapter 4; the next step would then be to directly compare these patterns between diseases 

and the drugs that are prescribed for them.  Preliminary studies of the path-set analysis from 

Chapter 4 on CMAP data did not show substantial overlap between drug-induced differential 

expression profiles and those of their corresponding diseases; possible explanations for this 

include differences between drug response in vivo and in vitro, or the variable ‘transcriptional 

activity’30,277 of drugs.  Given the prevalence of drug response as a confounding factor in 

transcriptomic studies of disease, a more detailed investigation would be of great benefit for 

this field. 

The ultimate goal in studying disease is to find treatment to overcome it, and so a key 

consideration in this work is how the comparative analysis of gene expression data can be 

applied to discovering drug treatments for disease, specifically through drug repurposing.  

Examples in the preceding chapters have demonstrated how the methods introduced here can 

be used to suggest potential drug repurposing hypotheses, both gene-expression based 

(Chapter 4) and data integration-based (Chapter 5).  The next step would be to ascertain 

which of the potential drug-sharing links identified here might be a promising candidate for 

experimental validation.  This could be done at the small-scale, which would require disease 

experts to closely examine the feasibility of the proposed mechanism in the new indication.  

However, given the number of potential hypotheses, this could be a laborious task.  Most 

successful bioinformatics drug repurposing approaches also use drug-side (cheminformatics) 

evidence such as structure and bioactivity data17, giving a more comprehensive 

characterization of the potential match between a drug and a disease.  The methods proposed 

in this thesis could easily be extended to incorporate drug-side information: for instance, the 

data integration method in Chapter 5 could be applied to combine different types of drug 

data, in an approach similar to the PREDICT method241, which combined disease similarity 

with drug similarity in order to predict drug indications.   

The comparison of gene expression across diseases not only enables the identification of 

shared disease biology, in turn revealing more about processes taking place in the individual 

diseases, but also helps to develop a greater understanding of the properties of gene 

expression data as a representation of disease.  Given the increasing availability of gene 
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expression studies, the power of comparative analysis (including other approaches which re-

use public data, such as meta-analysis) is steadily increasing, both in terms of statistical 

power and in terms of the breadth and depth of questions that can be answered.  The findings 

in this thesis therefore aim to serve as a timely investigation into some of the issues 

surrounding this new approach to understanding disease.  Whilst the work presented here 

represents only a small subset of the vast field of gene expression data analysis, I hope that 

the framework set out here for comparative analysis of diseases could eventually aid our 

understanding of disease and its treatment. 
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APPENDIX A: DATASET USED FOR CHAPTER 3  
Note: in order to minimize the impact of laboratory effects on the concordance analysis, where multiple datasets were contributed by the same 

investigator and less than a year apart, only one of the two was retained.  However, the two studies GSE20141 and GSE20153 contributed by 

Middleton were first reported in the associated meta-analysis; it is not stated whether they originate from the same group so both have been 

retained.  

 
GEO ID Contributor 

Lead author 
(where 
different) 
PMID (where 
applicable) 

Submission 
date 

Platform Tissue  # case # control Species Model Sample selection 

GSE6613 Scherzer CR 
17215369 

Dec 2006 U133A Whole blood 50 22 Human - Parkinson's disease v 
healthy control; 
GSM153411 and 
GSM153454 removed as 
did not pass quality checks 

GSE7621 Mullen JF 
Lesnick TG 
17571925 

Apr 2007 U133 Plus 
2.0 

Substantia nigra 16 9 Human - - 

GSE20141 Middleton FA 
Zheng B 
20926834 

Feb 2010 U133 Plus 
2.0 

Laser-dissected 
substantia nigra 
pars compacta 
neurons 

10 8 Human - - 

GSE20153 Middleton FA 
Zheng B 
20926834 

Feb 2010 U133 Plus 
2.0 

B lymphocytes 
from peripheral 
blood  

8 8 Human  - - 

GSE20163 Miller RM 
Zheng B 
20926834 

Feb 2010 U133A Substantia nigra 8 9 Human - - 
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GSE20164 Hauser MA 
Zheng B 
20926834 

Feb 2010 U133A Substantia nigra 6 5 Human - GSM506020 removed as 
did not pass quality checks 

GSE20168 Middleton FA 
Zhang Y 
15965975 
Zheng B 
20926834 

Feb 2010; 
Originally 
published Aug 
2005 

U133A Prefrontal cortex 
area 9 
(Brodmann area 
9) 

14 15 Human - - 

GSE20314 Wüllner U�
Zheng B�
20926834 

Feb 2010 U133A Cerebellum 4 4 Human - GSM509109 removed as 
did not pass quality checks 

GSE20333 Edna G Feb 2010 HGFocus Substantia nigra 6 6 Human - GSM509556 and 
GSM509557 removed as 
did not pass quality checks 

GSE24378 Cantuti-
Castelvetri I 
Zheng B 
20926834 

Sep 2010 X3P Dopaminergic 
neurons isolated 
from substantia 
nigra 

8 9 Human - - 

GSE43490 Corradini BR 
25525598 

Jan 2013 AgilentPN Substantia nigra 8 5 Human - SN parkinson's disease v 
SN control 

GSE4788 Miller RM 
15329391 

May 2006 MurU74 Substantia nigra 4 4 Mouse MPTP MPTP MML v saline 

GSE24233 Cadet JL Sep 2010 IlluminaRa
t 

Striatum 6 4 Rat 6-
OHDA 

Saline lesioned v saline 
control; GSM596030 
removed as did not pass 
quality checks 

GSE4550 Nahon J 
Storvik M 
20206263 

Mar 2006 U133A Putamen 4 4 Macaque MPTP Putamen MPTP day 25 v 
putamen saline 

GSE58710 Lipton JW 
Kanaan NM 
25992874 

Jun 2014 Rat1.0ST Substantia nigra 3 3 Rat 6-
OHDA 

Wk4 6-OHDA v Wk4 
vehicle; GSM1417209 
removed as did not pass 
quality checks 

GSE8030 Chin MH 
18173235 

Jun 2007 430A Striatum 3 3 Mouse MPTP MPTP v control 

GSE7707 Sforza DM May 2007 4302 Striatum 3 3 Mouse MPTP - 
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GSE17542 Phani S 
20462502 

Aug 2009 4302 Dopaminergic 
neurons isolated 
from substantia 
nigra 

3 3 Mouse MPTP 10 day MPTP SN v control 
SN; GSM437382 removed 
as did not pass quality 
checks 

GSE35642 Cabeza-
Arvelaiz 
22970289 

Feb 2012 U133A Neuroblastoma 
cell line 

3 3 Human rotenone 50nm rotenone 4 week v 
0nm rotenone 4 week 

GSE8397 Moran LB 
16344956 

Jul 2007 U133A Frontal cerebral 
cortex - superior 
frontal gyrus 

5 3 Human - - 

GSE31458 Soreq L 
22198569 

Aug 2011 430A2 Striatal caudate-
putamen 

2 2 Mouse MPTP CPU MPTP FVB/N v CPU 
naive FVB/N 
Note: pooled design, each 
‘sample’ contains RNA 
from 3-4 of 6 mice per 
condition. 

GSE52584 Dorval V 
24427314 

Nov 2013 MG1.0ST Striatum 4 4 Mouse LRRK2 LRRK2 KO vs WT 

GSE60413 Kurz A 
Gispert S 
25296918 

Aug 2014 4302 Striatum 3 3 Mouse Pink1 KO 6 week v WT 6 week 

GSE18309 Chen K Sep 2009 U133 Plus 
2.0 

Peripheral blood 
mononuclear 
cells 

3 3 Human AD Alzheimer's disease v 
normal 

GSE48350 Berchtold NC 
18832152 
(see GEO 
series record 
for other 
associated 
studies) 

Jun 2013 U133 Plus 
2.0 

Superior frontal 
gyrus 

21 22 Human AD Superior frontal gyrus, age 
>= 70; GSM300250 
removed as did not pass 
quality checks 

GSE36980 Nakabeppu Y 
Hokama M 
23595620 

Apr 2012 HG1.0ST Frontal cortex 15 18 Human AD Frontal cortex 
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GSE74995 Friedman B 
Srinivasan K 
27097852 

Nov 2015 AgilentMo
use v2 

Whole cortex 5 5 Mouse AD PS2APP 3 month vs WT 3 
month 

GSE15824 Morin PJ 
Grzmil M 
21406405 

Apr 2009 U133 Plus 
2.0 

Whole brain 12 2 Human Tumour Glioblastoma v normal 
brain 

GSE44971 Lambert SR 
23660940 

Mar 2013 U133 Plus 
2.0 

Cerebellum 49 9 Human Tumour - 

GSE31095 Nilsson RJ 
21832279 

Aug 2011 AgilentFN Blood platelets 8 12 Human Tumour - 

GSE64230 Giachino C 
26669487 

Dec 2014 MG1.0ST Whole brain 4 4 Mouse Tumour PDGF+p53-/- tumour v 
control 

GSE57036 Sheila AL Apr 2014 IlluminaM
ouse 

Dorsal brain 5 5 Mouse Tumour Tumour v dorsal control 

GSE74382 Loiodice S Oct 2015 Rat2302 Dorsal striatum 7 7 Rat SNCA Lesion L-dopa saline vs 
sham saline saline 

GSE55096 Heiman M 
24599591 

Feb 2014 4302 Striatal neurons 20 20 Mouse 6-
OHDA 

low L-dopa 6-OHDA v 
saline ascorbate, Drd1a 
and Drd2 neurons 

GSE72267 Roncaglia P 
Calligaris R 
26510930 

Aug 2015 U133A 2.0 Blood 40 19 Human - - 

GSE54536 Alieva AK 
24804238 

Jan 2014 Illumina 
HT12v4 

Blood 4 4 Human - Exclude pooled RNA 

GSE93695 Chen G Jan 2017 Rat 2.0 Striatum 3 3 Rat 6-
OHDA 

PD v normal 

GSE89562 Kumar A 
27884192 

Nov 2016 AgilentMo
use 

Striatum 3 3 Mouse Maneb-
paraquat 
coexpos
ure 

WT-MP v WT 

GSE57475 Scherzer CR 
Locascio JJ 
26220939 

May 2014 Illumina 
HT12v3 

Blood 93 49 Human - - 

GSE49036 Dijkstra AA 
26087293 

Jul 2013 U133 Plus 
2.0 

SN 6 8 Human - Braak stages III and IV v 
control; 
GSM1192710_BR34_7SN 
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removed as did not pass 
quality checks 

GSE51922 Ezquerra M 
Fernandez-
Santiago R 
26516212 

Oct 2013 HG1.0ST iPSC-derived 
DA neurons 

9 4 Human - GSM1255326_SP02 
removed as did not pass 
quality checks 

GSE89883 Haenseler W Nov 2016 Illumina 
HT12v4 

iPSCs 4 3 Human - Use only first clone from 
each patient 

 

 

Abbreviations: 
U133A:   Affymetrix Human Genome U133A Array 
U133A 2.0:  Affymetrix Human Genome U133A 2.0 Array 
U133 Plus 2.0:  Affymetrix Human Genome U133 Plus 2.0 Array 
Illumina HT12v3:  Illumina HumanHT-12 V3.0 expression beadchip 
Illumina HT12v4: Illumina HumanHT-12 V4.0 expression beadchip 
HGFocus:   Affymetrix Human HG-Focus Target Array 
X3P:    Affymetrix Human X3P Array 
AgilentPN:   Agilent Whole Human Genome Microarray 4x44K (Probe name version) 
AgilentFN:   Agilent Whole Human Genome Microarray 4x44K (Feature number version) 
MurU74:   Affymetrix Murine Genome U74A Array 
IlluminaRat:   Illumina ratRef-12 v1.0 expression beadchip 
Rat1.0ST:   Affymetrix Rat Gene 1.0 ST Array 
430A:    Affymetrix Mouse Expression 430A Array 
4302:    Affymetrix Mouse Genome 430 2.0 Array 
430A2:   Affymetrix Mouse Genome 430A 2.0 Array 
MG1.0ST:   Affymetrix Mouse Gene 1.0 ST Array 
HG1.0ST:   Affymetrix Human Gene 1.0 ST Array 
AgilentMouse (v2):  Agilent Whole Mouse Genome Microarray 4x44K (v2) 
IlluminaMouse:  Illumina MouseWG-6 v2.0 expression beadchip 
Rat2302:   Affymetrix Rat Genome 230 2.0 Array	  
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APPENDIX B DATASET USED FOR CHAPTER 4 
– in sample selection indicates that all provided samples were used.  Platform identifiers are GEO identifiers for individual microarray types, e.g. 
GPL96 is the Affymetrix Human Genome U133A Array.   

 

Disease dataset 

GSE Accession     Condition Platform Tissue Sample selection 

GSE6475 acne GPL571 skin Lesion v non-acne-patient normal skin (6 case, 6 
control) 

GSE63107 actinic keratosis GPL570 skin AK pre-treatment v uninvolved skin pre-treatment (6 
case, 6 control) 

GSE9476 acute myeloid leukemia GPL96 peripheral blood Peripheral blood only (19 case, 10 control) 

GSE8514 adrenal adenoma GPL570 adrenal gland - 

GSE44456 alcoholism GPL6244 hippocampus - 

GSE6281 allergic contact dermatitis GPL570 skin 96 hour timepoint only (6 case, 4 control) 

GSE45512 alopecia areata GPL570 skin - 

GSE36980 alzheimer's disease GPL6244 hippocampus Hippocampus only (7 case, 10 control) 

GSE28146 alzheimer's disease GPL570 hippocampus Severe v control (7 case, 8 control) 

GSE26969 aortic aneurysm GPL570 cranial artery - 

GSE70683 arterial tortuosity syndrome GPL6244 dermal fibroblasts - 

GSE35571 asthma GPL570 peripheral blood Exclude NA (60 case, 64 control) 

GSE44971 astrocytoma GPL570 cerebellum - 

GSE5667 atopic dermatitis GPL96 skin Lesional atopic dermatitis v normal healthy (6 case, 5 
control) 

GSE18123 autism GPL570 peripheral blood Autism v control (31 case, 33 control) 
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GSE40586 bacterial meningitis GPL6244 peripheral blood - 

GSE12654 bipolar disorder GPL8300 prefrontal cortex Bipolar disorder v control (11 case, 15 control) 

GSE3167 bladder cancer GPL96 bladder Exclude cystectomy samples (9 case, 41 control) 

GSE19205 bloom syndrome GPL571 fibroblasts Bloom and control only (3 case, 3 control) 

GSE54502 bloom syndrome GPL5175 fibroblasts Exclude BLM fibroblasts (14 case, 12 control) 

GSE5764 breast lobular carcinoma GPL570 lobular cells Tumour lobular v ductal carcinoma normal lobular (5 
case, 5 control) 

GSE31243 cerebral palsy GPL571 skeletal muscle Gracilis only (10 case, 10 control) 

GSE7803 cervical squamous cell carcinoma GPL96 cervix Squamous cell carcinoma v normal cervix (21 case, 10 
control) 

GSE9750 cervical squamous cell carcinoma GPL96 cervix Cervical cancer v normal cervix (33 case, 12 control) 

GSE63514 cervical intraepithelial neoplasia GPL570 cervix CIN 3 v control (40 case, 24 control) 

GSE26725 chronic lymphocytic leukemia GPL570 peripheral blood - 

GSE42057 chronic obstructive pulmonary 
disease GPL570 peripheral blood 

mononuclear cells - 

GSE8581 chronic obstructive pulmonary 
disease GPL570 lung tissue Exclude unclassified samples (16 case, 19 control) 

GSE8671 colorectal adenocarcinoma GPL570 colonic mucosa - 

GSE4107 colorectal cancer GPL570 colon mucosa - 

GSE8440 congenital disorders of 
glycosylation type I GPL96 dermal fibroblasts Rep 1 only (9 case, 3 control) 

GSE64034 cornelia de lange syndrome GPL17889 dermal fibroblasts First replicate only; exclude CHOPS syndrome (2 case, 
4 control) 

GSE6731 crohn's disease GPL8300 colon Crohn's affected v normal (7 case, 4 control) 

GSE59071 crohn's disease GPL6244 colon CD v control (8 case, 11 control) 

GSE15568 cystic fibrosis GPL96 rectum - 
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GSE51808 dengue fever GPL13158 whole blood Dengue fever v control (18 case, 9 control) 

GSE14335 diamond-blackfan anaemia GPL571 fibroblasts - 

GSE3585 dilated cardiomyopathy GPL96 left ventricular 
tissue - 

GSE52471 discoid lupus erythematosus GPL571 skin Discoid lupus v Normal Affy (7 case, 10 control) 

GSE5390 down syndrome GPL96 dorsolateral 
prefrontal cortex - 

GSE6011 duchenne muscular dystrophy GPL96 skeletal muscle Exclude technical rep (22 case, 14 control) 

GSE38417 duchenne muscular dystrophy GPL570 skeletal muscle - 

GSE1004 duchenne muscular dystrophy GPL8300 skeletal muscle Samples run on GPL8300 only (12 case, 11 control) 

GSE1122 emphysema GPL80 lung Exclude AAD-related emphysema (5 case, 5 control) 

GSE63678 endometrial carcinoma GPL571 endometrium Endometrial cancer v normal endometrium (7 case, 5 
control) 

GSE6364 endometriosis GPL570 endometrium Mid-secretory phase only (9 case, 8 control) 

GSE28315 epidermolysis bullosa simplex GPL6244 epidermis - 

GSE26050 familial hemophagocytic 
lymphohistiocytosis GPL570 peripheral blood 

mononuclear cells - 

GSE16334 fanconi anemia GPL96 bone marrow - 

GSE62721 fragile x syndrome GPL6244 fibroblasts Exclude iPSCs and neurons (3 case, 2 control) 

GSE79973 gastric adenocarcinoma GPL570 gastric mucosa - 

GSE79704 generalized pustular psoriasis GPL19983 skin Exclude plaque psoriasis (32 case, 20 control) 

GSE31014 guillain-barre syndrome GPL96 peripheral blood 
leukocytes - 

GSE6631 head and neck squamous cell 
carcinoma GPL8300 head & neck 

mucosa - 

GSE49954 chronic hepatitis c GPL570 t lymphocytes High viral load, CD4+ cells v control (5 case, 5 control) 
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GSE62232 hepatocellular carcinoma GPL570 liver - 

GSE2171 hiv GPL201 peripheral blood 
mononuclear cells - 

GSE47044 hodgkin's lymphoma GPL6244 b cells NLPHL v control (10 case, 5 control) 

GSE8762 huntington's disease GPL570 blood lymphocyte - 

GSE3860 hutchinson-gilford progeria GPL96 fibroblasts Sample 1 only (3 case, 3 control) 

GSE69391 hutchinson-gilford progeria GPL570 dermal fibroblasts Exclude old healthy (6 case, 3 control) 

GSE9499 icf syndrome GPL96 lymphoblastoid 
cell line Biological rep 1 only (3 case, 5 control) 

GSE24206 idiopathic pulmonary fibrosis GPL570 lung Advanced IPF, upper lobe v control (5 case, 6 control) 

GSE40568 IgG4-related disease GPL570 labial salivary 
glands Exclude Sjogren's (5 case, 3 control) 

GSE27131 influenza GPL6244 peripheral blood Day 0 v control (7 case, 7 control 

GSE36701 irritable bowel syndrome GPL570 rectal colon Part 1 only: IBS-C and IBS-D v healthy volunteers (87 
case, 40 control) 

GSE42955 ischemic cardiomyopathy GPL6244 left ventricular 
tissue Ischemic cardiomyopathy v normal (12 case, 5 control) 

GSE22255 ischemic stroke GPL570 peripheral blood 
mononuclear cells - 

GSE48574 ISCU myopathy GPL570 muscle - 

GSE80060 juvenile idiopathic arthritis GPL570 whole blood Day 1 placebo v control (22 case, 22 control) 

GSE71935 juvenile myelomonocytic 
leukemia GPL570 bone marrow Exclude peripheral blood (33 case, 9 control) 

GSE47642 kindler syndrome Illumina skin - 

GSE42331 klinefelter syndrome GPL6244 whole blood Exclude female controls (35 case, 15 control) 

GSE47584 klinefelter syndrome Agilent peripheral blood - 
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GSE16020 leukopenia GPL570 blood leukocytes - 

GSE11681 limb-girdle muscular dystrophy GPL96 muscle - 

GSE38961 loeys-dietz syndrome GPL570 blood endothelial 
cells - 

GSE19804 non-small cell lung carcinoma GPL570 lung - 

GSE44593 major depressive disorder GPL570 amygdala - 

GSE6872 teratozoospermia GPL570 semen - 

GSE51024 malignant pleural mesothelioma GPL570 lung - 

GSE5808 measles GPL96 peripheral blood Entry v control (5 case, 3 control) 

GSE14882 melas syndrome GPL96 peripheral blood Note: pooled controls 

GSE23832 multiple sclerosis GPL6244 peripheral blood 
mononuclear cells - 

GSE21942 multiple sclerosis GPL570 peripheral blood 
mononuclear cells Exclude technical rep (12 case, 15 control) 

GSE16461 multiple sclerosis GPL570 blood CD8+ t 
cells - 

GSE43591 multiple sclerosis GPL570 blood t-cells - 

GSE58831 myelodysplastic syndrome GPL570 bone marrow 
CD34+ cells - 

GSE48060 myocardial infarction GPL570 peripheral blood - 

GSE13597 nasopharyngeal carcinoma GPL96 nasopharynx - 

GSE12452 nasopharyngeal carcinoma GPL570 nasopharynx - 

GSE65170 nestor-guillermo progeria GPL5175 iPSCs Exclude fibroblasts (4 case, 2 control) 

GSE9624 obesity GPL570 adipose tissue - 

GSE20347 esophageal squamous cell 
carcinoma GPL571 oesophagus - 
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GSE22855 ollier disease Illumina cartilage - 

GSE55235 osteoarthritis GPL96 synovium 
Exclude rheumatoid arthritis samples (10 case, 10 
control). Note same publication as GSE55457 but 
different submitter and institution. 

GSE7429 osteoporosis GPL96 blood 
lymphocytes - 

GSE56815 osteoporosis GPL96 blood monocytes - 

GSE14245 pancreatic cancer GPL570 saliva - 

GSE7621 parkinson's disease GPL570 substantia nigra - 

GSE8397 parkinson's disease GPL96 substantia nigra Medial substantia nigra (15 case, 8 control) 

GSE20291 parkinson's disease GPL96 striatum - 

GSE7586 placental malaria GPL570 placenta Exclude past malaria (10 case, 5 control) 

GSE34526 polycystic ovary syndrome GPL570 ovarian follicle 
(granulosa cells) - 

GSE38680 pompe disease GPL570 biceps Exclude quadriceps and control 10 (later diagnosed with 
MELAS) (9 control, 9 disease) 

GSE12767 preeclampsia GPL570 placenta - 

GSE36314 prolactinoma GPL8300 pituitary gland - 

GSE55945 prostate cancer GPL570 prostate Exclude corrupted files GSM1348937 and 
GSM1348948 (12 case, 7 control) 

GSE14905 psoriasis GPL570 skin Exclude 'Uninvolved skin' (33 case, 21 control) 

GSE53408 pulmonary arterial hypertension GPL6244 lung - 

GSE36895 clear-cell renal cell carcinoma GPL570 kidney Exclude mouse tumourgraft (29 case, 23 control) 

GSE6344 clear-cell renal cell carcinoma GPL96 kidney - 

GSE75303 rett syndrome Illumina frontal cortex Exclude temporal cortex (3 case, 3 control) 

GSE77298 rheumatoid arthritis GPL570 synovium - 
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GSE55457 rheumatoid arthritis GPL96 synovium 
Exclude osteoarthritis samples (13 case, 10 control). 
Note same publication as GSE55235 but different 
submitter and institution. 

GSE65914 rosacea GPL570 skin - 

GSE19314 sarcoidosis GPL570 whole blood Sarcoidosis v control (38 case, 20 control) 

GSE70019 schnitzler’s syndrome Illumina peripheral blood 
mononuclear cells Exclude drug-treated (3 case, 3 control) 

GSE13205 sepsis GPL570 skeletal muscle - 

GSE16524 setleis syndrome GPL570 dermal fibroblasts - 

GSE32057 shwachman-diamond syndrome GPL570 bone marrow 
mononuclear cells - 

GSE11524 sickle cell disease GPL570 blood platelets - 

GSE61120 silver-russell syndrome GPL13667 dermal fibroblasts Exclude hypomethylated clones (4 case, 4 control) 

GSE66795 sjogren's syndrome Illumina whole blood Mid fatigue level only (74 case, 29 control) 

GSE48378 sjogren's syndrome GPL5175 Peripheral blood 
mononuclear cells - 

GSE61203 smith-lemli-opitz syndrome GPL5175 iPSCs Cholesterol-deficient 7d only (4 case, 4 control) 

GSE27200 sotos syndrome GPL570 dermal fibroblasts Exclude retinoic acid (9 case, 9 control) 

GSE10325 systemic lupus erythematosus GPL96 perhipheral blood - 

GSE30153 systemic lupus erythematosus 
(quiescent) GPL570 blood 

lymphocytes - 

GSE26049 essential thrombocythemia GPL570 whole blood Essential thrombocythemia v control, RMA only (19 
case, 21 control) 

GSE3678 thyroid carcinoma GPL570 thyroid - 

GSE46687 turner syndrome GPL570 peripheral blood 
mononuclear cells Exclude paternal inherited 
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GSE55098 type 1 diabetes mellitus GPL570 peripheral blood 
mononuclear cells - 

GSE9006 type 1 diabetes mellitus GPL96 peripheral blood 
mononuclear cells Newly diagnosed T1D only (43 case, 20 control) 

GSE38642 type 2 diabetes mellitus GPL6244 pancreatic islets - 

GSE25724 type 2 diabetes mellitus GPL96 pancreatic islets - 

GSE38713 ulcerative colitis GPL570 colon Active UC, involved mucosa v control (15 case, 13 
control) 

GSE5563 vulvar intraepithelial neoplasia GPL570 vulva - 

GSE48761 werner syndrome GPL6244 dermal fibroblasts Exclude iPSC/ESC; rep1 only (5 case, 5 control) 

GSE16715 williams syndrome GPL570 skin fibroblasts - 

GSE71664 williams syndrome Illumina iPSCs iPSCs only; rep 1 only (2 case, 2 control) 
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Drug response dataset 
 

GSE Accession Drug Condition Platform Tissue Sample selection Dose and time 

GSE32569 cediranib alveolar soft 
part sarcoma  

GPL570 tumor - Baseline vs 3-5 
days after 
treatment 

GSE60540 everolimus acute 
lymphoblastic 
leukemia 

Illumina peripheral 
blood 

- Baseline vs 24 
hours after 
treatment 

GSE10433 isotretinoin acne GPL571 skin -  Baseline vs 1 
week after 
treatment 

GSE5462 letrozole breast 
carcinoma 

GPL96 breast - NA 

GSE45867 methotrexate rheumatoid 
arthritis 

GPL570 synovium Exclude methotrexate NA 

GSE19136 paclitaxel - GPL570 artery Exclude control (non-stented) Paclitaxel stent 
vs bare metal 
stent after 48h 

GSE32357 resveratrol obesity GPL11532 vastus 
lateralis 
muscle 

- 30 days 
placebo vs 30 
days 
reseveratrol 

GSE68421 resveratrol non-alcoholic 
fatty liver 
disease 

GPL16686 liver Exclude placebo Baseline vs 6 
months 
treatment 

GSE38663 ribavirin hepatitis c GPL570 liver Exclude IFN, IFN+RBV NA 
GSE58837 sunitinib breast 

carcinoma 
GPL6244 breast Exclude T3 NA 

GSE12665 tamoxifen breast 
carcinoma 

Agilent  arm Exclude ER-negative Baseline vs 
treatment 

GSE80060 canakinumab juvenile 
idiopathic 
arthritis 

GPL570 whole 
blood 

Day 3 vs placebo Day 3 vs 
placebo 
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GSE54629 rituximab rheumatoid 
arthritis 

GPL6244 whole 
blood 

Week 24 vs baseline Week 24 vs 
baseline 

GSE58558 cyclosporine atopic 
dermatitis 

GPL570 skin Week 12 vs baseline; lesional skin only Week 12 vs 
baseline; 
lesional skin 
only 

GSE45468 infliximab major 
depressive 
disorder 

Illumina whole 
blood 

Week 12 vs baseline Week 12 vs 
baseline 

GSE24742 rituximab rheumatoid 
arthritis 

GPL570 synovium Week 12 vs baseline Week 12 vs 
baseline 

GSE16879 infliximab ulcerative 
colitis 

GPL570 colonic 
mucosa 

Week 5 vs baseline; exclude CD Week 5 vs 
baseline 

GSE45867 tocilizumab rheumatoid 
arthritis 

GPL570 synovium Week 12 vs baseline Week 12 vs 
baseline 

GSE83530 valproic acid breast 
carcinoma 

GPL571 breast 
tumor 

Day 10 vs baseline  Day 10 vs 
baseline 
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APPENDIX C: DATASET USED FOR CHAPTER 5 
– in sample selection indicates that all provided samples were used.  Platform identifiers are GEO identifiers for individual microarray types, e.g. 
GPL96 is the Affymetrix Human Genome U133A Array. 

 
Accession Condition Platform Tissue Sample selection 

GSE6475 acne GPL571 skin Lesion v non-acne-patient normal skin (6 case, 6 
control) 

GSE63107 actinic keratosis GPL570 skin AK pre-treatment v uninvolved skin pre-treatment 
(6 case, 6 control) 

GSE9476 acute myeloid leukemia GPL96 peripheral blood Peripheral blood only (19 case, 10 control) 

GSE8514 adrenal adenoma GPL570 adrenal gland - 

GSE44456 alcoholism GPL6244 hippocampus - 

GSE41649 allergic asthma GPL96 bronchus - 

GSE6281 allergic contact dermatitis GPL570 skin 96 hour timepoint only (6 case, 4 control) 

GSE45512 alopecia areata GPL570 skin - 

GSE28146 alzheimer's disease GPL570 hippocampus Severe v control (7 case, 8 control) 

GSE26969 aortic aneurysm GPL570 cranial artery - 

GSE35571 asthma GPL570 peripheral blood Exclude NA (60 case, 64 control) 

GSE44971 astrocytoma GPL570 cerebellum - 
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GSE5667 atopic dermatitis GPL96 skin Lesional atopic dermatitis v normal healthy (6 case, 
5 control) 

GSE18123 autism GPL570 peripheral blood Autism v control (31 case, 33 control) 

GSE40586 bacterial meningitis GPL6244 peripheral blood - 

GSE12654 bipolar disorder GPL8300 prefrontal cortex Bipolar disorder v control (11 case, 15 control) 

GSE3167 bladder cancer GPL96 bladder Exclude cystectomy samples (9 case, 41 control) 

GSE5764 breast lobular carcinoma GPL570 lobular cells Tumour lobular v ductal carcinoma normal lobular 
(5 case, 5 control) 

GSE31243 cerebral palsy GPL571 skeletal muscle Gracilis only (10 case, 10 control) 

GSE9750 cervical squamous cell carcinoma GPL96 cervix Cervical cancer v normal cervix (33 case, 12 
control) 

GSE63514 cervical intraepithelial neoplasia GPL570 cervix CIN 3 v control (40 case, 24 control) 

GSE26725 chronic lymphocytic leukemia GPL570 peripheral blood - 

GSE8581 chronic obstructive pulmonary disease GPL570 lung tissue Exclude unclassified samples (16 case, 19 control) 

GSE8671 colorectal adenocarcinoma GPL570 colonic mucosa - 

GSE59071 crohn's disease GPL6244 colon CD v control (8 case, 11 control) 

GSE15568 cystic fibrosis GPL96 rectum - 

GSE51808 dengue fever GPL13158 whole blood Dengue fever v control (18 case, 9 control) 

GSE3585 dilated cardiomyopathy GPL96 left ventricular tissue - 
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GSE52471 discoid lupus erythematosus GPL571 skin Discoid lupus v Normal Affy (7 case, 10 control) 

GSE5390 down syndrome GPL96 dorsolateral prefrontal cortex - 

GSE38417 duchenne muscular dystrophy GPL570 skeletal muscle - 

GSE1122 emphysema GPL80 lung Exclude AAD-related emphysema (5 case, 5 
control) 

GSE63678 endometrial carcinoma GPL571 endometrium Endometrial cancer v normal endometrium (7 case, 
5 control) 

GSE6364 endometriosis GPL570 endometrium Mid-secretory phase only (9 case, 8 control) 

GSE79973 gastric adenocarcinoma GPL570 gastric mucosa - 

GSE6631 head and neck squamous cell carcinoma GPL8300 head & neck mucosa - 

GSE58208 chronic hepatitis b (carrier) GPL570 peripheral blood mononuclear cells Exclude hepatocellular carcinoma (12 case, 5 
control) 

GSE49954 chronic hepatitis c GPL570 t lymphocytes High viral load, CD4+ cells v control (5 case, 5 
control) 

GSE62232 hepatocellular carcinoma GPL570 liver - 

GSE2171 hiv GPL201 peripheral blood mononuclear cells - 

GSE47044 hodgkin's lymphoma GPL6244 b cells NLPHL v control (10 case, 5 control) 

GSE8762 huntington's disease GPL570 blood lymphocyte - 

GSE24206 idiopathic pulmonary fibrosis GPL570 lung Advanced IPF, upper lobe v control (5 case, 6 
control) 
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GSE27131 influenza GPL6244 peripheral blood Day 0 v control (7 case, 7 control 

GSE36701 irritable bowel syndrome GPL570 rectal colon Part 1 only: IBS-C and IBS-D v healthy volunteers 
(87 case, 40 control) 

GSE42955 ischemic cardiomyopathy GPL6244 left ventricular tissue Ischemic cardiomyopathy v normal (12 case, 5 
control) 

GSE22255 ischemic stroke GPL570 peripheral blood mononuclear cells - 

GSE80060 juvenile idiopathic arthritis GPL570 whole blood Day 1 placebo v control (22 case, 22 control) 

GSE16020 leukopenia GPL570 blood leukocytes - 

GSE11681 limb-girdle muscular dystrophy GPL96 muscle - 

GSE19804 non-small cell lung carcinoma GPL570 lung - 

GSE44593 major depressive disorder GPL570 amygdala - 

GSE6872 teratozoospermia GPL570 semen - 

GSE51024 malignant pleural mesothelioma GPL570 lung - 

GSE5808 measles GPL96 peripheral blood Entry v control (5 case, 3 control) 

GSE21942 multiple sclerosis GPL570 peripheral blood mononuclear cells Exclude technical rep (12 case, 15 control) 

GSE48060 myocardial infarction GPL570 peripheral blood - 

GSE12452 nasopharyngeal carcinoma GPL570 nasopharynx - 

GSE9624 obesity GPL570 adipose tissue - 

GSE20347 esophageal squamous cell carcinoma GPL571 oesophagus - 
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GSE55235 osteoarthritis GPL96 synovium Exclude rheumatoid arthritis samples (10 case, 10 
control).  

GSE56815 osteoporosis GPL96 blood monocytes - 

GSE14245 pancreatic cancer GPL570 saliva - 

GSE7621 parkinson's disease GPL570 substantia nigra - 

GSE7586 placental malaria GPL570 placenta Exclude past malaria (10 case, 5 control) 

GSE34526 polycystic ovary syndrome GPL570 ovarian follicle - 

GSE12767 preeclampsia GPL570 placenta - 

GSE36314 prolactinoma GPL8300 pituitary gland - 

GSE55945 prostate cancer GPL570 prostate Exclude corrupted files GSM1348937 and 
GSM1348948 (12 case, 7 control) 

GSE14905 psoriasis GPL570 skin Exclude 'Uninvolved skin' (33 case, 21 control) 

GSE53408 pulmonary arterial hypertension GPL6244 lung - 

GSE36895 clear-cell renal cell carcinoma GPL570 kidney Exclude mouse tumourgraft (29 case, 23 control) 

GSE77298 rheumatoid arthritis GPL570 synovium - 

GSE65914 rosacea GPL570 skin - 

GSE19314 sarcoidosis GPL570 whole blood Sarcoidosis v control (38 case, 20 control) 

GSE13205 sepsis GPL570 skeletal muscle - 

GSE11524 sickle cell disease GPL570 blood platelets - 
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GSE10325 systemic lupus erythematosus GPL96 perhipheral blood - 

GSE26049 essential thrombocythemia GPL570 whole blood Essential thrombocythemia v control, RMA only 
(19 case, 21 control) 

GSE3678 thyroid carcinoma GPL570 thyroid - 

GSE55098 type 1 diabetes mellitus GPL570 peripheral blood mononuclear cells - 

GSE25724 type 2 diabetes mellitus GPL96 pancreatic islets - 

GSE38713 ulcerative colitis GPL570 colon Active UC, involved mucosa v control (15 case, 13 
control) 

GSE5563 vulvar intraepithelial neoplasia GPL570 vulva - 
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APPENDIX D: DISEASE NAME MAPPING USED FOR CHAPTER 5 
 

Transcriptomic space Ontological and 
phenotypic spaces 

Literature co-
occurrence space 

Genetic space Drug space ICD 3-
digit 
code 

ICD name 

acne acne acne vulgaris acne acne 706 diseases of 
sebaceous glands 

actinic keratosis actinic keratosis actinic keratosis keratosis, actinic actinic keratosis 702 other dermatoses 

acute myeloid leukemia acute myeloid leukemia acute myeloid leukemia leukemia, myeloid, 
acute 

acute myeloid 
leukemia 

205 myeloid leukemia 

adrenal adenoma adrenal adenoma adrenocortical adenoma adrenocortical 
adenoma 

adrenocortical 
carcinoma 

227 benign neoplasm of 
other endocrine 
glands and related 
structures 

alcoholism alcohol dependence alcohol dependence alcohol abuse or 
dependence 

alcohol dependence 303 alcohol dependence 
syndrome 

allergic asthma allergic asthma asthma, aspirin-induced allergic asthma asthma 493 asthma 

allergic contact 
dermatitis 

allergic contact 
dermatitis 

allergic contact 
dermatitis 

dermatitis, allergic 
contact 

contact dermatitis 692 contact dermatitis 
and other eczema 

alopecia areata alopecia areata alopecia areata alopecia areata alopecia areata 704 diseases of hair and 
hair follicles 

alzheimer's disease alzheimer's disease alzheimer's disease alzheimer disease alzheimers disease 331 other cerebral 
degenerations 
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aortic aneurysm aortic aneurysm aortic aneurysm aortic aneurysm aortic aneurysm 441 aortic aneurysm and 
dissection 

asthma asthma asthma asthma asthma 493 asthma 

astrocytoma astrocytoma astrocytoma astrocytoma astrocytoma 191 malignant neoplasm 
of brain 

atopic dermatitis atopic dermatitis atopic dermatitis adult atopic 
dermatitis 

atopic eczema 691 atopic dermatitis and 
related conditions 

autism autistic disorder autistic disorder autistic disorder autism 299 pervasive 
developmental 
disorders 

bacterial meningitis bacterial meningitis bacterial meningitis meningitis, bacterial bacterial meningitis 320 bacterial meningitis 

bipolar disorder bipolar disorder bipolar disorder bipolar disorder bipolar disorder 296 episodic mood 
disorders 

bladder cancer urinary bladder cancer urinary bladder cancer carcinoma of bladder bladder carcinoma 188 malignant neoplasm 
of bladder 

breast lobular carcinoma invasive lobular 
carcinoma 

breast cancer breast cancer, lobular breast carcinoma 174 malignant neoplasm 
of female breast 

cerebral palsy cerebral palsy spastic diplegia cerebral palsy cerebral palsy 343 infantile cerebral 
palsy 

cervical squamous cell 
carcinoma 

cervical squamous cell 
carcinoma 

cervical cancer cervix carcinoma cervical carcinoma 180 malignant neoplasm 
of cervix uteri 

cervical intraepithelial 
neoplasia 

cervix uteri carcinoma 
in situ 

cervix uteri carcinoma in 
situ 

high grade cervical 
intraepithelial 
neoplasia 

cervical carcinoma 233 carcinoma in situ of 
breast and 
genitourinary system 
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chronic lymphocytic 
leukemia 

chronic lymphocytic 
leukemia 

chronic lymphocytic 
leukemia 

leukemia, 
lymphocytic, chronic, 
b-cell 

chronic lymphocytic 
leukemia 

204 lymphoid leukemia 

chronic obstructive 
pulmonary disease 

chronic obstructive 
pulmonary disease 

chronic obstructive 
pulmonary disease 

severe chronic 
obstructive 
pulmonary disease 

chronic obstructive 
pulmonary disease 

496 chronic airway 
obstruction, not 
elsewhere classified 

colorectal 
adenocarcinoma 

colorectal cancer colon cancer colorectal cancer colorectal 
adenocarcinoma 

153 malignant neoplasm 
of colon 

crohn's disease crohn's disease crohn's colitis crohn disease crohn's disease 555 regional enteritis 

cystic fibrosis cystic fibrosis cystic fibrosis cystic fibrosis cystic fibrosis 277 other and 
unspecified 
disorders of 
metabolism 

dengue fever dengue disease dengue disease dengue not found 61 dengue 

dilated cardiomyopathy dilated cardiomyopathy dilated cardiomyopathy cardiomyopathy, 
dilated 

dilated 
cardiomyopathy 

425 cardiomyopathy 

discoid lupus 
erythematosus 

discoid lupus 
erythematosus of eyelid 

lupus erythematosus, 
discoid 

lupus erythematosus, 
discoid 

cutaneous lupus 
erythematosus 

373 inflammation of 
eyelids 

down syndrome down syndrome down syndrome down syndrome down syndrome 758 chromosomal 
anomalies 

duchenne muscular 
dystrophy 

duchenne muscular 
dystrophy 

duchenne muscular 
dystrophy 

muscular dystrophy, 
duchenne 

duchenne muscular 
dystrophy 

359 muscular 
dystrophies and 
other myopathies 

emphysema pulmonary emphysema emphysema pulmonary 
emphysema 

emphysema 492 emphysema 
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endometrial carcinoma endometrial carcinoma endometrial carcinoma endometrial 
carcinoma 

endometrial 
neoplasm 

182 malignant neoplasm 
of body of uterus 

endometriosis endometriosis endometriosis of uterus endometriosis endometriosis 617 endometriosis 

gastric adenocarcinoma gastric adenocarcinoma stomach cancer stomach carcinoma gastric 
adenocarcinoma 

151 malignant neoplasm 
of stomach 

head and neck squamous 
cell carcinoma 

head and neck 
squamous cell 
carcinoma 

carcinoma, squamous 
cell of head and neck 

carcinoma, squamous 
cell of head and neck 

head and neck 
squamous cell 
carcinoma 

195 malignant neoplasm 
of other and ill-
defined sites 

chronic hepatitis b 
(carrier) 

hepatitis b hepatitis b hepatitis b, chronic chronic hepatitis b 
infection 

70 viral hepatitis 

chronic hepatitis c hepatitis c hepatitis c hepatitis c, chronic chronic hepatitis c 
infection 

70 viral hepatitis 

hepatocellular carcinoma hepatocellular 
carcinoma 

carcinoma, 
hepatocellular 

adult primary 
hepatocellular 
carcinoma 

hepatocellular 
carcinoma 

155 malignant neoplasm 
of liver and 
intrahepatic bile 
ducts 

hiv human 
immunodeficiency 
virus infectious disease 

human 
immunodeficiency virus 
infectious disease 

hiv infections hiv infection 42 human 
immunodeficiency 
virus [hiv] disease 

hodgkin's lymphoma hodgkin's lymphoma hodgkin's lymphoma, 
lymphocytic-histiocytic 
predominance 

classical hodgkin 
lymphoma 

hodgkins lymphoma 201 hodgkin's disease 

huntington's disease huntington's disease huntington's disease huntington disease huntington disease 333 other extrapyramidal 
disease and 
abnormal movement 
disorders 
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idiopathic pulmonary 
fibrosis 

idiopathic pulmonary 
fibrosis 

idiopathic pulmonary 
fibrosis 

idiopathic pulmonary 
fibrosis 

idiopathic pulmonary 
fibrosis 

516 other alveolar and 
parietoalveolar 
pneumonopathy 

influenza influenza influenza influenza, human influenza infection 487 influenza 

irritable bowel syndrome irritable bowel 
syndrome 

irritable bowel syndrome irritable bowel 
syndrome 

irritable bowel 
syndrome 

564 functional digestive 
disorders, not 
elsewhere classified 

ischemic 
cardiomyopathy 

cardiomyopathy cardiomyopathy ischemic 
cardiomyopathy 

cardiomyopathy 414 other forms of 
chronic ischemic 
heart disease 

ischemic stroke cerebrovascular disease cerebrovascular disease ischemic stroke stroke 434 occlusion of cerebral 
arteries 

juvenile idiopathic 
arthritis 

juvenile rheumatoid 
arthritis 

rheumatoid arthritis, 
systemic juvenile 

juvenile rheumatoid 
arthritis 

chronic childhood 
arthritis 

714 rheumatoid arthritis 
and other 
inflammatory 
polyarthropathies 

leukopenia leukopenia leukopenia leukopenia not found 288 diseases of white 
blood cells 

limb-girdle muscular 
dystrophy 

limb-girdle muscular 
dystrophy 

limb-girdle muscular 
dystrophy 

muscular dystrophies, 
limb-girdle 

not found 359 muscular 
dystrophies and 
other myopathies 

non-small cell lung 
carcinoma 

non-small cell lung 
carcinoma 

non-small cell lung 
carcinoma 

carcinoma, non-
small-cell lung 

non-small cell lung 
carcinoma 

162 malignant neoplasm 
of trachea, bronchus, 
and lung 

major depressive 
disorder 

major depressive 
disorder 

depressive disorder, 
major 

depressive disorder, 
major 

unipolar depression 296 episodic mood 
disorders 
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teratozoospermia azoospermia male infertility teratospermia azoospermia 792 nonspecific 
abnormal findings in 
other body 
substances 

malignant pleural 
mesothelioma 

malignant pleural 
mesothelioma 

mesothelioma, malignant pleural malignant 
mesothelioma 

mesothelioma 163 malignant neoplasm 
of pleura 

measles measles measles measles not found 55 measles 

multiple sclerosis multiple sclerosis multiple sclerosis multiple sclerosis multiple sclerosis 340 multiple sclerosis 

myocardial infarction myocardial infarction myocardial infarction myocardial infarction myocardial infarction 410 acute myocardial 
infarcation 

nasopharyngeal 
carcinoma 

nasopharynx carcinoma nasopharyngeal 
carcinoma 

nasopharyngeal 
carcinoma 

nasopharyngeal 
neoplasm 

147 malignant neoplasm 
of nasopharynx 

obesity obesity obesity obesity obesity 278 overweight, obesity 
and other 
hyperalimentation 

esophageal squamous 
cell carcinoma 

esophagus squamous 
cell carcinoma 

esophageal squamous 
cell carcinoma 

esophageal squamous 
cell carcinoma 

esophageal 
carcinoma 

150 malignant neoplasm 
of esophagus 

osteoarthritis osteoarthritis osteoarthritis osteoarthritis osteoarthritis 715 osteoarthrosis and 
allied disorders 

osteoporosis osteoporosis osteoporosis osteoporosis osteoporosis 733 other disorders of 
bone and cartilage 

pancreatic cancer pancreatic cancer pancreatic cancer pancreatic carcinoma pancreatic carcinoma 157 malignant neoplasm 
of pancreas 

parkinson's disease parkinson's disease parkinson's disease parkinson disease parkinson's disease 332 parkinson's disease 
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placental malaria malaria malaria malaria malaria 84 malaria 

polycystic ovary 
syndrome 

polycystic ovary 
syndrome 

polycystic ovary 
syndrome 

polycystic ovary 
syndrome 

polycystic ovary 
syndrome 

256 ovarian dysfunction 

preeclampsia pre-eclampsia pre-eclampsia pre-eclampsia preeclampsia 642 hypertension 
complicating 
pregnancy, 
childbirth, and the 
puerperium 

prolactinoma prolactinoma prolactinoma prolactinoma hyperprolactinemia 253 disorders of the 
pituitary gland and 
its hypothalamic 
control 

prostate cancer prostate cancer prostate cancer prostate carcinoma prostate carcinoma 185 malignant neoplasm 
of prostate 

psoriasis psoriasis parapsoriasis psoriasis psoriasis 696 psoriasis and similar 
disorders 

pulmonary arterial 
hypertension 

pulmonary 
hypertension 

pulmonary hypertension pulmonary arterial 
hypertension 

pulmonary 
hypertension 

416 chronic pulmonary 
heart disease 

clear-cell renal cell 
carcinoma 

renal clear cell 
carcinoma 

clear-cell metastatic 
renal cell carcinoma 

non-hereditary clear 
cell renal cell 
carcinoma 

clear cell renal 
carcinoma 

189 malignant neoplasm 
of kidney and other 
and unspecified 
urinary organs 

rheumatoid arthritis rheumatoid arthritis rheumatoid arthritis arthritis, rheumatoid rheumatoid arthritis 714 rheumatoid arthritis 
and other 
inflammatory 
polyarthropathies 
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rosacea rosacea rosacea rosacea rosacea 695 erythematous 
conditions 

sarcoidosis sarcoidosis sarcoidosis sarcoidosis sarcoidosis 135 sarcoidosis 

sepsis disease by infectious 
agent 

sepsis sepsis sepsis 995 certain adverse 
effects not elsewhere 
classified 

sickle cell disease sickle cell anemia sickle cell anemia anemia, sickle cell sickle cell anemia 282 hereditary hemolytic 
anemias 

systemic lupus 
erythematosus 

systemic lupus 
erythematosus 

systemic lupus 
erythematosus 

lupus erythematosus, 
systemic 

systemic lupus 
erythematosus 

710 diffuse diseases of 
connective tissue 

essential 
thrombocythemia 

essential 
thrombocythemia 

essential 
thrombocythemia 

thrombocythemia, 
essential 

essential 
thrombocythemia 

238 neoplasm of 
uncertain behavior 
of other and 
unspecified sites and 
tissues 

thyroid carcinoma thyroid carcinoma thyroid cancer thyroid carcinoma thyroid carcinoma 193 malignant neoplasm 
of thyroid gland 

type 1 diabetes mellitus type 1 diabetes mellitus type 1 diabetes mellitus diabetes mellitus, 
type 1 

type i diabetes 
mellitus 

250 diabetes mellitus 

type 2 diabetes mellitus type 2 diabetes mellitus type 2 diabetes mellitus diabetes mellitus, 
type 2 

type ii diabetes 
mellitus 

250 diabetes mellitus 

ulcerative colitis ulcerative colitis ulcerative colitis colitis, ulcerative ulcerative colitis 556 ulcerative colitis 

vulvar intraepithelial 
neoplasia 

vulva cancer vulva cancer vulvar intraepithelial 
neoplasia, usual type 

vulvar intraepithelial 
neoplasia 

233 carcinoma in situ of 
breast and 
genitourinary system 
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APPENDIX E: SIGNIFICANCE THRESHOLDS OF CONCORDANCE FOR 
DIFFERENT SUBGROUP SIZES 
95th percentile values of the distribution of average correlation over randomly selected 

subgroups of PD studies.  For a correlation in any (real) subgroup to be considered significant, 

it must be greater than or equal to the 95th percentile value of random subgroup correlation for 

its size.   Smaller subgroups are more likely to show higher correlation through chance alone, 

and therefore smaller subgroups need higher average concordance to be considered significant. 

 
Subgroup size 95th percentile 

 

Subgroup size 95th percentile 

 3  0.26 17 0.09 

4  0.20 18  0.09 

5  0.18 19  0.09 

6 0.16 20   0.08 

7  0.15 21    0.08 

8  0.13 22  0.08 

9  0.13 23  0.08 

10   0.12 26  0.08 

11  0.11 27  0.07 

12  0.11 28    0.07 

13 0.11 29   0.07 

14  0.10 30  0.07 

15  0.10 31  0.06 

16  0.09 32  0.06 
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APPENDIX F: CONCORDANCE OVER BASE VS SUBSET SHARED 
GENES 
Concordance calculated over the base set of genes, consisting of the 2,513 genes shared 

between all studies, vs concordance calculated over the larger sets of genes shared between 

subsets of studies.  In most cases the result is not substantially different; concordance over the 

base set was reported in the main text in order not to bias the results due to changing geneset 

sizes. 

  

Subset Subset size  Score over 

2,372 genes  

Score over 

shared genes  

Number of 

shared genes  

All PD studies 33  0.05 -   2,513  

SN  8  0.30 0.30  2,976 

Striatum  9  0.07 0.06  6,153  

Human  19 0.08  0.09  4,776  

Human, in vivo  15  0.15 0.15   5,082  

Mice  9  0.03  0.04 7,609  
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APPENDIX G: PATHWAY ENRICHMENT RESULTS FOR PARKINSON’S 
DISEASE STUDIES 

 
Reactome pathways identified by gene set enrichment analysis of 
differential gene expression in human Parkinson's disease studies 
 
Upregulated pathways (NES>0, FDR<0.25) Number of human 

studies in which 
pathway is in top 
50 pathways by 
abs(NES): 

Attenuation phase 4 
Interferon alpha/beta signaling 4 
Diseases associated with the TLR signaling cascade 3 
Diseases of Immune System 3 
Cellular response to heat stress 3 
HSF1-dependent transactivation 3 
Initial triggering of complement 3 
Eukaryotic Translation Elongation 3 
Viral mRNA Translation 3 
Peptide chain elongation 3 
Eukaryotic Translation Termination 3 
Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex 
(EJC) 

3 

Formation of a pool of free 40S subunits 3 
Influenza Viral RNA Transcription and Replication 3 
SRP-dependent cotranslational protein targeting to membrane 3 
Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex 
(EJC) 

3 

Nonsense-Mediated Decay (NMD) 3 
Influenza Life Cycle 3 
3' -UTR-mediated translational regulation 3 
L13a-mediated translational silencing of Ceruloplasmin expression 3 
Interferon gamma signaling 3 
GTP hydrolysis and joining of the 60S ribosomal subunit 3 
Influenza Infection 3 
Cap-dependent Translation Initiation 3 
Eukaryotic Translation Initiation 3 
Translation 3 
Regulation of Complement cascade 3 
 
Downregulated pathways (NES <0, FDR<0.25) 
The citric acid (TCA) cycle and respiratory electron transport 10 
Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and 
heat production by uncoupling proteins. 

9 
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Respiratory electron transport 9 
Vpu mediated degradation of CD4 8 
Vif-mediated degradation of APOBEC3G 7 
Antigen processing: Ubiquitination & Proteasome degradation 7 
Ubiquitin-dependent degradation of Cyclin D 7 
Ubiquitin-dependent degradation of Cyclin D1 7 
GLI3 is processed to GLI3R by the proteasome 7 
Degradation of GLI2 by the proteasome 7 
SCF-beta-TrCP mediated degradation of Emi1 7 
Dectin-1 mediated noncanonical NF-kB signaling 6 
Cross-presentation of soluble exogenous antigens (endosomes) 6 
Autodegradation of the E3 ubiquitin ligase COP1 6 
Regulation of activated PAK-2p34 by proteasome mediated degradation 6 
Regulation of Apoptosis 6 
degradation of AXIN 6 
SCF(Skp2)-mediated degradation of p27/p21 6 
CDK-mediated phosphorylation and removal of Cdc6 6 
Stabilization of p53 6 
Autodegradation of Cdh1 by Cdh1:APC/C 6 
Degradation of GLI1 by the proteasome 6 
CDT1 association with the CDC6:ORC:origin complex 6 
AUF1 (hnRNP D0) destabilizes mRNA 5 
p53-Independent DNA Damage Response 5 
p53-Independent G1/S DNA damage checkpoint 5 
Transmission across Chemical Synapses 5 
APC/C:Cdc20 mediated degradation of Securin 5 
Hedgehog ligand biogenesis 5 
Cdc20:Phospho-APC/C mediated degradation of Cyclin A 5 
APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of 
the cell cycle checkpoint 

5 

Hh mutants abrogate ligand secretion 5 
Hh mutants that don't undergo autocatalytic processing are degraded by 
ERAD 

5 

Assembly of the pre-replicative complex 5 
Degradation of beta-catenin by the destruction complex 5 
Ubiquitin Mediated Degradation of Phosphorylated Cdc25A 4 
Regulation of ornithine decarboxylase (ODC) 4 
APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 
targeted proteins in late mitosis/early G1 

4 

Cyclin A:Cdk2-associated events at S phase entry 4 
Cyclin E associated events during G1/S transition  4 
Hedgehog 'off' state 4 
APC/C:Cdc20 mediated degradation of mitotic proteins 4 
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Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic 
proteins 

4 

Orc1 removal from chromatin 4 
degradation of DVL 4 
Asymmetric localization of PCP proteins 4 
Host Interactions of HIV factors 3 
Neuronal System 3 
Dopamine Neurotransmitter Release Cycle 3 
Serotonin Neurotransmitter Release Cycle 3 
Na+/Cl- dependent neurotransmitter transporters 3 
Norepinephrine Neurotransmitter Release Cycle 3 
HS-GAG degradation 3 
Protein folding 3 
Chaperonin-mediated protein folding 3 
Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 3 
Regulation of APC/C activators between G1/S and early anaphase 3 
APC/C-mediated degradation of cell cycle proteins 3 
Regulation of mitotic cell cycle 3 
Mitochondrial translation initiation 3 
Switching of origins to a post-replicative state 3 
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Reactome pathways identified by gene set enrichment analysis of 
differential gene expression in Parkinson's disease studies: humans and 
animal models    
	 	 	 	
 Number of times pathway is in top 10 pathways 

by abs(NES) in: 
 All studies Human 

studies 
Substantia 
nigra studies 

 
Upregulated pathways (NES > 0, FDR<0.25) 
Eukaryotic Translation Elongation 6 3 3 
Viral mRNA Translation 6 3 3 
Eukaryotic Translation Termination 6 2 2 
Peptide chain elongation 6 3 3 
Formation of a pool of free 40S subunits 4 1 1 
3' -UTR-mediated translational regulation 4 2 3 
GTP hydrolysis and joining of the 60S 
ribosomal subunit 

3 1 2 

L13a-mediated translational silencing of 
Ceruloplasmin expression 

3 1 2 

Nonsense Mediated Decay (NMD) independent 
of the Exon Junction Complex (EJC) 

3 2 1 

 
Downregulated pathways (NES <0, FDR<0.25) 
The citric acid (TCA) cycle and respiratory 
electron transport 

7 6 3 

Respiratory electron transport 6 5 3 
Respiratory electron transport, ATP synthesis 
by chemiosmotic coupling, and heat production 
by uncoupling proteins 

6 5 3 

Antigen processing: Ubiquitination & 
Proteasome degradation 

3 2 0 

Phosphorylation of CD3 and TCR zeta chains 3 2 1 
Vif-mediated degradation of APOBEC3G 3 3 1 
Degradation of GLI2 by the proteasome 3 3 2 
Hh mutants abrogate ligand secretion 3 3 2 
Amyloids 3 1 0 
Cholesterol biosynthesis 3 0 0  
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APPENDIX H: UNION OF TOP 10 GENES ACROSS ALL 33 
PARKINSON’S DISEASE STUDIES 

Reading across each successive row of the table, this list corresponds to the rows of the heatmap 

in Figure 3.7. 

 
AMH MAP3K6 SH2D2A SLC7A8 WNK1 SLC6A3 CFLAR FLNB 
GLI2 ZFP36 CRK CXCL2 CYP1B1 CH25H ADM NFKBIA 
SGK1 ST3GAL6 ALB CDKN1A NFE2L2 TFCP2 MAFF TTR 
TYMS CD74 OXT CAPN3 FOXO3 SPP1 CX3CR1 HLA-DRB1 
UGT8 AZGP1 CXCR4 ANGPT2 RCN1 AQP4 RAB3IL1 EEF1D 
ITGAM SERPINB1 MTF2 TIA1 PIM1 TINF2 GADD45B IER3 
ATF3 TULP4 SAT1 ANXA3 PRSS23 INHBA SSTR2 FOS 
EGR1 TH NR4A2 TBL1X UIMC1 RND2 SLC6A8 BOK 
CD22 ABCA1 MAP4K4 MLLT10 VIM LPL CD14 C1QB 
PTPRC SPARC RPS11 COTL1 BAG3 HSPB1 AXL CASP4 
CD4 VCAN FMOD PCBD1 SLC6A13 SMAD5 NFIX SLC9A3R2 
COPE CRLF1 IGFBP2 JUP DUSP1 JUNB IDH1 GPX2 
AGT MID1 CLTA GFAP CD44 CHI3L1 CASP1 VAMP8 
CEBPG ANXA4 LGALS1 CAV1 CSRP1 KLKB1 RAB31 CP 
CTSC UBL5 GPX3 PFKFB2 PPARGC1A NOS1 VEGFC GRIK1 
ADCYAP1 DDX6 XIAP ZFX TSPAN12 ARHGAP5 MAN2A1 CDH1 
MAP7 SLC4A7 SDC1 SMARCA4 ACOT7 ACTN1 DPYSL4 PTK2B 
MMP9 LAMB3 BCL2L1 ATP1B2 HTR4 SEC14L1 ITM2C EPHX1 
PLEC TMEM176A PHGDH GUSB SLC4A1 GABBR1 ACTC1 FAM65B 
LPP BAX CYTH3 DRD2 SEPT9 SMPD1 HS3ST1 CA4 
DUSP6 MARK2 GFRA2 KIF5C GNAS ZNF148 TCF4 SPOCK1 
ZFPM2 AP1S2 ENC1 YWHAZ LAPTM4B MAPK10 GABRG2 YWHAH 
SNCB VAMP2 CIRBP TPBG DDC DLK1 PAX6 FABP7 
PPAT RIOK3 GOSR1 CDKN1B RAD23B TPD52 EIF1AX TFPI 
HSD17B11 SLC16A1 NAMPT ME1 CFH OLR1 PDK4 DNAJB6 
RAD21 SDHD PKIA SMAD1 NAP1L4 RGS2 PDPK1 RAB1A 
RC3H2 SLC6A1 KCNB1 PSMB4 EIF2AK1 HAGH FECH BPGM 
RPL15 PDE1A MAP1B TTC3 FUT9 INPP4A NOV ITGB1BP1 
FEZ2 FGF9 CADPS AIF1 GMFB PIP4K2A ST13 SLC11A2 
TRIP12 RABEP1 RGS4 STMN2 GAP43 SNAP25 SYT1 PRKACB 
RCN2 PRKCB YWHAB SNX10 NSF CHGB TPPP3 MAP2 
SCG5 TAGLN3 NEFL THY1 CCK SNCA SERPINI1 CMAS 
GHITM TOMM20        
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APPENDIX I: UNION OF TOP 10 GENES ACROSS ALL 33 STUDIES 
PLUS ALZHEIMER'S DISEASE AND TUMOUR STUDIES 

Reading across each successive row of the table, this list corresponds to the rows of the heatmap 

in Figure 3.9. 

	
VIM TGFBI IGFBP3 ABCA1 ANGPT2 CTSC CD74 GPX3 
CCL4 CASP1 VAMP8 LGALS1 CAV1 C1QB CD14 CP 
NNMT ANXA1 CD44 CTSS OLR1 AZGP1 PTPRC CFH 
AQP4 SERPINB1 PRSS23 TMEM176A VCAN CASP4 AXL RAB31 
SPP1 PDGFRA CCND1 IL1RAP ME1 DUSP6 EGR1 FOS 
HCLS1 AIF1 CX3CR1 HLA-DRB1 ITGAM EEF1D CXCR4 INHBA 
ANXA4 BAG3 GEM CYR61 DUSP1 JUNB ZFP36 SGK1 
NFKBIA RC3H2 ST3GAL6 SMAD1 FHL2 ADM MMP9 HSPB1 
TBL1X SEC14L1 RND2 SPARC COTL1 ACTN1 HS3ST1 FMOD 
GFAP AGT ATF3 PIM1 TINF2 IER3 GADD45B TFPI 
CEBPG BCAT1 IL13RA2 SLC16A1 HSD17B11 PDK3 RABEP1 NAMPT 
CRK GOSR1 SLC4A7 CFLAR FLNB GLI2 UBL5 ARNTL 
TFRC ALB GPX2 RPS16 LTB GLTSCR2 KLF2 LCK 
CXCL2 DPYSL4 LAMB3 BCL2L1 CLTA KLKB1 AQP1 TYMS 
LPP IDH1 ITGB4 SMAD5 NFIX MYLK GUSB GRIK1 
ACTC1 COPE CYTH3 FOXO3 MLLT10 VEGFC RAB3IL1 CA2 
SLC9A3R2 PHGDH SLC4A1 JUP SLC6A13 FEZ2 TRIP12 LAPTM4B 
MAP2 MAP1B CADPS ZNF148 TCF4 ZFPM2 JAK1 AP1S2 
ENC1 YWHAH TTC3 RCN2 YWHAB YWHAZ SMARCA4 SDC1 
Sep-09 CIRBP DDX6 RPL18 RPS11 UIMC1 PTEN RAD21 
PKIA PDPK1 RAB1A PPAT RIOK3 EIF2AK1 BPGM FECH 
RAD23B COPS8 PITPNA PSMB4 PSMB7 PFKFB2 CDH1 NOS1 
BCAN PCBD1 BAX RXRA CD4 EPHX1 ATP1B2 IKZF2 
SERPINB9 RARA SLC6A8 MARK2 HTR4 GFRA2 CSRP1 CRLF1 
PLEC SMPD1 PDK4 DNAJB6 ACSL1 SPOCK1 NOV GJA1 
RGS2 GAD1 SNX10 THY1 PPP1R2 TPBG DLK1 DDC 
COL1A2 CA12 LPL RCN1 MMP15 PRC1 IGFBP2 ELAVL1 
MID1 FABP7 MTF2 GAP43 CYP1B1 CH25H CDKN1A FKBP5 
IL1R2 NFE2L2 TFCP2 MAFF CHI3L1 MAP3K6 AMH WNK1 
SH2D2A SLC7A8 SLC6A3 TTR STMN2 NEFL SYT1 KIF5C 
PVALB SNAP25 PRKCB CHGB FGF9 GABRA1 SLC12A5 TIA1 
PAX6 GNAS HIVEP3 NNAT SSTR2 TULP4 ANXA3 MAP4K4 
SH3GL3 OXT CAPN3 UGT8 GMFB CTTN MAN2A1 SLC11A2 
PRKACB TPD52 BOK CD22 MAP7 CDKN1B ARHGAP5 PIP4K2A 
TSPAN12 ZFX IVNS1ABP NAP1L4 SDHD XIAP ST13 KCNB1 
SLC6A1 FUT9 ITGB1BP1 PRNP EIF1AX SUMO1 EPS15 MAPK10 
GHITM CMAS TH NR4A2 CCK RGS4 PDE1A SNCA 
GABRG2 SERPINI1 TPPP3 SCG5 TAGLN3 PTK2B SYT5 DRD2 
FAM65B PPARGC1A HAGH GABBR1 INPP4A CA4 ADCYAP1 ACOT7 
NSF SNCB VAMP2       
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APPENDIX J COMPARISON OF RESULTS USING HIPPIE AND 
OMNIPATH  

 

HIPPIE, which is based on protein-protein interactions rather than the signalling interactions 

contained in OmniPath, is a slightly larger network, recording interactions for a median of 51% 

of measured genes compared to OmniPath’s 30%.  This means that the available network size 

(the size of the ‘base’ network) is also larger, at a median of 2,413 nodes compared to 1,408 

nodes for OmniPath.  Surprisingly, this does not result in much larger path-sets: HIPPIE path-

sets contain a median of 90 nodes, compared to 82 for OmniPath.  

This may be linked to the degree of nodes in path-sets: the degree distribution of the two graphs 

is similar overall, but interestingly, nodes in OmniPath path-sets have a higher average degree, 

at a median of 15.5 compared to the median degree of 10 for nodes in HIPPIE path-sets.  

Overall, the distribution of path-set network component size is similar in both networks: the 

median of both is 3 (path-sets contain many small components and only a few larger ones), 

with a maximum component size of 306 for OmniPath and 355 for HIPPIE path-sets. However, 

the mean component size is 11.6 for OmniPath and 7.0 for HIPPIE, suggesting that the major 

connected components in HIPPIE paths tend to be slightly smaller.  These results are 

summarised in Table J.1.  

 

Table J.1 Comparison of network and path-set topology in OmniPath and HIPPIE  
 OmniPath HIPPIE 

Number of unique proteins 6,972 12,162 

Number of usable interactions  43,963 62,615 

Percentage of measured genes included in the 

network 

30% 51% 

Median available network size 1,408 2,413 

Median path-set size 82 90 

Median degree of nodes in path-sets 15.5 10 

Mean network component size of path-sets 11.6 7.0 

R2 of relationship between number of path-sets and 

degree of a gene 

0.47 0.45 

R2 of relationship between number of random-sets 

and degree of a gene 

0.68 0.75 
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In general, the genes included in the path-sets are quite different between the two base 

networks.  Figure J.1 shows an example of this, comparing the dysregulated path-set for asthma 

in OmniPath (as shown in Figure 4.3 of the main text) to that in HIPPIE.  The difference 

between the two seems to be due to the low overlap between the signalling interactions included 

in OmniPath and the protein-protein interactions included in HIPPIE – of the 43,963 

interactions in OmniPath and the 62,615 interactions in HIPPIE, only 8,966 are common to 

both (a Jaccard overlap of 0.09).  The median Jaccard overlap of edges in both networks is 

correspondingly low at 0.05.  Nevertheless, the overall properties (in terms of ability to capture 

KDGs and shared edges between diseases) are similar, as shown in Tables J.2, J.3, and J.4. 

	
Table J.2 Known disease-associated genes and drug-interacting genes (KDGs) in 
path-sets in OmniPath and HIPPIE 

Results	in	HIPPIE	are	overall	similar	to	those	in	OmniPath,	albeit	slightly	lower.		One	notable	
difference	is	that	the	random-path-sets	perform	comparably	worse	in	HIPPIE.		The	relatively	
good	 performance	 of	 the	 random-path-sets	 in	 OmniPath	 was	 explored	 in	 Section	 4.3.2	 in	
relation	 to	 the	 tendency	 of	 path-set	 analysis	 to	 select	 genes	 of	 higher	 degree.	 	 Like	 in	
OmniPath,	 nodes	 in	 the	HIPPIE	 random	path-sets	 tend	 to	 have	 slightly	 higher	 degree	 than	
nodes	in	the	real	path-sets	(median	degree	of	11.75	in	the	random	path-sets	compared	to	10	
in	 the	 real	path-sets).	 	However,	unlike	OmniPath,	drug	 targets	 in	HIPPIE	do	not	have	very	
significantly	 higher	 median	 degree	 than	 non-drug-targets	 (median	 degree	 of	 4	 for	 both,	
Wilcoxon	 p-value	 0.012).	 	 This	 could	 explain	 the	 comparatively	 worse	 performance	 of	 the	
random-path-sets	in	HIPPIE.	

	  Path-set LFC-set Random-

path-set 

Random-

gene-set 

What proportion of 

sets contained at 

least one KDG? 

OmniPath: 0.58 0.56 0.54 0.43 

HIPPIE: 0.55 0.52 0.46 0.38 

How many KDGs 

were found per set 

on average? 

OmniPath: 2.95 1.89 2.40 1.18 

HIPPIE: 2.06 1.70 1.50 0.85 

What percentage of 

genes in the set 

were KDGs? 

OmniPath: 3.2% 2.4% 2.5% 1.3% 

HIPPIE: 2.2% 1.9% 1.5% 0.9% 
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OmniPath path-set	

 
 
HIPPIE path-set	

	
 
Figure J.1 Comparison of asthma path-sets in OmniPath (top) and HIPPIE (bottom) 
The	path-set	based	on	HIPPIE	is	slightly	larger	(79	nodes)	than	the	path-set	based	on	OmniPath	
(58	nodes),	but	contains	more	short	paths	connecting	only	two	genes.	 	The	HIPPIE	path-set	
does	not	show	the	same	hub-based	structure	as	the	OmniPath	path-set	–	the	key	hub	node	
MAPK1	is	included	in	the	path-set,	but	connects	to	only	two	other	genes.		Both	sets	include	
the	asthma-associated	gene	SMAD3,	but	pick	up	different	drug-interacting	genes.	
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HIPPIE path-sets also yield similar numbers of disease pairs which share a significant number 

of edges, with 647 significant disease pairs of a median shared-edge-set size of 20 nodes, 

compared to 676 disease pairs in OmniPath which have a median shared-edge-set size of 21 

nodes.  Of these, 261 pairs are common to both.  The pairs are overall similar in terms of their 

biological relevance (Table J.3) and the disease-associated genes and drug-targets contained in 

their shared edges (Table J.4). 

	
	
Table J.3 Biological relevance of shared edges 

Significant	disease	pairs	in	OmniPath	and	HIPPIE	are	similar	in	terms	of	their	likelihood	to	be	in	
the	 same	 Disease	 Ontology	 category	 or	 to	 share	 drugs,	 but	 disease	 pairs	 in	 HIPPIE	 are	
comparatively	less	likely	to	share	disease-associated	genes.	

	  Disease pairs 

with shared 

paths 

Disease pairs 

without shared 

paths 

Fisher test 

p-value 

In the same Disease 

Ontology top-level class 

OmniPath: 44.7% 26.3% <2.20e-16 

HIPPIE: 45.0% 26.3% <2.20e-16 

In the same Disease 

Ontology sub-class 

OmniPath: 18.1% 7.2% <2.20e-16 

HIPPIE: 17.8% 7.3% <2.20e-16 

Share drugs (in Phase III 

clinical trials or 

approved) 

OmniPath: 17.2% 8.0% 1.33e-13 

HIPPIE: 14.5% 8.2% 2.03e-7 

Share disease-associated 

genes 

OmniPath: 19.2% 10.8% 5.27e-10 

HIPPIE: 14.4% 11.2% 0.015 
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Table J.4 Disease-associated and drug-interacting genes in shared edges 

A	slightly	smaller	percentage	of	disease	pairs	significant	in	HIPPIE	include	a	disease-associated	
or	 drug-interacting	 gene	 than	 pairs	 significant	 in	 OmniPath;	 however,	 the	 drug-interacting	
genes	tend	to	be	slightly	more	likely	to	be	relevant	to	both	diseases.	

	

	  All significant 

disease pairs 

Top 100 most 

significant 

disease pairs 

Percentage of significant disease pairs 

which include a disease-associated 

gene for either disease in their shared-

edge-set 

OmniPath: 41.7% 62.2% 

HIPPIE: 35.2% 45% 

Percentage of these genes associated 

with both diseases (excluding same-

disease pairs) 

OmniPath: 6.4% 7.4% 

HIPPIE: 6.5% 6.4% 

Percentage of significant disease pairs 

which include a drug-interacting gene 

for either disease in their shared-edge-

set 

OmniPath: 51.9% 74.5% 

HIPPIE: 47.8% 60% 

Percentage of these genes associated 

with both diseases (excluding same-

disease pairs) 

OmniPath: 9.8% 15.9% 

HIPPIE: 12.2% 16.9% 
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APPENDIX K: PATHWAY ENRICHMENT RESULTS FOR GENES IN 
MULTIPLE PATH-SETS 

 
List of 54 genes in the dysregulated path-sets of 25 or more diseases 
 

Gene # Path-sets Gene # Path-sets Gene # Path-sets 

EGFR 66 AKT1 30 EGR1	 27	

MAPK1 56 EP300 30 ITGB4	 27	

STAT1 55 JUN 30 LYN	 27	

STAT3 49 PIK3R2 30 MYC	 27	

SRC 48 PXN 30 PLAUR	 27	

CD44 46 RAC1 30 SYK	 27	

CTNNB1 37 RELA 30 CDKN1A	 26	

PRKCA 37 CCND1 29 CRK	 26	

AR 36 CREBBP 29 FAS	 26	

ESR1 36 FOS 29 IGF1R	 26	

MAPK14 36 PRKCD 29 SMAD4	 26	

PTPN11 36 BCL2 28 CALM1	 25	

SMAD3 36 CASP8 28 CBL	 25	

FYN 35 FGFR1 28 CTNND1	 25	

TP53 33 IRS1 28 JUP	 25	

RAF1 32 PLCG1 28 MDM2	 25	

MAPK8 31 SMAD2 28 PAK1	 25	

SNCA 31 CDK2 27 VCAN	 25	
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Pathway enrichment results for these 54 genes 

The	8	terms	in	non-italic	text	are	also	enriched	amongst	genes	in	multiple	random-path-sets.	

  
 Background 

(all genes in 

network) 

Genes in multiple path-sets 

GO-Slim Biological Process # # Expected Fold 

Enrichment 

FDR 

negative regulation of apoptotic process 55 6 1.34 4.49 4.44E-02 

regulation of biological process 458 29 11.12 2.61 2.25E-05 

biological regulation 556 31 13.5 2.3 7.83E-05 

regulation of transcription from RNA 

polymerase II promoter 

123 11 2.99 3.68 4.94E-03 

metabolic process 964 37 23.41 1.58 1.22E-02 

transcription from RNA polymerase II 

promoter 

151 11 3.67 3 1.97E-02 

transcription, DNA-dependent 171 11 4.15 2.65 4.42E-02 

intracellular signal transduction 317 21 7.7 2.73 5.56E-04 

signal transduction 535 32 12.99 2.46 2.22E-05 

cell communication 590 32 14.33 2.23 9.43E-05 

cellular process 1348 48 32.74 1.47 1.48E-03 

cell surface receptor signaling pathway 242 16 5.88 2.72 4.93E-03 

phosphate-containing compound metabolic 

process 

336 18 8.16 2.21 1.84E-02 

response to stimulus 539 27 13.09 2.06 3.08E-03 

Unclassified 674 4 16.37 0.24 3.99E-03 
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APPENDIX L SHARED EDGES RESULTS AT A THRESHOLD OF TOP 100 
PATHS 

 

Using path-sets based on the stricter threshold of the 100 top paths (median path-set size of 72) 

to identify shared edges between disease pairs, instead of the more lenient 500 top paths 

threshold (median path-set size of 195), results in fewer significant disease pairs (287 vs 676) 

and a smaller median shared-edge-set size (9 as opposed to 21 nodes), as may be anticipated.  

This makes little difference to the percentage of disease pairs which are biologically relevant 

in terms of ontological class or disease/drug sharing (Table L.1), but the percentage of shared 

edges which include a disease-associated or drug-interacting gene at a threshold of 100 top 

paths are lower than those in the main text (Table L.2), as the smaller edge-sets mean less 

chance to capture a relevant gene.  Interestingly, those genes that are found are also less likely 

to be associated with both diseases, suggesting that the smaller path-sets are less useful for 

capturing potential drug repurposing hypotheses. 

	

Table L.1 Biological relevance of shared edges 
	  Disease 

pairs with 

shared paths 

Disease pairs 

without 

shared paths 

Fisher 

test p-

value 

In the same Disease 

Ontology top-level class 

500 threshold: 44.7% 26.3% <2.20e-16 

100 threshold: 49.1% 26.9% 3.55e-15 

In the same Disease 

Ontology sub-class 

500 threshold: 18.1% 7.2% <2.20e-16 

100 threshold: 18.1% 7.7% 1.33e-8 

Share drugs (in Phase III 

clinical trials or approved) 

500 threshold: 17.2% 8.0% 1.33e-13 

100 threshold: 20.2% 8.2% 5.20e-10 

Share disease-associated 

genes 

500 threshold: 19.2% 10.8% 5.27e-10 

100 threshold: 18.5% 11.2% 3.06e-4 
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Table L.2 Disease-associated and drug-interacting genes in shared edges 

	

	  All significant 

disease pairs 

Top 100 most 

significant 

disease pairs 

Percentage of significant disease pairs 

which include a disease-associated 

gene for either disease in their shared-

edge-set 

500 threshold: 41.7% 62.2% 

100 threshold: 27.5% 30.8% 

Percentage of these genes associated 

with both diseases (excluding same-

disease pairs) 

500 threshold: 6.4% 7.4% 

100 threshold: 0.9% 1.8% 

Percentage of significant disease pairs 

which include a drug-interacting gene 

for either disease in their shared-edge-

set 

500 threshold: 51.9% 74.5% 

100 threshold: 28.2% 47.7% 

Percentage of these genes associated 

with both diseases (excluding same-

disease pairs) 

500 threshold: 9.8% 15.9% 

100 threshold: 7.5% 11.1% 
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APPENDIX M: RESULTS AT DIFFERENT FEATURE SET SIZES 
	

To test the dependence of the results on the chosen feature set size, different feature set sizes 

of 20, 50, and 200 were tested were tested for ontological, literature co-occurrence, genetic, 

and transcriptomic feature spaces (phenotypic and drug feature spaces being of fixed size).   

As expected, the proportion of links that were significantly greater than those observed in 

random maps (and therefore the number of links in each disease map) varied depending on the 

feature set size, with larger feature set sizes resulting in greater differentiation from random 

maps (Table M.1).  Related to this, the mean Jaccard overlap of drugs shared by diseases linked 

in the map increases at smaller feature set sizes, where only the highest similarity links pass 

the random significance threshold and are included in the map (Table M.1). 

Evaluating the full similarity matrices (in terms of the proportion of links which share drugs, 

and the ability to predict DO categories) produced similar results at different feature set sizes, 

with some minor variations in the performance of individual feature spaces (Figures M.1 and 

M.2).  Finally, at all feature set sizes, literature co-occurrence, phenotype, and ontological 

spaces were the most highly correlated to the fused space.   

 

Table M.1 Comparison of disease maps at different feature set sizes 

 Feature set size 

20 50 100 200 

Percentage of links in full 
similarity matrix which are 
significant (included in map) 

2.98 4.76 6.91 9.12 

Percentage of links in disease map 
classed as novel 

16.2 15.6 15.3 16.3 

Mean Jaccard overlap of drugs 
shared by diseases linked in the 
disease map, approved and Phase 
III/approved only 

0.099/0.107 0.082/0.081 0.069/0.069 0.061/0.059 

Mean Jaccard overlap of drugs 
shared by novel links in the 
disease map, approved and Phase 
III/approved only 

0.031/0.062 0.029/0.049 0.025/0.04 0.022/0.034 
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Figure M.1 Comparing the drug overlap (approved or in Phase III clinical trials) of links in disease networks at different thresholds of 
similarity, and different feature vector sizes. 
Similar	overall	results	are	obtained	for	feature	vector	sizes	of	20	(top	left),	50	(top	right),	100	(bottom	left),	and	200	(bottom	right),	with	some	
minor	 variation	 in	 the	 performance	 of	 individual	 spaces.	 	 In	 particular,	 at	 a	 feature	 vector	 size	 of	 20,	 literature	 space	 and	 ontological	 space	
marginally	 outperform	 the	 fused	 space	 at	 certain	 thresholds.	 	 The	 effect	 of	 different	 feature	 vector	 sizes	 on	 sparsity	 can	 be	 observed	 here,	
particularly	for	the	ontological	space,	which	shows	higher	sparsity	at	smaller	feature	set	sizes.		This	indicates	that	smaller	feature	sets	are	insufficient	
to	capture	much	overlap	between	diseases	in	this	space	(compared	to	the	size	of	the	feature	universe).
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Figure M.2 Random Forest AUROC scores for individual and fused disease similarities 
at different feature vector sizes.   
Overall,	results	are	similar	at	feature	vector	sizes	of	20	(top	left),	50	(top	right),	100	(bottom	
left),	and	200	(bottom	right),	and	improve	with	increases	in	feature	vector	size.		For	the	class	
disease	of	anatomical	entity,	AUROC	scores	for	the	fused	disease	map	(minus	the	ontological	
space)	improve	from	0.869	for	length	20,	to	0.913	for	length	200,	but	literature	co-occurrence	
and	phenotypic	spaces	outperform	the	fused	space	at	feature	set	sizes	20	and	50.		For	the	class	
disease	 of	 cellular	 proliferation,	 the	 fused	map	 outperforms	 any	 of	 the	 individual	maps	 at	
feature	set	sizes	of	20,	50,	and	100;	at	a	feature	set	size	of	200	it	performs	equally	to	literature	
co-occurrence	(with	AUROC	scores	of	0.9769	and	0.9768	respectively.
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APPENDIX N RESULTS OF WEIGHTED MAP 

 
Figure N.1 Disease map resulting from weighted similarity fusion 
The	map	shown	here	is	constructed	from	a	weighted	mean	of	the	individual	spaces,	so	that	the	‘traditional’	spaces	(ontological,	phenotypic,	and	
literature	co-occurrence	similarity)	together	make	up	only	a	third	(instead	of	a	half)	of	the	fused	similarities	(weighting	scheme	1,1,1,2,2,2).		The	
resulting	disease	map	looks	similar	to	the	balanced	(unweighted)	disease	map	shown	in	Figure	5.2.
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Table N.1 Comparison of balanced and weighted fused similarities 

 Balanced Weighted 

Percentage of links in full similarity matrix classed 
as significant (and therefore included in the 
resulting disease map) 

6.91 (242 links) 6.02 (211 links) 

Percentage of links in disease map classed as 
novel 

15.3 (37 links) 17.1 (36 links) 

Mean Jaccard overlap of drugs shared by diseases 
linked in the disease map, approved and Phase 
III/approved only 

0.069/0.069 
 

0.075/0.077 
 

Mean Jaccard overlap of drugs shared by novel 
links in the disease map, approved and Phase 
III/approved only 

0.025/0.04 

 

0.021/0.038 

 

AUC of DO class prediction, disease of 
anatomical entity/disease of cellular proliferation 

0.924/0.985 0.891/0.979 

 
This table shows the results of adjusting the weights on the similarities so that the three 

‘traditional’ spaces which show high similarity to each other (ontological, phenotype, and 

literature-based spaces) account for only a third (instead of half) of the fused similarities, i.e. 

the contribution of the other three spaces (genetic, expression, and transcriptomic) is doubled 

(weighting scheme 1, 1, 1, 2, 2, 2).  Down-weighting these highly similar ‘traditional’ spaces 

means that they have less influence on the resulting disease map, however, the results shown 

here indicate that this down-weighting makes little difference to properties of the resulting 

disease map.  For the DO class prediction, ontological space is excluded from the fused matrix, 

meaning that phenotypic and literature spaces together account for 25% of the fused similarities 

(weighting scheme 1, 1, 2, 2, 2).  After this weighting, note that the fused space is no longer 

the best-performing space for the prediction of disease of anatomical entity (being slightly 

outperformed by phenotypic and literature co-occurrence similarities at 0.902 and 0.905 

respectively).  Note that the AUC quoted here for the balanced kernel varies slightly from that 

quoted in Section 5.3.5 as the classifier was re-run. 
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Figure N.2 Comparing the drug overlap of linked diseases in weighted and balanced 
spaces 
The	overlap	of	drugs	for	each	link	(mean	Jaccard	score)	is	very	similar	for	balanced	and	
weighted	spaces.		In	this	case,	drug	space	is	excluded	from	the	evaluation,	meaning	that	the	
contribution	of	the	two	remaining	non-traditional	spaces	is	tripled	so	that	the	traditional	
spaces	contribute	a	third	of	the	similarity	(weighting	scheme	1,	1,	1,	3,	3).		Note	however	that	
in	contrast	to	the	balanced	space,	the	weighted	fused	(minus	drug)	space	is	outperformed	by	
literature	space	at	the	top	5%	of	similarities. 


